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Introduction

Cox-Ingersoll-Ross model(CIR model)

CIR process (X:):>0 in R is a solution to the stochastic differential equation

dX; = (o — BXe)dt + /7 Xedws. 3

@ w; is standard brownian motion.
@ 0 :=(a,B,7) € (0,00)% © is b’'dd convex with
oc {(a,ﬁ,'y) € (0,00)*: 277 > 5},

@ It was proposed by Cox, Ingersoll and Ross (1985)
”A Theory of the Term Structure of Interest Rates”

CIR process with o.=3 , B=1, 7=

1 M W
Ross*
- *All photos are from

their homepages.
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High frequency sampling

We consider parametric estimation of 6 = («, 3, ) based on discrete-time observations under high
frequency sampling

Discrete observations of X; given by (Xfo s Xy s voes Xe):
t; t;
Xy = Xy_, +/’ (o — ﬁxs)ds+/’ VA Xedws,
tj—1 ti—1

tj = jh where h < 1.

High fequency sconari

@ Overbeck and Rydén 1997 '}:_ _h"";’_(i > "as_; * e
Study some estimators and their " ’
asymptotic properties under low

frequency sampling. Yo
X &
@ Alaya, Kebaier and Tran 2020 =8
Assume +y is known, consider the
LAN property under high frequency
sampling.
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Our goal

Derive an asymptotically efficient

estimator of § under high frequency Wik

sampling. I —— famheT, 3
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Gaussian quasi-likelihood analysis

Gaussian quasi-likelihood

o Gaussian quasi-likelihood function(GQLF) H, () := 37, log ¢ (xtj; ni—1(a, B), af_l(e))
where ¢(-; i, %) denotes Normal density.

@ Gaussian quasi-maximum likelihood estimator (GQMLE) 0, = (&n, B, 4n) € argmaxg H,(0)
Theorem (Asymptotic normality)

Under some regularity conditions,

(Vnh(&n — o), Vnh(Bs = o), Va(4n = %0)) 5 N (0, Z(60) ),
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where Z(6p) = > %0 Bo )

0 o L

27

4
Since GQMLE itself can't be computed explicitly, we use a explicit one step estimator to do simulation

S11) s il il
ot — 6y, + Dy 1Z(8y, )~ 1D 109Gy )

where Preliminary estimator 8g , = (&0, , B0,n+ ¥0,n): Dn = diag(v/nh, \/nh, \/n).
© (&0,n» Bo,n) is conditional LSE,

o %0,n maximizes the plug-in GQLF Hz’n('y)
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Simulation

Compute G . éﬁ,l’l), i, and dp for 2000 times under Tp = 100, hp = 0.01
(9o,

where 8y, := T(8g, )2/ 2Dn(8g,, — 0g) and i := T8 D)1/ 20,65 — og).

Parameters: a B ~
True values: 3 2 1 © Fora and B, one step
estimator performs better.
Mean Sd Mean Sd Mean sd
@ For ~y, preliminary estimator
preliminary 6p , 3059 0326 2043 0233 1000 0014 performs better.
one-step Oy 3045 0287 2034 0208 0997 0014
preliminary alpha in hatju} {0,n} prcliminary beta in hat{u} {0,n} prcliminary gamma in hat{u} {0.n}
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