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employ the time-dependent area under information.
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Stacked method

A stacked method for survival analysis
combines multiple models of survival
functions (Breiman 1996). The objectives
of this method is to estimate S(t/x) from m
candidate model.
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where @ is the estimate of weights of all
survival model a. To find &, we employ
weighted least squares with constrain
Yre1ar = land a; = 0.

Brier score IPCW-Brier score

| Lostritto et al. (2012) improved Brier score for
survival function with right censored. They
introduced inverse probability of censoring
weights (IPCW) as follows:

IPCW — BS(L) = - LION
WoBSO =L Lsmom

To solve @ , we need the loss function of
survival function. We apply Brier score
to loss function of survival function as
follows:

BS(t) = %Z{Zi (t) — §(t|xi)}2. (Z:(t) - S(tlxp)).
i=1

Here,
C . T; = min(C, t;, t)
Here, Z;(t) is indicator function I(t; > t e
(6 G> 1 a® = 6o s10:> 0.

t)yforl <i<n.

Wey et al. (2015) estimated the survival
function G (. |x;) by Kaplan-Meier estimation.

Finally, by IPCW-Brier score, Wey et al. (2015) minimized the loss function over a set
t1,tz, ..., ts. The estimation of weighted least square of @ with 7=, @, =1 and a; =0
for all k.
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Wey et al (2015) calculated G(T;(t,)|x;) by Kaplan-Meier estimation. Here S,E_i)(trlxi) is
the k-th model’s survival prediction for n samples from i-th observation during fitting

process.




COVID-19 data analysis

The dataset contains cases of COVID-
19 that recorded from January 6th,
2020, to June 4th, 2020.

The total number of patients is 1021
from 22 countries.

The outcome variable was a survival
time patient, constructed as the time
between the date of confirmation
and dead time.

The censored samples are patients
with outcome discharge from
hospital because we do not know
actual dead time.

The covariates are age, sex, and
acute symptoms

We categorize the acute symptom
which is 1 for a patient that has at
least one of acute symptoms (acute
pneumonia, acute cardiac or kidney
injury, and acute respiratory distress
syndrome (ARDS)) and O for others
symptoms.

Fitting survival function

Before we apply the stacked method for the
dataset, we assess the fitting of the COVID-
19 dataset to some parametric probability
survival distributions (Weibull distribution,
lognormal distribution, log-logistic
distribution), by using Q-Q plot.

Q-Q plot weibull distribution model Q-Q plot lognormal model

we see that the dataset well fit lognormal

distribution or log-logistic, because mostly
the points plotted on the graph lognormal
and log-logistic lie on straight lines.

Result of Stacked method

In the stacked survival models for COVID-19
dataset, we combine log-normal model for
a parametric model, Cox proportional
hazard model (CoxPH) for a semi-
parametric model, and random survival
forests (RSFs) for a non-parametric model.

Variables Coefficient  pvalue  L95%  U0S%  Alpha(d)
Log-  Age -0.0215 <216 -0.0252 -0.0179 (0.1516
normal  Sex 0.2066 0.0022 00745 03387
Model  Acute symptoms ~ -0.5624 2806 -0.7977  -0.3271
CoxPH  Age 0.0269 <216 00227 00311 (04208
Sex -0.2193 0.0028  -0.3638 -0.0752
Acute symptoms  0.5630 5.79e-06  0.3206  0.8092

RSFs

@2@

The above table shows the estimation of
weighted least square @ stacked model.
Moreover, we see that all variables (age,
sex, acute symptoms) are significant
covariates for three model survivals.




Time-dependent area under the curve receiver
operating characteristic (ROC)

To measure model performance, the stacked model was compared
with the three survival models (Log-normal distribution, Cox
Proportional hazard, RSFs) based on time-dependent area under the
curve receiver operating characteristic (ROC)

The focus of the time-dependent area under the curve AUCs was on
the 2 weeks to 4 weeks post confirmation of COVID-19 patients. By
the figures in this slide, the stacked method is the largest AUC (the
area under the ROC curve) for all selected specific t time. Therefore,
stacked method for survival model outperforms and has flexibility
for time prediction.

Conclusion
The stacked model improve the prediction model of survival times
from COVID-19 patients by age group, sex at the different level, and
acute symptoms based on time-dependent area under the curve
receiver operating characteristic (ROC). This result provides a basis for
health officials to develop appropriate strategies to reduce the death
toll.
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