
数学・データサイエンス分野 における産学連携教育の 現状と課題

2017年3月3日 池川 隆司 東京大学 数理キャリア支援室

E-mail tikegawa@ms.u-tokyo.ac.jp
http://faculty.ms.u-tokyo.ac.jp/users/career/

自己紹介

- ●キャリアアドバイザー(東京大学、慶應義塾大学、 日本数学会社会連携協議会委員)
 - ・数学系学生/ポスドクの進路指導
 - 産学連携による数学人材育成戦略立案
 - 各種イベント企画運営
- ●非常勤講師(神奈川工科大学)
 - 日本語/英語による科学技術文書作成/発表技術の講義
- 数理キャリアデザイン
 セミナー2017 (**) ###
- ●研究開発シニアコンサルタント (アルテ社)
 - 移動履歴データマイニングの研究開発
- ●客員教授(早稲田大学)
 - ・無線系情報ネットワークの数理モデルの研究 科研費
 - 産学連携による人材育成方法論の研究

フ - 理工系プロフェショナル教育推進委託事業シンポジウム 2017年3月3日

発 表 内 容

- 〇. 役に立つ数学
- 1. 共通言語としての数学とイノベーション創出
- 2. 数学イノベーション戦略
- 3. 数学履修生の進路先の拡がり
- 4. 数学分野の人材育成
- 5. データサイエンス分野の人材育成
- 6. 課題

役に立つ数学

「理工系プロフェッショナル」 ネット検索

○理丁系プロフェッショナル教育推進委託事業。文部和学者

vAvvoment.go.jo . 新草 。大字 / 大字族、岩門教育 : 産学連携による温度人が質反等 * 少于喜踏化により、生産年齢人口が減少する中で、今後とも我が国の持続 的後度のためには、イノベーションを担う理工業人材の資度が無要であ る。高等教育においては、学究的な事門性の追求のみならず。高度な技術 類氏やグロー/ULA経営を担うために

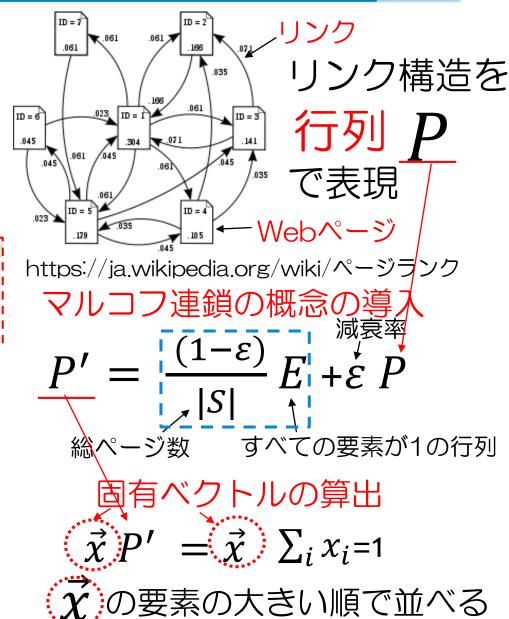
www.merd go polcomponentita_messureducationydetai/___//66/_/1372465_0t pdf

2016/03/14 - 本報告書は、文部科学省の議會研究長託費による委託業務にと 国立大学法人干蔵大学が実施した平板27年度「理・工業プロフェッシ ヨナル教育推進委託事業」調査研究テーマ 工学分野における理工系人材 製成の在り方に継ずる調査

$x_2 = 0.1$

(PDF) 草理工品人材管成份第一交部科学者

viviniment go (picomponent/a_menu/education/detai/____/1351897_62 pdf *


2015/03/13 - 理工系プロフェッショナル、リーダー人材育成システムの強 化、重点2、製質機能のグローバル化の担道、重点3、地域企業との連携によ る持続的、発展的イノベーション創出、重点4、国立大学における教育研究 組織の整備・南福等を通じた理工 -

[XLS] ^単 揮丁系プロフェッショナル教言推進事業

www.cas.go.pap/sessaku/gyoukakuh26_tall/is/diagakurbun27-26 //sz *

4. 事業名。理工系プロフェッショナル教育指述事業。担当部局庁、高等教育 角,作成黄任者 5. 事業開始。 終了(予定) 早度, 平成五年度 - 平成33年度 和兴建军 真門教育理 半屋 刺文 6. 会社区分。一卷会针、政策、旅荡名、政 第日標4個性が舞く高等教育の_

ランキングのアルゴリズムは?

東京大学大学院数理科学研究科・理学部数学科

理工系プロフェショナル教育推進委託事業シンポジウム 2017年3月3日

〇. 役に立つ数学

ネット検索ランキングアルゴリズム考案者

(12) United States Patent Page

ローレンス "ラリー" ペイジ氏 (43歳)

- (54) METHOD FOR NODE RANKING IN A LINKED DATABASE
- (75) Inventor: Lawrence Page, Stanford, CA (US)
- (73) Assignce: The Board of Trustees of the Leland Stanford Junior University, Stanford, CA (US)

https://ja.wikipedia.org/wiki/ラリー・ペイジ

Google共同創始者、最高経営責任者

2016年世界の億万長者:12位

総資産:約4兆円

【参考】2017年度「日本の国家予算」 約**97.5兆円**

5 - 理工系プロフェショナル教育推進委託事業シンポジウム 2017年3月3日

1. 共通言語としての数学とイノベーション創出

情報学

総合系

統計科学(データサイエンス)

情報ネットワーク(トラフィックエンジニアリング)

データベース(ビッグデータ解析)

情報セキュリティ(暗号、バイオメトリクス)

知覚情報処理(パターン認識、画像情報処理)

知能情報学(機械学習、データマイニング)

ソフトコンピューティング(ニューラルネットワーク、遺伝

アルゴリズム)

生命情報学(バイオインフォマティクス、ゲノム情報処理)

ウエブ情報学(推薦システム)

複合領域

社会システム工学 (OR、品質管理)

総合理工

計算科学(数理工学)

• •

理工系

人文社会系

社会科学

理論経済学(ゲーム理論) 金融・ファイナンス(金融工学) 商学(マーケティングリサーチ) 実験心理学(学習・行動分析)

•

数物系科学 ———

数学

純粋数学

代数学(数論、群論、代数幾何、環論等)

幾何学(リーマン幾何、複素幾何、微分幾何等)

解析学(関数解析、作用素環、確率論、力学系等)

応用数学(数値解析、数理モデル、統計学等)

素粒子・宇宙物理(原子核、宇宙線、宇宙物理、相対論)数理物理(統計物理学)

工学

機械工学(CAD、流体工学、機械力学・制御)

電気電子工学(電子デバイス、通信・ネットワーク工学、計測

工学、制御・システム工学)

土木工学(構造工学、水工学)

建築学(建築構造)

材料工学(構造・機能材料)

航空宇宙工学(誘導・航法・制御)

•

生物系

ゲノム科学(システムゲノム科学)

• •

数式を使ってあらゆる物事を記述する「科学の女王」

数学と諸科学/産業との協働

イノベーション創出

分類項目:科研費「系・分野・文科・細目表」 赤字:数学が貢献している(数式が使われている)分野

東京大学大学院数理科学研究科·理学部数学科

- 6 - 理工系プロフェショナル教育推進委託事業シンポジウム 2017年3月3日

数学イノベーション戦略:系譜

オープンイノベーショ ICTの飛躍的 数理を基盤技術とす ンの認知(産学連携 進展に伴い第4次 る産業分野の顕在化 産業界 機運の高まり) 産業革命の到来 △OECD GSF 「Report on Mathematical in Industry出版(2008年7月) 科学技術基本計画 第5期開始(2016年) △ △第3期開始 (2006年) △第4期開始(2011年) 数理科学を領域横断的 超スマート社会 (Society5.0)の ポストドクター等 内閣府 科学技術として位置づけ 構築に向け、数学・数理科学を キャリアパス構築支援 基盤となる科学として位置づけ △「数学イノベーショ △数学イノベーションユニット △科学技術政策研究所 ン戦略」最終報告 設置(2011年) 「忘れられた科学ー数学」 (2014年) △科学技術・学術審議会に 文部 出版(2006年) 「数学イノベーション △数学・数理科学を 委員会」設置 (2011年) 活用した異分野融合 科学省 研究の動向調査 博士課程教育リーディングプログラム(2011年) A (2016年) 戦略的創造研究推進事業(CREST/さきがけ) △ 2014年 2013年△ △ 2007年 △九大「マス・フォア・インダスト研究所IMI」設立(2011年) 大学 △明大総合数理科学部発足(2013年) 研究交流会を定期的に開催 Δ 数学会 社会連携協議会発足(2013年)△ 2010 2015 2005

【出典】池川, 日本数学会数学通信, Vol.19, No. 4, pp. 26 33, 2015年2月の図1を最新化

₩SP 数物フロンティア・リーディング大学院

2. 数学イノベーション戦略: 忘れられた科学

文部科学省科学技術政策研究所

「忘れられた科学―数学」

数学研究に関する初の実態調査

(2006年5月出版)

フィールズ賞(純粋数学の

(1)数学研究論文数 本3人輩出/45人(当時

2003年:世界6位(米、仏、独、英、中、日)

②数学研究費

1998年:約550億円

2004年:約800億円

1998年:約20億円(横ばい)

③数学教育

1998年:科学アカデミー 数学教育

の強化を提言

(2006年: ブッシュ大統領 STEM教育の推進)

2. 数学イノベーション戦略

- ・諸科学や産業において「数学的アプローチが不可欠」との認識の高まり 数学イノベーション ・国際的にも数学と諸科学・産業との連携に向けた動きが活発化 が必要
- 国際的にも数学と諸科学・産業との連携に向けた動きが活発化

必要な活動

1. 数学へのニーズ発掘から協働へ 数学協働プログラムの実施 (スタディーグループ/ワークショップ)

2. 数学研究者との協働研究 戦略的創造研究推進事業 (CREST/さきがけ)

- 当該 課題 の解決
- 数学へ のフィー ドバック
- 他分野 $\wedge \sigma$ 水平 展開

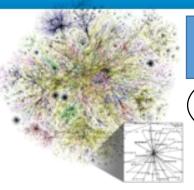
3. 人材育成

- 数学を現実世界の問題に応用 できる人材の育成
- 数学系学生の企業等への キャリアパスの構築

4. 情報の発信等 諸科学・産業向け情報発信, 成果の展開

必要な体制

- ・数学と諸科学/産業との協働の中核となる「拠点」(九大マス・フォア・インダストリ研究所、 統数研 明大先端数理科学インスティテュート
- 各拠点間の協力体制(「数学協働プログラム」の実施体制)


【出典】 「数学イノベーション戦略」最終報告書の6ページを基に著者作成

東京大学大学院数理科学研究科·理学部数学科

理工系プロフェショナル教育推進委託事業シンポジウム 2017年3月3日

3. 数学履修生の進路先の拡がり

システムインテグレーション・ コンサルティング等

> データサイエン 、 ティスト

情報•電機•自動車

運輸・素材等

ANALYSIS & DATA

主に

情報・電機

研究•開発職

インターネット

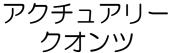
情報通信技術

の著しい発展

研究 • 開発職

保険・銀行

証券等


保険

アクチュアリー

教育

中学•高校教職

大学教職

中学•高校教職 大学教職 /

教育

昔

写真等: Wikipediaより

出典】池川 隆司: "数学履修生のキャリアとそのデザイン", 数学ガイダンス2016, 2016年3月

3. 数学履修生の進路先の拡がり

アメリカでの職業評価結果 【出典】http://www.careercast.com/

順位	2014	2015	2016
1	Mathematician	Actuary	Data Scientist
2	University Professor	Audiologist	Statistician
3	Statistician	Mathematician	Information Security Analyst
4	Actuary	Statistician	Audiologist
5	Audiologist	Biomedical Engineer	Diagnostic Medical Sonographer
6	Dental Hygienist	Data Scientist	Mathematician
7	Software Engineer	Dental Hygienist	Software Engineer
8	Computer Systems Analyst	Software Engineer	Computer Systems Analyst
9	Occupational Therapist	Occupational Therapist	Speech Pathologist
10	Speech Pathologist	Computer Systems Analyst	Actuary

【注】赤字: 数学をコアとする職業

Data Scientist, Statistician, Mathematician, Actuaryの定義については付録1参照

4. 数学分野の人材育成: 課題

トランスファラブルスキル 数学以外のスキル (プログラミン スキル等)

数学会「異分野異業種 交流会」へ参加した 産業界関係者等の声

他分野の若手研究者と比較する とプレゼンテーションスキルは 低い

課題1:トランスファラブル スキルの醸成

数理キャリア支援室 来訪者等の声

少なくともプログラミング スキルは必要である。

課題2: プログラミングスキルの向上

課題3: 社会連携意識の向上

トランスファラブルスキル: 問題解決のための情報収集力、対人コミュニケーション力、組織対応力の

ような様々な業界や職種に転用可能なスキル

異分野異業種交流会: 付録2参照、数理キャリア支援室: 付録3参照

東京大学大学院数理科学研究科·理学部数学科

数学の専門学力・研究力

12 - 理工系プロフェショナル教育推進委託事業シンポジウム 2017年3月3日

4.数学分野の人材育成: 東大数理の事例

東京大学大学院数理科学研究科での産学連携による取組事例

●インターンシップ

Project Based Learning

●スタディグループ

産業界・自治体等が数理的課題を提示して、学生、ポスドク、教員が一週間かけて解決する。 (2016年度:アビームコンサルティング、花王、新日鐵住金、東和精機、武田薬品工業、 筑波大学、福島県広野町、村田製作所等 50音順)

●社会数理実践研究(2016年度より)

産業界・学術界が数理的課題を提示して、学生が約1年かけて解決する。インターンシップの大学実施版(大学:黒板有居室だけの設備提供で実施可能)。

(2016年度:アビームコンサルティング、宇宙航空研究開発機構、海洋研究開発機構、 新日鐵住金、ニコン、農林中金総合研究所、日産自動車、日本精機、 レインボーオプチカル研究所等 50音順)

→トランスファラブルスキルの醸成

実務家による講義

●社会数理先端科学

主に産業界の研究者によるオムニバス形式の講義(15回)

社会数理コロキウム (2016年度より)

主に産業界に進んだ東大数理〇Bによる講義

→社会連携意識の向上

FMSP

4. 数学分野の人材育成: 東大数理の事例(続)

●スタディグループとは

産業界や数学以外の分野の研究者や技術者が、数学・数理科学の研究者 (学生含む)に対し数学的課題を提示し、一定期間(通常一週間)集中的に 議論する「課題解決型研究集会」である。 助教クラスの教員がコーディネータになることが多い。

●起源

1968年にオックスフォード大学で生まれた。

What is a study group?

Study groups bring together mathematicians from across the globe to work on mathematical problems presented by industry in a week long workshop.

【出典】 https://www0.maths.ox.ac.uk/groups/occam/study-groups

●知的財産の取り扱い

- 最初の課題提示はオープンとなる。
- 議論の流れにより、クローズドにしたりスタデイグループの枠組みで 議論をするのをやめてしまうことも可能である。
- スタデイグループ後に知的財産の取り扱いを明確にした共同研究に 発展した事例もある。

4. 数学分野の人材育成: 東大数理の事例(続)

●社会連携教育の段階

立ち上げ期

成長期

安定期

現在

●基本的な進め方

産と学の文化の違いを尊重した上で、Lose-Lose関係の 回避(双方が損とならない関係)により信頼関係を構築する。

- ●例
- 知的財産権や秘密保持については、企業側のポリシーを 尊重する(ただし、成果の迅速な外部発表については 理解を求める)。
- ・ 発明が生じた場合は、学生個人の判断に任せる。
- インターンシップについては、双方の面談を通して、 要件を満たす学生を派遣する。

産と学の文化の違い: 付録4参照

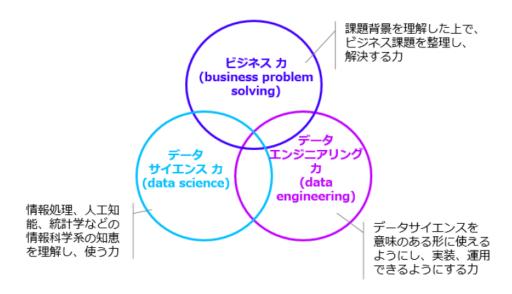
4. 数学分野の人材育成: 他大学の事例

- ●明治大学総合数理学部(2013年設立)
 - 1年次から参加する少人数の総合数理セミナー
 - モチベーションをもって学べるカリキュラム編成 (1年次に概論講義を集中し俯瞰的な視野を涵養)
 - ・英語は3年次まで必修
- ⇒「数学」「プログラミング」「英語」をベースに問題発見・ 解決能力の向上

【出典】文部科学省数学イノベーション委員会資料, 2016年4月8日

●武蔵野大学工学部数理工学科(2015年設立)

中学・高校生対象イベント(数理工学コンテスト)の実施


目的:数理工学教育の普及、中学・高校教育の現状把握及び数理工学教育推進に対する参考情報入手

【出典】2015年武蔵野大学数理工学コンテスト, 数学セミナー, 2016年9月号

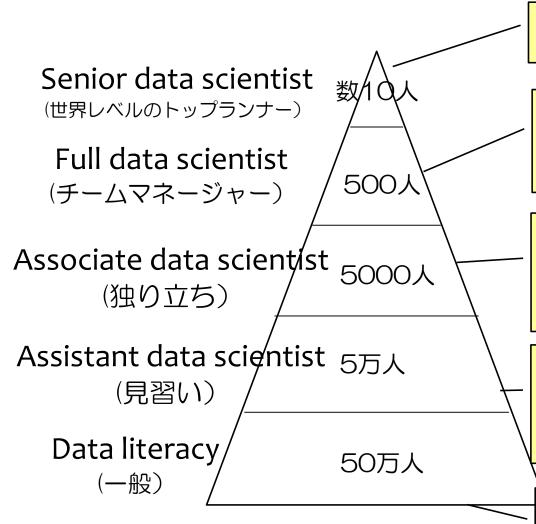
5. データサイエンス分野の人材育成: データサイエンティス

データサイエンティスト

データサイエンスカ、データエンジニアリングカをベースにデータから価値を 創出し、ビジネス課題に答えを出すプロフェッショナル

【出典】データサイエンティスト協会、

http://www.datascientist.or.jp/news/2014/pdf/1210.pdf


データ分析の訓練を 受けた大学卒業生の数 (2008年時)

順位	国名	人数
1	米国	24,730
2	中国	17,410
3	インド	13,270
4	ロシア	12,300
5	ブラジル	10,090
6	ポーランド	8,780
7	英国	8,340
8	フランス	7,770
9	ルーマニア	4,970
10	イタリア	4,900
11	日本	3,490

【出典】日本経済新聞朝刊、2017年2月17日

v 東京大学大学院数理科学研究科·理学部数学科

5. データサイエンス分野の人材育成: データサイエンティス

データサイエンス・ハッカソンを実施して、優秀な人材の発掘

国家的な拠点の設置/Full data scientist 育成のための集中プログラムの実施

- ・大学院におけるPBLによる専門教育プログラムの実施
- ・高度な問題発見・解決能力と高度なビッグデータ解析能力の修得
- ・学部/大学院での教育
- ・統計学、機械学習等の基本的な ビッグデータ解析能力とプログラミング能力の修得
 - 高校/大学教養課程での教育
 - ・統計学の基礎とその演習

【出典】文部科学省数学イノベーション委員会資料 2015年10月30日

5. データサイエンス分野の人材育成: 系譜

- ●2014年8月
- 日本学術会議数理科学委員会数理統計分科会
 - 主な提言 1) 統計・データサイエンス専門職の育成と認証制度の確立
 - 2) 大学学部教育における統計科学教育の質保証
- ●2016年12月
- ・文科省数理及びデータサイエンス教育の強化に関する懇談会 数理・データサイエンス教育研究センター(仮称)の整備
- 「数理及びデータサイエンスに係る教育強化」の拠点校の選定 北海道大学、東京大学、滋賀大学、京都大学、大阪大学、九州大学
 - ➡産業界と連携してコンソーシアム化
- ●2017年2月
- ・東京大学:数理・情報教育研究センター設置 コンソーシアムの幹事校、標準カリキュラムの策定予定

6. 課題

- 全般
 - 教員の意識改革(FD)とアドミニストレーション体制の構築
- ●数学人材の育成
 - プログラミングスキル修得環境の整備
 - トランスファラブルスキル/プログラミングスキルの 向上のための学生へのインセンティブ
- ●データサイエンス人材の育成
 - スキルに応じた人材育成環境の整備
- ●産学連携教育
 - 安定期に向け、産と学のWin-Win関係の構築方法論の模索 学生の知的財産権:業界標準の策定
 - 費用対効果の検証

付録1:数学をコアとする職業の定義

Job name	Definition
Data Scientist	Combines information technology, statistical analysis and other disciplines to interpret trends from data.
Statistician	Uses statistical methods to collects and analyzes data and to help solve real-world problems in business, engineering, healthcare, or other fields.
Mathematician	Conducts research to develop and understand mathematical principles.
Actuary	Analyzes the financial costs of risk and uncertainty.

http://www.careercast.com/jobs-rated/jobs-rated-report-2016-ranking-200-jobs

付録2:数学会「異分野・異業種研究交流会

数学・数理科学専攻若手研究者のための異分野・異業種研究交流会2015

日時:2015年11月14日(土) 11:00~20:00

場所:東京大学駒場キャンパス数理科学研究科棟

東京大学大学院数理科学研究科·理学部数学科 Graduate School of Mathematical Sciences, THE UNIVERSITY OF TOKYO

プログラム

11:00-11:05 開会挨拶

日本数学会理事長 小谷 元子氏

参加人数159名

11:05-11:15 来賓挨拶

文部科学省研究振興局基礎研究振興課 課長 行松 泰弘氏

日本経済団体連合会 教育・スポーツ推進本部 副本部長 長谷川 知子氏

11:15-11:50 基調講演「先端産業技術と数学」

株式会社ニコン 取締役兼常務執行役員コアテクノロジー本部長 大木 裕史氏ポスター発表

13:00-14:30 協力企業 • 研究所紹介

14:30-16:00 若手研究者によるポスター発表

16:00-18:00 個別交流会 (若手研究者が企業ブースを訪問)

18:30-20:00 表彰式 • 情報交換会

基調講演

協力企業 • 研究所紹介

個別交流会

PROCE

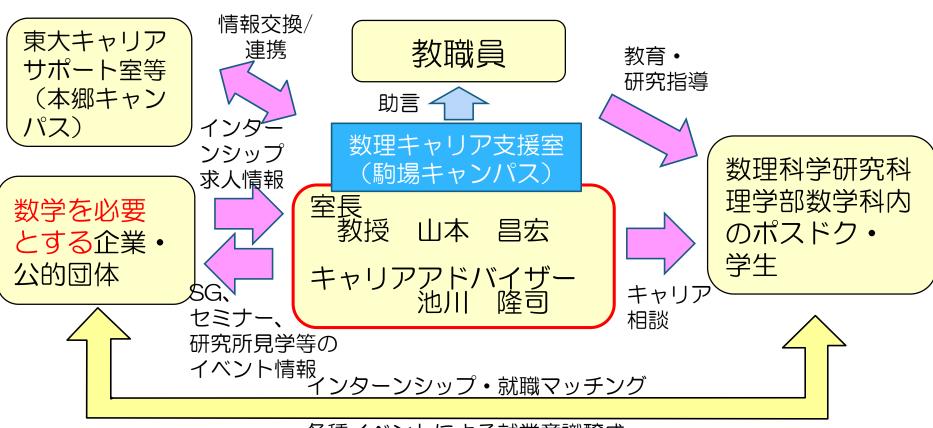
情報交換会

協力企業 • 研究所: 26団体(昨年21団体)

アイシン・エィ・ダブリュ、旭硝子、構造計画研究所、東芝、ニコン、日立製作所、富士通研究所 三井住友銀行、三菱東京UFJ銀行、鉄道総合技術研究所、海洋研究開発機構、産業技術総合研究所 理化学研究所、新日鐵住金、住友生命保険、大同生命保険、トヨタ自動車、日本アイ・ビー・エム 日本生命保険、日本電気、日本電信電話、日本ユニシス、BNPパリバ証券、マツダ、ヤフー ライフネット生命保険

順不同

共催:日本応用数理学会、統計数理研究所「数学協働プログラム」(文部科学省委託事業)


東京大学数物フロンティア・リーディング大学院

後援:日本経済団体連合会

26団体(前回21団体)

付録3:東京大学数理キャリア支援室

- ●2014年12月に設置
- ●数学の特性を念頭に置き、きめ細かく継続的な キャリア構築支援を実施

各種イベントによる就業意識醸成

SG: 産業界からの課題解決の ためのスタデイ・グループ

付録4:企業文化と大学文化

	企業	水統的発展 / Going Concern 人子
利潤の獲得	飽くなき追求 (株主への説明責任有)	現状維持もしくは 穏やかな追及
R&Dの取組 マインド	Low Risk, Moderate Return	High Risk, High Return
スピード感 (外部環境への対応)	大	ф
業務の選択 における優先事項	Mission Oriented 組織としての 中長期計画	Curiosity oriented 個人の裁量大
三つのP	Patent ≧ - Product > Paper	Paper ≫ Patent ≫ Product

企業秘密は秘匿化

Patent: 特許, Product: 製品, Paper: 論文