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§0 Introduction

Since the pioneering work of V. F. R. Jones [28, 29], the subfactor theory has
experienced more and more unexpected deep interactions with other fields such as
low dimensional topology, quantum group theory, solvable lattice model theory, and
conformal field theory.

Within the theory of operator algebras, the subfactor technique has produced
solutions to old and new problems. The most important problem in the analytic
theory of subfactors is to determine when the higher relative commutants

∨
k(M

′∩
Mk) ⊂

∨
k(N

′∩Mk) gives a subfactor anti-conjugate to the original subfactor N ⊂
M , where Mk is given by the Jones basic construction. S. Popa [55, 56, 58, 59] has
given an answer to this problem in the strongest form. That is, if a subfactorN ⊂ M
is extremal and strongly amenable [51, 52, 56], the higher relative commutants
{M ′

j ∩Mk}jk contains the complete information about the subfactor. The double
sequence {M ′

j ∩ Mk}jk is a double sequence of commuting squares [53] of finite
dimensional algebras, but not all the double sequences of commuting squares of
finite dimensional algebras come from subfactors as higher relative commutants, so
we want to get a system of axioms characterizing the double sequences {M ′

j∩Mk}jk
in an abstract way. Ocneanu’s paragroup [44, 46] was proposed as such a machinery,
and it has been very successful. With this general method, we have a complete
classification of all the subfactors (of the hyperfinite II1 factor) with index less
than or equal to 4 [4, 19, 20, 22, 24, 32, 33, 44, 46, 56, 62]. The paragroup
machinery has been very powerful not only within the operator algebra theory, but
also in connections with solvable lattice model theory [2, 3], rational conformal
field theory (RCFT) [43, 68], and 3-dimensional topological quantum field theory
(TQFT) [60, 63, 69]. We will start with a review of the paragroup theory and then
explain its relations to RCFT/TQFT, and applications in operator algebra theory.
For basics of the subfactor theory, see [18, 28].

§1 Paragroup theory

Ocneanu’s basic idea was to start with a special type of subfactors N ⊂ N⋊G =
M , where we have an outer action of a finite group G on N , and regard the general
subfactor N ⊂ M as a “quantization” of the above type of subfactors. Then a
“paragroup” appears as a “quantized Galois group”. The classical Galois theory
studies inclusions of fields, and our “quantized” Galois theory studies inclusions of
(non-commutative and infinite dimensional) algebras. Paragroups also have sur-
prising similarities to several objects in other fields of mathematics and physics.
That is, a paragroup can be roughly regarded as “discrete” differential geometry
[44, 45, 46], IRF (Interaction-Round-Faces) models without a spectral parameter
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[2, 3, 9, 11, 14, 19, 25, 26, 32, 33, 61], Rational Conformal Field Theory in an
abstract combinatorial sense [5, 12, 14, 36, 43, 70, 71] , generalized 6j-symbols
for representations of quantum groups at roots of unity [12, 37], and generalized
6j-symbols giving 3-dimensional topological quantum field theory [12, 14, 60, 63,
69]. We note that all the finite groups can also appear as paragroups.

There are two equivalent formulations of paragroups and the both were claimed
by A. Ocneanu in [44] and [47] (without details of the proof). We start with a
comparison table of the two formulations.

flat connection tensor category

multiplication (dual) principal graph fusion algebra

numerical data connection 6j-symbol

∗-structure unitarity unitarity

symmetry renormalization rule tetrahedral symmetry

algebraic compatibility flatness pentagon relation

similarity IRF model RCFT/TQFT

Jones An subfactors ABF WZW SU(2)k, KR Uq(sl2)

Here ABF,WZW, and KR stand for Andrews-Baxter-Forrester [2], Wess-Zumino-
Witten [68], and Kirillov-Reshetikhin [37] respectively. (Also see an exposition [35].)

The both formulations are based on bimodule/intertwiner theory of II1 factors.
See [47, 54, 72] for basics of the bimodule theory. Longo’s sector theory [41, 42]
also gives essentially equivalent framework.

We start with a hyperfinite type II1 subfactor N ⊂ M with finite index and
finite depth. (Or more generally, we assume that the subfactor N ⊂ M is extremal
and strongly amenable.) We define call NMM the standard bimodule. (Strictly
speaking, we have to look at the L2(M), the L2-completion of M with respect
to the trace, but we omit the notation L2(·) for simplicity. A basic idea, due to
A. Connes, is that we can regard bimodules as a “quantum” version of (unitary)
representations of (compact) groups. So we regard NMM as an analogue of the
fundamental representation. A relative tensor product of bimodules was introduced
by Connes. Using this, we make tensor products, NNN , NMM , NMN , NM⊗NMM ,

NM ⊗N MN , . . . . We decompose each bimodule into irreducible pieces, and draw
a diagram of “branching” rule. Then it turns out that the diagram is same as the
Bratteli diagram of N ′ ∩Mk. By the Frobenius reciprocity of bimodules, we know
that each step of this diagram is a reflection of the previous step and a new extra
part, which could be empty. Thus this diagram can be given by a single bipartite
graph and a distinguished vertex ∗ of the graph. We call the graph principal graph.
The finite depth condition means the principal graph is finite. Similarly, we can
start with MMM , and then we get another graph, which is called the dual principal
graph. Each vertex of the graphs denotes a bimodule (one of four kinds), and each
edge denotes an intertwiner. (We choose intertwiners so that the choice makes
orthonormal basis with respect to the natural inner product of intertwiners.) The
distinguished vertex ∗ denotes the identity bimodule NNN or MMM . Next we look
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at a (finite) path on the Bratteli diagram starting at ∗. Because each edge means an
intertwiner, the path means a composition of intertwiners. Furthermore, we look at
a pair of paths (ξ, η) with the same length and same endpoints. Such a pair is called
a string. We identify ξ, η with the composite intertwiners they represent, then the
string is identified with the composition ξ∗η. Then it is easy to see that strings
make a system of matrix units in the higher relative commutants. We summarize
the graphical meaning as follows.

graphical objects meaning

(dual) principal graph multiplication by the generator

vertex bimodule

edge intertwiner

path composition of intertwiners

string matrix unit

With these, the tower of the higher relative commutants is naturally identified
with

End(NNN ) ⊂ End(NMM ) ⊂ End(NMN ) ⊂ End(NM⊗NMM ) ⊂ End(NM⊗NMN ) ⊂ · · · .

Next, we make a double sequence of endomorphism spaces as follows.

End(NNN ) ⊂ End(NMM ) ⊂ End(NMN ) ⊂ · · ·
∩ ∩ ∩

End(MMN ) ⊂ End(MM ⊗N MM ) ⊂ End(MM ⊗N MN ) ⊂ · · ·

Then we can identify the double sequence with {M ′
−j ∩Mk}j,k, where {M−j}j is a

choice of a tunnel.
Next we discuss the connection. For example, take four bimodules, N -M bimod-

ule A, N -N bimodule B, M -M bimodule C, and M -N bimodule D. We look at
the diagram

MM ⊗N A⊗M MN
ξ1−−−−→ MM ⊗N BN

ξ3

y yξ2

MC ⊗M MN −−−−→
ξ4

MDN

and make the composition of the four intertwiners ξ4(ξ3⊗ id
MMN

)(id
MMN

⊗ξ1)
∗ξ∗2 ,

which is an endomorphism from D to D, so it must be a scalar. We denote this
number simply by

A
ξ1−−−−→ B

ξ3

y yξ2

C −−−−→
ξ4

D

This is called a connection. If we replace MMN , MMN by more general bimodules
in the system, we have 6 bimodules and 4 intertwiners to get a number. Such
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an assignment of the number is called a 6j-symbol. We want to get a system of
abstract axioms for connections and 6j-symbols.

The first axiom is Unitarity, which is given as follows.

∑
B,ξ1,ξ2

A
ξ1−−−−→ B

ξ3

y yξ2

C −−−−→
ξ4

D

·

A
ξ1−−−−→ B

η3

y yξ2

C ′ −−−−→
η4

D

= δξ3,η3
δξ4,η4

δC,C′ .

We have a similar formula for 6j-symbols.
The second axiom is Renormalization, which is as follows.

A
ξ1−−−−→ B

ξ3

y yξ2

C −−−−→
ξ4

D

=

√
µ(B)µ(C)

µ(A)µ(D)

B
ξ̃1−−−−→ A

ξ2

y yξ3

D −−−−→
ξ̃4

C

Here the coefficient comes from the Frobenius reciprocity. The number µ(·) is
given by µ(AXB) =

√
dimA X dimXB , where A,B is N or M . From the operator

algebraic viewpoint, this is really a commuting square condition [53, 18, 45, 46].
For 6j-symbols, we have a slightly more general form of symmetry, which is called
the tetrahedral symmetry. This again comes from the Frobenius reciprocity.

The last and most important axiom is Flatness. The flatness of the connection
means that the following partition function has a value 1.

∗ ξ1−−−−→ · ξ2−−−−→ · · · · · ξm−−−−→ ∗

η1

y yη1

· ·

η2

y yη2

...
...

ηn

y yηn

∗ −−−−→
ξ1

· −−−−→
ξ2

· · · · · −−−−→
ξm

∗

Here ∗ denotes the identity bimodule NNN or MMM . The above partition function
is defined exactly same as the partition function in statistical mechanics. The
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meaning of this formula is as follows. From the definition of the connection, it
describes the following double sequence of the endomorphism spaces.

End(NNN ) ⊂ End(NMM ) ⊂ End(NMN ) ⊂ · · ·
∩ ∩ ∩

End(MMN ) ⊂ End(MM ⊗N MM ) ⊂ End(MM ⊗N MN ) ⊂ · · ·
∩ ∩ ∩

End(NMN ) ⊂ End(NM ⊗N MM ) ⊂ End(NM ⊗N MN ) ⊂ · · ·
∩ ∩ ∩
...

...
...

The flatness axiom means that the vertical “strings” commute with the horizontal
“strings” [32].

For 6j-symbols, the flatness axiom transforms into another form, which is called
the pentagon relation [47, 12].

These axioms are enough to characterize higher relative commutants as abstract
sequences of finite dimensional algebras.

§2 Relation between paragroups and RCFT

A combinatorial axiomatization of RCFT was given by Moore and Seiberg in
[43]. Their axioms are similar to those for flat connections/6j-symbols. Indeed, de
Boer-Goeree [5] constructed a paragroup from a given RCFT. By applying this pro-
cedure to the Wess-Zumino-Witten models [68], we get a large family of paragroups
including the subfactors of Jones [28] and Wenzl [64].

The converse direction, from a paragroup to an RCFT, is not automatic. A
direct approach often fails as in [5], but Ocneanu [50] claims that the asymptotic
inclusion [46], which can be regarded as an analogue of Drinfeld’s quantum double
construction, produces a system satisfying the Moore-Seiberg axioms.

Another relation between RCFT and paragroups is the orbifold construction,
which has a physical origin [9, 10, 15, 16, 39]. In the subfactor theory, D. E.
Evans and the author [11, 32, 33] initiated the orbifold construction, and F. Xu
[70, 71] clarified its relation to RCFT. That is, in the orbifold procedure, we have an
obstruction for flatness in general, but Xu identified it with the conformal weights
in RCFT.

Another similarity between CFT and paragroups is the A-D-E classification. In
CFT, Cappeli-Itzykson-Zuber [6] and Kato [30] got an A-D-E classification, and it
resembles the A-D-E classification in the paragroup theory [4, 19, 20, 22, 32, 33,
44, 46, 56, 62]. The last missing piece of this similarity was given by Evans and the
author [13, 14] by computing the flat parts of the non-flat connection on E7. This
answered a conjecture given by Zuber.

In CFT, the Yang-Baxter equation plays an important role, so it is expected that
the Yang-Baxter equation is related to axioms in the paragroup theory, especially
flatness. But neither of The Yang-Baxter equation and flatness implies the other,
and the first clear relation between the two was given in [11] based on an idea of
Roche [61]. With this technique, one can compute the paragroup of the subfactors
of Wenzl [64] arising from the Hecke algebras of type A. This uses solutions of the
Yang-Baxter equation by Jimbo-Miwa-Okado [25, 26].
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§3 Relations between paragroups and TQFT

From the original discovery of the Jones polynomial [29] for knots and links,
the theory of operator algebras has had deep interactions with low dimensional
topology.

In 3-dimensional topology, E. Witten [69] proposed a general topological in-
variant based on physical ideas, and Turaev-Reshetikhin [60] and Turaev-Viro [63]
gave mathematical rigorous formulations of 3-dimensional topological quantum field
theory in the sense of Atiyah. The latter is based on triangulations of compact 3-
manifolds, and uses a new version of an old theorem of Alexander [1]. As initial
data, the latter uses Kirillov-Reshetikhin quantum 6j-symbols [37].

Ocneanu [47, 48, 49] claimed that the 6j-symbols arising from subfactors give
a generalized version of the Turaev-Viro TQFT, and Evans and the author [12,
14] gave details of the proof. Roughly speaking, the three axioms for 6j-symbols
arising from the subfactors are equivalent to the three axioms for abstract 6j-
symbols for TQFT. (See [12] for the exact statements.) Recently, Ocneanu [50]
discussed chirality in the subfactor theory, and generalized the Reshetikhin-Turaev
TQFT in subfactor setting with an extra assumption “full braiding”. Furthermore,
he claims a general version of Turaev’s theorem which states that the Turaev-Viro
TQFT splits as a tensor product of the Reshetikhin-Turaev TQFT and its complex
conjugate.

§4 Automorphisms of subfactors and paragroup actions on subfactors

As in classical von Neumann algebra theory, the automorphism groups Aut(M,N),
which are the automorphisms of M fixing N globally, has been extensively studied
[7, 31, 38, 40, 57, 65, 66, 67].

The author introduced χ(M,N) in [34] as a relative version of Connes’ χ(M) [8,
27], and found that the finite group action used in the orbifold construction [11,
32, 70] give the entire χ(M,N). This class also coincides with the automorphisms
Izumi studied in several examples [21, 23]. Choda-Kosaki [7, 38] and Popa [57] also
studied the same class from a different viewpoint.

From the study [34], it has turned out that strongly amenable subfactors of type
II1 are rather similar to injective type III factors. Roughly speaking, the paragroup
is a discrete analogue of the flow of weights of Connes-Takesaki, and Loi’s invariant
[40] is a discrete analogue of the Connes-Takesaki module, and the above class of
automorphisms is an analogue of modular automorphism groups.

We can make a further “quantization”. On one hand, because paragroups are
regarded as quantization of ordinary (finite) groups, we think of a subfactor prob-
lem as a quantized version of a group action problem. On the other hand, the other
problems on Aut(M,N) are problems of classical actions on quantized objects. So
as a “double quantization”, we can think of paragroup actions [36], which are really
certain types of commuting squares of type II1 factors. Under the strong amenabil-
ity assumption, we can classify them in terms of combinatorial objects generalizing
paragroups. Essentially, we have similar axioms to those for the paragroups, but we
have a new axiom, which is a kind of the Yang-Baxter equation. This idea is also
useful for ordinary subfactor problem. For example, we can determine the fusion
algebras of the Goodman-de la Harpe-Jones subfactor with index 3 +

√
3 [18].
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