SELF-INTRODUCTION

Name :

Atina Husnaqilati

Educational Background:

• 2012-2016

S.Si in Statistik, Universitas Gadjah Mada, Indonesia.

• 2017-2019

M.Sc in Mathematics, Tohoku University, Japan.

• 2019-now

Ph.D student in Mathematics, Tohoku University, Japan.

Publication:

- Husnaqilati, Atina. (2016). Combining parametric, semi-parametric, and nonparametrik survival model with stacked method http://etd.repository.ugm.ac.id/home/detail_pencarian/98064
- Salmahaminati, Salmahaminati & Husnaqilati, Atina & Yahya, Amri. (2017). Statistical t Analysis for the Solution of Prediction Trash Management in Dusun Tanjung Sari Kec. Ngaglik Kab Sleman, Yogyakarta. *Journal of Physics: Conference Series*. 795. 012046. 10.1088/1742-6596/795/1/012046.
- Husnaqilati, Atina & Utami, Herni & Danardono. (2018). Survival Analysis for Cancer Patient with Stacked Method. *Advanced Science Letters*. 24. 678-681. 10.1166/asl.2018.11786.

Internships:

• 1 month in National Family Planning Coordinating Agency Indonesia.

A predictive survival time for COVID-19 by stacked method

Husnaqilati, A.¹ Akama, Y.¹

¹ Department of Mathematics, Tohoku University

数学・数理科学専攻若手研究者のための異分野・異業種研究交流会2021 13 November

Background		Method	References		
In late October 2021, the cases of COVID-19 began to decrease. However, we still need the precise mathematical models that capable of predicting the time to death which provide health officials with valuable information to develop appropriate strategies to reduce the death toll. Early studies have shown that statistical analysis to build predictive models can evaluate mortality rates which applied to COVID-19 issues. Keywords: COVID-19; survival function; Brier score; IPCW-Brier score, ROC.		To evaluate the predictive survival time of 1021 patients (Xu et al. 2020) by age, sex, and acute symptoms, we applied the stacked survival method (Wey et al. 2015) for building a new predictive model of survival time that combines different survival models: 1. log-normal model. 2. Cox PH. 3. Random survival forest (RSF). To measure model performance, we employ the time-dependent area under the curve (AUC) receiver operating characteristic (ROC) (Heagerty, et al. 2002).	Wey, A., Connett, J., & Rudser, K. (2015). Combining parametric, semi- parametric, and non-parametric survival models with stacked survival models. <i>Biostatistics</i> , 16 (3), 537-549. Xu, B., Gutierrez, B., Mekaru, S., Sewalk, K., Goodwin, L., Loskill, A., et al. (2020). Epidemiological data from the COVID-19 outbreak, real-time case information. Heagerty, P. J., Lumley, T., & Pepe, M. S. (2000). Time-dependent ROC curves for		
		Notation	censored survival data and a diagnostic marker. <i>Biometrics</i> , 56 (2) , 337-344.		
Aim The focus of this study is to improve the prediction model of survival times from COVID-19 patients by age, sex, and acute symptoms.	$ \begin{array}{c} \boldsymbol{x}_i & : p \\ \boldsymbol{\delta}_i & : 0 \\ \boldsymbol{T} & : \text{tir} \\ \boldsymbol{C} & : \text{tir} \\ \boldsymbol{S} (t/\boldsymbol{x}) : \text{th} \end{array} $	mple size <i>n</i> and the covariates number <i>p</i> , dimensional covariate vector censored sample), 1 (uncensored sample) ne to death ne to censored e survival time function $P(T>t \mathbf{x})$ e survival function of cencored time $P(C>t \mathbf{x})$	Lostritto, K., Strawderman, R. L., & Molinaro, A. M. (2012). A partitioning deletion/substitution/addition algorithm for creating survival risk groups. <i>Biometrics</i> , 68 (4) , 1146-1156.		

Contact email: Husqila@gmail.com

Stacked method

Stacked method	Brier score	IPCW-Brier score			
A stacked method for survival analysis combines multiple models of survival functions (Breiman 1996). The objectives of this method is to estimate $S(t/x)$ from m candidate model. Parametric model α_1 Semiparametric α_2 Stacked method Non-parametric model	To solve \hat{a} , we need the loss function of survival function. We apply Brier score to loss function of survival function as follows: $BS(t) = \frac{1}{n} \sum_{i=1}^{n} \{Z_i(t) - \hat{S}(t \mathbf{x}_i)\}^2.$ Here, $Z_i(t)$ is indicator function $I(t_i > t)$ for $1 \le i \le n$.	Lostritto et al. (2012) improved Brier score for survival function with right censored. They introduced inverse probability of censoring weights (IPCW) as follows: $IPCW - BS(t) = \frac{1}{n} \sum_{i=1}^{n} \frac{\Delta_i(t)}{G(T_i(t) \mathbf{x}_i)} \{Z_i(t) - \hat{S}(t \mathbf{x}_i)\}^2.$ Here, $T_i = \min(C, t_i, t)$ $\Delta_i(t) = \delta_i \ (y_i \le t); 1 \ (y_i > t).$ Wey et al. (2015) estimated the survival function $G(. \mathbf{x}_i)$ by Kaplan-Meier estimation.			
The estimation of the survival functions obtains from the stacked model by <i>m</i> candidate models. $\hat{S}(t \mathbf{x}) = \sum_{k=1}^{m} \hat{\alpha}_k \hat{S}_k(t \mathbf{x})$	Finally, by IPCW-Brier score, Wey et al. (2015) minimized the loss function over a set $t_1, t_2,, t_s$. The estimation of weighted least square of α with $\sum_{k=1}^m \alpha_k = 1$ and $\alpha_k \ge 0$ for all k . $\hat{\alpha} = \arg \min_{\substack{\sum_{k=1}^m \alpha_k = 1 \\ \alpha_k \ge 0 \ (k=1,,m)}} \sum_{r=1}^s \sum_{i=1}^n \frac{\Delta_i(t_r)}{\hat{G}(T_i(t_r) \mathbf{x}_i)} \left\{ Z_i(t_r) - \sum_{k=1}^m \alpha_k \hat{S}_k^{(-i)}(t_r \mathbf{x}_i) \right\}^2$				
where $\hat{\alpha}$ is the estimate of weights of all survival model α . To find $\hat{\alpha}$, we employ weighted least squares with constrain	Wey et al (2015) calculated $\hat{G}(T_i(t_r) \mathbf{x}_i)$ by Kaplan-Meier estimation. Here $\hat{S}_k^{(-i)}(t_r \mathbf{x}_i)$ is the k-th model's survival prediction for n samples from <i>i</i> -th observation during fitting				

 $\sum_{k=1}^{m} \alpha_k = 1 \text{ and } \alpha_k \ge 0.$

the k-th model's survival prediction for n samples from i-th observation during fitting process.

COVID-19 data analysis

- The dataset contains cases of COVID-19 that recorded from January 6th, 2020, to June 4th, 2020.
- 2. The total number of patients is **1021** from 22 countries.
- 3. The outcome variable was a survival time patient, constructed as the time between the date of confirmation and dead time.
- The censored samples are patients with outcome discharge from hospital because we do not know actual dead time.
- 5. The covariates are age, sex, and acute symptoms
- 6. We categorize the acute symptom which is 1 for a patient that has at least one of acute symptoms (acute pneumonia, acute cardiac or kidney injury, and acute respiratory distress syndrome (ARDS)) and 0 for others symptoms.

Fitting survival function

Before we apply the stacked method for the dataset, we assess the fitting of the COVID-19 dataset to some parametric probability survival distributions (Weibull distribution, lognormal distribution, log-logistic distribution), by using **Q-Q plot**.

we see that the dataset well fit **lognormal distribution or log-logistic**, because mostly the points plotted on the **graph lognormal and log-logistic lie on straight lines**.

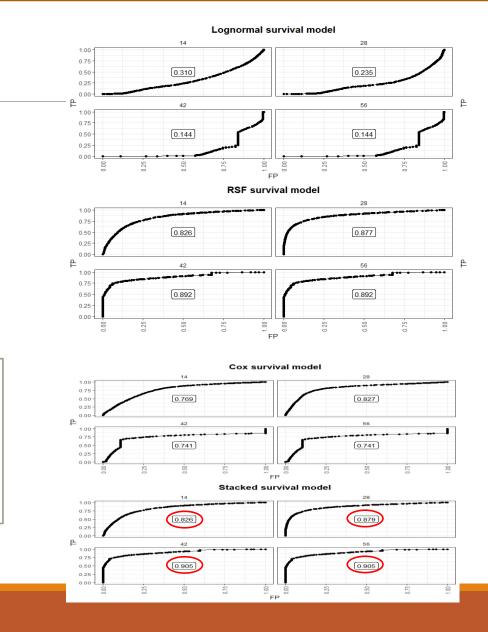
Result of Stacked method

In the stacked survival models for COVID-19 dataset, we combine log-normal model for a parametric model, Cox proportional hazard model (CoxPH) for a semiparametric model, and random survival forests (RSFs) for a non-parametric model.

	Variables	Coefficient	<i>p</i> -value	L95%	U95%	$Alpha(\hat{\alpha})$
Log- normal Model	Age Sex Acute symptoms	-0.0215 0.2066 -0.5624	<2e-16 0.0022 2.8e-06	-0.0252 0.0745 -0.7977	-0.0179 0.3387 -0.3271	0.1516
CoxPH	Age Sex Acute symptoms	0.0269 -0.2195 0.5650	<2e-16 0.0028 5.79e-06	0.0227 -0.3638 0.3206	0.0311 -0.0752 0.8092	0.4208
RSFs						0.4276

The above table shows the estimation of weighted least square $\hat{\alpha}$ stacked model. Moreover, we see that all variables (age, sex, acute symptoms) are significant covariates for three model survivals.

Stacked model performance and conclusion


Time-dependent area under the curve receiver operating characteristic (ROC)

To measure model performance, the stacked model was compared with the three survival models (Log-normal distribution, Cox Proportional hazard, RSFs) based on time-dependent area under the curve receiver operating characteristic (ROC)

The focus of the time-dependent area under the curve AUCs was on the 2 weeks to 4 weeks post confirmation of COVID-19 patients. By the figures in this slide, the stacked method is the largest AUC (the area under the ROC curve) for all selected specific *t* time. Therefore, **stacked method for survival model outperforms and has flexibility for time prediction.**

Conclusion

The stacked model improve the prediction model of survival times from COVID-19 patients by age group, sex at the different level, and acute symptoms based on time-dependent area under the curve receiver operating characteristic (ROC). This result provides a basis for health officials to develop appropriate strategies to reduce the death toll.

