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Motivation : Topological terms in Lagrangans

Differential cohomology is a mathematical framework which refines
generalized cohomology with differential geometric data on manifolds.

They are deeply related with physics. See [FMS07], [Fre00], [HS05] and
[HTY20] for example.

For mathematical accounts, see [BS12] and [Bun12] for example.

Differential cohomology accounts for “topological terms” in Lagrangians in
physics. Examples of “topological terms” are,

e Holonomy for U(1)-connections,
e Chern-Simons invariants,

e Wess-Zumino-Witten terms,

e Reduced eta invariants.

Mathematically, they are called secondary invariants.
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Let us look at the following examples of “topological terms".

¢ Holonomy for U(1)-connection.
Let (L, V) — X be a hermitian line bundle with U(1)-connection over
a manifold. For a closed curve f: St — X in X, we get its holonomy
Hol(L, V)(f) € R/Z.
If L is trivialized and V = d + A for A € QY(X; /—1R), we have

Hol(L,V)(f):/$1 f*%jj (mod 7).

e Chern-Simons invariants.
Let (E, V) — X be a hermitian vector bundle with connection. For
f: M3 — X with M : 3-dimensional closed oriented manifold, we get
its Chern-Simons invariant CS(E,V)(f) € R/Z.
If E is trivialized and V = d + A for A € QY(X;u(n)), we have

Tr(dAAA+2ANAANA
CS(E,V)(f):/ P 3 )

d 7).
M v (mo )
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Poroperties of “topological terms”

(A) They are expressed as
/ f*a  (mod Z)
Mn—1

for some o € Q" 1(X)/im(d) when the topology is trivial. But in the
presence of nontrivial topology, they CANNOT be expressed by

differential forms.

Hol(L,V)(f):/ f*%% (mod Z),

st
Tr(dAANA+2ANANA
CS(E,V)(f):/ P Lj ) (mod 7).
M

But for general X, we cannot take such A globally.

Problem

What is the object X giving the topological terms by “[,,,_, f*X" for
general X ? Where does it live?
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(B) They are NOT topological invariants. Rather, they depend on the
geometry. The variation under bordisms is measured by

FR(X) (mod Z)
Wn

for some R(X) € Q7 (X) (“field strength”).

M MY
If we have a bordism like W Yoof X we have
o> /W
\z \\Q

Hol(L,V)(f|Mi)—Hol(L,V)(f|M£):/ f*27:/v_71,

W2

CS(E, V)(Flus) — CS(E, V)(Flus) = /W4 Fcha(Fo).

Moreover, when the topology is trivial, we have R(a) = da.
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(C) The “field strength” R(X) is integral (R(x) € Q7 (X)z), i.e., for all

clo
f: W" — X where W is oriented and closed (compact without

boundary), we have

/nﬂm@ez

Actually this follows from (B).
Called “Dirac charge quantization”.
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(D) If we know the value * [} ,,_, F*X" for all f: M"! — X, we can
recover the topology, including torsions.
Indeed,
e The collection of values of Hol(L, V)(f) for all f recovers L up to
isomorphism (i.e., c1(L) € H?(X;Z)), not just c1(Fy) € H2(X;R).
e The collection of values of CS(E, V)(f) for all f recovers
cha(E) € H*(X;Z), not just cha(Fy) € H*(X;R).
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The properties (A) — (D) suggests that, X is an element in a group 77
fitting into a commutative diagram like

/0
/ H"(X;Z)@
2 H(X;R)

2N
Q" H(X) Q(X)z

where the diagonal sequence is exact.

e (A) corresponds to a and the exactness at 77 (Trivial topology implies
X comes from Q"~1(X)).

e (B) and (C) correspond to R.

e (D) corresponds to /.
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The answer : differential cohomology

Actually, the ordinary differential cohomology ﬁ”(X;Z) is such a group.
We have the ordinary differential cohomology hexagon

0 0
\ /
H=1(X:R/Z) R HN(XGZ)
__— \./\ 7 &
H—1(X;R) , _Hxiz) o HY(XGR)
— — J S~ =
“HX)/Q5,1(X)z Q8,(X)z

\,

\0

which is commutative and diagonal sequences are exact. We have “higher
holonomy function” for oriented closed (n — 1)-dimensional manifolds,

0

/ : H(M"1,Z) — R/Z,
M

which satisfy all the required properties.
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The main message of these lectures are,

The answer to Problem 1

We can interpret X as an element in (generalized) differential cohomology
theories E*(X).

The “topological terms” are interpreted as the images of integration maps
in differential cohomology.

In the examples of Hol and CS, we use E = HZ.

But for some cases we should use other cohomology theories such as
E = K, KO. The choices correspond to different “charge quantization
conditions’.
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@ Ordinary differential cohomology
@ Hermitian line bundles with connection
o Differential characters
e Differential cocycles
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Hermitian line bundles

Recall the following classical fact.

Theorem
For any CW-complex X, we have

H?(X;Z) ~ {L — X : Hermitian line bundle} | ~isom

The corresponding class c1(L) € H?(X;Z) is called the first Chern class.
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Connections and Curvatures

Given L — X, how do we detect c1(L) € H?(X;Z) ? One way is to take a
connection.

Assume X is a (smooth) manifold. Take a U(1)-connection V on L
(locally, V = d + A for A € QY(X; V/—1R)).

The curvature is Fy := V2 € Q% _(X;v/—1R) (locally, Fy = dA).
We have

C1(L)R = Cl(Fv) = [Fv] € H2(X;R).

1
2my/—1
Here c;(L)g is the image of ci(Fv) under the R-ification

H?(X;Z) — H?(X;R). l.e., the curvature recovers c;(L) up to torsion.
In particular,

a(Fy) € Q4,(X)z (closed forms with Z-periods).
Physically : “Dirac charge quantization”.
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Flat line bundles

However, there are nontrivial line bundles which cannot be detected by the
curvature : flat ones.

Example : X = RP? = S§2/7Z,. The trivial bundle C x $2 — S? admits a
Zp-action by —(z, x) — (—z,—x), preserving the trivial connection d.
Taking quotient we get L — RIP? with a flat connection V.

L is nontrivial : ¢1(L) = —1 € H*(RP?;Z) ~ Z,.

The nontriviality is detected by the holonomy. 71 (RP?) ~ Zj and the
holonomy of (L, V) gives the nontrivial element

Hol(L, V) € Hom(mi (RP?), U(1)) ~ Z,.
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Holonomy

Holonomy Hol(L, V) remembers the isomorphism (=gauge equivalence)
class of (L, V).
Fix an orientation on S*. Holonomy function for (L, V) :

Hol(L,V): C>=(S*, X) — U(1)
In the case V = d + A we have Hol(L, V)(f) = exp( [ *A).

Theorem
Assume we have (L1, V1) and (L2, V2) on X. We have

HOl(Ll,Vl) = HOI(LQ,VQ) = (L1,V1) o (Lz,Vz).

In particular, Hol(L, V) remembers c;(L) € H?>(X;Z) completely.
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Characterization of holonomy

Holonomy functions cannot be arbitrary maps C>(S*, X) — R/Z. What is
the condition?

aw
If we have , we have
\\\

Hol(L,V)(f|aW)E/W Frei(F) (mod 7).

Conversely, the equation

o(flow) = /W f*w (mod Z)

can be regarded as a compatibility condition for a pair (w, ) consisting of
w € Q2. (X) and p: C>°(S1, X) — R/Z. Hol(L, V) should arise as ¢ for
such a pair.
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The first definition of H2(X; 7)) : Geometric model
Let X be a manifold. Let us define the geometric model of f—P(X; 7) by

Definition

H2,, (X;Z)

geom

:={(L, V) — X : Hermitian line bundle with U(1)-connection}/ ~jisom

We define structure maps

R: H, (X;Z) = Q3.(X), [L, V]~

geom

L _F
21/ —1 v
I: H2 (X Z) — HA(X;Z), [L, V] ci(L)

geom
a: Q4(X)/im(d) = H2,, (X Z), s [X x C,d + 21/~ 1a].
For a smooth map ¢: X — Y between manifolds, we get the pullback
¢ geom(y Z) - geom(X Z) [va] = [¢*L7 ¢*V]
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The hexagon for H

geom

We get the commutative diagram

0
\ /
HY(X;R/Z) Bock H2(X; Z)
I R
H(X;R) H2(X; Z) o HA(XGR)
~ g ~X g

Ql( )/cho( ) clo(X)
o— T

The diagonal sequences are exact.
This implies that (

H?(—; 7).

geom( Z2),R, 1, a) is a differential extension of

Mayuko Yamashita
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Pros and cons of H2 (X;7Z)

geom

Advantage :
e [ntuitive.
Disadvantage :
e Hard to analyze directly.
« Difficult to generalize to H” (X;Z).

geom
We seek for alternative definitions.

Mayuko Yamashita 20 /67



The second definition of //-I\Q(X; Z) : Cheeger-Simons’ model

Let us abstractize the property of the pair of curvature and holonomy as
follows.
Definition (Second differential characters [CS85])
A second differential character on X is a pair (w, ) consisting of
e A closed 2-form w € Q2 (X),
e A group homomorphism ¢: Zy 1(X;Z) — R/Z,
such that, for any ¢ € C 2(X;Z) we have

©(0c) = /Cw (mod Z). (6)

Here Coo,n and Z p is the group of smooth singular chains and cochains
(a slight generalization of “oriented M" with f: M — X with/without
boundaries”)

(6) automatically implies w € Q2_(X)z. (why?)

clo
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Definition (The Cheeger-Simons’ model [CS85])

Let us define

ﬁ%s(X; Z) := {(w, ¥) : second differential character on X}.

Theorem

We have an isomorphism
Heoom(X: ) ~ HEs(X: 2),

geom

by mapping [L, V] to (c1(Fv), Hol(L, V)).
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. . . . e * . .
The first definition of HZ : Differential characters
The definition of ﬁéS(X; Z) easily generalize as follows.

Definition (The Cheeger-Simons’ model [CS85])

Let n be a nonnegative integer. An n-th differential character on X is a
pair (w, ¢) consisting of

e A closed n-form w € Q7 (X),

clo
e A group homomorphism ¢: Z, ,—1(X;Z) — R/Z,
such that, for any ¢ € Co n(X;Z) we have

©(0c) = /w (mod Z).

Definition (The Cheeger-Simons’ model [CS85])
Let us define

ﬁgS(X; 7) = {(w, ¥) : n-th differential character on X}.

Mayuko Yamashita
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Structure maps

For a smooth map ¢: X — Y between manifolds, we get the pullback
6% Heg (Y3 2) = HEs(X:Z),  (w,9) = (67w, 6"9).
We define structure maps

R: HAG(X:Z) — Q0o(X),  (w.9) = w
I: (X Z) — HY(X,Z),  (w,¢) = [w — ¢R 03]

a: Q" Y(X)/im(d) — HES(X;Z), a (da,/a (mod Z)).

Here o is any R-valued lift of .
(Check : [ is well-defined. )
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The hexagon for I:I\éS

We get the commutative diagram

0\ /

H=1(X;R/Z) Bock =H(XZ)
HP=1(X:R) Ana(X;2) H(X:R)
a Cs R Rham,
\ / P \ /
Q- 1( )/cho (X)Z clo(X)Z

0 / T~ 0
The diagonal sequences are exact.

This implies that (ﬁ(*js(—; Z),R, 1, a) is a differential extension of
H*(—; Z).
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Exercises

~

H"(pt; Z) are :

Ho(pt; Z) = HO(pt; Z) ~ Z,
H'(pt; Z) ~ R/Z,
H(pt;Z) =0 (n > 2).

We have

HO(X; Z) = Ho(pt; Z),
HY(X;Z) ~ C=(X,R/Z).
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The higher holonomy function
M"=1 . closed oriented (n — 1)-dimensional manifold. We define the higher
holonomy function denoted by f,,,
/ HEG(MLZ) = RZ, (w, @) — o(id: M — M).
M
Note that ﬁéS(M; Z) ~R/Z, so it is like integration.
One important property is :

Proposition (The Bordism formula)

Suppose (W",0W) is an oriented compact n-dimensional manifold. For
any x € H"(W;Z), we have

/E)W)?bw = /W R(x) (mod Z)

This is clear by the definition of differential characters.
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Actually, for fiber bundle p: N — X whose fibers are oriented and closed
manifold, we can define the differential integration map

/ - H'(N; Z) — H""(X; Z), (12)
N/X
where r = dim N — dim X.

Differential integration is a refinement of integrations in HZ* and Q* in the
sense that the following diagram commutes.

R
//_\
Q" Y(N) /im(d) —2— H"(N; Z) —L—~ H"(N; Z) Qn (N
jf/v/x lf/\//x lfN/X jf/v/x
Q"1(X) /im(d) —2= H""(X; Z) —1= H""(X; Z) Q" (X)
\i/
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Application : Chern-Simons invariants

An example of differential character is constructed from Chern-Simons
invariants. The basic setting (G = U(n)) is :

Let (E,V) — X be a hermitian vector bundle with connection. For
f: M® — X with M : 3-dimensional closed oriented manifold, set

CS(E,V)(f: M — X) :=CS(f*E,f*V)
:/ f*Tr(dAAA+§AAAAA) (mod Z).
M

Here CS(f*E,f*V) € R/Z is the Chern-Simons invariant.
The second Chern character form is

cha(Fg)= Tr((dAA A+ AN A)?) € Q4 (X).
We get
(cha(Fy),CS(E, V)) € Hig(X; Z).
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Definition of the Chern-Simons invariants

Actually, the definition of the Chern-Simons invariants uses HZ'.
Generally, take a compact Lie group G (gauge group).

Fix n € 2Z and A\ € H"(BG; Z) : the level (If G is simple and simply
connected, H*(BG;Z) ~ 7).

The characteristic polynomial for A € H"(BG; Z) is its R-ification,

Ar € H"(BG;R) ~ (Sym"?g*)®.

Let (P,V) — X be a principal G-bundle with connection.
The characteristic form associated to g is

Ar(Fv) € Q7,(X).

clo
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Choose a n-classifying manifold for G-connection By, G (appropriate
approximation of BG by manif(/)\ld wj:ch “universal connection” Vpiy).
There exists a unique element A € H"(Bg G; Z) such that

I(\) =\ € H'(B&G; Z) ~ H"(BG; Z),

R(/):) = )\R(Fvuniv)'
(Why? Hint : use n € 27Z. )

Let (P,V) — M"! be a principal G-bundle with connection with closed
oriented M. Take a classifying map f: M — B3 G of (P, V).

Definition (The Chern-Simons invariant)
The Chern-Simons invariant with level \ of (P, V) is

CSA(P, V) ;:/ X € R/Z. (14)
Mn—l

(14) does not depend on the choice of BZG.
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Let (P, V) — X be a principal G-bundle with connection.
For f: M"~! — X with M : (n — 1)-dimensional closed oriented manifold,
set

CSA(P,V)(f: M — X) := CSx(f*P, f*V).

Proposition

We get an element
(Ar(Fv), CSA(P. V) € Hig(X; Z).
It satisfies (f: X — BG : a classifying map for P)

£\ = I (Mr(Fy), CSA(P, V)) € H'(X: Z).
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Pros and cons of the Cheeger-Simons model

Advantages :

e More algebraic than ngom.

e The higher holonomy can be directly evaluated.
Disadvantages :

 Not realized in terms of cochain complexes (as opposed to H}y,
Hing--)-
For example, what is the “trivialization” of a differential character?

(c.f., We can talk about trivializations of (L, V). )

e Does not generalize to other cohomology theories (actually, the
Anderson self-duality of HZ is hidden behind the definition of

Hes(=:2). ).
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. . . e * - .
The second definition of HZ : Differential cocycles
Let X be a manifold. An n-th differential cocycle on X is an element

(¢, hw) € ZL(X;Z) x CLTHXR) x Q0(X)
such that
W — CR = éh. (16)

Here CX and ZZ denotes the groups of smooth singular cochains and
cocycles. We introduce the equivalence relation ~ on differential cocycles
by setting

(c,h,w) ~ (c+ b, h— br — dk,w)
for some (b, k) € C77Y(X; Z) x C'2(X; R).
Definition (Hiig(X; Z) [HS05))
Set
ﬁﬁS(X; Z) := {(c, h,w) : differential n-cocycle on X}/ ~
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hs(X; Z) ~ Heg (X, Z)
Proposition
We have an isomorphism
Has(X; Z) ~ Hes(X; Z)
by mapping [c, h,w] to (w,h mod Z).
The corresponding structure maps for H\ﬁs(_; 7) are

R: His(X:Z) — Q. (X), [c, hw] > w
I: His(X:Z) — H(X;Z), [c, h,w] — [c]
a: Q" Y(X)/im(d) — His(X;Z), o [0,q,da].

Thus (ﬁﬁs(—; 7),R, 1, a) is a differential extension of H"(—;Z).
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The differential chain complexes

Actually, ﬁfﬁls(—; Z) can be realized as the cohomology group of the
differential cochain complex. R
Fix k € Z and define the cochain complex C(k)*(X) by

CoL(X;Z) x CYX;R) n<k-1

L= {C:O(X;Z) X CLNOXGR) x Q°(X) 0> k

with the differential
d(c, hyw) = (6c,w — cg — dh, dw).
Let H(k)"(X) be the n-th cohomology group of C(k)*(X), i.e.,
H(k)"(X) == Z(k)"(X)/d C (k)" (X),
where Z(k)"(X) := kerd C C(k)"(X).
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We have

Proposition
HY(X;R/Z) n<k—1

H(k)"(X) =~ ¢ Hng(X) n=k
H"(X;Z) n>k+1.
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One advantage of having the cochain complex is that we can talk about
trivializations. Let us look at second differential cocycles.

We have Hig(X;Z) ~ HZ . (X: Z) = {(L, V)}/ ~isom.

Given (L, V), let us fix X € Z(2)%(X) = Z(1)2(X) representing it.

We can consider two types of trivializations of (L, V).

e Topological trivialization, i.e., a section s of L (with [s| = 1).
The choices of such s are in bijection with the set

{y € COYX) | dy = x}/dC(1)°(X), (20)

which is a torsor over

Z()Y(X)/dC(1)%(X) = HY(X;Z) ~ C®(X;R/7Z).
e Flat trivialization, i.e., a flat section s of (L, V).

The choices of such s are in bijection with the set

{7 € C2)Y(X) | dy = x}/dC(2)°(X), (21)
which is a torsor over Z(2)}(X)/dC(2)°(X) = H(X; R/Z).
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© Differential K-theory
@ Review : Topological K-theory
@ Chern-Weil constructions
@ The model by vector bundles with connections
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Review : Topological K-theory

K-theory is a generalized cohomology theory which is important in both
math and physics.

There are various models for K*, for example there are models in terms of
e Vector bundles,

e Families of Fredholm operators,

e “Gradations” on Clifford modules.
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The vector bundle model of K*

KO(X) classifies stable equivalence classes of complex vector bundles over

X.
Let X be a finite CW-complex. Let Vect(X) be the set of isomorphism
classes [E] of complex vector bundles over X, with the abelian monoid

structure by &.
KO(X) is defined to be the Grothendieck group associated to Vect(X).
This means that K%(X) is a group whose elements are formal differences

[E.] - [E-] € K°(X)
and we have

[E] = [F]in K%X) if E® G~ F & G for some G.
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For a finite CW-pair (X, Y) (i.e., Y C X), the relative K®-group K°(X, Y)
is defined by taking the Grothendieck group of the abelian monoid of
isomorphism classes of triples

(EJrv E,’ 0-)7

where E and E_ are complex vector bundles over X and o: Ei |y ~ E_|y.
We set K="(X, Y) := KO(X"(X/Y),pt), in particular we have

K="(X) :== K%(Z"(X™),pt) = K°(5" x X, pt x X).
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Some facts on K*
Bott periodicity. We have
K"(X) ~ K™2(X).
K-groups on pt:
Ko(pt) ~Z, K(pt)=0.

The (topological) Chern character. We have a natural transformation

Ch: K"(X) = H*2T"(X;R)= H"(X; K*(pt) ® R)
If X is a manifold, taking a unitary connection V on E we have

Ch((E]) = | Tx(e™/CY )| € HE(X: B).
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Chern-Weil constructions

Let X be a manifold and (E, V) be a harmitian vector bundle with unitary
connection over X. Let Fy € Q2 (X;End(E)) be the curvature.

clo

We define the Chern chacater form by

Ch(Fy) = Tr(efv/C™V=Dy ¢ Q%2 (X).

clo

Its de Rham cohomology class represents the topological Chern character
of [E],

Ch([E]) = [Ch(Fv)] € H?2(X;R).

In particular, the cohomology class does not depend on the choice of V,
i.e., if we have two connections Vg and V1, we have

Ch(FVl) — Ch(Fvo) S Im(d)
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Chern-Simons forms

For two connections Vg and V1 on E, we have

Ch(FVl) - Ch(FVo) S Im(d) Why7

Take a homotopy Vg 1) between Vg and V.

Define the Chern-Simons form for the homotopy Vg 1j by

CS(Fypy) == o1 Ch(Fy,,,) € Q7 1(X).

We have the transgression formula
Ch(Fy,) — Ch(Fv,) = dCS(FV[o,l])'

The Chern-Simons form depends on the choice of homotopy only up to
Im(d) (again, checked by taking a homotopy between homotopies). Thus

CS(Vo, V1) = [CS(FV[M])} e Q271 (X) /Im(d)

is well-defined.
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The first definition of K* - Vector bundles with connections

Freed and Lott [FL10] gave a model R;L of differential K-theory in terms
of vector bundles with connections.

Let X be a manifold. Rhoughly speaking, RPQL(X) is a group of hermitian
vector bundles with connections,

[E,V] € K2, (X).
The functor R is given by the Chern character forms,
R: KQL(X) — Q% (X), [E, V]~ Ch(Fy).
The functor a accounts for the Chern-Simons forms,
a: Q%71(X) /im(d) — KO (X), CS(Vo, V1) = [E, V1] - [E, V.
d = R o a follows by the transgression formula

Ch(Fv,) — Ch(Fy,) = dCS(Vo, V1).
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Definition of k\gL
Definition (The model of K° by vector bundle with connection [FL10])

Let X be a manifold. Define \Te?t(X) to be the set of isomorphism classes
of triples

(E,V,a), (23)

where (E, V) is a hermitian vector bundle with a unitary connection on X
and o € Q?271(X)/Im(d). We introduce the abelian monoid structure by

[E,V,a]+[E,V,d]:=[E®E, VoV, a+d].
We introduce the following relation ~ on \7ezt(X),
[E,V1,a] ~[E,Vo,CS(Vo, V1) + .
Define RBL(X) to be the Grothendieck group associated to Ve?t(X)/ ~.
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Structure maps

We define structure maps

R: KO (X) = Q%2(X), [E,V,a]— Ch(Fy)+ do

clo
I Ko (X) = KO(X), [E,V,a] s [E]
a: Q227 1(X) /im(d) — K2 (X), a [0,0,a].

The well-definedness of R follows by the transgression formula

Ch(Fv,) — Ch(Fy,) = dCS(Vo, V1).
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The hexagon for RSL

We have the commutative diagram

0 0
\ B k /
K~Y(X;R/Z) =< ~K°(X) o
e e
H?2=1(X; R) \al REL(X) H?Z(X; R)
T — \R Rha%
Q221(X) /2L (X ) o ——— Q% (X)k

The diagonal sequences are exact.
This implies that (KFOL, R, 1, a) is a differential extension of K°.
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ol
KL

Freed and Lott [FL10] constructed a model RﬁL of KI.
Elements of K2, (X) are represented by quintuples

(E,V,U,a)

where

e (E,V) is a hermitian vector bundle with a unitary connection on X,
e U is a unitary automorphism on E,
e a € Q¥71(X)/Im(d).

The equivalence relations are given by transgression forms as before.

We have the structure maps and the hexagon as before. We also set
iK2n ._ 120 i2n—1 ._ 1
KL = Kp, and K™ o= Ky
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Integrations in K* and K*

~

K* also has the differential integration maps.

First we recall the (topological) integrations in K*. For fiber bundles
p: N — X whose fibers are closed manifold and equipped with a fiberwise
Spin€ structure g,!, we have the (topological) integration map,

(P, gp)«: K"(N) — K" "(X),

where r = dim N — dim X.
c.f. for HZ* we only require fiberwise orientation and get

/ :H'(N;Z) — H'™"(X; Z),
N/X

For more on integrations (a.k.a. pushforward, Gysin maps, ...) in
generalized cohomology theories, see [Rud98] for example.

'Or more generally, proper Spin“-oriented maps (p, g»)
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Topological integration in K* = Atiyah-Singer’s index

In particular if (M2", g) is a closed even dimensional manifold with a Spin®
structure, the integration map along pys: M — pt gives the homomorphism

(Prm: )« KO(M) = K™2"(pt) = K°(pt) =~ Z. (24)
By the Atiyah-Singer's index theorem, the map (24) is given by
(pM)g)*[E] = IndeX(mE,V)7

where Dgg: C°(M; $ ® E) — C*°(M; $ ® E) is the Dirac operator
twisted by (E, V).

In general for (p: N — X, gp), the integration map is given by taking the
family index of fiberwise twisted Dirac operators.
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Differerntial integration in K* = reduced eta invariants

In order to define differential integrations in K*, we need geometric Spin€
structures, i.e., Spin€ structures with Spin©-connections compatible with
Levi-Civita connections?.

For fiber bundles p: N — X whose fibers are closed manifold and equipped
with a fiberwise geometric Spin© structure g,, we have the differential

integration map,
(P, ) K"(N) = K™"(X),

where r =dim N — dim X.

2Actually we can drop the compatibility with Levi-Civita connections.

Mayuko Yamashita 53 /67



In particular if (M?"~1,g) is a closed odd dimensional manifold with a
geometric Spin€ structure, the differential integration map along
pmv: M — pt gives the homomorphism

(pm, 8)«: KO(M) = K21 (pt) ~ K (pt) ~ R/Z. (25)

Fact ([FL10])
The differential integration map (25) is given by

(. B)-[E.V,0] = 1(Des) + [ aATodd(M.2) (mod 2).

Here the reduced eta invariant /(D v) is given by

1(Peyv) + dimker(De v)
2

M(Peyv) = €R. (26)

Mayuko Yamashita 54 /67



The bordism formula and the APS index theorem

The Atiyah-Patodi-Singer's index theorem is an index theorem for compact
manifolds with boundaries.

Fact (Atiyah-Patodi-Singer, [APS76])

Suppose (W?",0W,g) is a compact even dimensional manifold with a
geometric Spin° structure. Let (E,V) be a hermitian vector bundle on W'
Assuming collar structure on everything, we have

Indexsrs(Pee) = [ ChlFe) A Todd(W, 8) = (D7)

Here Indexaps(/Pg v) is the Fredholm index with respect to the “"APS

boundary condition”. In particular we have IndexApS(l?Ey) € Z. Thus we
get

WBewon) = /W Ch(Fg) A Todd(W,3) (mod Z).  (27)
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The APS index theorem, in particular (27), implies the following Bordism
formula.

Proposition (The bordism formula)

Suppose (W?", 0W,g) is a compact even dimensional manifold with a
geometric Spin© structure. For any X € K°(W), we have

(Pow: Elow)sRlow = /W R(Z) ATodd(W,8) (modZ)  (29)

Indeed, if we can represent X = [E, V,0] € RPQL(W), we see (29) = (27).
Then the general case follows by the Stokes theorem (check!).

Actually the bordism formula also holds in the case dim W is odd and

X € KY(W).
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@ Additional topics
@ Generalized differential cohomology
@ Differential extension of the Anderson duals
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Generalized differential cohomology

So far we have seen the differential ordinary cohomology HZ" and the
differential K-theory K*.

Actually we can talk about differential extensions E* of any generalized
cohomology theory E*.

Here we explain the axiomatic approach given by Bunke and Schick [BS12].
The idea is to generalize the hexagon as

0 0
-1 Bock /
Er-1(X;R/Z) ~E"(X)
H™Y(X; V*) g E"(X) H(X; V*)
— S ~R Rham,-
Q" 1(X’ V.)/cho X' V.) ClO(X’ V.)E
o— Ty
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The axiom by Bunke and Schick

Suppose we are given
e a generalized cohomology theory E,
e a Z-graded vector space V/* over R (universal choice : E*(pt) ® R),
e a natural transformation ch: E*(X) — H*(X; V*).

Definition (The axiom of differential cohomology, [BS12])

A differential extension of (E*,ch) is a quintuple (E*, R, 1, a) such that
E*: Mfd°® — AbZis a functor, and R, | and a are natural transformations

fitting into the following commutative diagram where the diagonal
sequence is exact.

0
- /
/ (X) ch
~ —7 BN
e, E”(X) " a1 (X V)
Q" (X5 Vo) QX Vo)e Q,(X; V)

0/7 \O
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Remarks

e Hopkins and Singer [HS05] constructed a differential extension Eﬁs of
each (E*,ch).

e Given (E*,ch), the uniqueness of its differential extension is highly
nontrivial. Bunke and Schick [BS10] investigate into this uniqueness
problem. They show the uniqueness under some (very mild)
assumptions. As far as | heard, there is no known conterexample for
the uniqueness.

e When we take the universal choice V* = E*(pt) ® R,
Efua(X) := her (R: E"(X) — Q0 (X; V')E)

is called the flat theory. It is a homotopy invariant functor, but it is
not known that we have E""1(X;R/Z) ~ E (X) in general [BS10].

e There are variations on the axioms, such as multiplicative differential
extensions when E is multiplicative.

Mayuko Yamashita 60 /67



The Hopkins-Singer's model Ejiq

Hopkins and Singer [HS05] constructed a differential extension Eﬁs of each
(E*,ch).

For this, we represent E* by an Q-spectrum E = {E, },cz and take a
singular cocycle + € Z9(E; V*) representing ch € H(E; V*).

An element in EﬁS(X) is represented by a differential function

(c,h,w): X = (Enytn),

consists of a continuous map c: X — E,, a singular cochain
he C"Y(X; V*) and w € Q7 (X; V*), such that

w—c*, =h.

We introduce an equivalence relation on differential functions coming from
differential functions on X x [0, 1].

Taking E = HZ and « € Z°(HZ;Z) to be Z-valued fundamental cocycle,
we recover Hfjg(—;Z) explained before.
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—_—

Differential extensions IQgR of the Anderson duals

—

In Yonekura-Y [YY21], we constructed a differential extension /Q$; of the
Anderson dual to G-bordism theory 1Q°.

The motivation comes from the classification of invertible QFT's (a.k.a
invertible phases), in particular the conjecture by Freed-Hopkins [FH21]; an

element in (/1Q%)"(X) can be regarded as an invertible QFT on
G-manifolds.

The construction is analogous to the Cheeger-Simons’ differential character
group Hig(X; Z).

Here G is a tangential structure group such as SO, Spin, etc.
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For simplicity here we assume G is oriented.

An element in (@)”(X) is represented by a pair (w, h) consisting of
° w e QY (X; (Symg*)®),
e his a partition function, which is a map assigning

h(M™ 1 g, f) e R/Z

to each closed (n — 1)-dimensional differential G-manifold with a map
f e C®(M, X). We require the additivity under disjoint unions.

We require the following compatibility condition for (w, h).

(WI%)@W,QIW)
If we have £ X , we have
— \\\\\
R L@l
(w5 lw £) \

h(OW. glow flow) —/ cwg(f*w) (mod Z).
w
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—_—

Differential integrations and /Q%;

Important examples of elements in (/1Q$;)"(X) comes from differential
integrations.

First we consider the case of HZ. Let us fix X € ﬁ”(X; Z). Then we can
construct the element (wg, hg) € (I259)"(X) by

Wg = R()?)a

he(M™ 1 8, f) = / f*x  (higher holonomy of f*X).
M

The compatibility condition follows by the bordism formula.
For example if X = [L, V] € H?(X; Z), we have
(wy, hy) = (Cl(FV)7 HOI(I_, V))
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Next we consider the case of K. Let us fix X € R”(X). Then we can

—

construct the element (wg, hg) € (Iﬂignc)"(X) by
wg = R(X) ® Todd,
h?(Mn_lagv f) = (PM>§)*f*)?

Again the compatibility condition follows by the bordism formula.
For example if X = 1 € K?"(pt) ~ Z, we have (wg, hg) = (Todd, 7).

In this way we get natural transformations

Fn(X: Z) — (1959)"(X),

K"(X) = (1250")"(X).

Actually these are differential refinements of the combinations of Anderson
dual to multiplicative genera (universal orientation MSO — HZ and the
Atiyah-Bott-Shapiro orientation MSpin® — K, resp.) and the Anderson
self-dualities of HZ and of K [Yam21].
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