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Abstract

A full proof of Ocneanu’s theorem is given that one can produce a rational
unitary polyhedral 3-dimensional topological quantum field theory of Turaev-Viro
type from a subfactor with finite index and finite depth, and vice versa. The key
argument is an equivalence between flatness of a connection in paragroup theory
and invariance of a state sum under one of the three local moves of tetrahedra.
This was announced by A. Ocneanu and he gave a proof of Frobenius reciprocity
and the pentagon relation, which produces a 3-dimensional TQFT via the Turaev-
Viro machinery, but he has not published a proof of the converse direction of the
equivalence. Details are given here along the lines suggested by him.

1 Introduction

A. Ocneanu claimed that a subfactor with finite index and finite depth produces a ra-
tional unitary polyhedral 3-dimensional topological quantum field theory (of Turaev-Viro
type), and that from such a theory one can recover such a subfactor. Unfortunately, his
announcements [29], [30] lack several details of a proof of this striking announcement.
Although he has extensively lectured on his theory, the theory has been inaccessible for
general mathematical community. The aim of this paper is to give a fully detailed proof of
this claim and help a better understanding of the relation between topological invariants
of 3-manifolds, subfactors, rational conformal field theories, and quantum groups.
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The discovery of the celebrated Jones polynomial for links in [20] based on his index
theory for subfactors in von Neumann algebra theory [19] was the starting point of an
exciting new era in 3-dimensional topology. It has turned out that this aspect of the
subfactor theory is deeply related to quantum groups [8], [18] and quantum field theory
[42]. Inspired by the Jones polynomial, several authors have introduced invariants of
closed 3-manifolds [7], [36], [37], [40], [42]. A. Ocneanu then claimed in [29], [30] that the
combinatorial structure appearing in the Turaev-Viro approach to (2 + 1)-dimensional
topological quantum field theories is the same as in the paragroup theory, which he intro-
duced for classification of subfactors as a combinatorial characterization of higher relative
commutants [26], [28], [21], [22].

Following the pioneering work of Jones [19], the classification of subfactors (of the
approximately finite dimensional factor of type II1) is one of the most important and
exciting problems in the theory of operator algebras. A solution to the generating property
of subfactors, the most important problem from the analytic viewpoint, was first claimed
in [26] in the “finite depth” case, which means finiteness of a fusion algebra arising from
the subfactor and is an analogue of rationality of conformal field theory. S. Popa gave a
complete proof in this case, and later proved the ultimate result along this line [33], [34],
[35].

A. Ocneanu also introduced a new combinatorial structure called “paragroup” in [26].
In a sense, this is a quantization of a finite Galois group. Although [26] lacks details of
the paragroup theory, the general theory has been worked out in [21], [22]. Similarity
between paragroup theory and theory of exactly solvable models [2], [4] has also been
exploited [10], [17], [21], [22]. This paragroup structure is one of the main topics of this
paper.

We clarify the relation between axioms of paragroups and axioms of Turaev-Viro
type in rational unitary (2 + 1)-dimensional topological quantum field theories based on
triangulations of 3-manifolds. In the Turaev-Viro approach [37], we assign a complex
number to each labeled tetrahedron appearing in a triangulation of a given 3-manifold.
Then we take a weighted product of the values for all the tetrahedra in the triangulation
and take a sum of the products over all the possible labelings. To prove topological
invariance of this kind of state sums, we need to show that this number does not depend on
the triangulation. For this independence, we need tetrahedral symmetry of the assignment
of the complex numbers and invariance under the three local moves of tetrahedra as in
[37] and [9]. These axioms correspond to the following conditions in paragroup theory and
other theories such as solvable lattice models theory or rational conformal field theories.
Our aim in this paper is to give details on these correspondences. Basic references on
paragroup theory are [26], [28], [21], [22].

(1) Tetrahedral symmetry: We have to prove that we get the same value when we
look at a tetrahedron from a different direction. In the bimodule approach of paragroups,
this comes from Frobenius reciprocity of bimodules. In the string algebra approach
of paragroups, this essentially corresponds to the commuting square condition in [31],
[12]. It can be regarded as a generalization of the crossing symmetry in solvable lattice
model theory [4] and corresponds to the symmetry condition of the braiding matrix in
rational conformal field theory [6].



(2) Invariance under the 2nd and 3rd local moves: First, we prove that the
state sum is invariant under two of the three local moves. In one of the two moves,
two tetrahedra sharing two triangles collapse into two triangles, and in the other, two
tetrahedra sharing three triangles collapse into one triangle. Both of these correspond to
unitarity of a connection in paragroup theory. We have a unitarity condition in all of
the following: the bimodule approach to paragroup theory, the string algebra approach
to paragroup theory, solvable lattice model theory, and rational conformal field theory.

(3) Invariance under the 1st local move: We also have to prove that the state
sum is invariant under the other local move where two tetrahedra sharing one trian-
gle are transformed into three tetrahedra sharing one triangle pairwise. This invariance
corresponds to flatness, the key notion in paragroup theory. In the case of topological in-
variants arising from quantum groups, this condition comes from the pentagon relation.
In solvable lattice models, the flatness condition is closely related to the Yang-Baxter
equation, and in rational conformal field theory, it comes from the braiding-fusion
relations as in [6].

With this general machinery, a topological quantum field theory is obtained from each
subfactor with finite index and finite depth. See [5], [10], [12], [14], [15], [16], [17], [21],
[22], [26], [28], [34], [38], [39], [43] for known examples of such subfactors. See [11] for
more relation between subfactors and conformal field theory.

This work began while the first author visited MSRI, Berkeley, and continued while
the second author visited University College of Swansea with the financial support from
MSRI and the British Council respectively. We wish to thank these institutions for their
hospitality, V. F. R. Jones for useful comments on Ocneanu’s announcement, T. Kohno
for useful comments on topological quantum field theory, R. Nest for useful comments on
his work [9], N. Yu. Reshetikhin for his kind explanations on 6j-symbols and topological
invariants, M. Rosso for useful comments on quantum groups and topological invariants,
and F. Xu for helpful discussions on rational conformal field theory.

2 From subfactors to generalized 6j-symbols

Our aim in this section is to produce generalized 6j-symbols from a given subfactor with
finite index and finite depth and show that they satisfy certain axioms. The contents
of this section are already in [29], but for the sake of completeness, we list the basic
definitions and properties. Proofs for all the statements in this section are found in [29]
and obtained by direct computation. (Also see [45] for published proofs.)

We recall basic definitions in the subfactor theory briefly. (See [12] for more details
of the basics.) The operator algebras we will use are called II1 factors, which are weakly
closed simple ∗-algebras, with a functional called a trace, of bounded linear operators on
a Hilbert space. We study a subfactor N ⊂ M , which is an inclusion of II1 factors. Jones
[19] initiated the study of the index [M : N ] which is an analogue of an index of a subgroup
in a group. He also introduced a notion principal graph of a subfactor as a graph invariant
of subfactors. Ocneanu [26] later introduced a notion of finite depth as finiteness of the
principal graph, which has later turned out to be an analogue of rationality of conformal
field theories and q being a root of unity in the quantum group theory.



We fix a subfactor N ⊂ M of type II1 with finite index and finite depth. Numerical
data will be produced from this subfactor. We do not need hyperfiniteness (approximate
finite dimensionality) of the subfactor to get these data, but if the subfactor is hyperfinite,
this data, with a certain equivalence relation, gives a complete invariant of the subfactor.
(See [21], [22], [26], [28], [33].) We will work on bimodules, that is, Hilbert spaces with left-
sided and right-sided actions of von Neumann algebras. Readers are referred to [26], [28],
[32], [44], [45] for general theory of bimodules. Also recall that bimodules are analogues
in von Neumann algebra theory of representations of Lie groups.

We list the basic properties of bimodules from [29]. (Also see [45].) Let AXB be an
A-B bimodule, where A, B are von Neumann algebras. We define an opposite bimodule
X̄ = BX̄A, which is the conjugate Hilbert space X̄ with the actions b · x̄ · a = a∗ · x · b∗,
where a ∈ A, b ∈ B, x ∈ X. A bimodule AXB is said to be of finite type if dim(AX) < ∞,
dim(XB) < ∞. We put [X] = [AXB ] = dim(AX) · dim(XB). Then we have the following
theorem [29].

Theorem 2.1 If the bimodules AXB and AYB are of finite type, then Hom(AXB , AYB) is
finite dimensional.

Next, let AXB , BYC , AZC be irreducible bimodules of finite type, and define the
intertwiner space HZ

X,Y = Hom(AX ⊗B YC , AZC). For the intertwiner T ∈ HZ
X,Y , we

define the right hand side Frobenius dual T Y ∈ HX
Z,Ȳ by

T Y (z ⊗B ȳ) = (dimXB)1/2(dimZC)−1/2πr(y)∗(T ∗(z)),

where πr denote the right tensor multiplication. Similarly, we define the left hand side
Frobenius dual XT ∈ HY

X̄,Z for T ∈ HZ
X,Y by

XT (x̄⊗A z) = (dimBY )1/2(dimAZ)−1/2πl(x)∗(T ∗(z)).

Then the following result holds.

Theorem 2.2 The Frobenius duality map ·Y : HZ
X,Y → HX

Z,Ȳ is a conjugate linear
isomorphism of left A-modules preserving norms.

For T ∈ HZ
X,Y , we define the conjugate intertwiner T̄ ∈ HZ̄

Ȳ ,X̄ by T̄ (ȳ ⊗B x̄) =

T (x⊗B y). With this, the following theorem also holds.

Theorem 2.3 For the action of the symmetric group S3 on the set of von Neumann
algebras {A, B, C}, the Frobenius duality maps gives an action of S3 by isometric isomor-
phisms among the following spaces:

HZ
X,Y ,HȲ

Z̄,X ,HX̄
Y,Z̄ ,HZ̄

Ȳ ,X̄,HY
X̄,Z ,HX

Z,Ȳ .

The odd permutations correspond to conjugate linear isomorphisms.



Now we start from a subfactor N ⊂ M . Regard L2(M) as an N -M-bimodule. For
simplicity, we denote this by NMM = H. Similarly, we have MMN = H̄. We take finite
tensor powers · · ·H ⊗ H̄ ⊗H ⊗ H̄ · · · and decompose them into irreducible bimodules as
in [26, pp. 122–123] or [28, p. 4]. Note that we have four kinds of bimodules; N -N , N -M ,
M-N , M-M bimodules. The finite depth assumption means that we get only finitely
many (equivalence classes of) bimodules in this way. We work on this class of finitely
many bimodules (of four kinds).

Among this class, we have two special bimodules. One is NL2(N)N and the other is

ML2(M)M . We denote them by N∗N and M∗M respectively. These are identities for tensor
product operation in the following sense. We have AX ⊗N ∗N

∼= AXN , N ∗⊗NXA
∼= NXA,

AX ⊗M ∗M
∼= AXM , M ∗ ⊗MXA

∼= MXA, where A ∈ {M, N}.
Take three bimodules X,Y, Z among this class. Put NZ

X,Y = dimHZ
X,Y and suppose

it is not zero. We choose an orthonormal basis {ξi}i for the space HZ
X,Y consisting of

coisometries with mutually orthogonal supports; ξiξ
∗
j = δij1Z ,

∑
i ξ

∗
i ξi = 1X⊗Y . When

we refer to “intertwiners” in the remainder of §2 and §3, we always mean intertwiners
appearing in these bases. If X or Y is ∗, we choose the intertwiner in a trivial way. For
example, the intertwiner from MX⊗N ∗N to MXN sends x⊗n to x·n, where x ∈ X,n ∈ N .

Choose four algebras P,Q, R, S ∈ {M, N}, six bimodules QAR, PBR, QCS, PDS , PXQ,

RYS , from the above sets of bimodules, and four intertwiners ξ ∈ HB
X,A, η ∈ HD

B,Y ,
ζ ∈ HC

A,Y , τ ∈ HD
X,C. We represent (P,Q, R, S; A, B, C, D,X, Y ; ξ, η, ζ, τ ) as an oriented

tetrahedron with vertices P,Q, R, S, edges A, B, C, D,X, Y , and faces ξ, η, ζ, τ as in the
following figure.
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Then the composition η(ξ ⊗ 1Y )(1X ⊗ ζ)∗τ ∗ gives an endomorphism of PDS , which is
a scalar by irreducibility. The generalized 6j-symbol is defined by

W (A, B, C, D,X, Y | ξ, η, ζ, τ ) = η(ξ ⊗ 1Y )(1X ⊗ ζ)∗τ ∗,



and the normalized 6j-symbol Z by

Z(A, B, C, D,X, Y | ξ, η, ζ, τ ) = [B]−1/4[C ]−1/4W (A, B, C, D,X, Y | ξ, η, ζ, τ ).

(Ocneanu used slightly different normalizations in [29] and [30]. The above normalization
is used here so that our formula is compatible with the original formula of Turaev-Viro
[37].)

By direct computations based on Frobenius reciprocity, the following identities are
obtained.

Z(A, B, C, D,X, Y | ξ, η, ζ, τ ) = Z(Ā, C̄, B̄, D̄, Ȳ , X̄, | ζ̄ , τ̄ , ξ̄, η̄),

Z(Ā, X, Y,D,B, C | ξA, τ, Aζ, η) = Z(A, B, C, D,X, Y | ξ, η, ζ, τ ),

Z(B, A, D,C, X̄, Y | Xξ, ζ, η, Xτ ) = Z(A, B, C, D,X, Y | ξ, η, ζ, τ ).

The symmetric group S4 may be thought of as acting on the tetrahedron in the above
figure. For example, we get the new tetrahedron as in the following figure under one of
these permutations. For this new tetrahedron, we reverse some orientation of edges so
that the orientations become the same as in the original figure, and we change intertwiners
using the Frobenius reciprocity in this procedure as in the next figure.
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The above formulae mean that we get the same value of the normalized 6j-symbol
from this new picture. Furthermore, half of S4 act as orientation reversing symmetries,
and we get the complex conjugate as the value of the normalized 6j-symbols in these
cases. Thus the following theorem holds.

Theorem 2.4 (Tetrahedral Symmetry) The normalized 6j-symbols Z are invariant
under the orientation preserving symmetries of the S4 action and are changed into their
complex conjugate by the orientation reversing symmetries of the S4 action.

Because the 6j-symbols here are defined in terms of intertwiners, ordinary unitarity
as in [26] [28] is also valid as follows.

Theorem 2.5 (Unitarity) The 6j-symbols satisfy the following unitarity relations.

∑
C,ζ,τ

W (A, B, C, D,X, Y | ξ, η, ζ, τ )W (A, B ′, C, D,X, Y | ξ′, η′, ζ, τ )

= δ(B,ξ,η),(B′,ξ′,η′),∑
B,ξ,η

W (A, B, C, D,X, Y | ξ, η, ζ, τ )W (A, B, C ′, D,X, Y | ξ, η, ζ ′, τ ′)

= δ(C,ζ,τ ),(C′,ζ′,τ ′).

Another important property is flatness as in [26], [28]. A partition function has the
following interpretation in the bimodule approach, and flatness for 6j-symbols is a gen-
eralization of ordinary flatness for connections [26], [28]. (See [21], [22] for the meaning
of flatness in the string algebra approach.)

Suppose we have a large diagram as follows.
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That is, each edge on the boundary has an assignment of intertwiners, each vertex on
the boundary has an assignment of bimodules, and each row and column of the diagram
has an assignment of bimodules tensor product from the left and the right respectively.
Then the value assigned to this diagram is defined as the sum over all the configurations
of the products of all the values of 6j-symbols in each configuration. This is a direct
generalization of partition functions for ordinary connections in [21], [22], [26], [27], [28].
Then by induction, we can regard this value as an inner product of two intertwiners; one
is given by the composition of intertwiners at the bottom boundary and those at the left
boundary, and the other is given by the composition of those at the right boundary and
the top boundary.

Then another important property of the 6j-symbols is given as follows.

Theorem 2.6 (Flatness) For the diagram as in the following figure with N∗N or M∗M

at all the four corners, we get the value δξ1,ξ2δη1,η2.
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For the proof, it is enough because of unitarity to prove that the value is 1 if ξ1 = ξ2

and η1 = η2. In this case, it is easy to see that the two intertwiners, one from the
intertwiners at the bottom and left boundaries and the other from those at the right and
top boundaries, are the same. So their inner product has value 1.

3 Definition and topological invariance of the state
sum

Using the generalized 6j-symbols obtained in §2, we construct a topological invariant for
oriented compact 3-manifolds without boundary as follows. This construction is similar
to those in [37] and [9], but we give the explicit formula including all the normalizing
constants, which is missing in [29], [30], because some difference arises from the fact that
we have four kinds of bimodules. (We need an orientation of the manifold unlike [37]. See
the last part of [9] for a discussion on orientation.) Here we assume that the manifold
has no boundary for simplicity, because the case with boundary, which produces (2 + 1)-
dimensional topological quantum field theory in the sense of [3], can be handled with a
general method based on trivial cobordism as in [37] and [9].

We fix a subfactor N ⊂ M as in §2 and also fix a compact oriented 3-dimensional
manifold P without boundary and triangulation T . We use four kinds of bimodules
arising from N ⊂ M as in §2. (Ocneanu works on a finite system of bimodules in [29],
[30] where there are more than two von Neumann algebras in general, but here we work
on bimodules arising from a subfactor, because it is notationally simpler on one hand and
nothing essential is lost in this limitation on the other.)



We give a label N or M arbitrarily to each vertex of the triangulation T , and denote
this labeling by L. Next we define a configuration of bimodules on edges and intertwiners
on faces. Choose an oriented triangle with its vertices labeled by algebras Q, R, S ∈
{M, N} as follows.
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R S

Q

C

A B

For the edge connecting the vertices Q and R, we assign a pair of bimodules RAQ

and QĀR. For simplicity, we just say this as an assignment of RAQ. Similarly we assign

QBS and RCS to the other two edges. This is admissible if and only if NC
A,B �= 0. If

this is the case, we assign a triple of intertwiners ξ : A ⊗ B → C , (Aξ)C : B ⊗ C̄ → Ā,
C(ξB) : C̄ ⊗ A → B̄. For simplicity again, we just call this assignment of ξ. (This does
not depend on the way we project the triangle on the paper by Theorem 2.3.) We choose
ξ’s so that they make an orthonormal basis, so the number of possible ξ’s is NC

A,B.
As above, we assign bimodules to edges and intertwiners to faces. For the moment,

fix an admissible assignment. We assign a complex number to each labeled tetrahedron
appearing in the configuration. Suppose we have a tetrahedron like the following picture
and the triangle spanned by edges R, P, S has the counterclockwise orientation.
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Then the four faces give the following maps: ξ : P B ⊗R YS → PDS , η : P X ⊗Q AR →
PBR, ζ : S Ȳ ⊗R ĀQ → SC̄Q, τ : SC̄ ⊗Q X̄P → SD̄P . Next assign the value

Z(A, B, C, D,X, Y | ξ, η, ζ̄, τ̄ )

to this tetrahedron. We assign the value

Z(Ā, C̄, B̄, D̄, Ȳ , X̄ | ζ, τ, ξ̄, η̄),

if the tetrahedron has the opposite orientation. By Theorem 2.4, this is the complex
conjugate of the above value. Also by Theorem 2.4, this value does not depend on the
way we project this tetrahedron, so this assignment is well-defined as a function from
labeled tetrahedra to complex numbers.

We then define Z(P, T, L) by

Z(P, T, L) =
∑

configurations
W−a

∏
bimodules X

[X]1/2
∏

Z(tetrahedron). (1)

Here the first summation is over all the possible configurations of edges and faces for a
given labeling L of vertices, the first product is over all the bimodules appearing on edges,
and the second product is over all the tetrahedra in the triangulation T . (For faces, we
choose intertwiners from an orthonormal basis as mentioned above.) The numbers W and
a are defined by W =

∑
N XN

[X] and a = #{vertices appearing in T}. We get the same
value for the definition of W , when we use one of the other three kinds of bimodules.
Note that our [X]1/2 corresponds to w2

i in [37] and 1/Fi in [9], and W plays the role of
w2 in [37] and F in [9].

The above definition uses a specific triangulation T and a specific labeling L of the
vertices. As in [37] and [9], for topological invariance, we have to prove that the above



definition does not depend neither on T nor on L. For this purpose, it is sufficient to prove
invariance under the following three types of local moves. (For a proof of this sufficiency,
see [37] which is based on [1], [25]. Also see [13].) Note that we need to take extra care
for independence on L, which was unnecessary in [37], [9].

Move I: We have two tetrahedra sharing one common triangle. Then we can split
these into three tetrahedra sharing one common triangle pairwise.
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↔

Move II: We have two tetrahedra sharing two common triangles. Then these collapse
into two triangles.
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Move III: We have two tetrahedra sharing three common triangles. Then these
collapse into one triangle.

↔
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Proofs of invariance under the second and the third moves are essentially the same
as those in [37], [9], and follow from unitarity so we just sketch them briefly. The key
part of the proof for invariance is that the invariance under the first move follows from
flatness and vice versa. We give a detailed account for this equivalence at the end of §3
and §4. This is the most important point of the entire theory and the direction from the
invariance to flatness is missing in [29], [30] and different from the arguments in [37], [9].

Proof of the invariance under Move II: This is exactly unitarity. We only have to
check the coefficients [B]−1/4[C ]−1/4 in the definition of Z and the coefficients [X]1/2 in
that of Z(P, T, L) cancel out. Q.E.D.

Proof of the invariance under Move III: This is again by unitarity. The key observation
is that

W = [QZS ]−1/2
∑
X,Y

NZ
X,Y [QXR]1/2[RYS]1/2

for all QZS , where Q, R, S ∈ {M, N}. This is proved as in [37, Lemma 1.1.A] and [9,
Lemma 4.2]. Q.E.D.

Note that the labeling of the vertex which disappears in this procedure can be either
N or M . This fact will be used in the proof of the independence on Z(P, T, L) of L.

Now we come to the most important part of this theory. The invariance under Move I
is given by the so-called pentagon relation, and Ocneanu [29] gave a proof of the pentagon
relation. We include a proof here for the sake of completeness and for a related argument
for the converse direction in the next section.

Proof of the invariance under Move I: We label edges and faces as follows. (We omit
labelings for vertices and some faces.)
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Then we apply flatness to the following 3 × 3-diagram to get the value 1.

� � �

� � �

�

�

�

�

�

�
∗

B

A

∗ Y E ∗

A

B

∗EY
1 µF 1E

1 µF 1E

·⊗Y ·⊗F̄ ·⊗Ē

1

ξ

B1

1

ξ

B1

A⊗·

X⊗·

B̄⊗·

� � �

�

�

�

Now cut the above diagram into two pieces as follows.
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∗

B

A

∗ Y Y E ∗

A

B

∗EEY

D

C

H D

C

H

ζζ

For this cutting, we label the path from ∗ to Y,C, D,H,E, ∗ by ρ and denote the
values of the above two diagrams by aρ, b̄ρ respectively. Then flatness gives

∑
ρ aρb̄ρ = 1,

unitarity implies
∑

ρ |aρ|2 =
∑

ρ |bρ|2 = 1, and so by the Cauchy-Schwarz inequality, we
get aρ = bρ.

In the above figure, look at the square at the upper left corner first. The intertwiner
from A to C must be ζ to get a non-zero value, and in this case, we get the value 1.
The square at the lower left corner has a similar property, and in this case, we get the
value [D]1/4[B]−1/4[Y ]−1/4 because of renormalization. We can compute the values for the
upper right and lower right squares for the right diagram in the above figure similarly.
By comparing these coefficients and coefficients in the definitions of Z and Z(P, T, L), we
can conclude that the equality aρ = bρ is exactly the invariance under this Move. Note
that we still have two squares for aρ and three squares for bρ. Each of these corresponds
to a tetrahedron. Q.E.D.

The above three figures are given in [29], [30].
Finally, we have to prove that Z(M, T, L) does not depend on L. This part is necessary

because we also label vertices unlike [37], [9]. This proof is also missing in [29], [30]. A
key fact is that one can eliminate a vertex in Move III, and thus the labeling for this
vertex can be ignored. It is enough to prove that one can change a labeling of one vertex
without changing Z(M, T, L). First we make a triangulation finer if necessary so that we
may think that a neighbourhood of the vertex is regarded as an Euclidean ball. Then by
repeated use of Move I, we can decrease the number of edges connected the vertex to 3.
Then by Move III, we can eliminate the vertex. So we can conclude that the labeling of
this vertex does not affect the value Z(M, T, L).

In particular, we can use the labeling assigning N to all the vertices. In this case,
we use only N -N bimodules, and then the machinery of [9] produces the same value.
Similarly, we can use only M-M bimodules. With this, we can prove that the subfactor



R×H ⊂ R×G gives the same invariant as the same subfactor R ⊂ R×G, by looking at
only M-M bimodules, if H contains no normal subgroup of G. (Here G is a finite group
acting on a II1 factor R outerly and H is a subgroup of G. See [24] for more on this type
of subfactors.) V. F. R. Jones informed us that this was also claimed by A. Ocneanu
without proof.

Thus the following theorem claimed in [29], [30] has been proved.

Theorem 3.1 The formula (1) defines a complex-valued topological invariant for oriented
closed 3-manifolds from a subfactor with finite depth and finite index. If we change the
orientation of the manifold or replace the subfactor by an anti-conjugate one, then the
number becomes the complex conjugate.

A. Ocneanu claimed in several talks that the Turaev-Viro invariant [37] is obtained by
applying his machinery to the Jones subfactors of type An, but here we give two reasons
why this is not true. One reason is unitarity. In [37, §8], they work in the case of the
Dynkin diagram A2. As explained there, their two choices of roots of unity produce two
different invariants. One of them is not unitary and it does not come from subfactors.
Another reason is that we have a Z2 grading of vertices. As explained above, we can
compute the invariant by using only even vertices. In the setting of [37], this corresponds
to the case we use only “colors” labeled by integers, while they use all the “colors” labeled
by half-integers. This causes a difference of the resulting invariants. (Note that the set of
colors labeled by integers is closed under the fusion rule.) This second reason was pointed
out to us by T. Kohno.

4 From topological invariants to subfactors

In this section, we prove that if we have a topological invariant of the above type, we
can produce (a family of) subfactors with finite index and finite depth. This construction
is similar to that from rational conformal field theory in [6], which is based on Witten’s
lattice gauge theory [42]. But for flatness, the key property of paragroups, we need a
different argument, which is missing in [29], [30].

In [9], they construct topological invariants from generalized 6j-symbols and they show
that quantum groups at roots of unity produce examples of their general machinery. The
method here produces subfactors from quantum groups via their results, if an additional
unitarity condition is satisfied.

First we have to clarify what we mean by the rational unitary polyhedral (2+1)-
dimensional topological quantum field theories. The exact definition is as follows.

[1] Fusion algebra: We have a fusion algebra A as follows. The associative C-algebra
A is spanned by finitely many Xi’s as a C-vector space. Each Xi has a left attribution
and a right attribution, and there are two possibilities for attributions, denoted by A and
B. By notation AXiB we mean that Xi has the left attribution A and the right attribution
B. Each Xj has its conjugate X̄j among Xi’s, and the conjugate operation interchanges

right and left attributions. We require ¯̄Xj = Xj . For X and Y among the Xi’s , the
product is given by X · Y =

∑
Z NZ

X,Y Z, where NZ
X,Y is a non-negative integer and Z is

among the Xi’s. If the right attribution of X and the left attribution of Y are different,



the product is 0. If Z has non-zero NZ
X,Y , its left attribution is the same as that of X and

its right attribution is the same as that of Y . We also require

NZ
X,Y = N Ȳ

Z̄,X = N X̄
Y,Z̄ = N Z̄

Ȳ ,X̄ = NY
X̄,Z = NX

Z,Ȳ .

We further require that we have two identities A1A and B1B with A1̄A = A1A and B1̄B =

B1B . The identities satisfy A1A ·X = X if the left attribution of X is A. Similarly, we get
X · A1A = X, B1B ·X = X, and X · B1B = X, if X has an appropriate attribution in each
formula. Each Xi has an assignment [X] of a positive value. The vector

∑
AXiB

[Xi]
1/2Xi

is a simultaneous eigenvector for left multiplications by AXjA. Similar statements hold
for all types of attributions.

[2] Generalized 6j-symbols: Choose X,Y, Z from among the Xi’s with N = NZ
X,Y �=

0. We have a family of symbols ξj(X,Y, Z) with j = 1, . . . , N , and in the case of Y = ∗,
we simply denote 1X for ξ(X, ∗, X), where ∗ = A∗A or ∗ = B∗B. For P,Q, R, S ∈ {A, B}
and 6 elements QAR, PBR, QCS, PDS , PXQ, RYS in the fusion algebra and four symbols
ξ = ξi(X,A, B), η = ξj(B, Y,D), ζ = ξk(A, Y,C), τ = ξl(X,C, D) for some i, j, k, l, we
assign a complex number W (A, B, C, D,X, Y | ξ, η, ζ, τ ), which is called a generalized
6j-symbol. Their normalizations

Z(A, B, C, D,X, Y |ξ, η, ζ, τ ) = [B]−1/4[C ]−1/4W (A, B, C, D,X, Y |ξ, η, ζ, τ )

satisfy tetrahedral symmetry as in Theorem 2.4. We further assume

W (∗, A, B, C, A, B | 1A, ξ, 1B , ξ) = 1.

[3] Topological invariance: The 6j-symbols Z must satisfy topological invariance
if we define the state sum as in (1) for each triangulation. That means that W has to
satisfy unitarity and 3 × 3-flatness as in the proof of invariance under Move I.

The adjective “rational” means the finiteness of Xi’s (and Nk
ij) in [1], whilst “unitary”

means [X] > 0 and use of [X]1/4 > 0. The quantum 6j-symbol for Uq(sl2) of Kirillov-
Reshetikhin [23] used in [37] is not always unitary in this sense. (Our [Xi]

1/4 corresponds
to their wi, but their wi’s can be non-positive even after some gauge choices.) So their
construction is not always a rational unitary polyhedral topological quantum field theory
in our sense. In [9], their 1/Fi corresponds to our [Xi]

1/2, and they only assume that
Fi is real. If these Fi’s are chosen to be positive, their data produce a rational unitary
polyhedral topological quantum field theory in our sense. This positivity problem is
related to a problem of gauge choice in rational conformal field theory.

In many cases as in [37] and [9], we do not have 2-sided labeling of attribution as
above. But we can use a trivial modification of our following construction. See Remark
3.2. This will lead us to a self-dual subfactors as in [6].

In [29], [30], Ocneanu handles more general cases where attribution can have more
than two possibilities, but we use the above definition, to avoid non-essential complexity.

Suppose we have a topological quantum field theory as above. We first choose an
element Y from the fusion algebra. (In subfactor setting, this corresponds to a choice of
a minimal projection in a higher relative commutant.) Suppose first that Y has the left
attribution A and the right attribution B.



Define the bipartite graphs G0
1 , G0

2 , H0
1, H0

2 as follows. Even vertices of G0
1 and G0

2 are
given by AXA’s in the fusion algebra, odd vertices of G0

1 and H0
1 by AXB ’s, odd vertices of

G0
2 and H0

2 by BXA’s, and even vertices of H0
1 and H0

2 by BXB ’s. The number of edges for
G0

1 between AXA and AZB is given by NZ
X,Y . Similarly, we use the numbers NZ

Ȳ ,X , NZ
X̄,Y ,

NZ
X,Y for G0

2 , H0
1, H0

2 respectively. We then look at the connected component containing

A∗A, and label the resulting four bipartite graphs as G1, G2, H1, H2. Note that H1 and
H2 always contain B∗B. We then define a connection by

�

�

� �

BX2A

AX1A

BX4B

AX3B

ξ2

ξ3

ξ1 ξ4 = W (X1, X2, X3, X4, Ȳ , Y | ξ1, ξ2, ξ3, ξ4).

We also define other types of connections using the crossing symmetry:

�

�

� �

�

�

� �

�

�

� �

�

�

� �

X2

X1

X4

X3

X2

X1

X4

X3

X1

X2

X3

X4

X4

X3

X2

X1

ξ2

ξ3

ξ1 ξ4

ξ2

ξ3

ξ1 ξ4

ξ3

ξ2

ξ̃1 ξ̃4

ξ̃2

ξ̃3

ξ4 ξ1

=

(
[X2][X3]

[X1][X4]

)1/4

=

(
[X2][X3]

[X1][X4]

)1/4

In order to prove that this data gives a paragroup, we have to show unitarity and
flatness as in [26], [28], [21], [22]. Unitarity for the connection is an immediate consequence
of the tetrahedral symmetry and unitarity of the generalized 6j-symbols. So our aim is
to prove flatness for the connection from the special type of flatness for 3 × 3-diagrams,
which is equivalent to invariance under Move I.

This can be done by a graphical method as follows. (In the following diagrams, we
omit labeling of edges and vertices for simplicity. Our convention is that parallel edges
from ∗ or to ∗ denote the same choices of intertwiners.) First we split the 3 × 3-diagram
in §3 into two pieces as follows.
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A

∗ Y E E ∗

A

B

∗EEY

·

·

·

·

As in §3, we label the cutting path by ρ and denote the values of the two diagram by
aρ and b̄ρ respectively. By unitarity, we get

∑
ρ |aρ|2 ≤ 1 and

∑
ρ |bρ|2 ≤ 1. With these

and the formula
∑

ρ aρb̄ρ = 1 expressing 3× 3-flatness, we get aρ = bρ for all ρ. With this
formula, we can shrink the size of a large diagram one step at a time. That is, as in the
following figure, we can prove that the value for a diagram of 3× n-size is 1.
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∗
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∗
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B1
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∗

B2

B1

∗
∗

B2

B1

∗

A1 A2

A1 A2

A1 A2 · · · An−2

A1 A2 · · · An−2

A1 A2 · · · · · · An−1

A1 A2 · · · · · · An−1

=

= · · ·

=

Repeating the same kind of argument vertically, we can conclude that a diagram of
any size with ∗ at the four corners and same configurations on parallel edges has a value
1, which is exactly flatness. (We have two kinds of flatness, one for A∗A and the other for

B∗B . The both are proved in the same way.)
The case where Y has the attribution BYA is handled similarly.
If Y has an attribution AYA, then we modify the above construction as follows. For



the four corners of the graphs G1,G2,H1,H2, we now use only AXA’s. Then all the rest
are the same as above. The case where Y has the attribution BYB is handled similarly.

Furthermore, if the graphs G0
1 , G0

2 , H0
1, H0

2 are connected for a certain choice of AYB

or BYA, then all the elements of the fusion algebra are identified with bimodules arising
from a subfactor. Thus we have proved the following.

Theorem 4.1 A rational unitary polyhedral topological quantum field theory produces a
family of subfactors. If we get connected graphs in the above construction for some choice
in the fusion algebra, the topological quantum field theory arises from a subfactor.

Remark 4.2 Suppose we have no attribution in the fusion algebra as in [9], [37]. Then
we choose a Y from the fusion algebra, and go as in the above case where Y has the same
right and left attributions. Then the same argument works.

5 Generalized 6j-symbols and connections for sub-
factors obtained by basic construction

In this section we prove that the generalized 6j-symbols correspond to connections ob-
tained from the original subfactor by basic construction of [19] and cutting down by
minimal projections in the relative commutants. Of course, this is what we expect. The
same kind of argument shows that in the construction of paragroups obtained from ra-
tional conformal field theory in [6], their choice of a field corresponds to the choice of a
minimal projection in the higher relative commutants. The contents of this section are
not in [29], [30].

Suppose we have generalized 6j-symbols W which come from a subfactor with finite
index and finite depth. Because we have a connection from the 6j-symbols, we may
regard the subfactor N ⊂ M is defined by a double sequence of string algebras {Akl} as
in [28], [21], [22]. Choose an M-N bimodule X, which corresponds to an odd vertex of
the principal graph. Suppose that the vertex has distance n from ∗ and denote a minimal
projection in An0 corresponding to this vertex by p. Then we cut Anl’s by p for all l, and
look at the inclusions.

pA0,0 ⊂ pA0,1 ⊂ pA0,2 ⊂ · · ·
∩ ∩ ∩

pAn,0p ⊂ pAn,1p ⊂ pAn,2p ⊂ · · ·
It is easy to see that this is obtained by another string algebra construction, which pro-
duces a double sequence {Bkl}. First we prove that the connection for Bkl is given by
W (·, ·, ·, ·, X, NMM | ·, ·, ·, ·). By the argument in §4, we know that the following diagram
of size (n + 1) × 2l has value 1.
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Bn

...

B2

B1

Bn

∗ A1 A2 · · · A2l−1 ∗

B1

B2

...

Bn

∗A2l−1· · ·A2A1

·⊗N MM ·⊗M MN

MM⊗N ·

NM⊗M ·

X̄⊗·

� �

�

�

�

Then we cut this into two pieces, one is of size n × 2l, and the other is of 1 × 2l and
apply the Cauchy-Schwarz inequality again to prove that the two have the same value.
This proves that the embedding of pA0,l into pAn,lp based on the original connection is
same as the embedding based on the connection arising from W (·, ·, ·, ·, X,M | ·, ·, ·, ·).
We can also prove that the double sequence Bkl is flat in the sense that elements in Bk0

and those in B0l commute.
We can then define a connection using W (·, ·, ·, ·, X, X̄ | ·, ·, ·, ·). With this connection,

we can extend the double sequence to the following.

B00 ⊂ B01 ⊂ B02 ⊂ · · ·
∩ ∩ ∩

B1,−1 ⊂ B10 ⊂ B11 ⊂ B12 ⊂ · · ·
∩ ∩ ∩ ∩

B2,−1 ⊂ B20 ⊂ B21 ⊂ B22 ⊂ · · ·
...

...
...

...

That is, we use the connection arising from W (·, ·, ·, ·, X, X̄ | ·, ·, ·, ·) for the embedding

Bk,−1 ⊂ Bk,0

∩ ∩
Bk+1,−1 ⊂ Bk+1,0



Then the following diagram has value 1 by the arguments in §4.

� � � � �

� � � � �

�

�

�

�

�

�
∗

...

·

∗ · · · · · · ∗

·

...

∗·· · ···

·⊗X̄ ·⊗M ·⊗M ·⊗M ·⊗X

X⊗·

X̄⊗·
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�

This implies another flatness in the sense that elements in B1l commute with those
in Bk,−1. Thus the higher relative commutants of B0,∞ ⊂ B1,∞, which is conjugate to
pN ⊂ pMp, is obtained by the connection arising from

W (·, ·, ·, ·, X, X̄ | ·, ·, ·, ·).
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