On the Bulk Classification of Non-Hermitian Topological Insulators Modeled by Spectral Operators

Physical Principles to Choose a Physically Meaningful Classification

Max Lein

2020.12.18@virtualized Yukawa Institute for Theoretical Physics

Spectral Operators

Line Gaps

Point Gaps

Summary 000000

Today's Talk Is Based On

On Choosing a Physically Meaningful Topological Classification for Non-Hermitian Systems and the Issue of Diagonalizability with Vicente Lenz Under review, arxiv:2010.09261

Continuity of Spectra of Spectral Operators with Vicente Lenz In preparation

Motivated by Recent works by Kawabata et al. (2019), Zhou & Lee (2019)

- Extends 10-Fold Cartan-Altland-Zirnbauer Classification of selfadjoint operators
- Systematic classification of non-selfadjoint operators
- 38 symmetry classes + gap-type subclasses

Sp	ectral	Op	era	to
00	0000	0		

Line Gaps

Point Gap: 000 Summary 000000

Our Main Results

- Provides a recipe to classify non-selfadjoint spectral operators.

 → Inclusion of effects of disorder, perturbations
- 2 Physically meaningful classification singled out by identifying relevant states v> physical criterion for choice of line gap.
- 3 Provides mathematical recipe for point gap classification.
- 4 Extends the classification results by Zhou & Lee, Kawabata et al. from periodic tight-binding to spectral operators.

Update since publication of preprint

- Current preprint claims classification result only applies to diagonalizable ⊊ spectral operators. ⇒ Range of validity ↑
- Fixed a mistake: existence of $P_{\rm rel}\ {\it not}\ {\rm conditional}\ {\rm on}\ {\rm absence}\ {\rm of}\ {\rm Jordan}\ {\rm blocks}.$
- Thank you to Vicente Lenz & Masatoshi Sato

Classification	Non-Selfadjoint TIs
0000000	

Line Gaps

Point Gaps

Summary 000000

- Kawabata et al.'s 38-Fold Classification of Non-Selfadjoint Operators
- Spectral Operators
- 3 Physics Determines Relevant Line Gap Classification
- 4 Mathematical Point Gap Classification
- 5 Summary

Classification Non-Selfadjoint TIs	
000000	

Line Gaps 0000000 Point Gaps

Summary 000000

Kawabata et al.'s 38-Fold Classification of Non-Selfadjoint Operators

- 2 Spectral Operators
- 3 Physics Determines Relevant Line Gap Classification
- ④ Mathematical Point Gap Classification
- 5 Summary

What Are Topological Phenomena?

Ouantum Hall Effect

What makes a physical effect topological?

Find a mathematical object (e.g. projection or vector bundle) whose topology manifests itself on the level of physics.

Bulk-Boundary Correspondence

$$O_{\rm bdy}(t)\approx T_{\rm bdy}=f(T_{\rm bulk})$$

Coupled Oscillators

Step 1: Bulk Classification

- Classify systems with certain symmetries
- Identify all topological invariants

Spectral Operator

Line Gaps

Point Gaps 000 Summary 000000

General Properties of Non-Selfadjoint Operators

Differences between selfadjoint and non-selfadjoint operators?

- Spectrum may be complex.
- 2 They need not be diagonalizable/have Jordan blocks.*

→ Intuition can only be made precise for spectral operators!

*What that means mathematically will be clarified later in the talk.

Classification Non-Selfadjoint TIs

Line Gaps

Point Gaps 000 Summary 000000

Point Gap vs. Line Gaps

Gap types for selfadjoint \longrightarrow non-selfadjoint operators

Co-dimension 1 \longrightarrow Co-dimension 1 (line gaps) Co-dimension 2 (point gaps)

Differences between point and line gaps

- Point gaps just enforce bounded invertibility
- Line gaps prevent states from crossing the relevant line.
- Real and imaginary line gaps

 imaginary and real axis (order reversed!)
- H has line gap $\implies H$ has point gap

Classification Non-Selfadjoint TIs	
0000000	

Line Gaps

Point Gaps

Summary 000000

Relevant Symmetries of Non-Selfadjoint Operators

Symmetries for selfadjoint \longrightarrow non-selfadjoint operators

$$U H U^{-1} = \pm H \quad \longrightarrow \quad \begin{cases} U H U^{-1} = \pm H \\ U_* H U_*^{-1} = \pm H^* \end{cases}$$

where U and U_* are (anti)linear, invertible maps with $U^2=\pm\mathbbm{1}$

Spectral Operato

Line Gaps

Point Gaps

Summary 000000

Relevant Symmetries of Non-Selfadjoint Operators

Туре	Condition on H	$\sigma(H) =$
ordinary	$VHV^{-1}=+H$	$+\sigma(H)$
chiral	$SHS^{-1}=-H$	$-\sigma(H)$
$\pm TR$	$T H T^{-1} = + H$	$+\overline{\sigma(H)}$
$\pm PH$	$C H C^{-1} = -H$	$-\overline{\sigma(H)}$
pseudo	$V_* H V_*^{-1} = + H^*$	$+\overline{\sigma(H)}$
chiral*	$S_*HS_*^{-1}=-H^*$	$-\overline{\sigma(H)}$
$\pm TR^*$	$T_*HT_*^{-1}=+H^*$	$+\sigma(H)$
$\pm PH^*$	$C_*HC_*^{-1}=-H^*$	$-\sigma(H)$

(Compared with Kawabata et al. this uses different nomenclature for the symmetries.)

Classification Non-Selfadjoint TIs	
0000000	

Line Gaps

Point Gaps

Summary 000000

38-Fold Classification of Non-Selfadjoint Topological Insulators

Bare basics

- Symmetries of HGap type \longleftrightarrow Topological class of H
- Topological class = U{Topological phases}
- Topological phase = Operators connected by symmetry- and gap-preserving continuous deformations
- Homotopy definition of topological phase (usually first-principles starting point)
- Phases labeled by a finite set of topological invariants
- Number and nature of topological invariants depends on topological class

Spectral Operator

Line Gaps

Point Gaps

Summary 000000

38-Fold Classification of Non-Selfadjoint Topological Insulators

Normalization of Non-Selfadjoint Operatosr

Point gap

- *H* homotopically deformed to unitary
- *Idea*: polar decomposition $H = V_H M$
- Unless H is normal $[V_H, M] \neq 0$

(Real) line gap

- *H* homotopically deformed to spectrally flattened hamiltonian *Q*
- $\bullet \ Q=Q^*=\mathbb{1}-2P \ \longleftrightarrow \ P=P^2=P^*$
- In general *P* not a spectral projection of *H*

Spectral Operator

Line Gaps 0000000 Point Gap 000 Summary 000000

38-Fold Classification of Non-Selfadjoint Topological Insulators

Classification result by Kawabata et al. (2019)

- 38 topological symmetry classes + gap-type subclasses
- Eliminated doubly counted cases
- Determined coarse[∗] topological classification by computing twisted equivariant K-groups → classification tables
- Applies to periodic tight-binding operators

Example

SLS	AZ class	Gap	Classifying space	d = 0	d = 1	d = 2	d = 3	d = 4	d = 5	d = 6	d = 7
S_{++}	BDI	Р	\mathcal{R}_1	\mathbb{Z}_2	Z	0	0	0	2ℤ	0	\mathbb{Z}_2
		L,	$\mathcal{R}_1 \times \mathcal{R}_1$	$\mathbb{Z}_2 \oplus \mathbb{Z}_2$	$\mathbb{Z} \oplus \mathbb{Z}$	0	0	0	$2\mathbb{Z} \oplus 2\mathbb{Z}$	0	$\mathbb{Z}_2 \oplus \mathbb{Z}_2$
		L_i	$\mathcal{R}_1 imes \mathcal{R}_1$	$\mathbb{Z}_2 \oplus \mathbb{Z}_2$	$\mathbb{Z}\oplus\mathbb{Z}$	0	0	0	$2\mathbb{Z} \oplus 2\mathbb{Z}$	0	$\mathbb{Z}_2 \oplus \mathbb{Z}_2$
S	DIII	Р	\mathcal{R}_3	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	2ℤ
		L	$\mathcal{R}_3 imes \mathcal{R}_3$	0	$\mathbb{Z}_2 \oplus \mathbb{Z}_2$	$\mathbb{Z}_2 \oplus \mathbb{Z}_2$	$\mathbb{Z} \oplus \mathbb{Z}$	0	0	0	$2\mathbb{Z} \oplus 2\mathbb{Z}$
		L	C_1	0	Z	0	Z	0	Z	0	Z

* Coarse means not all topological invariants are captured by those specific K-groups

Classification Non-Selfadjoint TIs	
0000000	

Line Gaps 0000000 Point Gap: 000 Summary 000000

38-Fold Classification of Non-Selfadjoint Topological Insulators

Classification result by Kawabata et al. (2019)

- 38 topological symmetry classes + gap-type subclasses
- Eliminated doubly counted cases
- Determined coarse^{*} topological classification by computing twisted equivariant K-groups → classification tables
- Applies to periodic tight-binding operators

Example

* Coarse means not all topological invariants are captured by those specific K-groups

Line Gaps

Point Gap 000 Summary 000000

38-Fold Classification of Non-Selfadjoint Topological Insulators

Classification result by Kawabata et al. (2019)

- 38 topological symmetry classes + gap-type subclasses
- Eliminated doubly counted cases
- Determined coarse^{*} topological classification by computing twisted equivariant K-groups → classification tables
- Applies to periodic tight-binding operators

Example

Problem solved!?

* Coarse means not all topological invariants are captured by those specific K-groups

Spectral Operators

Line Gaps

Point Gaps

Summary 000000

Questions that Motivated Our Work

 Do Jordan blocks matter in the topological classification? Answer: For spectral operators, no.

For non-spectral operators, the notion of Jordan block is ill-defined.

2 What physical data determine which of the mathematical classifications is relevant for physical phenomena? Answer for "line gaps": Physically relevant states Answer for "point gaps": I do not know.

Spectral Operators

Line Gaps

Point Gaps

Summary 000000

Questions that Motivated Our Work

1 Do Jordan blocks matter in the topological classification? Answer: For spectral operators, no.

For non-spectral operators, the notion of Jordan block is ill-defined.

2 What physical data determine which of the mathematical classifications is relevant for physical phenomena? Answer for "line gaps": Physically relevant states Answer for "point gaps": I do not know.

Spectral Operators

Line Gaps

Point Gaps

Summary 000000

Questions that Motivated Our Work

 Do Jordan blocks matter in the topological classification? Answer: For spectral operators, no.

For non-spectral operators, the notion of Jordan block is ill-defined.

2 What physical data determine which of the mathematical classifications is relevant for physical phenomena? Answer for "line gaps": Physically relevant states Answer for "point gaps": I do not know.

Classification	Non-Selfadjoint TIs
0000000	

Line Gaps

Point Gaps 000 Summary 000000

 Kawabata et al.'s 38-Fold Classification of Non-Selfadjoint Operators

2 Spectral Operators

- 3 Physics Determines Relevant Line Gap Classification
- ④ Mathematical Point Gap Classification
- 5 Summary

Spectral Operators

Line Gaps

Point Gaps

Summary 000000

Definition of Spectral Operators

Definition (Spectral Operator)

A spectral operator $H \in \mathcal{B}(\mathcal{X})$ is a bounded operator on a Banach space \mathcal{X} that possesses a projection-valued measure $\{P(\Omega)\}_{\Omega \in \mathfrak{B}(\mathbb{C})}$ on \mathbb{C} with the following properties: for all Borel sets $\Omega \in \mathfrak{B}(\mathbb{C})$ we have

a
$$\left[H,P(\Omega)
ight]=0$$
 and

- $\mathbf{b} \ \ \sigma \big(H|_{\operatorname{ran} P(\Omega)} \big) \subseteq \overline{\Omega}.$
- Definition goes back to Dunford, Schwartz, Bade, Kakutani & Wermer (series of papers in 1954!)
- Theory developed across 700 (!) pages in Part III of Dunford & Schwartz's book → Re-discovered by my collaborator Vicente Lenz
- Projection-valued measure takes values in oblique projections

Spectral Operators

Line Gaps

Point Gaps

Summary 000000

Definition of Spectral Operators

Definition (Spectral Operator)

A spectral operator $H \in \mathcal{B}(\mathcal{X})$ is a bounded operator on a Banach space \mathcal{X} that possesses a projection-valued measure $\{P(\Omega)\}_{\Omega \in \mathfrak{B}(\mathbb{C})}$ on \mathbb{C} with the following properties: for all Borel sets $\Omega \in \mathfrak{B}(\mathbb{C})$ we have

- a $\left[H, P(\Omega) \right] = 0$ and
- $\mathbf{b} \ \sigma\big(H|_{\operatorname{ran} P(\Omega)}\big) \subseteq \overline{\Omega}.$
- Periodic tight-bining operators are spectral operators
 → Link to works by Kawabata et al.
- Not all operators are spectral!

Spectral Operators

Line Gaps

Point Gaps

Summary 000000

Decompositions of Spectral Operators

Theorem (Jordan normal form)

Any spectral operator H = S + N can be **uniquely** decomposed into a scalar part

 $S = \int_{\mathbb{C}} E \; \mathrm{d} P(E)$

and a quasi-nilpotent part (i. e. $\sigma(N) = \{0\}$)

N = H - S

that commute [S, N] = 0.

Dunford & Schwartz, Linear Operators, Part III, Spectral Operators, Chapter XV, Wiley-Interscience, 1988

Spectral Operators

Line Gaps

Point Gaps

Summary 000000

Decompositions of Spectral Operators

Theorem (Cartesian decomposition)

Any spectral operator $H = H_{\rm Re} + i H_{\rm Im}$ can be **uniquely** decomposed into a real and imaginary part with the following properties:

- $\mathbf{a} \ \left[H_{\mathrm{Re}} \,, H_{\mathrm{Im}} \right] = 0$
- $\mathbf{b} \ \sigma(H_{\operatorname{Re}}), \sigma(H_{\operatorname{Im}}) \subseteq \mathbb{R}$
- c $H_{\rm Re}$ is a scalar operator and $H_{\rm Im}$ a spectral operator.
- d The Boolean algebra of projections generated by the projection-valued measures of $H_{\rm Re}$ and $H_{\rm Im}$ is bounded.

Dunford & Schwartz, Linear Operators, Part III, Spectral Operators, Chapter XV, Wiley-Interscience, 1988

Spectral Operators

Line Gaps

Point Gaps

Summary 000000

Decompositions of Spectral Operators

Theorem (Polar decomposition)

Any spectral operator H = U M can be decomposed into a phase U and a modulus M with the following properties:

- **a** [U, M] = 0
- b $\sigma(U)\subseteq \mathbb{S}^1\text{, }\sigma(M)\subseteq [0,\infty)$
- c U is a scalar operator and M a spectral operator.
- **d** The Boolean algebra of projections generated by the projection-valued measures of U and M is bounded.

Dunford & Schwartz, Linear Operators, Part III, Spectral Operators, Chapter XV, Wiley-Interscience, 1988

Spectral Operators

Line Gaps 0000000 Point Gaps

Summary 000000

Spectral Operators Admit an Analytic Functional Calculus

For functions f that are analytic on some set $\Omega \supset \sigma(H)$, we set

$$\begin{split} f(H) &:= \sum_{n=0}^{\infty} \frac{N^n}{n!} \int_{\sigma(H)} f^{(n)}(E) \; \mathrm{d}P(E) \\ &= \frac{\mathrm{i}}{2\pi} \int_{\Gamma(\sigma(H))} \mathrm{d}z \, f(z) \, (H-z)^{-1} \end{split}$$

where N is the quasi-nilpotent part.

Important When $\sigma_{\rm rel}$ is an isolated spectral island, then

$$\mathbf{1}_{\sigma_{\mathrm{rel}}}(H) = \mathbf{1}_{\sigma_{\mathrm{rel}}}(S) = \mathbf{1}_{\sigma_{\mathrm{rel}}}(S+N')$$

where N^\prime is any quasi-nilpotent operator with $[S,N^\prime]=0$

Spectral Operators

Line Gaps

Point Gaps

Summary 000000

Relation to Diagonalizable Operators

Definition (Diagonalizable operator)

 $H\in \mathcal{B}(\mathcal{H})$: \exists similarity transform $G\in \mathcal{B}(\mathcal{H})^{-1}$ that makes

$$G\,H\,G^{-1}=\int_{\mathbb{C}}E\,\mathrm{d}P(E)$$

normal, where $P(\Omega)$ is the projection-valued measure.

Spectral Operators

Line Gaps

Point Gaps

Summary 000000

Relation to Diagonalizable Operators

Proposition $H \in \mathcal{B}(\mathcal{H})$ diagonalizable \iff H = S scalar operator on a Hilbert space

→ Dunford & Schwartz, Theorem XV.6.4

Spectral Operators

Line Gaps

Point Gaps

Summary 000000

Relation to Diagonalizable Operators

Corollary

Suppose $H \in \mathcal{B}(\mathcal{H})$ is a spectral operator on a Hilbert space.

- 1 The scalar part S of H = S + N defines a normal operator with respect to a suitably chosen scalar product.
- 2 The real part H_{Re} of $H = H_{\text{Re}} + iH_{\text{Im}}$ defines a selfadjoint operator with respect to a suitably chosen scalar product.
- 3 If in addition $H = U M \in \mathcal{B}(\mathcal{H})^{-1}$, then the **phase** U is a uniquely defined unitary operator with respect to a suitably chosen scalar product.

Spectral Operators

Line Gaps

Point Gap

Summary 000000

Continuity of Spectra

Conjecture

Let $\lambda \mapsto H(\lambda)$ be a continuous path in the set of spectral operators. Then the spectrum $\sigma(H(\lambda))$ is inner and outer (upper and lower) continuous in λ .

- Outer/upper semicontinuity is for free. (Kato, Chapter VI.3.1, Theorem 3.1)
- Proof is work-in-progress.
- Not sure whether the result is contained in Dunford & Schwartz (almost 700 pages, so the answer could be yes).
- Proceeding under the assumption that this conjecture is true.

Classification	Non-Selfadjoint TIs
0000000	

Line Gaps •000000 Point Gaps

Summary 000000

- 1 Kawabata et al.'s 38-Fold Classification of Non-Selfadjoint Operators
- 2 Spectral Operators
- 3 Physics Determines Relevant Line Gap Classification
- 4 Mathematical Point Gap Classification
- 5 Summary

Classification	Non-Selfadjoint TIs
0000000	

Spectral	Operators
00000	0

Line Gaps

Point Gaps

Summary 000000

Definition of the Relevant Projection $P_{\rm rel}$

Our approach

- Pick physically relevant states $\rightsquigarrow \sigma_{\mathrm{rel}}$
- Define projection onto relevant states

$$P_{\rm rel} := \frac{{\rm i}}{2\pi} \int_{\Gamma(\sigma_{\rm rel})} {\rm d} z \, (H-z)^{-1}$$

- Symmetries of H and $\sigma_{
 m rel}$
 - \implies symmetries and constraints of $P_{\rm rel}$

Kawabata et al. (real line gap)

• H homotopically deformed to spectrally flattened hamiltonian Q

•
$$Q = Q^* = \mathbbm{1} - 2P \iff P = P^2 = P^*$$

- In general *P* not a spectral projection of *H*!
- Choice of line gap ⇔ choice of contour
 → Line gap part of an infinite contour
- *Q*, *P* not unique (choice of scalar product)

Definition of the Relevant Projection $P_{\rm rel}$

Our approach

- Pick physically relevant states $\rightsquigarrow \sigma_{\mathrm{rel}}$
- Define projection $P_{\rm rel}$ onto relevant states
- Symmetries of H and $\sigma_{\rm rel}$
 - \implies symmetries and constraints of $P_{
 m rel}$
- No homotopy argument, no extended hamiltonian
- Homotopy definition of topological class of $P_{\rm rel}$ relies on continuity of spectrum

Kawabata et al. (real line gap)

- H homotopically deformed to spectrally flattened hamiltonian Q
- $\bullet \ Q=Q^*=\mathbb{1}-2P \ \longleftrightarrow \ P=P^2=P^*$
- In general *P* not a spectral projection of *H*!
- Choice of line gap ⇔ choice of contour
 → Line gap part of an infinite contour
- *Q*, *P* not unique (choice of scalar product)

Classification Non-Selfadjoint TIs	
0000000	

Spectral	Operators
00000	0

Line Gaps ○○●○○○○ Point Gaps

Summary 000000

Jordan Blocks Do Not Enter the Line Gap Classification

$$\begin{split} P_{\mathrm{rel}} &:= \frac{\mathrm{i}}{2\pi} \int_{\Gamma(\sigma_{\mathrm{rel}})} \mathrm{d}z \, (H-z)^{-1} \\ &\stackrel{\star}{=} 1_{\sigma_{\mathrm{rel}}}(H) = 1_{\sigma_{\mathrm{rel}}}(S) = P_{\mathrm{rel}}^{*_W} \end{split}$$

- Equality marked with \star only works when H is spectral
- $P_{\rm rel}$ is independent of the quasi-nilpotent part (Jordan block)!
 - \implies Topological phase determined solely by scalar part
 - \implies Jordan blocks do not enter topological classification
- Relevant projection is always orthogonal (with respect to a suitably chosen scalar product)
- Becomes classification problem of orthogonal projections

 \implies Assume H = S is a scalar operator (simplifies presentation)

Spectral Operators

Line Gaps

Point Gaps

Summary 000000

Symmetries of Diagonalizable Operators

Example Time-reversal symmetry

> $T H T^{-1} \stackrel{!}{=} +H$ $T H_{\text{Re}} T^{-1} - \mathbf{i} T H_{\text{Im}} T^{-1} \stackrel{!}{=} H_{\text{Re}} + \mathbf{i} H_{\text{Im}}$

Eqiuvalent to

$$T H T^{-1} = +H \iff \begin{cases} T H_{\rm Re} T^{-1} &= +H_{\rm Re} \\ T H_{\rm Im} T^{-1} &= -H_{\rm Im} \end{cases}$$

Spectral Operators

Line Gaps

Point Gaps

Summary 000000

Symmetries of Diagonalizable Operators

Example Pseudohermiticity

$$\begin{split} V_* \, H \, V_*^{-1} \, \stackrel{!}{=} \, + H^* = \, + W \, H^{*_W} \, W^{-1} \\ V_* \, H_{\mathrm{Re}} \, V_*^{-1} + \mathrm{i} \, V_* \, H_{\mathrm{Im}} \, V_*^{-1} \, \stackrel{!}{=} \, W \left(H_{\mathrm{Re}} \, - \mathrm{i} H_{\mathrm{Im}} \, \right) W^{-1} \end{split}$$

Eqiuvalent to

$$V_* H V_*^{-1} = +H^* \iff \begin{cases} V_* H_{\rm Re} \ V_*^{-1} &= +W \ H_{\rm Re} \ W^{-1} \\ V_* H_{\rm Im} \ V_*^{-1} &= -W \ H_{\rm Im} \ W^{-1} \end{cases}$$

Spectral Operators

Line Gaps

Point Gaps

Summary 000000

Symmetries of Diagonalizable Operators

General symmetries

$$\begin{split} U \, H \, U^{-1} &= \pm H &\iff \begin{cases} U \, H_{\rm Re} \, U^{-1} &= \pm_{\rm Re} \, H_{\rm Re} \\ U \, H_{\rm Im} \, U^{-1} &= \pm_{\rm Im} \, H_{\rm Im} \end{cases} \\ U_* \, H \, U_*^{-1} &= \pm H^* &\iff \begin{cases} U_* \, H_{\rm Re} \, U_*^{-1} &= \pm_{\rm Re} \, W^{-1} \, H_{\rm Re} \, W \\ U_* \, H_{\rm Im} \, U_*^{-1} &= \pm_{\rm Im} \, W^{-1} \, H_{\rm Im} \, W \end{cases} \end{split}$$

Classification	Non-Selfadjoint TIs
0000000	

Line Gaps 0000●00 Point Gaps

Summary 000000

Example: Pseudoselfadjoint Operator with Odd TR and Odd TR*

Symmetries of \boldsymbol{H}

- 1 Pseudo: $U_* H U_*^{-1} = +H^*$ (simplifying assumption: *H* normal $\Leftrightarrow W = \mathbb{1}_{\mathcal{H}}$)
- **2** -TR: $T H T^{-1} = +H$, $T^2 = -\mathbb{1}_{\mathcal{H}}$
- $\begin{array}{l} \label{eq:constraint} { 3 } & -\mathrm{TR}^* : T_* = U_* \, T \colon [T, U_*] = 0 \\ & \Longrightarrow \, T_* \, H \, T_*^{-1} = + H^*, \, T_*^2 = -\mathbb{1}_{\mathcal{H}} \end{array}$

Symmetries of the relevant spectrum

 $\sigma_{\rm rel} = \sigma_{++} \cup \sigma_{--} = -\sigma_{\rm rel}$

 \Rightarrow incompatible with two symmetries

fication Non-Selfadjoint TIs	Spectral Operators	Line Gaps	Point Gaps	Summary
0000	000000	0000000	000	000000

Example: Pseudoselfadjoint Operator with Odd TR and Odd TR*

Symmetries of \boldsymbol{H}

- 1 Pseudo: $\sigma(H) = +\overline{\sigma(H)}$
- 2 -TR: $\sigma(H) = +\overline{\sigma(H)}$
- 3 $-\operatorname{TR}^*: \sigma(H) = +\sigma(H)$

Symmetries of the relevant spectrum

$$\sigma_{\rm rel} = \sigma_{++} \cup \sigma_{--} = -\sigma_{\rm rel}$$

 \implies incompatible with two symmetries!

Classification	Non-Selfadjoint Tls
0000000	

Line Gaps 0000●00

Point Gaps

Summary 000000

Example: Pseudoselfadjoint Operator with Odd TR and Odd TR*

Symmetries of H

.

Projection onto relevant states

 $P_{\rm rel} = 1_{\sigma_{++}}(H) + 1_{\sigma_{--}}(H)$

Classification	Non-Selfadjoint TIs
0000000	

Line Gaps

Point Gaps

Summary 000000

Example: Pseudoselfadjoint Operator with Odd TR and Odd TR*

Projection onto relevant states

$$P_{\rm rel} = 1_{\sigma_{++}}(H) + 1_{\sigma_{--}}(H)$$

Symmetries of P_{rel} 1 Chiral: $U_* P_{rel} U_*^{-1} = \mathbb{1}_{\mathcal{H}} - P_{rel}$ 2 -PH: $T P_{rel} T^{-1} = \mathbb{1}_{\mathcal{H}} - P_{rel}, T^2 = -\mathbb{1}_{\mathcal{H}}$ 3 -TR: $T_* P_{rel} T_*^{-1} = P_{rel}, T_*^2 = -\mathbb{1}_{\mathcal{H}}$ \implies Class Cll + Index

Coincides with class All + imaginary line gap classification by Kawabata et al. even though σ_{rel} does not fit the gap type!

Classification	Non-Selfadjoint TIs
0000000	

Line Gaps

Point Gaps

Summary 000000

Example: Pseudoselfadjoint Operator with Odd TR and Odd TR*

relation to the relation of th	С	h	oi	ces	for	$\sigma_{\rm rel}$
--	---	---	----	-----	-----	--------------------

$\sigma_{\rm rel} =$	Our classification	Kawabata et al.	Agreement?
σ_{++}	class All + index	All, η_+ , P	Accidental?!*
$\sigma_{++}\cup\sigma_{+-}$	2 imes class All	All, η_+ , L $_{ m r}$	Yes
$\sigma_{++}\cup\sigma_{-+}$	class Cll + index	All, η_+ , L $_{ m i}$	Yes*
$\sigma_{++}\cup\sigma_{}$	class Cll + index	Not covered	No

For other examples: comparison of two classifications more subtle

* In principle, a relative index between two projections can be defined, although I do not know whether it can be non-zero.

Spectral Operators

Line Gaps

Point Gaps

Summary 000000

Symmetries and Constraints of $P_{\rm rel}$

Presence of symmetries of

- the operator H and
- the relevant spectrum $\sigma_{\rm rel} \stackrel{?}{=} -\sigma_{\rm rel},\,\pm\overline{\sigma_{\rm rel}}$ leads to

1 (*)-Symmetries

 $U P_{\text{rel}} U^{-1} = P_{\text{rel}}$ $U_* P_{\text{rel}} U_*^{-1} = W P_{*,\text{rel}} W^{-1}$

2 (*)-Constraints

$$\begin{split} U P_{\mathrm{rel}} U^{-1} &= \mathbb{1}_{\mathcal{H}} - P_{\mathrm{rel}} \\ U_* P_{\mathrm{rel}} U_*^{-1} &= W \left(\mathbb{1}_{\mathcal{H}} - P_{*,\mathrm{rel}} \right) W^{-1} \end{split}$$

between of $P_{\rm rel}:=1_{\sigma_{\rm rel}}(H)$ and $P_{*,{\rm rel}}:=1_{\overline{\sigma_{\rm rel}}}(H)$

Spectral Operators

Line Gaps

Point Gaps

Summary 000000

Symmetries and Constraints of $P_{\rm rel}$

Presence of symmetries of

- the operator H and
- the relevant spectrum $\sigma_{\rm rel} \stackrel{?}{=} -\sigma_{\rm rel}, \, \pm \overline{\sigma_{\rm rel}}$ leads to
- 1 (*)-Symmetries

$$\begin{split} U \, \mathbf{1}_{\sigma_{\mathrm{rel}}}(H) \, U^{-1} &= \mathbf{1}_{\sigma_{\mathrm{rel}}}(H) \\ U_* \, \mathbf{1}_{\sigma_{\mathrm{rel}}}(H) \, U_*^{-1} &= \mathbf{1}_{\sigma_{\mathrm{rel}}}(H^*) \end{split}$$

2 (*)-Constraints

$$\begin{split} & U \, \mathbf{1}_{\sigma_{\mathrm{rel}}}(H) \, U^{-1} = \mathbbm{1}_{\mathcal{H}} - \mathbf{1}_{\sigma_{\mathrm{rel}}}(H) \\ & U_* \, \mathbf{1}_{\sigma_{\mathrm{rel}}}(H) \, U_*^{-1} = \mathbbm{1}_{\mathcal{H}} - \mathbf{1}_{\sigma_{\mathrm{rel}}}(H^*) \end{split}$$

 $\mathbf{1}_{\sigma_{\rm rel}}(H^*) = W \, \mathbf{1}_{\sigma_{\rm rel}}(H^{*_W}) \, W^{-1} = W \, \mathbf{1}_{\overline{\sigma_{\rm rel}}}(H) \, W^{-1}$

Spectral Operators

Line Gaps

Point Gaps

Summary 000000

Symmetries and Constraints of $P_{\rm rel}$

Presence of symmetries of

- the operator H and
- the relevant spectrum $\sigma_{\rm rel} \stackrel{?}{=} -\sigma_{\rm rel},\,\pm\overline{\sigma_{\rm rel}}$ leads to

1 (*)-Symmetries

 $U P_{\text{rel}} U^{-1} = P_{\text{rel}}$ $U_* P_{\text{rel}} U_*^{-1} = W P_{*,\text{rel}} W^{-1}$

2 (*)-Constraints

$$\begin{split} U P_{\mathrm{rel}} U^{-1} &= \mathbb{1}_{\mathcal{H}} - P_{\mathrm{rel}} \\ U_* P_{\mathrm{rel}} U_*^{-1} &= W \left(\mathbb{1}_{\mathcal{H}} - P_{*,\mathrm{rel}} \right) W^{-1} \end{split}$$

between of $P_{\rm rel}:=1_{\sigma_{\rm rel}}(H)$ and $P_{*,{\rm rel}}:=1_{\overline{\sigma_{\rm rel}}}(H)$

Classification	Non-Selfadjoint TIs
0000000	

Line Gaps

Point Gaps

Summary 000000

Classification of (Pairs of) Projections with Symmetries and Constraints

1 (*)-Symmetries

$$\begin{split} U & P_{\mathrm{rel}} \, U^{-1} = P_{\mathrm{rel}} \\ U_* & P_{\mathrm{rel}} \, U_*^{-1} = W \, P_{*,\mathrm{rel}} \, W^{-1} \end{split}$$

2 (*)-Constraints

$$\begin{split} U & P_{\mathrm{rel}} \, U^{-1} = \mathbbm{1}_{\mathcal{H}} - P_{\mathrm{rel}} \\ U_* & P_{\mathrm{rel}} \, U_*^{-1} = W \left(\mathbbm{1}_{\mathcal{H}} - P_{*,\mathrm{rel}} \right) W^{-1} \end{split}$$

between of $P_{\rm rel}:=1_{\sigma_{\rm rel}}(H)$ and $P_{*,{\rm rel}}:=1_{\overline{\sigma_{\rm rel}}}(H)$

- Our approach does not rely on any particular classification technique → suitable K-theories (e. g. à la Freed & Moore)
 - → vector bundles with symmetries (De Nittis & Gomi)
- Our approach clearly delineates two classes of topological phenomena:
 - 1 Analogs of topological phenomena in selfadjoint systems \rightsquigarrow classification only involves P_{rel}
 - True non-selfadjoint topological phenomena
 - \rightsquigarrow classification involves P_{rel} and $P_{*,\mathrm{rel}}$
- Presence of similarity transform W does not impact classification in at least the periodic case (under very mild conditions on W)

Classification	Non-Selfadjoint TIs
0000000	

Line Gaps

Point Gaps

Summary 000000

Classification of (Pairs of) Projections with Symmetries and Constraints

1 (*)-Symmetries

$$\begin{split} U & P_{\mathrm{rel}} \, U^{-1} = P_{\mathrm{rel}} \\ U_* & P_{\mathrm{rel}} \, U_*^{-1} = W \, P_{*,\mathrm{rel}} \, W^{-1} \end{split}$$

2 (*)-Constraints

$$\begin{split} U & P_{\mathrm{rel}} U^{-1} = \mathbb{1}_{\mathcal{H}} - P_{\mathrm{rel}} \\ U_* & P_{\mathrm{rel}} U_*^{-1} = W \left(\mathbb{1}_{\mathcal{H}} - P_{*,\mathrm{rel}} \right) W^{-1} \end{split}$$

between of $P_{\rm rel}:=\mathbf{1}_{\sigma_{\rm rel}}(H)$ and $P_{*,{\rm rel}}:=\mathbf{1}_{\overline{\sigma_{\rm rel}}}(H)$

- Our approach does not rely on any particular classification technique
 → suitable K-theories (e. g. à la Freed & Moore)
 - → vector bundles with symmetries (De Nittis & Gomi)
- Our approach clearly delineates two classes of topological phenomena:
 - 1 Analogs of topological phenomena in selfadjoint systems \rightsquigarrow classification only involves $P_{\rm rel}$
 - 2 True non-selfadjoint topological phenomena \rightsquigarrow classification involves P_{rel} and $P_{*,\text{rel}}$
- Presence of similarity transform W does not impact classification in at least the periodic case (under very mild conditions on W)

Classification	Non-Selfadjoint TIs
0000000	

Line Gaps

Point Gaps ●00 Summary 000000

- Kawabata et al.'s 38-Fold Classification of Non-Selfadjoint Operators
- 2 Spectral Operators
- 3 Physics Determines Relevant Line Gap Classification

4 Mathematical Point Gap Classification

5 Summary

Classification Non-Selfadjoint TIs	Spectral Operators	Line Gaps	Point Gaps	Summary
0000000	000000	000000	000	000000

Mathematical Point Gap Classification via Unitary Phase Operator

Our approach

- Define modulus as |H| via analytic functional calculus ($E \mapsto |E|$ analytic away from E = 0)
- Phase operator $U := H |H|^{-1}$
- $\bullet \ \left[U, |H| \right] = 0$
- U unique
- No homotopy argument, extended hamiltonian
- At present I only fully understand the diagonalizable case

Kawabata et al.

- H homotopically deformed to unitary V_H
- $\sigma(V_H)$ is "angular part" of spectrum
- Unless H is normal $[V_H, M] \neq 0$
- V_H not unique! \rightsquigarrow one per scalar product

Classification Non-Selfadjoint TIs	Spectral Operators	Line Gaps	Point Gaps	Summary
0000000	000000	000000	000	000000

What Physical Data Choose the Point Gap Over the Line Gap Classification

I do not know yet.

Classification	Non-Selfadjoint TIs
0000000	

Line Gaps

Point Gaps 000 Summary •00000

- Kawabata et al.'s 38-Fold Classification of Non-Selfadjoint Operators
- 2 Spectral Operators
- 3 Physics Determines Relevant Line Gap Classification
- ④ Mathematical Point Gap Classification
- 5 Summary

Spectral (Operators
000000)

Line Gaps

Point Gap 000 Summary 000000

Today's Take-Away

- General classification theory for spectral operators
- Extends 38-fold classification from periodic tight-binding to generic spectral operators
 → Inclusion of effects of disorder

 \rightsquigarrow More/less symmetry classes? Unclear.

- Eliminates superfluous steps from Kawabata et al.

 → No homotopy arguments, no extended operator
- Point gap classification

Mathematics well-understood, but I do not understand physics

• *"Line gap" classification*

Mechanism of identifying symmetries of the relevant operator and their nature more explicit

Spectral	Operators
00000	0

Line Gaps

Point Gaps

Summary 000000

Future Developments

- Proof of continuity of spectra for spectral operators → Gap in my current work that needs to be filled
- Classification of spectral operators on Banach spaces? Derivation seems to only depend on algebra, not geometry
- Classification beyond spectral operators? (I am skeptical ...)
- Understanding of "truly non-selfadjoint" topological classes
 - 1 Analogs of topological phenomena in selfadjoint systems \rightsquigarrow classification only involves $P_{\rm rel}$
 - 2 True non-selfadjoint topological phenomena

ightarrow classification involves $P_{
m rel}$ and $P_{
m *,rel}$

- Bulk-boundary correspondences for "truly non-selfadjoint" topological classes
- Other topological phenomena in non-selfadjoint systems not covered by existing theory

 \rightsquigarrow Yes, they exist! I know of at least one example.

Spectral Operator

Line Gaps 0000000 Point Gaps

Summary 000€00

Thank you! Q&A

lassification Non-Selfadjoint TIs	Spectral Operators	Line Gaps	Point Gaps	Summary
000000	000000	0000000	000	000000

Diagonalizable Operators are Normal WRT a Weighted Scalar Product

$$G\,H\,G^{-1}=\int_{\mathbb{C}}E\,\mathrm{d}P(E)$$

implies H is normal with respect to the adjoint $H^{*_W} = W^{-1} H^* W$ where the weight $W = G^* G$ enters the scalar product

$$\left\langle \varphi,\psi\right\rangle _{W}:=\left\langle G\varphi,G\psi\right\rangle =\left\langle \varphi,G^{*}\,G\psi\right\rangle .$$

 $\left\langle \,\cdot\,,\,\cdot\,
ight
angle _{W}$ is a scalar product

- $\bullet \ \ G \in \mathcal{B}(\mathcal{H})^{-1} \text{ implies } W \in \mathcal{B}(\mathcal{H})^{-1}$
- $0 < c \le W \le C$
- Scalar product not unique!
- $G \rightsquigarrow U G V$ where U is unitary and $V \in \mathcal{B}(\mathcal{H})^{-1}$ commutes with H

H is normal with respect to \ast_W

- $[H, H^{*w}] = 0 \iff$ $[G H G^{-1}, (G H G^{-1})^*] = 0$
- *H* admits functional calculus
- $H = H_{\text{Re}} + iH_{\text{Im}}$, $[H_{\text{Re}}, H_{\text{Im}}] = 0$

Spectral Operators

Line Gaps

Point Gaps

Summary 00000

Characterizations of Diagonalizability

Theorem

The following are equivalent:

- 1 H is diagonalizable.
- 2 $G H G^{-1}$ is normal for some $G \in \mathcal{B}(\mathcal{H})$.
- 3 $\exists G \in \mathcal{B}(\mathcal{H})^{-1}$: $G H G^{-1}$ admits a functional calculus $f \mapsto f(G H G^{-1})$.
- 4 *H* is normal with respect to *_W for some $G \in \mathcal{B}(\mathcal{H})$.
- 5 H admits a functional calculus $f \mapsto f(H)$.

6
$$H = H_{\text{Re}} + iH_{\text{Im}}$$
 has a cartesian decomposition,
 $[H_{\text{Re}}, H_{\text{Im}}] = 0, H_{\text{Re},\text{Im}} = H_{\text{Re},\text{Im}}^{*_W}$ for some $G \in \mathcal{B}(\mathcal{H})^{-1}$.

Spectral Operators

Line Gaps

Point Gap

Summary 000000

Characterizations of Diagonalizability

Theorem

- 1 $H \in \mathcal{B}(\mathcal{H})$ is diagonalizable exactly when it has a unique cartesian decomposition
 - $H = H_{\rm Re} + iH_{\rm Im}, \qquad [H_{\rm Re}, H_{\rm Im}] = 0,$

and $H_{\mathrm{Re}\,,\mathrm{Im}}=H_{\mathrm{Re}\,,\mathrm{Im}}^{*_W}$ for some $G\in\mathcal{B}(\mathcal{H})^{-1}.$

2 $H \in \mathcal{B}(\mathcal{H})^{-1}$ is diagonalizable with bounded inverse exactly when it has a unique **polar decomposition**

 $H=V_{H}\left|H\right|, \qquad \qquad \left[V_{H},\left|H\right|\right]=0,$

where V_H is $*_W$ -unitary and $|H| = |H|^{*_W}$ for some $G \in \mathcal{B}(\mathcal{H})^{-1}$.

Spectral Operators

Line Gaps

Point Gaps

Summary 00000●

Characterizations of Diagonalizability

Theorem

Let $H \in \mathcal{B}(\mathcal{H})$ be diagonalizable and $V \in \mathcal{B}(\mathcal{H})^{-1}$ a similarity transform. Then we have:

- 1 $V H V^{-1}$ is diagonalizable.
- 2 C H C is diagonalizable where C is a complex conjugation.
- ${\bf 3}$ H^* is diagonalizable where * is any adjoint on ${\mathcal H}.$
- 4 $(V H V^{-1})_{\text{Re,Im}} = V H_{\text{Re,Im}} V^{-1}$
- 5 $f(V H V^{-1}) = V f(H) V^{-1}$