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I. Bimodules and the Galois functor

Let (X,µ) be a measure space. Passing from the commutative algebra L∞(X,µ)

to an algebra of bounded linear operators on a Hilbert space, we pass from a classical

space to a quantum space. Groups are symmetries of classical spaces, then what

are the symmetries of quantum spaces ? We will use an analogue of the Galois

theory.

Let G be a finite group, α an action of G on a factor N . We assume that α is

outer. In operator algebras, a basic construction consists in building a larger algebra

out of an algebra N and some operators on N . Here we construct the crossed

product algebra M = N ⋊α G = 〈N, (λg)g∈G〉. (This is similar to a semidirect

product of a group.) Then the action α is outer if and only if N ′ ∩M = C. (This

can be taken as a definition of outerness.) We now consider conjugacy for N ⊂M .

This is an analogue of knot isotopy. We say N ⊂ M is conjugate to N1 ⊂ M1

if there is an isomorphism θ : M → M1 with θ(N) = N1. That is, a position of

N in M is a conjugacy class. Now we would like to find G out of the position of

N ⊂M = N ⋊G.

I.1. Bimodules and basis

A bimodule is a Hilbert space AHB with normal ∗-representations of A and

Bop, the opposite algebra of B, which commute with each other. Let N have

a finite trace tr. By abuse of notation, we write NMM for NL2(M, tr)M . We say

T : AXB → AYB is an intertwiner if T is in Hom(AXB ,A YB), that is, T is linear and

T (axb) = aT (x)B, a ∈ A, x ∈ X, b ∈ B. A bimodule AXB is called irreducible if

the only self-intertwiners are the scalars. Here a self-intertwiner means an element
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in Hom(AXB ,A XB) = End(AXB) = B(X) ∩ A′ ∩ (Bop)′. If this von Neumann

algebra is finite dimensional, we can get an irreducible bimodule by cutting X by

a minimal projection in this.

Example. The bimodule NNN is the standard form of N . Then End(NNN ) =

N ′ ∩ (Nop)′ ∩ B(L2(N)) = Z(N), the center of N . If N is a factor, then NNN

is irreducible. Now let M = 〈N,λg〉 be the crossed product. An element x ∈ M

is written in the form x =
∑

g∈G xgλg, xg ∈ N . This implies that the irreducible

decomposition of NMN is
⊕

g N (Nλg)N . Here each component is irreducible and

not mutually equivalent because of outerness of the action. Thus each element

g ∈ G is in one-to-one correspondence to an irreducible bimodule N (Nλg)N . What

is the composition law of the group in terms of these bimodules ? The answer is

given by N (Nλg)N⊗N N (Nλh)N ∼= N (Nλgh)N By an analogue of the Galois theory,

we get a correspondence between the position and the dual of the finite group. We

obtain natural symmetries of a quantum space.

Now suppose N ⊂M and N ′ ∩M = C, the outerness condition. We try to find

a group-like object acting on M so that M is a “crossed product”. We assume no

algebraic conditions on N ⊂ M . That is, the data are N ⊂ M and a finite trace

tr : M → C. If NX is a left N -module, then X is known to be projective, by

von Neumann, that is, NX ∼= N (L2(N)⊕kp), where p is a projection in Matk(N),

k ≤ ∞. Then we write (Trk ⊗ tr)(p) = dimN X, which is invariant though p is

not unique. (This number is called a coupling constant.) For (N ⊂ M, tr), we set

[M : N ] = dimN M , which is the Jones index [J].

We also see the modules are not only projective but also “almost” free. For

any NX, one can find a basis (λi)i∈I ⊂ X in the following sense. Denote the
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Hilbert space inner product on X by 〈 , 〉. We have an N -valued inner product

〈 , 〉N defined on a dense subset X0 of X with trN (a〈x1, x2〉N ) = 〈ax1, x2〉, for

x1, x2 ∈ X, a ∈ N . (This is a Radon-Nikodym derivative with respect to the trace.

Also note that an algebra-valued inner product is necessary for KK-theory.) The

system (λi)i∈I is called a basis for NX if for all x ∈ X we have x =
∑

i∈I〈x, λi〉Nλi.

(See Herman-Ocneanu.) To find a basis, decompose NX into cyclic pieces N (Nvi)

and set

λi = 〈vi, vi〉−1/2
N vi = lim

ε↘0
(〈vi, vi〉N + ε)−1/2vi,

if vi is bounded in NX. Then we get for avi ∈ N (Nvi)

〈avi, λi〉Nλi = a〈vi, 〈vi, vi〉−1/2
N vi〉N 〈vi, vi〉−1/2

N vi

= a〈vi, vi〉N 〈vi, vi〉−1
N vi

= avi.

Hence for all x ∈ X, we get
∑

i〈x, λi〉Nλi = x. We define an orthogonal projection

q ∈ MatI×I(N) by qij = 〈λi, λj〉N . Then

dimN X = (TrI ⊗ tr)(q) =
∑
i

tr(〈λi, λi〉) =
∑
i

〈λi, λi〉.

If λ̃j is another basis of NX, then λ̃j =
∑
〈λ̃j , λi〉Nλi =

∑
i vjiλi, where a partial

isometry v = (vji) ∈ MatJ×I(N) is defined by vji = 〈λ̃j , λi〉N .

For the case of N ⊂ M , a basis for NM was introduced by Pimsner-Popa by

different means [PP]. (This argument is also O.K. for type III cases with a little bit

of modular automorphism groups.)
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For N ⊂ M , construct the standard bimodule NHM ≡ NMM ( = N (L2(M))M .)

A bimodule is a “quantum automorphism” in the following sense. For a bimodule

AXB , choose a basis (λi) for AX. Then λib =
∑

j〈λib, λj〉Aλj for b ∈ B. Define a

map θ = (θij) : B → MatI×I(A) by θij(b) = 〈λib, λj〉A. This is a ∗-homomorphism

with the properties θ(1) = q, θ(B) ⊂ q(MatA)q.

Example. In the group case M = N ⋊ G, set NXN = N (Nλg)N . Then λg is a

basis for N (Nλg). Because λgx = αg(x)λg, x ∈ N , we get 〈λgx, λg〉N = αg(x) and

θ = αg ∈ Aut(N). This θ is defined uniquely up to inner perturbation. For the

bimodule NMN , the homomorphism θ is given by
⊕

g αg : N → L∞(G) ⊗ N ⊂

MatG×G(N). For the bimodule NMM , the homomorphism θ : M → MatG×G(N) =

B(L2(G)) ⊗ N is given by θ(x) = (αg(x))g ∈ L∞(G) ⊗ N , x ∈ N , and θ(λg) =

λg⊗1 ∈ B(L2(G))⊗N . Determining θ for the bimodule MMN is left as an exercise.

I.2. Group-like structure — cells and connections

In the above sense, bimodules are “quantum homomorphisms”. Then what is

the group-like global structure ? Recall Weyl’s method of making tensor powers

of the standard one and decomposing them into pieces. We take tensor powers of

H = NMM and H̄ = MM∗
N = MMN . Take a finite power · · ·H⊗H̄⊗H⊗H̄ · · · and

decompose it into irreducible components. We have four kinds of bimodules; N -

N , N -M , M -N , M -M bimodules. We choose a representative in each equivalence

class.

For an irreducible bimodule MXM , take H ⊗X, which means NHM ⊗M MXM ,

and decompose it into irreducible N -M sub-bimodules: H ⊗X ∼=
⊕

i Yi. We write
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the following graph for this.

XyH⊗·

Yi

For each edge vi, choose an N -M intertwiner T (vi) : H ⊗ X → Yi. (That is, we

have partial isometries with mutually orthogonal support.) We draw a following

graph.

M -M bimodules
···

H# ⊗ · · ⊗H#

N -M bimodules · · · · · ·M -N bimodules

· ⊗H# H# ⊗ ·
···

N -N bimodules

where H# stands for H or H̄.

The terminology “finite depth” means that only finitely many bimodules appear

in repeating this procedure. We also call depth the longest distance from ∗ to a

vertex on the graph.

Example(Group case). Let M = N ⋊ G, and assume G = S3 for simplicity.

By Frobenius duality, we get Hom(H ⊗ X,Y ) ∼= Hom(X, H̄ ⊗ Y ). Write S3 =

{1, a, a2, b, ab, a2b}, with a3 = b2 = (ab)2 = 1, and Ŝ3 = {1, ε, σ}, where ε denotes

the sign representation and σ denotes the 2-dimensional representation. Then we

get the following graph.
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1
•

σ
•

ε
•

M -M

NMM • •MMN

•
1

•
a

•
a2

•
b

•
ab

•
a2b N -N

Note that MMM is obtained as H̄ ⊗H = M (M ⊗N M)M . For ρ ∈ Rep(G), set

ξρij =
∑

g ρij(g
−1)λg−1 ⊗N λg ∈ H̄ ⊗H. If x ∈ N , then ξρijx = xξρij . We also have

ξρijλh =
∑
g

ρij(g
−1)λg−1 ⊗ λgh

=
∑
k,s

ρis(h)ρsj(k
−1)λhk−1 ⊗ λk

= λh

∑
s

ρisξ
ρ
sj .

Thus, Xρ
j =

⊕
s Mξρsj is an M -M bimodule. One can show that H̄⊗H =

⊕
ρ,j X

ρ
j

and Xρ
i
∼= Xρ

j , where the intertwiner T ρ
ij : Xρ

i → Xρ
j is given by T ρ

ij(ξ
ρ
si) = ξρsj .

Each M (Xρ
i )M is irreducible as seen below. Notice that N ′ ∩Xρ

i ≡ {x ∈ Xρ
i | ax =

xa for all a ∈ N} is a linear span of {ξρsi}s. Any intertwiner T : Xρ
i → Xρ

i must

map N ′ ∩ Xρ
i to N ′ ∩ Xρ

i . Now use T (ξλg) = T (ξ)λg and that ρ is irreducible

to show that T ∈ C. Now what is the group structure ? We have the following
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diagram of N -N bimodules.

MXM
·⊗H̄−−−−→
T2

MY2N

H⊗·
yT1 S2

yH⊗·

NY1M
S1−−−−→

·⊗H̄
NZN ,

that is,

H ⊗X ⊗ H̄
1H⊗T2−−−−→ H ⊗ Y2

T1⊗1H̄

y yS2

Y1 ⊗ H̄
S1−−−−→ Z.

Because S2(1⊗ T2)(T1 ⊗ 1)∗S∗
1 is a N -N bimodule map from Z to Z, it is a scalar

by the irreducibility. We write this

W

 T1
↙ ↘

T2

S1

↘ ↙
S2

 ∈ C,

which depends on choices of the bimodules and the intertwiners. We call four edges,

one from each graph, with common vertices, a cell. In the above example, we have

36 cells. A map W from the set of cells to C is called a connection (or a Boltzmann

weight). This is unique up to a gauge coming from the choice of vertices and edges

of the graphs just like a cohomological invariant. In the above case,

W

 i↙
σ

↘j

↘
g

↙

 = σij(g) ∈ C,

as seen below. For a subfactor R⋊H ⊂ R⋊G, we get the Mackey machine in this

way.
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In the following graph,

1
•

σ
•

ε
•

•

•
1

•
a

•
a2

•
b

•
ab

•
a2b

we get the following connection. For the cell

M (Xρ
j )M

T←−−−− H ⊗ NMMy x
MMN −−−−→ N (Nλg)N ,

the connection is given by

λg

∑
s σis(g)ξ

σ
sj = ξσijλg ←−−−− λg

k

y x
σik(g)λg −−−−→ σik(g)λg, λg.

Thus W = σik(g).

I.3. Biunitarity

In the following diagram, let X,Z be fixed and Y vary.

X

T1

y
Y

S1−−−−→ Z.
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Then S1(T1 ⊗ 1)’s make a basis for Hom(H ⊗X ⊗ H̄, Z). Similarly, in

X
S2−−−−→ Y2

S2

y
Z,

we get a basis for Hom(H ⊗ X ⊗ H̄, Z). These mean that W

 i ↙ ↘ j
↘ ↙

 is

unitary when X,Z are fixed. For example, for fixed σ, g in the group case, (σij(g))ij

is unitary.

Similarly, if Y1, Y2 are fixed in

X −−−−→ Y2x x
Y1 −−−−→ Z,

then W

 ↗
i

↘
↘
j

↗

 is unitary, where we need a renormalization

W

 k
↗
i

↘
l

↘
j

↗

 =

√
µ(i)µ(j)

µ(k)µ(l)
W

 k ↙
i

↘ l↘
j

↙

.

In the group case, (
|σ|1/2

|G|1/2
σij(g))(σ,i,j),g is a unitary, which is |G|×|G|-matrix. That

is, 
111(1) 111(a) 111(a

2) · · ·
σ11(1) σ11(a) σ11(a

2) · · ·
σ12(1) σ12(a) σ12(a

2) · · ·
...

...
...

. . .


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is unitary (up to renormalization). (cf. Peter-Weyl Theorem.)

The biunitarity axioms states that the both matrices

W

 ↙
i

↘
↘

j

↙


 ,

W

 k
↗↘

l
↘↗


 ,

are unitary for each fixed (i, j) and (k, l). (Note that this renormalization conven-

tion is slightly different from that in [O1].)

In the following we write

W


a −−−−→ cy y
b −−−−→ d



for one of

W


 b ↙

a

↘ c↘
d

↙


 ,W


 a

↗
b

↘
d

↘
c

↗


 ,

depending the position of the vertex a. In this notation, the renormalization rule

and biunitarity are expressed as follows.

W


a −−−−→ cy y
b −−−−→ d

 =

√
µ(b)µ(c)

µ(a)µ(d)
·W


b −−−−→ dy y
a −−−−→ c

,

∑
ξ,η

W


a

ξ−−−−→ c

ζ

y yη

b
ρ−−−−→ d

 ·W

c

ξ←−−−− a

η

y yζ′

d
ρ′←−−−− b

 = δζ·ρ,ζ′·ρ′ ,
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where we used the notation

W


a −−−−→ cy y
b −−−−→ d

 = W


c ←−−−− ay y
d ←−−−− b

.

I.4. Indices and Perron-Frobenius eigenvectors

We have

dim(NM ⊗N X) = [M : N ] dimN X,

dim(NM ⊗M X) = dimN X,

where we mean by “dim” the dimension as N -module. By these, we get a relation

between the index and an eigenvalue. For the vector µ0, which assigns the dimension

to each bimodule, the adjacency matrix ∆ of the graph satisfies

∆µ0(x) =
∑

v∈edges
s(v)=x
r(v)=y

µ0(y),

where s(v) and r(v) denote the source and the range of an edge v.

µ0 =

1
•

2
•

1
•

•
6

, ∆µ0 =

6
•

12
•

6
•

•
6
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Renormalizing µ0 by multiplying the dim of MX by [M : N ]−1/2, we get an

eigenvector µ for ∆.

µ =

1
•

2
•

1
•

•√
6

, ∆µ =
√
6µ =

√
6

•
2
√
6

•

√
6

•

•
6

That is, the index is equal to the square of the eigenvalue.

II. String algebra and graph geometry

II.1. Strings and operations

Let G be an unoriented bipartite finite graph with a distinguished vertex.

even: ∗ • •

odd: • •

We will see how a graph is viewed as a manifold, which is called a granifold. The

adjacency matrix ∆ plays a role of the Laplacian, and the vector µ the harmonic

non-negative function. An (oriented) path on G is a succession of edges: ξ =

(v1, v2, . . . , vn), where r(vi) = s(vi+1). We write ṽ for the edge v with the reversed

orientation. A string on G is a pair of paths, ρ = (ρ+, ρ−), with s(ρ+) = s(ρ−),

r(ρ+) = r(ρ−), and |ρ+| = |ρ−|, where | · | denote the length of a path. We draw a
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picture as follows to denote a string.

ρ+

∗ • •

• •

∗ • ρ−

•

•

Define an algebra String(n)G with the linear basis of the n-strings, that is, the

strings with length n. We define a multiplication and a ∗-operation by

(ρ+, ρ−) · (η+, η−) = δρ−,η+(ρ+, η−),

(ρ+, ρ−)
∗ = (ρ−, ρ+),

which makes String(n)G into a finite dimensional C∗-algebra.

For the moment, we work with strings ρ having s(ρ) = ∗, the given distinguished

point on the graph G. Define tr : String(n) → C by tr(ρ) = δρ+,ρ−β
−|ρ|µ(r(ρ)),

where β is the eigenvalue for µ, ∆(µ) = βµ. Define an embedding in+k
n : String(n)G →

String(n+k)G by in+k
n (ρ+, ρ−) =

∑
|ξ|=k(ρ+ · ξ, ρ− · ξ), where ρ± · ξ denotes the con-

catenation of the paths. (Remark that the identity in matrix algebra is written as∑
eii.) This in+k

n is compatible with the trace tr defined above: tr(in+k
n (ρ)) = tr(ρ).
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The above tr is the only trace with this property. Let A∞ = (
⋃

n String
(n), tr) and

we complete this as follows. (The GNS construction with respect to tr.) Define an

inner product on A∞ by 〈x, y〉 = tr(xy∗) to make a pre-Hilbert space. By com-

pletion, we get a Hilbert space L2(A∞, tr). The algebra A∞ acts by multiplication

on the left. Taking a weak closure, we get a von Neumann algebra, which is the

(Murray-von Neumann) hyperfinite II1 factor R.

II.2. Connections and embedding

Now start with four graphs G1,G2,G3,G4 with common vertices.

· · · G2−−−−→ · · ·

G1

y yG3

· · · −−−−→
G4

· · ·

Assume that we have a vector µ : vertices → C, which is harmonic for each Gi,

such that the eigenvalues βGi
and βGi+2

are equal. (The index i is in mod 4.) Further

assume we have a biunitary connection W . We then construct string algebras.

∗ G2−−−−→ • G̃2−−−−→ • · · ·

G1

y yG3 G1

y
• −−−−→

G4

• −−−−→
G̃4

• · · ·

G̃1

y yG̃3 G̃1

y
•
...

G2−−−−→ •
...

G̃2−−−−→ •
...

· · ·
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Take Hilbert spaces H1, H2 with a orthonormal basis:

• • −−−−→ •y y
• −−−−→ • , •

We can define a unitary matrix: H1 → H2 by W , which determines the matrix

entries. We write the following picture for this unitary.

• −−−−→ •y y
• −−−−→ •

↙W

We can use these unitaries for several times for identifying Hilbert spaces. The

result does not depend on the order in which we use W .

∗ −−−−→ • ∗ ∗ ∗y y y y
• • −−−−→ • • •y y y y
• • • −−−−→ • •y −→

y −→
y −→···

y
...

...
...

...y y y y
• • • • −−−−→ •

Thus all the Hilbert spaces of paths of the following form are unitarily equivalent
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using W .

(0,0)

∗y
•y
• −−−−→ · · · −−−−→ •y

...y
•

(k,n)

The corresponding string algebras are isomorphic to each other, using Ad(W ).

For any k, n ≥ 0, we have an algebra Ak,n given by strings from ∗ = (0, 0) to (k, n).

The trace is compatible with this identification.

Note that Ak,n is embedded into Ak,n+1 just like before. Similarly, Ak,n ⊂

Ak+1,n. We have a double complex of algebras.

...
...

· · · Ak,n ⊂ Ak,n+1 · · · Ak,∞
∩ ∩

· · · Ak+1,n ⊂ Ak+1,n+1 · · · Ak+1,∞
...

...
· · · A∞,n ⊂ A∞,n+1 · · ·

The inclusion A0,∞ ⊂ A1,∞ is our string model for N ⊂ M . Note that by

definition of identification using W , the coefficient of the embedding ρ = (ρ+, ρ−) ∈

A0,n 7→
∑

cρ,ηη, where cρ,η ∈ C, and a string η = (η+, η−) ∈ Ak,n is given in the
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form of vertical k-paths composed with horizontal n-paths, is given by

cρ,η =
∑

configurations

∏
cells

W (cell).

Here a “configuration” means a choice of cells which fill the following k×2n-diagram.

∗ −−−−→
ρ+• · · · · · · • −−−−→ • ←−−−−

ρ−• · · · · · · • ←−−−− ∗

η+

y y yη−

...
...

...

η+

y y yη−

• −−−−→ • · · · · · · •
η+

−−−−→ • ←−−−− • · · · · · · •
η−

←−−−− •

This is just by the definition of the embeddings and matrix multiplication rule. We

also denote this coefficient cρ,η by

W



∗ −−−−→ · · · ←−−−− ∗y y
...

...y y
• −−−−→ · · · ←−−−− •


.

This is a trace-preserving homomorphism. Most of known subfactors are from

this construction. Note that the string algebra construction works for any four

graphs with biunitary connection without assuming flatness which will be explained

in II.5. (This construction is equivalent to that based on commuting squares. The

commuting square condition corresponds to biunitarity.) But there is a following

example, which does not come from the string algebra.



18

Example. Choose a non-amenable finitely generated group G and consider the

non-commutative Bernoulli shift α of G on the hyperfinite II1 factor R. This actions

is ergodic on the central sequence algebra by Jones [J2]. Consider a subfactor

N =




x
αg1(x)

. . .

αgn(x)


∣∣∣∣∣∣∣∣∣x ∈ R

 ⊂M = R⊗Matn+1,

where g1, . . . gn are generators of G. By ergodicity on the central sequence algebra,

we get Nω ∩ M ′ = C. But for string algebra construction, we always get the

sequence of Jones projections (en)n (on the horizontal string algebras) in Nω ∩

M ′. (See II.3 below.) Thus this subfactor does not arise from the string algebra

construction.

The main theorem states that the Galois functor and the string algebra con-

struction are inverses to each other under good conditions.

Also see Roche [R] for a string algebra construction.

II.3. Bratteli diagrams and Jones projections

Now we move to local analysis of finite dimensional algebras. Let A be a finite

dimensional C∗-algebra. Then A is isomorphic to
⊕

n B(Hn) ∼=
⊕

n H
∗
n⊗Hn, where

each Hn is a finite dimensional Hilbert space. The irreducible A-modules are, up to

isomorphism, AHn’s. If there is a homomorphism φ : A → B with φ(1) = 1, AHi

is an A-module, and BKj is a B-module, then Kj becomes an A-module using φ.

Then AKj
∼=

⊕
i mijAHi, for some integers mij . We draw the following diagram

for this.
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i• • • AHi

mij

• •
j

• • BKj

For each edge v, choose an intertwiner (partial isometries with mutually orthog-

onal ranges) T (v) : AHi → AKj , that is, with relations

T (v)∗T (v) = 1Hi ,
∑

v,r(v)=j

T (v)T (v)∗ = 1Kj .

Now suppose one has an inductive system A0 = C ⊂ A1 ⊂ A2 ⊂ · · · of finite

dimensional algebras. Make a graph G with vertices on level n corresponding to

irreducible An-modules and edges corresponding to intertwiners as above.

•

•

• •

• • •

• • • • •

If an oriented graph G with a distinguished point is given, we let An be the

n-string algebra with source ∗. We assume that G has no dead ends (i.e., every
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vertex is a source) and every vertex is accessible (i.e., the range of a path starting

at ∗). The two functors (correspondences between the system of algebras and the

graph) are inverse to each to other.

Start with (An), A0 = C, build its Bratteli diagram G as above, and denote

for each vertex x of G, T (x) the corresponding module and for each edge v, T (v)

intertwiner. Now build the string algebra (String(n)G)n on G. For every string

ρ = (v1 · v2 · · · vn, w1 · w2 · · ·wn), the map

T (ρ) = T (vn)T (vn−1) · · ·T (v1)T (w1)
∗ · · ·T (wn)

∗

is from T (x) to T (x), hence T (ρ) ∈ B(T (x)) ⊂ An =
⊕

x B(T (x)).

For the other way, start with a graph which is a Bratteli diagram; it is N-graded,

on the level 0 it has one vertex ∗, and every edge v has level(r(v)) = level(s(v))+1,

each vertex is accessible, and there are no dead ends.

Build the string algebras (String(n)G). We want to show that the invariant of

this inductive system is again G.

For each vertex x of G, let Path(n)∗,xG be the Hilbert space with orthonormal basis

consisting of the paths on G from ∗ to x, n = level of x.

Now Path(n)∗,xG is a left module for String(n)G by (ρ+, ρ−) · ξ = δρ−,ξρ+. This

module is irreducible and

String(n)G =
⊕

level(x)=n

(Path(n)G)∗ ⊗ Path(n)G
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by the correspondence (ρ+, ρ−) ↔ ρ∗+ ⊗ ρ−. The intertwiner T (v) corresponding

to an edge x
v→ y maps ξ ∈ Path(n)x G into ξ · v ∈ Path(n+1)

y G, that is, “adding an

edge”.

The systems (An), (Bn) are inductive systems of algebras and φ :
⋃

An →
⋃

Bn

is a homomorphism with φ(An) ⊂ Bn. We obtain, besides the graphs, (G for (An)

and H for (Bn)), a graph I with edges having source in G and range in H.

∗ ∗

• • •

G • • • • • H

• • • • • • •

• • • • • • • • • • •

For every cell

x
I−−−−→
c

•

G
ya b

yH

• d−−−−→
I

y,

we have an intertwiner

T (c)∗T (b)∗T (d)T (a) : T (x)→ T (x).

Since T (x) is irreducible, this is a scalar, and we write W

 ↙ ↘
↘ ↙

 ∈ C.
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If we keep x, y fixed, then {T (b)T (c)}b,c and {T (d)T (a)}d,a are both basis for

HomAn
(T (x), T (y)), so W

 ↗
x

↘
↘
y

↗

 gives a unitary matrix. Now φ(ρ+, ρ−) =

∑
cρ,η(η+, η−), where (ρ+, ρ−) ∈ String(n)G, (η+, η−) ∈ String(n)H, and

cρ,η =
∑

configuration

∏
cells

W (cell).

A configuration is for the following diagram.

• −−−−→ · · · −−−−→ •

ρ+

y yη+

...
...

ρ−

x xη−

• −−−−→ · · · −−−−→ •

Here we have a similar convention for the cells in the lower half of the diagram to

that in I.3. That is,

W


b −−−−→ dx x
a −−−−→ c

 = W


a −−−−→ cy y
b −−−−→ d


(Compare this to partition functions in statistical mechanics.) Let G be a con-

nected finite unoriented graph with a distinguished vertex x and consider the Lapla-

cian ∆ ≡ ∆G , and let µ be its unique harmonic measure ∆µ = βµ on vertices of G

with µ(∗) = 1. We construct Jones projections en ∈ String(n+1)
∗ by

en =
∑

|α|=n−1
|v|=|w|=1

µ(r(v))1/2µ(r(w))1/2

µ(r(α))
(α · v · ṽ, α · w · w̃).
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Then we get, by simple computations,

(I)

eiej = ejei, |i− j| 6= 1,

ei = e∗i = e2i ,

eiei±1ei = β−2ei.

Recall that

tr(ρ) = δρ+,ρ−β
−|ρ|µ(r(ρ))

is a trace on String(G). This give a conditional expectation

En−1 : String(n)G → String(n−1)G,

tr(ab) = tr(aEn−1(b)), a ∈ String(n−1)G, b ∈ String(n)G.

Expressing ρ = (ρ+, ρ−) as ρ+ = η+ · v+, ρ− = η− · v−, |v+| = |v−| = 1, we get

En−1(ρ) = β−1δv+,v−µ(r(v+))µ(s(v+))
−1 · (η+, η−).

Now we also have

(II)

en ∈ (String(n−1)
∗ G)′ ∩ String(n+1)

∗ G,

enρen = En−1(ρ)en, for all ρ ∈ String(n)G.
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Theorem. If the inductive system (An) of finite dimensional algebras is endowed

with a trace tr, and there are projections en ∈ A′
n−1∩An+1 satisfying (I), (II), then

An is isomorphic to the string algebras on an unoriented graph G.

II.4. Infinite graphs

Let G, µ, β as above. Even if G is not finite but just locally finite, there exits an

eigenvector µ for ∆G as follows. Let Gn be a system of increasing graphs, containing

∗, whose union is G. Then there exists µn for each n such that

∆Gnµn = βnµn,

µn(∗) = 1.

Because {µn(x)}n is bounded at each x, there exists a weak limit µ with ∆Gµ =

(limβn)µ = βµ, where β = ‖∆G‖. But unlike finite graph cases, this µ is not

unique as the following example for the graph A∞ shows.

∗=1 2 3 4 · · · , ∆µ = 2µ,

∗=1 3 8 21 · · · , ∆µ = 3µ,

For any unoriented graph G, setting

m = sup
x∈vertex(G)

#{e ∈ edge(G) | s(e) = x},

we get m1/2 ≤ ‖G‖ ≤ m. In general, if ∆µ = βµ, we get β ≥ ‖∆G‖.
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II.5. Transport and flatness

We consider an auxiliary graph H in addition to G, and now our four graphs are

G1 = G,G2 = H,G3 = G, and G4 = H. Let W be a biunitary connection on these.

Our basic observation is that strings are similar to tensors. For example, a string

ρ = (v1 ·v2 ·v3, w1 ·w2 ·w3) corresponds to a tensor dv1⊗dv2⊗dv3⊗
d

dw3
⊗ d

dw2
⊗ d

dw1
,

where the first three components are covariant and the other three are contravariant.

The string product corresponds to the tensor product as associative algebras.

Transport along (ξ+, ξ−) is defined the formula

Transp
(ξ+,ξ−)
(x,y) (ρ) =

∑
c(ξ+,ξ−)
ρ,η η,

where x = s(ρ) = s(ξ+) = s(ξ−), y = r(ξ+) = r(ξ−) = s(η), and the coeffi-

cient c
(ξ+,ξ−)
ρ,η ∈ C is determined by conjugation using W as before. This is not a

homomorphism for general ξ+, ξ−. If we make ξ+, ξ− vary and consider the map

ρ 7→
∑

ξ+,η+,ξ−,η−

(coefficient)(ξ+ · η+, ξ− · η−),

then it is a homomorphism, but not for a fixed (ξ+, ξ−). The map Transp(ξ+,ξ−)
x,y is

just completely positive in general.

A field of strings on G is a map x ∈ vertex(G) 7→ fx ∈ StringxG. They form an

algebra naturally. A field f is said to be flat if for all vertices x, y of G which can

be joined by H and any paths ξ+, ξ− of the same length from x to y on H, we have

Transp(ξ+,ξ−)
x,y (fx) = δξ+,ξ−fy.
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Flat fields form a ∗-subalgebra of all the fields. Note that the restriction of flat fields

(fx)x 7→ f∗ ∈ String∗G is an injective homomorphism by flatness. If this restriction

for flat fields on G(even)1 with respect to the horizontal graph G2 · G̃2 is surjective in

the string algebra construction, we say the connection on the four graphs is flat.

Note that such a flat field of k-strings is characterized by the property that it is

embedded into a vertical k-string algebra A′
0,2n∩Ak,2n with the same form of strings

for all 2n ≥ depth. (Also see the proof of the theorem in II.6.) By this, flatness of a

connection means that Ak,0 ⊂ A′
0,n ∩Ak,n for all k, n. This condition is equivalent

to saying that A0,∞ and A∞,0 commute. (In this way, it is easy to see a connection

arising via the Galois functor satisfies flatness.) Note that A′
0,2n ∩Ak,2n is spanned

by elements of the form
∑

ζ(ζ ·η+, ζ ·η−), where ζ is a horizontal 2n-path and η is a

vertical k-string. Thus, seeing a coefficient of a vertical k-string (ξ+, ξ−) embedded

in Ak,2n, flatness can be stated in the form

(∗) W



∗ −−−−→
ξ+· · · −−−−→ • ←−−−−

ξ−· · · ←−−−− ∗

ζ+

y y yζ−

...
...

...

ζ+

y y yζ−

x −−−−→ · · ·
η+

−−−−→ • ←−−−− · · ·
η−
←−−−− y


= δζ+,ζ−Cξ,η,

where Cξ,η ∈ C depends only on ξ = (ξ+, ξ−), η = (η+, η−). This form is mentioned

in Remarks on page 153 of [O1].

Example. The field id(n) is given by
∑

s(ξ)=x,|ξ|=n(ξ, ξ) at every point x. Using

the biunitarity
∑

W (i, j)W (k, j) = δi,j , we get

Transp(ξ+,ξ−)
x,y id(n)x = δξ+,ξ−id

(n)
y ,
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which shows flatness, because we have

∑
ζ

W



x
ξ+−−−−→ y

ζ

y yη+

• •

ζ

x xη−

x
ξ−−−−−→ y


= δη+,η−δξ+,ξ− .

(The reason is as follows. Around the left middle •, we get, by biunitarity,

∑
v,w

W



· −−−−→ ·

v

y y
• w−−−−→ ·

v

x x
· −−−−→ ·


= δ→↓,→↑

,

where v, w are edges. Repeating this procedure, we get the above formula.)

Example. Let en,x be the n-th Jones projection at x and en the corresponding

field. This field is flat. By the same kind of computation as above, we get flatness

of en. Note that the coefficients of the Jones projections come from the renormal-

ization rule:

W


a

ξ1−−−−→ b

η̃1

x xξ̃2

c −−−−→
η2

d

 =

√
µ(a)µ(d)

µ(b)µ(c)
W


a

ξ1−−−−→ b

η1

y yξ2

c −−−−→
η2

d

 ,

for four edges ξ1, ξ2, η1, η2.
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Remark. Because for k ≥ depth, Ak+1,0 is generated by Ak,0 and the Jones the

projection, which is flat, we need to check the formula (∗) for flatness only for

2n× 2k-diagrams with k, n ≤ depth. Thus flatness for a given connection on finite

graphs can be checked by finite times of computations. This corresponds to a

remark on page 154 of [O1].

Starting from G,H,W , we get a subfactor N = A0,∞ ⊂ M = A1,∞. From this

subfactor, we get a principal graph K via the Galois functor. We will later show

that this K is given in terms of flatness. If the algebra of flat fields are spanned

by en, then the graph K is A∞. This situation often happens in generic cases and

means that the subfactor is non-amenable in the sense that spanning condition does

not hold. (See [O1].)

The smallest known index value above 4 for an irreducible subfactor is 4.026 · · · ,

and this is obtained for G = E10, H = P (E10), where P is a certain polynomial of

degree 10. (See [HSO]).

Theorem. This subfactor with index= 4.026 · · · has A∞ as a principal graph,

In other words, the higher relative commutants consist of only Jones projections.

Hence this subfactor is non-amenable.

The proof will be given in IV.4.

Example. Consider the following subfactor.

N =


x 0 0

0 α(x) 0
0 0 β(x)

 ∣∣∣∣∣∣x ∈ R

 ⊂M =


 a b c

d e f
g h i

 ∣∣∣∣∣∣ a, b, c, d, e, f, g, h, i ∈ R

 .
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Here α, β gives an outer action of F2, the free group of two generators. Then

N ′ ∩M = C3, and the higher relative commutants are given by the Cayley graph.

•

The norm of this graph is 1 +
√
2, and the eigenvalue is 3 > 1 +

√
2.

Example. Consider the following subfactor.

N =

{(
x 0
0 α(x)

) ∣∣∣∣x ∈ R

}
⊂M =

{(
a b
c d

) ∣∣∣∣ a, b, c, d ∈ R

}
.

We have index = 4. If αn = Ad(u) ∈ Int(R) for some n > 0, then the graph

obtained by the Galois functor is four times Ã2n−1. (See IV.1 for this notation.) We

have a one-parameter family of biunitarity connection on this graph parametrized

by λ. Flatness forces λ2n = 1. If α(u) = γu in the above, then γn = 1. (Connes’

obstruction.) Here we have γ = λ2. If we use a λ without λ2n = 1 for construction,

then we get a free α and the graph A∞ as an invariant.

In the basic construction,

M0 ⊂M1 ⊂ End(M0
M1) ∼= M1 ⊗M0

M1,

we get End(M1) ∼= B(L2(M1)) and End(M0M1) ∼= M ′
0∩B(L2(M1)). (cf. Sauvageot.)

In the above isomorphism, we get e0 ↔ 1⊗m0
1 and 1↔

∑
λ∗
i ⊗M0

λi, where λi’s
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make a basis for M0M1. We then have

M ′
0 ∩M2 = M ′

0 ∩ End(M0
M1) = End(M0

M1M0
).

In this way, we get a correspondence between the towers of relative commutants

and endomorphisms of bimodules.

We have chosen a basis in End(M0
MkM0

). This basis is String(2k)∗ :

M ′
0 ∩Mn

∼= String(n)∗ (the principal graph),

M ′
1 ∩Mn+1

∼= String(n)∗ (the dual graph).

II.6. Computation of towers of relative commutants and flatness

Consider a subfactor A0,∞ = M0 ⊂ A1,∞ = M1 constructed as the string algebra

on four graphs. Using the Jones projection on the vertical algebra, we can easily

show that the inclusion

A0,∞ = M0 ⊂ A1,∞ = M1 ⊂ A2,∞ = M2

is standard, that is, the third algebra is obtained as the basic construction from the

first two. Similarly,

A0,∞ = M0 ⊂ A1,∞ = M1 ⊂ A2,∞ = M2 ⊂ A3,∞ = M3 · · ·

is the Jones tower. The problem is what M ′
0 ∩Mk = A′

0,∞ ∩Ak,∞ is. We show the

following theorem.
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Theorem. In the string algebra construction from finite graphs G1,G2,G3,G4, the

relative commutant A′
0,∞ ∩Ak,∞ is given by fields of flat k-strings on G(even)1 [resp.

G(odd)3 ] with respect to horizontal graph G2 · G̃2 [resp. G̃2 · G2]. In other words,

A′
0,∞ ∩Ak,∞ = (A′

0,n ∩Ak,n) ∩ (A′
0,n+2 ∩Ak,n+2) for all n ≥ depth.

Proof. Let z0 ∈ A′
0,∞ ∩Ak,∞ and set zn = EAk,n

(z0). Then zn ∈ A′
0,n ∩Ak,n.

• −−−−→ • −−−−→ · · · −−−−→ • −−−−→ •y
...y
•y

Mk • (k, n)

zn

}
M ′

0

Note that for 2n ≥ depth each z2n is in the copy of k-string field algebra A

on G(even)1 at the 2n-th place. Define a map φ2n to be the copying of strings from

A′
0,2n∩Ak,2n to this finite dimensional algebra A. We apply compactness argument

to this finite dimensional algebra A as follows. By compactness, we may assume

that there is a sequence {nj} such that φ2nj
(z2nj

) → z, φ2nj+2(z2nj+2) → z′ for

some z, z′ ∈ A as j → ∞. (Note that ‖zn‖ is bounded.) Consider the following
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diagram.

• −−−−→
length 2
• −−−−→ •y y

A
...

... Ay y
• −−−−→ •

length 2
−−−−→ •

That is, we have two A’s vertically, and two 2-string algebras horizontally. Be-

cause ‖z2n − z2n+2‖2 → 0 as n → ∞, we know that z · id(2) =

•

z

y
• −−−−→

id(2)

•
is

identified to id(2) ·z′ =
• id(2)−−−−→ •yz′

•

via connection W . We write z · id(2) = id(2) ·z′

for this. We will show that z and z′ are the same as strings in A. Let e be the

Jones projection in the upper horizontal string algebra in the above diagram. By

flatness of the Jones projection, this e has the same form as the original e in the

lower horizontal string algebras after identification via W , that is, e ·id(k) = id(k) ·e,

where id(k) denotes the identity field of k-strings in A. On the other hand, we can

show easily z′ · e = e · z′ under W by induction on k. (The computation for this is

same as that for flatness of the Jones projection.) This implies

(z · id(2))× (id(k) · e) = (id(2) · z′)× (e · id(k)) = e · z′ = z′ · e = (z′ · id(2))× (id(k) · e),

here “×” means multiplication in the string algebra and “·” means concatenation

of strings. Taking a conditional expectation to the left vertical algebra A in the
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above diagram, we get z = z′ in A. This means that for any j we get

•

z

y
• id(2j)−−−−→ •

=

• −−−−→
id(2j)

•yz

•

under identification via W , where id(2j) means the identity in the horizontal algebra

for G2 · G̃2 · · · G̃2. Let (fx) be a field of strings on G(even)1 corresponding to z. We

will show this field is flat with respect to the horizontal graph G2 · G̃2. Let x, y be

vertices on G(even)1 . We have shown that z · id(2j) = id(2j) ·z under W , which implies

∑
s(ξ+)=s(ξ−)=x
r(ξ+)=r(ξ−)=y
|ξ+|=|ξ−|=2j

(ξ+, ξ−) · Transp(ξ+,ξ−)
x,y (fx) =

∑
s(ξ)=x,r(ξ)=y

|ξ|=2j

(ξ, ξ) · fy.

Thus for two paths ξ+, ξ− on G2 with even length 2j from x to y, we get Transp(ξ+,ξ−)
x,y (fx) =

δξ+,ξ−fy, which shows flatness of the field (fx) by definition. We denote by z ∈

A′
0,2n∩Ak,2n the elements denoted by this flat field. It is clear that z0 = limj z2nj

=

z.

Conversely, if we have a flat field z = (fx) of k-strings on G(even)1 with respect to

horizontal graph G2 · G̃2, this can be embedded in A′
0,2n ∩ Ak,2n for all sufficiently

large n with the same form of strings. We denote this by z. It is trivial that

z ∈ A′
0,∞ ∩Ak,∞.

The statement for Godd3 is proved similarly. Q.E.D.

Note that the above theorem contains so-called Wenzl’s lemma as a particular

case. Indeed, suppose G(even)1 has a vertex x0 which has only one edge from x0.
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Because the restriction of the fields:(fx)x 7→ fx0 is an algebra isomorphism by

flatness, we get A′
0,∞ ∩A1,∞ ⊂ String(1)x0

G1 = C.

The theorem says that if a connection is flat, we get the same graph back via

the Galois functor, which is the Range Theorem in [O1].

Here we show another method of a proof based on amenability of the horizontal

graph in the sense that E(id(n−1)·Flatm)′(ẽn−1) converges to a scalar τ̃ in L2-norm

as m → ∞ for all n, where Flatm denote the field algebra of flat m-stings on the

horizontal algebra with respect to vertical transport, ẽn is the Jones projection on

the horizontal string algebra and τ̃ = β−2
G2

.

Suppose z ∈ A′
0,∞∩Ak,∞ and set zn = EAk,n

(z) again. Now for n ≥ depth, zn ∈

Ak,n can be written as
∑

finite aiẽn−1bi, where ai, bi ∈ Ak,n−1, ẽn−1 ∈ A′
k,n−2∩Ak,n

as well as ẽn−1 ∈ A′
0,n−2 ∩ A0,n (by flatness of the Jones projection). Note that

zn−1 = EAk,n−1
(zn) = τ̃

∑
aibi. If x ∈ id(n−1) · Flatm, then x can be regarded

as an element in A′
k,n−1 ∩ Ak,n−1+m by flatness, hence we get aix = xai, that is,

ai, bi ∈ (id(n−1) · Flatm)′. Now we get by amenability that

‖z − zn‖2 ≥ ‖E(id(n−1)·Flatm)′(z − zn)‖2

= ‖z − E(id(n−1)·Flatm)′(zn)‖2

= ‖z −
∑

aiE(id(n−1)·Flatm)′(en−1)bi‖2

→ ‖z − τ̃
∑

aibi‖2, as m→∞

= ‖z − zn−1‖2.

This implies ‖z − zn‖2 ≥ ‖z − zn−1‖2 ≥ 0. Because the sequence {‖z − zn‖2}n is

an increasing sequence of positive numbers converging to 0, all the terms must be

0. Then we get the conclusion as in the proof of the theorem above.
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We get the amenability for a finite graph is obtained by Perron-Frobenius theory,

because we can write down an explicit formula for E(id(n−1)·Flatm)′(ẽn−1) as in [O2].

The last part of [J] shows the lack of amenability for A∞. This amenability is

related to random walk and path ergodicity. (See [O1, O2].)

II.7. Fourier transform and convolutions

Flatness is an algebraic property. Flat fields form an algebra; if f, g are flat,

then the product fg is also flat. If f ∈ Flat(n), then EFlat(n−1)(f) ∈ Flat(n−1).

Concatenations of flat fields are also flat; if f, g are flat, then the concatenation

f · g is also flat. Here the concatenation is defined by (ρ+, ρ−) · (η+, η−) = (ρ+ ·

η+, ρ− ·η−) and extended linearly. The embedding of String(n) into String(n+k) is a

concatenation by id(k). The map f 7→ id(1) ·f −f · id(1) is similar to Lie derivation.

For group case, we get String(2)∗ = ℓ∞(G). In this case, rotation with 90◦ on this

algebra gives the Fourier transform. We remark that rotation of a flat field is also

a flat field, but we need a number (µ(s(ρ))/µ(r(ρ)))1/2 to get a flat field. This is

an analogue of reversing the orientation: dxi →
d

dxi
.

•

•

→

•

•

The identity id(2) is given by
∑

|ξ|=|η|=1(ξ · η, ξ · η), thus the rotation is given

by the formula
∑

(coefficient)(ξ · ξ̃, η̃ · η). This is β−1 times the Jones projection.
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Thus, the Jones projection is equal to the Fourier transform of id(2) up to a scalar.

For the group case, L∞(G) is spanned by fg, a projection corresponding to g ∈ G.

In this case, the Jones projection is f1. Now the left regular representation algebra

L(G) = C[G] is generated by λg, a translation corresponding to g ∈ G. Then the

Jones projection is |G|−1
∑

g λg.

For the tower M0 ⊂ M1 ⊂ M2 ⊂ M3 and x ∈ M ′
1 ∩M3, the Fourier transform

F(x) is given by F(x) = EM2(xe0e1) ∈ M ′
0 ∩M2. Here EM2 is an analogue to the

integral, and e0e1 is an analogue to the coefficient for the integration.

Example. IfM1 = M0⋊G, the crossed product by an outer action, thenM ′
0∩M2 =

L∞(G),M ′
1 ∩M3 = L(G),M ′

0 ∩M3 = B(L2(G)).

Suppose f = (f1
+ · f2

+, f
1
− · f2

−), g = (g1+ · g2+, g1− · g2−) ∈ String(2n) with |f1
+| =

|f2
+| = |f1

−| = |f2
−| = |g1+| = |g2+| = |g1−| = |g2−| = n. Then the operation (f, g) →

δf2
+,g̃1

+
δf2

−,g̃1
−
(f1

+ · g2+, f1
− · g2−) with a certain coefficient defines the convolution. The

convolution of flat fields is again flat. The convolution in L∞(G) is given by fg∗fh =

fgh, that is, the Fourier transform converts the convolution into the multiplication,

as expected.

Let x, y ∈ M ′
0 ∩M2 = End(NMN ) = N ′ ∩ (M ⊗N M). What is x ∗ y ? Note

that the product of a ⊗N b and c ⊗N d is given by aEN (bc) ⊗N d as compositions

of endomorphisms. The convolution is given by (a ⊗N b) ∗ (c ⊗N d) = ca ⊗N bd.

Though (a⊗N b)∗ = b∗⊗N a∗, another involutions is given by (a⊗N b)◦ = a∗⊗N b∗.

In case M ′
0 ∩M3 is a factor, these give a Kac algebra structure. (See Herman-

Ocneanu for discrete Kac algebra and Herman-Nest-Ocneanu for type III cases.)

The Haar weight on M ′
0∩M2 is given by restriction of a weight giving a conditional

expectation. The algebras M ′
0 ∩M2 and M ′

1 ∩M3 are dual to each other.
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For a subfactor M0 ⊂M1, there is a problem whether there is any intermediate

subfactor P , M0 ⊂ P ⊂ M1. A subfactor is “simple” if there is no intermediate

subfactor, as an analogue of a simple group.

Theorem. There is a one-to-one correspondence between intermediate subfactors

M0 ⊂ P ⊂ M1 and non-zero projections p ∈ Proj(M ′
0 ∩M2) such that F(p) is a

scalar multiple of a projection.

The trivial intermediate subfactors M0 ⊂ M0 ⊂ M1 and M0 ⊂ M1 ⊂ M1

correspond to the Jones projection and 1, respectively.

Choosing a Jones projection e−1 ∈ M0 for the downward basic construction,

we get F(p) = EM0
(pe−1e0). For example, if p = e0, then EM0

(e0e−1e0) =

τEM0
(e0) = τ2, and if p = 1, then EM0

(e−1e0) = τe−1.

Example. Set M = M0 ⊂M ⊗Mk(C) = M1. Then M2 = M ⊗Mk(C)⊗Mk(C)

and M ′
0 ∩M2 = Mk(C) ⊗Mk(C). The explicit formulas for the product and the

convolution in this situation are left as an exercise. Writing Hk = Ck, we can

write M ′
0 ∩M2 = Hk ⊗ H̄k ⊗Hk ⊗ H̄k. Then the Fourier transform is a rotation

of these four factors. The Fourier transform maps the identity
∑

ξi ⊗ ξ̄i ⊗ ξj ⊗ ξ̄j

to
∑

ξ̄i ⊗ ξj ⊗ ξ̄j ⊗ ξi =
∑

eij ⊗ eji, which is the Jones projection up to a scalar.

In this case, intermediate subfactors are of the form M ⊂M ⊗Matl ⊂M ⊗Matk,

k = lm. A projection in Matk ⊗Matk have the property that F(p) is a projection

up to a scalar exactly when p = PMatl . In this case, F(p) = PMat′l
= PMatm .

II.8. Knot invariant
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The braid group Bn has generators g1, . . . , gn−1 and the relations

gigi+1gi = gi+1gigi+1,

gigj = gjgi, |i− j| ≥ 2.

The group Bn is a semidirect product of free groups and Sn as follows. Let Pn

be the set of the braids which do not permute endpoints. (These are called pure

braids.) Then Pn = Fn−1 ⋉ Fn−2 ⋉ · · · , and we have an exact sequence

0→ Pn → Bn → Sn → 0.

We get a link by taking a closure of a braid. By Alexandar’s theorem, this procedure

is surjective. Markov’s theorem asserts that closures of two braids give the same

link if and only if the two braids are equivalent under the equivalence relation

generated by the following two Markov moves.

I. v · w ∼ w · v,

II. v · g±1
n ∼ v, v ∈ Bn.

We choose complex numbers A,B so that the map π : gi 7→ Aei + B gives a

homomorphism from 〈gi〉i to 〈1, e1, e2, . . .〉.

Then the trace tr on String(n), suitably normalized, yields a knot invariant.

Markov move I corresponds to the trace property, and Markov move II to condi-

tional expectation property.
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III. Central sequences and asymptotic inclusions.

III.1. Asymptotic inclusions

Let

M0 ⊂M1 ⊂M2 ⊂ · · · ⊂M∞ =
⋃

Mi

w

.

We call the subfactor M0 ∨ (M ′
0 ∩M∞) ⊂M∞ asymptotic inclusion.

Theorem. The principal graph for the asymptotic inclusion (for a subfactor with

finite depth) is the connected component of ∗ = MMM in the following.

(M (X1)M ,M (X2)M )
•y
•

MXM

Here X1, X2, X are M -M bimodules and the number of arrows is a multiplicity of

X in X1 ⊗M X2.

Example. Consider the following graph A4.

A4 :

1
\
φ
/
φ
\
1

Here β = φ = 1.618 · · · with 1 + φ = φ2. In this case, we have two kinds of

M -M bimodules M and P with the multiplication rules: M ⊗M = M,M ⊗ P ∼=

P ⊗M ∼= P, P ⊗ P ∼= M ⊗ P . Thus the graph for the asymptotic inclusion is as
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follows.

(M,M)
∗

(M,P )
·

(P,M)
·

(P, P )
·

·
M

·
P

This graph is D6.

Using e−1 ∈ M ′
−2 ∩ M0 and e−1M0e−1

∼= e−1M−2, M−2 is identified with

id(2) ·Flat. Strings in M∞ are strings of arbitrary length in both upward and down-

ward direction. The trace tr in M∞ is given by tr(ρ) = δρ+,ρ−β
−|ρ|µ(r(ρ))µ(s(ρ)).

Multiplication in M∞ is done by transport and the usual multiplication. We get

[M∞ : M0 ∨ (M ′
0 ∩M∞)] =

∑
X:irreducible

(dimNXN )2.

Example. In the above example of A4, we get [M∞,M0∨ (M ′
0∩M∞)] = 1+φ2 =

4 cos2(π/10). (Note that the Coxeter number for D6 is 10.)

Setting Ak,l = M ′
k ∩Ml, we get a commuting square

A−n,0 ∨A0,n ⊂ A−n,n

∩ ∩
A−m,0 ∨A0,m ⊂ A−m,m,

where 0 ≤ n ≤ m. This commuting square approximates M0 ∨ (M ′
0 ∩M∞) ⊂M∞.

III.2. Central sequences
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Let N ⊂ M be a subfactor of the hyperfinite II1 factor with finite index and

finite depth. Let ω ∈ βN \N be a free ultrafilter over N. Set

Mω = {(xn)n | xn ∈M, sup ‖xn‖ <∞}/ ∼,

Mω = M ′ ∩Mω = {(xn)n | [xn, y]→ 0 for all y ∈M}/ ∼,

where ∼ denotes the equivalence relation meaning the termwise difference goes to

zero when n→ ω. We get the inclusion Nω ∩Mω = Nω ∩M ′ ⊂Mω.

Example. Here G denotes a finite group. If M = N ⋊G, then Nω ∩Mω = (Nω)
G

and the conditional expectation from Mω onto Nω ∩ Mω is given by (xn)n 7→

(EN (xn))n.

If N = MG for an outer action of G, then Nω∩Mω = (Mω)
G and the conditional

expectation from Mω onto Nω ∩Mω is again given by (xn)n 7→ (EN (xn))n, where

EN (X) = EMG(x) = |G|−1
∑

g αg(x).

Choose a tunnel:

· · · ⊂M−n ⊂ · · · ⊂M0 ⊂M1 ⊂ · · ·M∞.

The Jones projection ek satisfies ek ∈ M ′
k−1 ∩Mk+1. Because (M0)ω ∩ (M−1)ω =

M ′
0 ∩Mω

−1 and e−1 ∈M0, we get M ′
0 ∩ (M−1)

ω ⊂M ′
0 ∩ (M−2)

ω. Similarly, we get

M ′
0∩(M−1)

ω ⊂M ′
0∩(M−3)

ω and so on. Thus we get (M0)ω∩(M−1)ω =
⋂

k(M−k)
ω.

We also need the following theorem.
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Central Freedom Lemma. Let M be a type II1 von Neumann algebra and P ⊂

N ⊂M . If P is hyperfinite and P ∩ P ′ ⊂ N ′ ∩N , then

(P ′ ∩Nω)′ ∩Mω = P ∨ (N ′ ∩M)ω.

Note that the inclusion “⊃” in the above is trivial. By these, we can show the

following.

Theorem. A subfactor (M0)ω ∩ (M−1)ω ⊂ (M0)ω has the same Galois invariant

as the asymptotic inclusion M0 ∨ (M ′
0 ∩M∞) ⊂M∞.

III.3. Group case

We work on crossed product algebras by finite group actions in detail.

Let M = N ⋊ G. For simplicity, assume G = S3. Then the principal graph for

the central sequence algebras are obtained by (σ1, σ2) ∈ Irr(G×G) as follows.

(1,1)
·

(ε,ε)
·

(σ,σ)
· · · · · · ·

·
1

·
ε

·
σ

For a subfactor MG ⊂ M , the central sequence algebra has the same invariant as

the original subfactor, but not for N ⊂ N ⋊ G. For N = R ⋊ H ⊂ R ⋊ G = M ,

with H a subgroup of G, we get a principal graph from Irr(G) and Irr(H). Thus,

if M = N ⋊ G, then the subfactor Nω ∩ Mω ⊂ Mω has the same invariant as

P ⋊G ⊂ P ⋊ (G×G), where P is some factor and G sits in G×G diagonally.
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Note that we have a tower

M = N ⋊G = 〈N,λg〉 ⊂M1 = 〈M,fg〉 ⊂M2 = 〈M1, ρg〉.

Here the action of λg, ρg is given by Ad(λg)(fh) = fgh and Ad(ρg)(fh) = fhg−1 .

For the extension

Nω ∩Mω ⊂Mω ⊂ 〈Mω, f1〉,

we get 〈Mω, f1〉 ⊂ (N ′∩Mω
1 )

Ad(λg·ρg) because [Mω, λg] = 0 (λg ∈M), [Mω, ρg] = 0,

and Ad(λg · ρg)(f1) = fg1g−1 = f1. The central freedom lemma implies the action

Ad(λg · ρg) is outer, and we get 〈Mω, f1〉 = (N ′ ∩Mω
1 )

Ad(λg·ρg) because these two

have the same index in N ′ ∩Mω
1 . Note that G×G acts by Ad(λg · ρh). Then

(N ′ ∩Mω
1 )

Ad(λg·ρh) = (N ′ ∩Mω)Ad(λg) = M ′ ∩Mω = Mω.

Setting P = N ′ ∩Mω
1 , we get an outer action Ad(λg · ρh) on P . We have a tower

Nω ∩Mω ⊂Mω = PG×G ⊂ 〈Mω, f1〉 = PG,

where G sits in G×G diagonally.

Furthermore, G acts on Nω outerly, so there is a partition of unity rg ∈ Nω,∑
g rg = 1, αg(rh) = rgh by non-commutative Rohlin’s lemma. We set pg,h =

rg · fgh, then this is a partition of unity and, we get

Ad(λk · ρl)(pg,h) = rkgfkghl−1 = pkg,hl−1 .
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We can find a family of unitaries λ̄g,h ∈ (N ′∩Mω
1 )

G×G = Mω such that Ad(λ̄g,h)(pk,l) =

pkg−1,hl and λ̄g,hλ̄k,l = λ̄gk,hl. Set R = {p1,1}′ ∩Mω. We see R ⊂ Nω. Indeed,

if x ∈ Mω satisfies [x, r1f1] = 0, then [x, f1] = [x,
∑

g Ad(λg · ρg)(f1r1)] = 0 by

Ad(λg · ρg)(x) = x, hence x ∈ Nω ∩Mω. Now Mω is expressed as 〈R, λ̄g,h〉, the

crossed product R⋊ (G×G). Because

Ad(λ̄g,g)(f1) = Ad(λ̄g,g)(
∑
k

pk,k−1) =
∑
k

pkg−1,gk−1 = f1,

we get λ̄g,g ∈ {f1}′ ∩Mω = Nω ∩Mω. Hence we get

〈R, λ̄g,g〉 ⊂ Nω ∩Mω ⊂ 〈R, λ̄g,h〉 = Mω.

But by the equality

[〈R, λ̄g,h〉 : Mω ∩Nω] = [〈R, λ̄g,h〉 : 〈R, λ̄g,g〉] = |G|,

we get

〈R, λ̄g,g〉 = Nω ∩Mω.

Hence the central sequence algebras are of the form R ⋊G ⊂ R ⋊ (G×G), where

G sits in G×G diagonally.

IV. Computation of paragroups of small order

IV.1. Main result for index< 4
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By Perron-Frobenius theory, since the matrix ∆ has non-negative entries, ∆ has

a unique non-negative eigenvector. This eigenvalue is equal to the operator norm

of ∆ and also equal to [M : N ]1/2, hence we get [M : N ] = ‖∆‖2. If [M : N ] < 4,

then ‖∆‖ < 2, and by a result of Kronecker, all the self-adjoint irreducible matrices

∆ which have non-negative integer entries and ‖∆‖ < 2 are known. (Notice that

if G, H are graphs, G ⊊ H, and G is finite, then ‖∆G‖ < ‖∆H‖, since ‖∆G‖ is an

eigenvalue of µG .)

Here we have List 1 of graphs with eigenvectors for the eigenvalue 2.

Ãn : 1
/
1

\
1

∆µ = 2µ,

D̃n :
1\

1
/
2—2· · · 2—2

/
1

\
1

∆µ = 2µ,

Ẽ6 : 1—2—

1
|
2
|
3—2—1 ∆µ = 2µ,

Ẽ7 : 1—2—3—

2
|
4—3—2—1 ∆µ = 2µ,

Ẽ8 : 1—2—3—4—5—

3
|
6—4—2 ∆µ = 2µ,
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A∞ : 1—2—3—4—5 · · · ∆µ = 2µ,

D∞ :
1\

1
/
2—2—2 · · · ∆µ = 2µ,

A−∞,∞ : · · · 1—1—1—1—1 · · · ∆µ = 2µ,

Theorem. The only graphs which do not contain a graph in List 1 are finite and

are in List 0.

An : ·— ·— · · ·—·,

Dn :
·\

·/
·—·—· · ·—·,

E6 : ·— ·—
·
|
·— ·—·,

E7 : ·— ·—
·
|
·— ·— ·—·,

E8 : ·— ·—
·
|
·— ·— ·— ·—·,
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Proof. Let G be a graph which does not contain any in List 1. Because it does not

contain A−∞,∞, it is finite. Because it does not contain Ãn, there are no cycles.

There are no 4-points and at most one 3-point because it does not contain D̃n. If

there is a 3-point, the three legs from it are not too long because G does not contain

Ẽ6, Ẽ7, Ẽ8. Q.E.D.

Thus if [M : N ] < 4, then [M : N ]1/2 is equal to an eigenvalue of one in List

0, which is 2 cos
π

(Coxeter number)
. Here the Coxeter number is defined to be

n + 1 for An, 2n − 2 for Dn, 12, 18, 30 for E6, E7, E8, respectively. For An having

vertices v1, v2, . . . , vn, the vector µ defined by µ(vk) = sin k
π

n+ 1
has an eigenvalue

2 cos
π

n+ 1
because

sin
(k − 1)π

n+ 1
+ sin

(k + 1)π

n+ 1
= 2 cos

π

n+ 1
sin

kπ

n+ 1
.

(This suggests a relation between a minimal model in conformal field theory (CFT)

and a paragroup, which is the name for the invariant appearing from the Galois

functor.)

The only graphs which do not contain strictly a graph in List 1 are those in List

1 and List 0. This means that the other graphs have norm bigger than 2.

We have seen the Galois functor assigning a graph to a subfactor N ⊂ M . If

the graph is infinite, then the Perron-Frobenius eigenvector is actually a part of the

obtained data, since it is not unique.

The problem here is finding all the possible invariants for subfactor with index<

4.
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Note that the Perron-Frobenius eigenvalue of the adjacency matrix of the graph

must be less than 2, hence each graph is one of Dynkin diagrams of type A,D,E.

Any paragroup (in duality form) has a distinguished initial point ∗. First we have

End(MMM ) ∼= Z(M) = C,

End(NMM ) ∼= N ′ ∩ End(MM ) ∼= N ′ ∩M = C.

We have a distinguished homomorphism in Hom(MMM ,NM ⊗M MM ). This is like

an axiom for a unit. For the biunitarity axiom, the number of paths for making

rows and columns are equal, and the Perron-Frobenius eigenvectors must match at

the common vertices. This implies that the dual graph is equal to the principal

graph in each case. (In general cases index≥ 4, this does not hold any more as

shown by the following example S5/S4.)

1· 4· 5· 6· 5· 4· 1·

√
5· 3

√
5· 2

√
5· 3

√
5·

√
5·

·
1

·
4

·
3

·
8

·
2

·
3

·
4

·
1
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The paragroups with [M : N ] < 4 are of the following form:

· · ·

Ĝ Ĝ

· · · · · ·

G G

· · ·

where G and Ĝ are the same as a graph, and one of Dynkin diagrams of type A,D,E.

For each An, there is only one connection on it. For Dn, there are two connections,

but there is only one up to a graph isomorphism (of switching two endpoints next

to the triple point). For E6, E7, E8, there are two connection. But (geometrical)

flatness of the connection is not satisfied by the connections on Dodd, E7. Then the

conclusion is that there is one subfactor for An, D2n, and two subfactors for E6, E8,

which are opposite conjugate but not conjugate to each other. Notice similarity to

CFT. Also note that End(NMM ) ∼= N ′ ∩M and N ′ ∩M = C is equivalent to that

the vertex ∗ has the only one neighbour.

IV.2. Concrete computations of connections

We determine the connection in each case. (cf. IRF model.) Recall that we have

a gauge for the connection coming from the choice of edges.
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We now work on an example A5. We label each vertex as follows.

1• 2• 3•

4 • 5 • 9 • 10•

•
6

•
7

•
8

Fixing vertices 1,6, we get the following connection values by the rule of renor-

malization.

W

 4 ↙
1

↘ 9↘
6

↙

 = 1, W

 4
↗
1

↘
9

↘
6

↗

 =

√
1√
3
·

√
1√
3
· 1 =

1√
3
.

Then fix vertices 1,7 next. By changing the choice of (4, 7), we may assume that

the connection for the left below is 1.

W

 4 ↙
1

↘ 9↘
7

↙

 = 1, W

 4
↗
1

↘
9

↘
7

↗

 =

√
2√
3
.

Fixing vertices 2,6, we get the following similarly.

W

 4 ↙
2

↘ 9↘
6

↙

 = 1, W

 4
↗
2

↘
9

↘
6

↗

 =

√
2√
3
.
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Fixing vertices 4,9, we get a 2× 2-matrix. By unitarity of


1√
3

√
2√
3√

2√
3

∗

, we get

W

 4
↗
2

↘
9

↘
7

↗

 = − 1√
3
and hence W

 4 ↙
2

↘ 9↘
7

↙

 = −1

2
.

Fixing 5,9, and using a gauge for (5, 2), we get

W

 5
↗
2

↘
9

↘
7

↗

 = 1, W

 5 ↙
2

↘ 9↘
7

↙

 =

√
3

2
.

Fixing 4,10, and using a gauge for (7, 10), we get

W

 4
↗
2

↘
10

↘
7

↗

 = 1, W

 4 ↙
2

↘ 10↘
7

↙

 =

√
3

2
.

Fixing 7,2, we get a unitary 2×2-matrix and W

 5 ↙
2

↘ 10↘
7

↙

 =
1

2
similarly.

This computation works for all An, and we get a unique connection, up to gauge

choice, on each An. The Perron-Frobenius eigenvector is given by k 7→ s(k)/s(1),

where a function s(k) is defined by s(k) = sin
kπ

n+ 1
.

If one meets a 3-point, as in Dn, En, then the previous argument works up to

the 3-point. At the 3-point, one has a 3 × 3-matrix (aij). The values of |aij | are

completely determined. (See IV.4.) For each row and column, we have a freedom
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of gauge. We can, for example, make the first row and the first column real.

 a11 a12 a13
a21 x y
a31 z t

 , a11, a12, a13, a21, a31 ∈ R+.

We need to choose x, y. (Then z, t are determined by unitarity.) Because |x|, |y|

are given, and we have an equation −xa12 − ya13 = a21a11, if we call v = −a12x ∈

C, w = −a13y ∈ C, c = a21a11 ∈ R+, then our equation is v + w = c, with |v|, |w|

given.

|w| |v|

· c

The above picture shows that this problem has at most two solutions (conju-

gate to each other). We have three cases; There are no solutions; There is one

(self-conjugate) solution; There are two solutions (conjugate to each other). The

computation is not difficult for Dn. We shall display a solution for each An, Dn, En.

Note that if we find two conjugate solutions, then they are the only solution because

we have at most one 3-point. (This was noted independently by Pasquier.)

Use an identification of the four graphs. (The identification is not canonical,

but we choose one. Consider Z3
∼= Ẑ3 for example.) For a vertex v, call µ(v) the

Perron-Frobenius eigenvector. Let N be the Coxeter number of the graph and β
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the Perron-Frobenius eigenvalue 2 cosπ/N . We set ε = i exp(πi/2N). Our formula

for W is

W

 k ↙
i

↘ l↘
j

↙

 = δklε+ ρδij ε̄, ρ =

(
µ(k)µ(l)

µ(i)µ(j)

)1/2

.

Note that this satisfies the renormailization rule. We check unitarity as follows.

∑
l

W

 k ↙
i

↘ l↘
j

↙

W

m↙
i

↘ l↘
j

↙

 =?.

We consider two cases.

Case 1. (i 6= j.) We get ? =
∑

l δklεδmlε̄ = δkm.

Case 2. (i = j.) We get

? =
∑
l

δklεδmlε̄+
∑
l

δklε
2µ(l)

1/2µ(m)1/2

µ(i)

+
∑
l

µ(k)1/2µ(l)1/2

µ(i)
δmlε̄

2 +
∑
l

µ(k)1/2µ(m)1/2µ(l)

µ(i)2

= δkm +
µ(k)1/2µ(m)1/2

µ(i)
(ε2 + ε̄2 +

∑
l µ(l)

µ(i)
).

But now ε2+ε̄2+

∑
l µ(l)

µ(i)
= ε2+ε̄2+β = 0 by the definition of ε. The other unitarity

can be verified similarly. This computation also works even if N =∞ for Ã, D̃, Ẽ.

If we take a complex conjugate on a connection, we get an anti-automorphism. (cf.

Yang-Baxter equation.)

The graph Dn with ∗-distinguished point has a Z2 symmetry. This switches W

and W̄ .
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Example. The graph D4 corresponds to the group Z3. In this case, a connection

W is given by a unitary 3× 3-matrix

W =
1√
3

 1 1 1
1 α ᾱ
1 ᾱ α

 ,

where α ∈ C satisfies α+ α2 + 1 = 0. The symmetry switches the second and the

third columns.

For Dn, there is only one solution, up to graph automorphism. For E6, E7, E8,

we have two anti-isomorphic but non-isomorphic solutions.

IV.3. Flatness

Our result on flatness of the connections given above is as follows.

Theorem. The connections defined above for An are flat. The connections for D2n

are flat, and for D4k two connections are conjugate to each other by switching the

endpoints, and connections for D4k+2 are self-conjugate. Connections for E6, E8

are flat. Connections for E7 and Dodd are not flat.

The result for Dodd means that composition table of bimodule multiplications

for Dodd is impossible.

Consider D6 for example.

D6 : 1—2—3—4
/
5

\
5′
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For flatness, we only need to check

W


∗ ξ−−−−→ 5

ξ←−−−− ∗

η

y y yη′

5 −−−−→
ζ

x ←−−−−
ζ′

5′

 = 0,

where ξ = η = (1—2—3—4—5), η′ = (1—2—3—4—5′). The reason is as follows.

The string algebras Ak,0, k ≤ 3, are generated by Jones projections and Ak,0,

k ≥ 5, are generated by Ak−1,0 and the Jones projection, thus we may assume

|ξ| = 4 in the above diagram. Moreover, if r(ξ) = 1, 2, 3, 4, then the formula

is valid again by flatness of the Jones projections. Hence we may assume that

ξ = η = (1—2—3—4—5) or ξ = η = (1—2—3—4—5′), and by

(1—2—3—4—5, 1—2—3—4—5) + (1—2—3—4—5′, 1—2—3—4—5′) ∈ 〈ei〉,

we need consider only the former case. Because the string (ξ, ξ) ∈ A5,0 commutes

with horizontal Jones projections again by their flatness, it is enough to assume

ξ = η and eta′ = (1—2—3—4—5′). Using that

W


∗ ξ−−−−→ 5

ξ←−−−− ∗

η

y y yη′

5 −−−−→
ζ

x ←−−−−
ζ′

5′

+W


∗ ξ−−−−→ 5′

ξ←−−−− ∗

η

y y yη′

5 −−−−→
ζ

x ←−−−−
ζ′

5′

 = 0,

obtained by flatness of the Jones projections, and that W (2×2-cell) can be adjusted

to be real by choice of gauges, we can show the desired formula.

IV.4. Non-amenability of the E10 subfactor
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It is known that the possible values of the Perron-Frobenius eigenvalues for

(possibly infinite) graphs are given by the following picture. (See Appendix I of

[GHJ].)

2 cosπ/n
———————————————
1 2

(Ã,D̃,Ẽ,A∞,D∞)

√
φ+ 1/φ (1 + φ = φ2)

The interval between 2 and
√

φ+ 1/φ, where φ is the golden ratio, is given by

the following picture.

—————————————
2 2.006 · · ·

The first value above 4 is given by E10, and the first accumulation point is given

by E∞:

E∞ : ·— ·—
·
|
·— · · ·∞,

The second accumulation point and the value
√

φ+ 1/φ are given by the fol-

lowing, respectively.

·— ·— ·—
·
|
·— · · ·∞,

Here we give a proof for the theorem on non-amenability of the E10-subfactor in

II.5.

Proof. First note that E10 is the only finite graph with the given Perron-Frobenius

eigenvalue. (See Proposition I.3.4 in Appendix I of [GHJ].) If the graph is infinite,
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then an eigenvalue is greater than or equal to the norm of the graph, so the possi-

bility of the principal graph now is limited to one of E10, A∞, D∞. Then the lower

part of the paragroup (the dual graph) should be the same as the principal graph

because the Perron-Frobenius eigenvectors must match. Thus it is enough to elim-

inate possibilities of E10, D∞. For this purpose, suppose the principal graph has a

triple point a, and the dual graph a corresponding triple point a′. We show that the

biunitarity axiom gives a contradiction. Set β = [M : N ]1/2 > 2. Let (cij)i,j=1,2,3

be the 3 × 3-unitary matrix given by W

 bi
↙

a

↘ b′j↘
a′
↙

. If i 6= j, then we can

apply the biunitarity axiom to a 1 × 1-matrix and use the renormalization rule to

get |cij | =
µ(bi)

1/2µ(b′i)
1/2

µ(a)1/2µ(a′)1/2
. By

|c11|2 + |c12|2 + |c13|2 = 1,

µ(b′2) + µ(b′3) = βµ(a)− µ(b′1),

we get

|c11|2 =
µ(a)2 + µ(b1)µ(b

′
1)− βµ(a)µ(b1)

µ(a)2
.

Applying the same formula to c11, c21, c31, we get µ(b1) = µ(b′1), and hence

|c11|2 = 1− βµ(b1)

µ(a)
+

(
µ(b1)

µ(a)

)2

.

Setting xi = µ(bi)/µ(a), we get

(|cij |) =


√
1− βx1 + x2

1

√
x1x2

√
x1x3√

x2x1

√
1− βx2 + x2

2

√
x2x3√

x3x1
√
x3x2

√
1− βx3 + x2

3

 .
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Because c11c̄21 + c12c̄22 + c13c̄23 = 0, xi > 0 and β > 2, we get

x3 =
√
x1x3

√
x2x3/

√
x1x2

≤
√

1− βx1 + x2
1 +

√
1− βx2 + x2

2

≤ 1− x1 + 1− x2,

which implies 2 < β = x1 + x2 + x3 ≤ 2, a contradiction. Q.E.D.

Note that the above proof eliminates a large class of graphs for small index

values> 4. (That is, if the upper graph and the lower graphs are the same, it has

no cycle of length 4 and the Perron-Frobenius eigenvalue is bigger than 2, then

there is no biunitary connection on this system.)

IV.5. Paragroups for index> 4

Recall Jones’ construction of subfactors 〈ei〉 in the string algebra of a graph G

at a vertex x. (See [GHJ].) Okamoto [Ok] showed that [String(G) : 〈ei〉] <∞ if and

only if the graph G is one of A,D,E,A∞, D∞. He also computed principal graphs

for these. The smallest index value arising in this way is 3 +
√
3 and this is the

smallest known value> 4 for which a flat connection exists, in other words, this is

a subfactor with finite depth with the smallest known index value> 4. It is also

conjectured that this is actually the smallest value above 4 as an index value of an

irreducible subfactor with finite (or amenable) depth.
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