2016年解析学特別演習 I テスト (10) 解答解説

河東泰之(かわひがしやすゆき) 数理科学研究科棟 323 号室 (電話 5465-7078) e-mail yasuyuki@ms.u-tokyo.ac.jp http://www.ms.u-tokyo.ac.jp/~yasuyuki/

平均点は61点,最高点は100点(3人)でした.

[1] 自然数 k,m に対し, $E_{km} = \{x \in X \mid |f_k(x) - f_m(x)| > \|f_k - f_m\|_{\infty}\}$ とおきます. $E = \bigcup_{k,m=1}^{\infty} E_{km}$ とおけば E の測度は 0 で, $x \notin X$ のときは $\{f_k(x)\}_k$ が Cauchy 列なので収束します.

[2] まず convolution の定義式で x-y と y を入れ替えることにより f*g=g*f に注意します。よって (f*g)*h=(g*f)*h であり,(g*f)*h が $L^1(\mathbb{R})$ の元であることより,x についてほとんどいたるところ $\int_{\mathbb{R}}\int_{\mathbb{R}}g(x-y-z)f(y)h(z)\,dy\,dz$ は可積分です。したがってそのような x について Fubini の定理が使えて (g*f)*h(x)=(g*h)*f(x)となります。よって,(f*g)*h=(g*f)*h=(g*h)*f=f*(g*h) を得ます。

[3] $\mu(E) < \infty$ ならば、 $f \in L^2(E)$ のとき、Cauchy-Schwarz の不等式より

$$\int_{E} |f(x)| \ dx \le \left(\int_{E} |f(x)|^{2} \ dx \right)^{1/2} \left(\int_{E} \chi_{E}(x)^{2} \ dx \right)^{1/2} < \infty$$

となるので $L^2(E) \subset L^1(E)$ です.

逆に $\mu(E)=\infty$ とすると, $E=\bigcup_{k=1}^{\infty}E_k$ (disjoint union), $1<\mu(E_k)<\infty$ と書けます.このとき $f(x)=\sum_{k=1}^{\infty}\frac{1}{n\sqrt{\mu(E_k)}}\chi_{E_k}(x)$ とおけば, $f\in L^2(E)$, $f\notin L^1(E)$ となり

よって答えは $\mu(E) < \infty$ です.

[4] $f_k(x) = \chi_{(0,1/n)}(x)$ とおけばできます.

[5] 数列 $x=(x^1,x^2,x^3,\dots)$ に対し、 $|x^m|\leq \|x\|_p$ なので、 $\|x\|_\infty\leq \|x\|_p$ となります.これより結論を得ます.