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Motivation of the study: Statistical inference of time-inhomogeneous Ornstein-Uhlenbeck Process

Abstract

We address the least-squares estimation of the drift coefficient parameter 6 of a time-inhomogeneous Ornstein-
Uhlenbeck process, that is observed at high frequency, in which the discretized step size h satisfies h — 0. In this
paper, under the conditions nh — o and nh? — 0, we prove the consistency and the asymptotic normality of the
estimators. We obtain the convergence of the parameters at rate vnh, except for w at Vn3h3. Finally, the proposed
model is applied to real data for the measurement of energy use of light fixtures in one household in Belgium.
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Motivations and Model
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Model Setup
Let Y; be a real-valued stationary process satisfying Goal:
t K  The Least-Squares Estimation
Y: =y, +j —AY, + E[A cos(wys) + By sin(wgs)] |ds + ow (LSE.) Of.e
s k k k k t O Application propose model to
0 k=1 appliance energy in Belgium

>y, is a deterministic initial condition; K € N is fixed; o > 0;
> 0 = (4, A, B, w) unknown parameter;

> Ay, Br € R\{0} is the amplitude of the kth sinusoidal signal;
» w is the standard Wiener process.




Theoretical Results
/1. The consistency N
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2. The asymptotic normality
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= D, =diag (\/ﬁ Vnhly, \/ﬁHK,Vn?’h?’HK) - (3K + 1)x (3K + 1) diagonal matrix,
= M(0y)is (3K + 1)x (3K + 1) - matrix
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Simulation

The model examined was applied to real data for the energy use of light -
fixtures of the house in Belgium. The data that support the findings of

this study are available in UCI Machine Learning Repository at
. [https://archive.ics.uci.edu/ml/datasets/], and the relevant paper can be
found at Candanedo et al (2017). All calculations have been performed in B i = o s
R program. We consider K =3 paths over 1500 replication and
h =0.0023. A pseudorandom number generator of 6, : A=
0.910,4¢, = 2.23,A0, = —1.206,A493 = 5.927,By1 = —2.516,By, =

D>
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— 1038, BO,3 = 4‘163, (,()0,1 = 24‘36, wO,Z = 3012, (1)0,3 = 2.301. >
h = 0.00023
n = 10.000 n = 20.000 n = 30.000

A 0.162 (0.217)  0.654 (0.331)  0.857 (0.372) ‘ ? P ’

Ay 2.341 (0.284)  2.643 (0.680)  2.295 (0.168)

Ay -0.445 (1.293)  -0.947 (0.910) -1.111 (0.107)

A3z 5.740 (0.264)  5.998 (0.361)  5.846 (0.146) .

B1 -1.516 (1.112) -2.626 (0.339) -2.489 (0.383)

By -1.296 (0.471) -1.108 (0.650) -0.661 (0.433) -

Bs  4.182 (0.632)  4.378 (0.477)  4.093 (0.269)

w1 2.420 (0.030)  2.411 (0.055)  2.770 (0.114)

w2 3.032 (0.063)  3.041 (0.117)  2.492 (0.125) % -

w3 2.324 (0.020)  2.394 (0.018)  2.712 (0.044) I U N SR BLES NS NN S
x 1 2 3 4 5 6 7 8
v" The performance of 8,, tends to be better for larger n; Time

\/ The convergence performance of @, prone to be slower than (ﬁn,An, En).
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Conclusion
O The LSE, 8,, is a consistent estimator and tend to a (3K + 1) -variate Normal distribution;

[ The rate of convergence of (4, 4, B) at vnh; w at vn3h3.

Remarks

O The explicit term of (mk — wo,k) does not appear at f,. The consistency of w can be shown by a

function that minimizes the least-squares function, which is this function would be given by the
location of K highest peaks of the 5|[gnals. It is mean it should be defined maximization function at
the minimization least-squares funcfion, see, for example: Stoica and Moses (1997)

Future Works

U The least-squares approach;

(1 Model selection for the number components K;
U The driving noise process such as Levy process;
(1 Non-stationary and ergodic diffusion process.
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