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Introduction

Cox-Ingersoll-Ross model(CIR model)

CIR process (Xt)t≥0 in R is a solution to the stochastic differential equation

dXt = (α− βXt)dt +
√
γXtdwt .

wt is standard brownian motion.

θ := (α, β, γ) ∈ (0,∞)3, Θ is b’dd convex with

Θ ⊂
{

(α, β, γ) ∈ (0,∞)3 : 2α
γ > 5

}
.

It was proposed by Cox, Ingersoll and Ross (1985)

”A Theory of the Term Structure of Interest Rates”

Cox*

Ingersoll*

Ross*
*All photos are from

their homepages.
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High frequency sampling

We consider parametric estimation of θ = (α, β, γ) based on discrete-time observations under high
frequency sampling

Discrete observations of Xt given by (Xt0
,Xt1

, ...,Xtn ):

Xtj
= Xtj−1

+

∫ tj

tj−1

(α− βXs )ds +

∫ tj

tj−1

√
γXsdws ,

tj = jh where h < 1.

Previous studies

Overbeck and Rydén 1997
Study some estimators and their
asymptotic properties under low
frequency sampling.

Alaya, Kebaier and Tran 2020
Assume γ is known, consider the
LAN property under high frequency
sampling.

Our goal

Derive an asymptotically efficient
estimator of θ under high frequency
sampling.

High-frequency scenario

h = hn → 0 as n →∞,
Tn := nh →∞ as n →∞.
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Gaussian quasi-likelihood analysis

Gaussian quasi-likelihood

Gaussian quasi-likelihood function(GQLF) Hn(θ) :=
∑n

j=1 log φ
(
Xtj

; µj−1(α, β), σ2
j−1(θ)

)
where φ(·;µ, σ2) denotes Normal density.

Gaussian quasi-maximum likelihood estimator (GQMLE) θ̂n = (α̂n, β̂n, γ̂n) ∈ argmaxΘ Hn(θ)

Theorem (Asymptotic normality)

Under some regularity conditions,(√
nh(α̂n − α0),

√
nh(β̂n − β0),

√
n(γ̂n − γ0)

)
L→ N

(
0, I(θ0)−1

)
,

where I(θ0) =


1
γ0

2β0
2α0−γ0

− 1
γ0

0

− 1
γ0

1
γ0

α0
β0

0

0 0 1
2γ2

0

.

Since GQMLE itself can’t be computed explicitly, we use a explicit one step estimator to do simulation

θ̂
(1,1)
n = θ̂0,n + D

−1
n I(θ̂0,n)−1D

−1
n ∂θH(θ̂0,n)

where Preliminary estimator θ̂0,n = (α̂0,n, β̂0,n, γ̂0,n), Dn = diag(
√

nh,
√

nh,
√

n).

(α̂0,n, β̂0,n) is conditional LSE,

γ̂0,n maximizes the plug-in GQLF H2,n(γ)
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Simulation

Compute θ̂0,n , θ̂
(1,1)
n , û0,n and ûn for 2000 times under Tn = 100, hn = 0.01

where û0,n := I(θ̂0,n)1/2Dn(θ̂0,n − θ0) and ûn := I(θ̂
(1,1)
n )1/2Dn(θ̂

(1,1)
n − θ0).

Parameters: α β γ
True values: 3 2 1

Mean Sd Mean Sd Mean Sd

preliminary θ̂0,n 3.059 0.326 2.043 0.233 1.000 0.014

one-step θ̂n 3.045 0.287 2.034 0.208 0.997 0.014

Forα and β, one step
estimator performs better.

For γ, preliminary estimator
performs better.

Yuzhong Cheng (Kyushu Univ.) GQLestim. of ergodic square-root diffu. 5 / 5


	Introduction
	Gaussian quasi-likelihood analysis
	Asymptotics for joint GQMLE
	One step improvement

	Simulation

