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A dichotomous behavior of Guttman-Kaiser rule from equi-correlated normal population

and the limiting spectral distributions of random matrices
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The density of LSD of matrix R The density of Marchenko-Pastur
The histogram of distribution MP,

H.F. Kaiser, an American psychologist who worked in psychometrics and

statistical psychology, introduced Guttman-Kaiser rule, or eigenvalue-greater-than- :::: \ - eigenvalues of R with i.i.d "' |
one rule for sample correlation matrix R in order to assess the number q of | | ‘ standard normal entries '
significant components or factors in principal component analysis (PCA) and | '] ‘v/__\ c=1/8 =1 U.rrf c=1/8
explanatory factor analysis (EFA) (See the histogram on the right). o.;: & T Zj \ 1

As for the number of components or factors Guttman-Kaiser rule retains, the | os{ / 01 o 1/4
following dichotomy is reported: = 05 N

(1) p/2, when the variables are independent, the sample size (n) is large and the | os]
number variables (p) is small, as in a simulation study Yeomans-Golder (J. R. 2:::
Stat. Soc. D. 1992); but 02]

(2) very small number, when the number p of variables is small and the | °']
“average” intercorrelation among variables are large, as suggested by Kaiser, %04 o6 o

Humphreys and Tucker (Kaiser, Percept. Mot. Ski. 1992). : ;
According to Kaiser (Educ. Psychol. Meas. 1962), the “average” intercorrelation is a The LSDs of S and R for equi-correlated normal population
Theorem 1. Suppose that the samples X1,...,Xn~Np(O,azeC(p)) are

positive constant p in a so-called equi-correlation matrix.
i.i.d.witho? > 0,p = 0,andn,p - oowithg — ¢ > 0.Then, a.s.,

The equi-correlation matrix by definition (eC(p), in symbol s x R
q ydefinition (eC(s). n Symbol PG WP ) nd PR P (), (€
1 p cee p )
P 1 P X Chemistry The density of MP,. ( ) withc =%  The rate of GK rule retains depend on ¢
eC(p) = .| ERPXP (p 2 0) v > 8 P
p P 1 Econometrics 7 m—5

This structure is assumption to estimate a new covariance matrix estimator in
various areas of finance (Engle-Kelly, J. Bus. Econ. Stat. 2008).

We precisely compute g/p in n,p — o with % — ¢ > 0 (high-dimensional and large o

sample sizes) and then the limit in ¢ — 0.
The empirical spectral distribution (ESD) of the sample correlation matrix R of order p o

is, by definition, a function
1
FR(x)=E#{1SiSp:)li§x} (x € R) -

where A; = --- = A, are the eigenvalues of R. The ESD of the sample covariance matrix S is
similarly defined. The limiting spectral distribution (LSD) is the limit of ESD. o o M p>0




Outlines

Eigenvalue-greater-than-one rule (GK rule) for
sample correlation matrix R

Rejection rate by GK rule is FR(1)

The samples

Xy, .., Xo~N,, (0,0%eC(p)) are
i.i.d. with 6% > 0,p > 0, and
n,p — oo with §—>c>0.

All entries of the samples
X4, ..., X, are i.i.d. with % > 0,
n,p - o, £—> ¢ > 0 and finite
second moment.

The LSD of Ris MP.(x) (liang, Sankhya. 2004 ) The LSD of Ris MP, (ﬁ) (p =0)

- _ 1
lclf(r)l MP_.(1) = >

As in Yeomans-Golder (J. R. Stat. Soc. D. 1992) As in Yeomans-Golder (J. R. Stat. Soc. D. 1992) As in Kaiser ( Percept. Mot. Ski. 1992)



Proof sketch of Theorem 1 (The LSDs of S and R for equi-correlated normal population)

4 2\
1. Assume that the sample X, ..., X,~N,(0,02eC(p)) isi.i.d. with 6% > 0,p > 0.
\ Y,
/ N
511 n
2. Decompose X = [Xy, ..., X \/_[ +,/ [ ‘(f],fu ~N(0,1) arei.id. (1 <i<p,1<j<n)).

5 [}

\ This matrix has rank at most 1 A /

-
3. The ESD of the sample covariance matrix S = %XXT is close to the ESD of the sample covariance matrix of%AAT . By

. the rank-1 matrix error, the difference between the two ESD is at most %. )

4 )

4. Fornp—>OOW|th Pse>o,
s LSDofSis MP. scaled by 2(1 — p).

» LSD of Ris the same as LSD of S for 62 = 1 (because R is invariant under scaling of variables), by Bai-Yin’s uniform
approximation of the sample mean of p variables (Lemma 2, Bai-Yin, Ann. Probab. 1993).
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Derivation of dichotomy of GK rule w. r. t. p Conclusion

g
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The random matrices from multinormal population with
equi-correlation structure p has the same LSDs but scaled

byl—p

[ Scalling of LSD (depending on
population)
LSD

Corollary 2
7. limMP.(1) = =(p = 0).
clo 2

: 1)
2. limMP, (E) =1(0<p<1)
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Proof of Corollary 2 (1)

00

Random matrix Multinormal  All entries are i.i.d.

i 2 " N i with equi- random variables

1 _ . correlation
If X.~MP., then X/ := 77 (X, —1 ) converges in structure
distribution to a random variable X' that follows Wigner’s
semi-circle law as ¢ — 0. Thus,

1

i — =1 > =1i I'> = I'> = —
lclpol 1—-MP.(1) lclﬁ)l PX.=1) 161&1 P(X., =20)=PX =0) 5

1 [Jiang, Sankhya.
Proof of Corollary 2 (2) 2004.]

s p) - --
N Y MP.(x(1 —p)) =1ifx >

~ :"'-__ ' 1-p)A++o)2 1 [Jiang, Sankhya.
So1> lim(1—p)(1++o)? 2004.]
0<p<D).

N?

R1R2 ???

?7??

S;, R; are formed from the i-th population (with equi-correlation
structure p;) and I, is identity matrix order p




