Least squares estimators based on the Adams method for discretely sampled SDEs with small Lévy noise

MITSUKI KOBAYASHI AND YASUTAKA SHIMIZU

Abstract

We consider stochastic differential equations (SDEs) driven by small Lévy noise with some unknown parameters, and propose a new type of least squares estimators (LSEs) based on discrete samples from the SDEs. To approximate the increments of a process from the SDEs, we shall use not the usual Euler method, but the Adams method, that is, a well-known numerical approximation of the solution to the ordinary differential equation appearing in the limit of the SDE. We show the asymptotic distribution of the proposed estimators in a suitable observation scheme. We also show that our estimators can be better than the usual LSE in the finite sample performance.

WASEDA UNIVERSITY PURE AND APPLIED MATHEMATICS

Model

Stochastic differential equation with small Lévy noise:

$$egin{cases} dX^arepsilon_t = b(X^arepsilon_t, heta_0) \, dt + arepsilon \, dL_t \quad (0 < t \leq 1), \ X^arepsilon_0 = x_0 \in \mathbb{R}^d, \end{cases}$$

where

- Unknown parameter: $heta_0 \in \mathbb{R}^p$
- Given: $b: \mathbb{R}^d imes \Theta o \mathbb{R}^d, L_t:$ Lévy process
- Observed data: $X_{t_0}^{arepsilon},\ldots,X_{t_n}^{arepsilon}$ $(t_0=0,\ t_n=1,\ t_i-t_{i-1}=1/n)$

ODE in the limit $(\varepsilon \rightarrow 0)$:

$$\frac{dx_t}{dt} = b(x_t, \theta_0) \quad (0 \le t \le 1).$$

Aim

Establish new LSEs for θ_0 , and compare their finite sample performance.

Background

A usual LSE is given by $\Psi_{n,\varepsilon}(\theta) = \sum_{k=1}^{n} \frac{\left|X_{t_{k}}^{\varepsilon} - X_{t_{k-1}}^{\varepsilon} - b(X_{t_{k-1}}^{\varepsilon}, \theta) \Delta t_{k-1}\right|^{2}}{\varepsilon^{2} \Delta t_{k-1}},$ $\hat{\theta}_{n,\varepsilon} := \underset{\theta \in \Theta}{\operatorname{arg\,min}} \Psi_{n,\varepsilon}(\theta).$

$$arepsilon^{-1}\left(\hat{ heta}_{n,arepsilon}- heta_0
ight) \stackrel{P_{ heta_0}}{\longrightarrow} I(heta_0)^{-1}S(heta_0)$$

as $n o \infty$, $\varepsilon o 0$, and $n \varepsilon o \infty$, where

$$I_{ij}(\theta) := \int_0^1 \partial_{\theta_i} b(x_t, \theta) \cdot \partial_{\theta_j} b(x_t, \theta) \, dt, \ S_i(\theta) := \int_0^1 \partial_{\theta_i} b(x_t, \theta) \cdot dL_t.$$

The same convergence is desired for our new LSEs.

New LSEs

LSEs based on the Adams method ($\ell=1,2,\dots)$:

$$\Psi_{n,\varepsilon,\ell}(\theta) := \sum_{k=\ell \vee 1}^{n} \frac{\left|X_{t_{k}}^{\varepsilon} - X_{t_{k-1}}^{\varepsilon} - A_{\ell}b(\boldsymbol{X}_{t_{k}:t_{k-\ell}}^{\varepsilon}, \theta) \, \Delta t_{k-1}\right|^{2}}{\varepsilon^{2} \Delta t_{k-1}},$$

where $X_{t_k:t_{k-\ell}}^{\varepsilon}:=(X_{t_k}^{\varepsilon},\ldots,X_{t_{k-\ell}}^{\varepsilon})$ and

$$A_{\ell}b(\boldsymbol{X}_{t_{k}:t_{k-\ell}}^{\varepsilon},\theta) = \sum_{\nu=0}^{\ell} \beta_{\ell\nu}b(X_{t_{k-\nu}},\theta), \qquad \beta_{\ell\nu} := \frac{(-1)^{\nu}}{\nu!(\ell-\nu)!} \int_{0}^{1} \prod_{\substack{j=0\\ j\neq\nu}}^{\ell} (u+j-1) \, du.$$

Theoretical Result

$$arepsilon^{-1}\left(\hat{ heta}_{n,arepsilon,\ell}- heta_0
ight) \stackrel{P_{ heta_0}}{\longrightarrow} I(heta_0)^{-1}S(heta_0)$$

as $n o \infty$, $arepsilon o 0$, $\ell 2^{4\ell}/n o 0$, $2^\ell arepsilon o 0$ and $\ell 2^{2\ell}/narepsilon o 0$.

Numerical Result

OU-process with $(heta_0, x_0) = (1.0, 1.0)$:

$$dX_t = -\theta_0 X_t dt + \varepsilon dB_t, \qquad X_0 = x_0,$$

where B is the standard Brownian motion.

