SELF-INTRODUCTION

Name :

Atina Husnaqilati

Educational Background:

- 2012-2016
 S.Si in Statistik, Universitas Gadjah Mada, Indonesia.
- 2017-2019
 M.Sc in Mathematics, Tohoku University, Japan.
- 2019-now

Ph.D student in Mathematics, Tohoku University, Japan.

Publication:

- Husnaqilati, Atina. (2016). Combining parametric, semi-parametric, and nonparametrik survival model with stacked method http://etd.repository.ugm.ac.id/home/detail_pencarian/98064
- Salmahaminati, Salmahaminati & Husnaqilati, Atina & Yahya, Amri. (2017). Statistical t Analysis for the Solution of Prediction Trash Management in Dusun Tanjung Sari Kec. Ngaglik Kab Sleman, Yogyakarta. *Journal of Physics: Conference Series*. 795. 012046. 10.1088/1742-6596/795/1/012046.
- Husnaqilati, Atina & Utami, Herni & Danardono. (2018). Survival Analysis for Cancer Patient with Stacked Method. *Advanced Science Letters*. 24. 678-681. 10.1166/asl.2018.11786.

A dichotomous behavior of Guttman-Kaiser rule from equi-correlated normal population and the limiting spectral distributions of random matrices

Akama, Y.¹ Husnaqilati, H.¹

¹ Department of Mathematics, Tohoku University

数学・数理科学専攻若手研究者のための異分野・異業種研究交流会2021 13 November

H.F. Kaiser, an American psychologist who worked in psychometrics and statistical psychology, introduced *Guttman-Kaiser rule, or eigenvalue-greater-thanone rule* for sample correlation matrix *R* in order to assess the number *q* of significant components or factors in *principal component analysis* (PCA) and *explanatory factor analysis* (EFA) (See the histogram on the right).

As for the number of components or factors Guttman-Kaiser rule retains, the following *dichotomy* is reported:

- (1) p/2, when the variables are independent, the sample size (*n*) is large and the number variables (*p*) is small, as in a simulation study Yeomans-Golder (*J. R. Stat. Soc. D.* 1992); but
- (2) very small number, when the number *p* of variables is small and the "average" intercorrelation among variables are large, as suggested by Kaiser, Humphreys and Tucker (Kaiser, *Percept. Mot. Ski.* 1992).

According to Kaiser (*Educ. Psychol. Meas.* 1962), the "average" intercorrelation is a positive constant ρ in a so-called **equi-correlation matrix**.

This structure is assumption to estimate a new covariance matrix estimator in various areas of finance (Engle-Kelly, J. Bus. Econ. Stat. 2008).

We precisely compute q/p in $n, p \to \infty$ with $\frac{p}{n} \to c > 0$ (high-dimensional and large sample sizes) and then the limit in $c \to 0$.

The *empirical spectral distribution* (ESD) of the sample correlation matrix *R* of order *p* is, by definition, a function

$$F^{R}(x) = \frac{1}{p} \# \{ 1 \le i \le p : \lambda_{i} \le x \} \quad (x \in \mathbb{R})$$

where $\lambda_1 \geq \cdots \geq \lambda_p$ are the eigenvalues of R. The ESD of the sample covariance matrix S is similarly defined. *The limiting spectral distribution* (LSD) is the limit of ESD.

The LSDs of S and R for equi-correlated normal population Theorem 1. Suppose that the samples $X_1, ..., X_n \sim N_p(0, \sigma^2 eC(\rho))$ are i.i.d. with $\sigma^2 > 0, \rho \ge 0$, and $n, p \to \infty$ with $\frac{p}{n} \to c > 0$. Then, a.s., $F^S(x) \to MP_c\left(\frac{x}{\sigma^2(1-\rho)}\right)$ and $F^R(x) \to MP_c\left(\frac{x}{1-\rho}\right), (x \in \mathbb{R})$.

The density of $MP_c\left(\frac{x}{1-\rho}\right)$ with $c = \frac{1}{8}$ The rate of GK rule retains depend on c $\rho = 0.8$ $\rho = 0.5$ $\rho = 0.3$ $\rho > 0$

Outlines

Proof sketch of Theorem 1 (The LSDs of S and R for equi-correlated normal population)

1. Assume that the sample $X_1, ..., X_n \sim N_p(0, \sigma^2 e \mathcal{C}(\rho))$ is i.i.d. with $\sigma^2 > 0, \rho \ge 0$.

2. Decompose
$$X = [X_1, ..., X_n] = \sqrt{\rho} \begin{bmatrix} \xi_1 & \cdots & \xi_n \\ \vdots & \ddots & \vdots \\ \xi_1 & \cdots & \xi_n \end{bmatrix} + \sqrt{1 - \rho} \begin{bmatrix} \xi_{11} & \cdots & \xi_{1n} \\ \vdots & \ddots & \vdots \\ \xi_{p1} & \cdots & \xi_{pn} \end{bmatrix} (\xi_j, \xi_{ij} \sim N(0, 1) \text{ are i.i.d. } (1 \le i \le p, 1 \le j \le n)).$$

This matrix has rank at most 1 A

3. The ESD of the sample covariance matrix $S = \frac{1}{n}XX^T$ is close to the ESD of the sample covariance matrix of $\frac{1}{n}AA^T$. By the rank-1 matrix error, the difference between the two ESD is at most $\frac{1}{n}$.

4. For $n, p \to \infty$ with $\frac{p}{n} \to c > 0$,

- LSD of *S* is MP_c scaled by $\sigma^2(1-\rho)$.
- LSD of *R* is the same as LSD of *S* for $\sigma^2 = 1$ (because *R* is invariant under scaling of variables), by Bai-Yin's uniform approximation of the sample mean of *p* variables (Lemma 2, Bai-Yin, *Ann. Probab.* 1993).

Derivation of dichotomy of GK rule w. r. t. ρ

Conclusion

The random matrices from multinormal population with				
equi-correlation structure $ ho$ has the same LSDs but scaled				
by $1- ho$				

Random matrix	LSD	Scalling of LSD (depending on population)	
		Multinormal with equi- correlation structure	All entries are i.i.d. random variables
$\frac{1}{2}\sqrt{\frac{n}{p}}(S-I_p)$	Semicircle	$1 - \rho$	1 [Bai-Yin, <i>Ann.</i> <i>Probab</i> . 1988.]
$\frac{1}{2}\sqrt{\frac{n}{p}}(R-I_p)$????	1 [Jiang, Sankhyā. 2004.]
S	Marcenko- Pastur	$1 - \rho$	1 [Yao et al., Cambridge UP. 2015.]
R		$1 - \rho$	1 [Jiang, <i>Sankhyā.</i> 2004.]
$S_1 S_2^{-1}$	Fisher LSD	$\frac{1-\rho_2}{1-\rho_1}$	1 [Bai, Stat. Sin. 1999.]
$R_1 R_2^{-1}$????	???

 S_i , R_i are formed from the *i*-th population (with equi-correlation structure ρ_i) and I_p is identity matrix order p.