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H.F. Kaiser, an American psychologist who worked in psychometrics and
statistical psychology, introduced Guttman-Kaiser rule, or eigenvalue-greater-than-
one rule for sample correlation matrix R in order to assess the number q of
significant components or factors in principal component analysis (PCA) and
explanatory factor analysis (EFA) (See the histogram on the right).

As for the number of components or factors Guttman-Kaiser rule retains, the
following dichotomy is reported:
(1) p/2, when the variables are independent, the sample size (n) is large and the

number variables (p) is small, as in a simulation study Yeomans-Golder (J. R.
Stat. Soc. D. 1992); but

(2) very small number, when the number p of variables is small and the
“average” intercorrelation among variables are large, as suggested by Kaiser,
Humphreys and Tucker (Kaiser, Percept. Mot. Ski. 1992).

According to Kaiser (Educ. Psychol. Meas. 1962), the “average” intercorrelation is a
positive constant 𝜌 in a so-called equi-correlation matrix.
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The equi-correlation matrix by definition (𝑒𝐶 𝜌 , in symbol)

𝑒𝐶 𝜌 =

1 𝜌 ⋯ 𝜌
𝜌
⋮

1
⋮

⋯
⋱

𝜌
⋮

𝜌 𝜌 ⋯ 1

∈ ℝ𝑝 x 𝑝 (𝜌 ≥ 0)

This structure is assumption to estimate a new covariance matrix estimator in
various areas of finance (Engle-Kelly, J. Bus. Econ. Stat. 2008).

𝝆 > 𝟎

𝝆 = 𝟎

The LSDs of S and R for equi-correlated normal population
Theorem 1. Suppose that the samples 𝑋1, … , 𝑋𝑛~𝑁𝑝 0, 𝜎2𝑒𝐶 𝜌 are

i.i.d. with 𝜎2 > 0, 𝜌 ≥ 0, and 𝑛, 𝑝 → ∞ with
𝑝

𝑛
→ 𝑐 > 0. Then, a.s.,

𝑭𝑺(𝒙) →𝑴𝑷𝒄
𝒙

𝝈𝟐(𝟏−𝝆)
and 𝑭𝑹(𝒙) → 𝑴𝑷𝒄

𝒙

𝟏−𝝆
, 𝑥 ∈ ℝ .

We precisely compute q/p in 𝒏,𝒑 → ∞ with
𝒑

𝒏
→ 𝒄 > 𝟎 (high-dimensional and large

sample sizes) and then the limit in 𝒄 → 𝟎.
The empirical spectral distribution (ESD) of the sample correlation matrix R of order p

is, by definition, a function

𝐹𝑅 𝑥 =
1

𝑝
# 1 ≤ 𝑖 ≤ 𝑝 ∶ 𝜆𝑖 ≤ 𝑥 (𝑥 ∈ ℝ)

where λ1 ≥ ⋯ ≥ λp are the eigenvalues of R. The ESD of the sample covariance matrix S is

similarly defined. The limiting spectral distribution (LSD) is the limit of ESD.
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Eigenvalue-greater-than-one rule (GK rule) for 
sample correlation matrix R

Rejection rate by GK rule is 𝑭𝑹(𝟏)

The LSD of R is 𝑴𝑷𝒄
𝒙

𝟏−𝝆
(𝝆 ≥ 𝟎)

The samples 

𝑿𝟏, … , 𝑿𝒏~𝑵𝒑 𝟎, 𝝈𝟐𝒆𝑪 𝝆 are 

i.i.d. with 𝝈𝟐 > 𝟎, 𝝆 ≥ 𝟎, and 

𝒏, 𝒑 → ∞ with  
𝒑

𝒏
→ 𝒄 > 𝟎.

lim
𝑐↓0

𝑴𝑷𝒄

𝟏

𝟏 − 𝟎
=
1

2
lim
𝑐↓0

𝑴𝑷𝒄

𝟏

𝟏 − 𝝆
= 1

All entries of the samples 
𝑿𝟏, … , 𝑿𝒏 are i.i.d. with 𝝈𝟐 > 𝟎,

𝒏, 𝒑 → ∞,  
𝒑

𝒏
→ 𝒄 > 𝟎 and finite 

second moment.

The LSD of R is 𝑴𝑷𝒄 𝒙 (Jiang, Sankhyā. 2004 )

𝝆 = 𝟎 𝟎 < 𝝆 < 𝟏

lim
𝑐↓0

𝑴𝑷𝒄 𝟏 =
1

2

As in Yeomans-Golder (J. R. Stat. Soc. D. 1992) As in Yeomans-Golder (J. R. Stat. Soc. D. 1992) As in Kaiser ( Percept. Mot. Ski. 1992)
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Proof sketch of Theorem 1 (The LSDs of S and R for equi-correlated normal population)

1. Assume that the sample 𝑋1, … , 𝑋𝑛~𝑁𝑝 0, 𝜎2𝑒𝐶 𝜌 is i.i.d. with 𝜎2 > 0, 𝜌 ≥ 0.  

2. Decompose 𝑋 = 𝑋1, … , 𝑋𝑛 = 𝜌
𝜉1 ⋯ 𝜉𝑛
⋮ ⋱ ⋮
𝜉1 ⋯ 𝜉𝑛

+ 1 − 𝜌

𝜉11 ⋯ 𝜉1𝑛
⋮ ⋱ ⋮
𝜉𝑝1 ⋯ 𝜉𝑝𝑛

(𝜉𝑗, 𝜉𝑖𝑗~𝑁 0,1 are i.i.d. (1 ≤ 𝑖 ≤ 𝑝, 1 ≤ 𝑗 ≤ 𝑛)).

This matrix has rank at most 1

3. The ESD of the sample covariance matrix 𝑆 =
1

𝑛
𝑋𝑋𝑇 is close to the ESD of the sample covariance matrix of 

1

𝑛
𝐴𝐴𝑇 . By 

the rank-1 matrix error, the difference between the two ESD is at most  
1

𝑝
.   

4. For 𝑛, 𝑝 → ∞ with  
𝑝

𝑛
→ 𝑐 > 0,

• LSD of S is 𝑀𝑃𝑐 scaled by 𝜎2(1 − 𝜌).
• LSD of R is the same as LSD of S for 𝜎2 = 1 (because R is invariant under scaling of variables), by Bai-Yin’s uniform 

approximation of the sample mean of 𝑝 variables (Lemma 2, Bai-Yin, Ann. Probab. 1993).
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Corollary 2

1. lim
𝑐↓0

𝑀𝑃𝑐(1) =
1

2
𝜌 = 0 .

2. lim
𝑐↓0

𝑀𝑃𝑐
1

1−𝜌
= 1 (0 < 𝜌 < 1)

Conclusion

If 𝑋𝑐~𝑀𝑃𝑐, then 𝑋𝑐′: =
1

2 𝑐
(𝑋𝑐 − 1 ) converges in

distribution to a random variable X′ that follows Wigner’s
semi-circle law as 𝑐 → 0. Thus,

lim
𝑐↓0

1 −𝑀𝑃𝑐(1) = lim
𝑐↓0

P 𝑋𝑐 ≥ 1 = lim
𝑐↓0

P 𝑋𝑐′ ≥ 0 = P 𝑋′ ≥ 0 =
1

2

The random matrices from multinormal population with 
equi-correlation structure 𝝆 has the same LSDs but scaled 

by 𝟏 − 𝝆

Random matrix LSD

Scalling of LSD (depending on 
population)

Multinormal 
with equi-
correlation 
structure

All entries are i.i.d. 
random variables

𝟏

𝟐

𝒏

𝒑
𝑺 − 𝑰𝒑

Semicircle

𝟏 − 𝝆 1 [Bai-Yin, Ann. 
Probab. 1988.]

𝟏

𝟐

𝒏

𝒑
𝑹 − 𝑰𝒑 ????

1 [Jiang, Sankhyā. 
2004.]

𝑺

Marcenko-
Pastur

𝟏 − 𝝆
1 [Yao et al., 

Cambridge UP. 
2015.]

𝑹
𝟏 − 𝝆

1 [Jiang, Sankhyā. 
2004.]

𝑺𝟏𝑺𝟐
−𝟏

Fisher LSD

𝟏 − 𝝆𝟐
𝟏 − 𝝆𝟏

1 [Bai, Stat. Sin. 
1999.]

𝑹𝟏𝑹𝟐
−𝟏

???? ???

𝑆𝑖 , 𝑅𝑖 are formed from the 𝑖-th population (with equi-correlation
structure 𝜌𝑖) and 𝐼𝑝 is identity matrix order 𝑝.

Proof of Corollary 2 (1)

Proof of Corollary 2 (2)

𝑀𝑃𝑐 𝑥(1 − 𝜌)−1 = 1 if 𝑥 >
1 − 𝜌 1 + 𝑐 2.

So 1 > lim
𝑐↓0

(1 − 𝜌)(1 + 𝑐) 2

(0 < 𝜌 < 1).
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Derivation of dichotomy of GK rule w. r. t. 𝜌


