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Abstract

For a finite system of bimodules over II1 factors, we define a notion of “non-
degenerate braided system of bimodules”. If a system of bimodules is braided
and nondegenerate, then the resulting 3-dimensional topological quantum field
theory (TQFT) based on triangulation splits as a tensor product of another
TQFT based on vertical surgery and its complex conjugate. This is a general-
ization of a theorem of Turaev that the Turaev-Viro TQFT is a tensor product
of the Reshetikhin-Turaev TQFT and its complex conjugate.

1 Introduction

We first explain a general relation between operator algebras and topological quantum
field theory. See [4] for more details.

We start with a subfactor N ⊂ M with finite Jones index and finite depth. We
use the standard bimodule h = NL

2(M)M to make irreducible decompositions of fi-
nite tensor products · · · ⊗N h⊗M h̄⊗N h⊗M h̄⊗N · · ·, where h̄ is the contragredient
bimodule ML2(M)N . The finite depth condition means that we have only finitely
many equivalence classes of (four kinds of) bimodules in the decompositions. We de-
note this system of bimodules by M. Each bimodule x ∈ M has the corresponding
Jones index [x]. The global index [M] is defined by

∑
NxN

[x], which is also equal to∑
MxM

[x]. The tensor product operation makes the systemM a finite tensor category.
With intertwiners, we can define quantum 6j-symbols satisfying unitarity, tetrahe-
dral symmetry, and the pentagon relation as in [4]. This gives another (equivalent)
formulation of paragroups introduced in [2]. Then the general method of [8] gives a
3-dimensional TQFT based on triangulation. Roughly speaking, each oriented tetra-
hedron with bimodules on edges and intertwiners on faces has a value given by the
composition of the four intertwiners on the faces (with a suitable normalization).
Then we make a state sum, or a partition function, over all the configurations of
bimodules and intertwiners for a fixed triangulation. We can prove that this number
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does not depend on the triangulation. We further study this TQFT with an operator
algebraic technique.

First we look at the asymptotic inclusionM∨(M ′∩M∞) ⊂ M∞. (Note that for the
subfactor of type An, the asymptotic inclusion is given by 〈ej〉j ̸=0 ⊂ 〈ej〉j∈Z, where the
projections {ej}j∈Z satisfy the Jones relation for 4 cos2 π/(n+ 1).) This construction
of the asymptotic inclusion can be regarded as an analogue of the “quantum double”
construction of Drinfeld for paragroups. The index [M∞ : M ∨ (M ′ ∩M∞)] is given
by the global index [M] of the original inclusion N ⊂ M . The principal graph of the
subfactor M ∨(M ′∩M∞) ⊂ M∞ is given by the fusion graph of the original subfactor
N ⊂ M as follows. First we take the (finite) system of M -M bimodules arising from
the initial inclusion N ⊂ M . Then we make the graph G0 so that its even vertices
are labeled by pairs (x, y) of M -M bimodules, its odd vertices are labeled by M -M
bimodules z, and the number of edges from (x, y) to z is the multiplicity of z in
x⊗M y. We call this graph the fusion graph. The principal graph of the asymptotic
inclusion M ∨ (M ′∩M∞) ⊂ M∞ is given by the connected component G of the fusion
graph containing the even vertex (∗, ∗). (See [3, §III. 1].)

Next we study the system M∞ of the M∞-M∞ bimodules arising from the sub-
factor M ∨ (M ′ ∩ M∞) ⊂ M∞. We call this system the asymptotic system. In the
TQFT, the Hilbert space associated to the torus S1×S1 has a special meaning. The
system M∞ of the M∞-M∞ bimodules gives a natural basis of this Hilbert space
HS1×S1 , if the fusion graph is connected. To see this, we introduce the tube algebra
as follows [5].

Now all the bimodules x, x′, y, y′, a, a′, b are N -N bimodules in the system M. We
define a finite dimensional C∗-algebra Tube M

Tube M = ⊕x,y,aHom(x⊗ a, a⊗ y),

as in Figure 5 (a), with the product defined by

ξ · ξ′ = δy,x′
∑
b,α

(α⊗ 1y′) · (1a ⊗ ξ′) · (ξ ⊗ 1a′) · (1x ⊗ α∗)

where ξ ∈ Hom(x⊗a, a⊗ y), ξ′ ∈ Hom(x′⊗a′, a′⊗ y′) and α is in a basis of Hom(a⊗
a′, b). (See Figure 5 (b).)

The Hilbert space HS1×S1 in the TQFT has a commutative multiplicative struc-
ture, and the minimal projections in the center of the tube algebra naturally give a
basis of this Hilbert space. Denote the label set for the center of the tube algebra
by T and call it the tube system. Furthermore this set T is naturally identified with
the set of the irreducible M∞-M∞ bimodules arising from the asymptotic inclusion,
if the fusion graph is connected.

The group SL(2,Z) has a natural unitary representation ρ on the Hilbert space
HS1×S1 and we define

S = ρ

((
0 1
−1 0

))
, T = ρ

((
1 1
0 1

))
.
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Then S diagonalizes the fusion algebra of the M∞-M∞ bimodules and T is diagonal.
This is an analogue of the Verlinde identity [9]. In particular, the fusion algebra
of M∞-M∞ bimodules is commutative, which is not trivial at all. We can actually
construct all the data satisfying the combinatorial axioms for RCFT in the sense of
Moore and Seiberg [1].

We further have a formula for the dimension of the Hilbert space HS associated
to a surface S in the case where the fusion graph is connected. We denote the global
index of this system

∑
X∈M∞ [X] by [M∞], and define [[X]]∞ = [X]−1/4[M∞]1/4 for

each M∞-M∞ bimodule X. Then the dimension of the Hilbert space HS is given by∑
X [[X]]−2χ(S)

∞ , where χ(S) is the Euler characteristic of the surface S. This number
is also the topological invariant associated to the manifold S × S1. This is also an
analogue of the Verlinde formula. Note that if S is the 2-dimensional sphere S2, we
get 1 as the dimension, and that if S is the 2-dimensional torus S1 × S1, we get the
number of the M∞-M∞ bimodules as the dimension.

Example 1.1 Start with a subfactor N ⊂ M of type A4. In this case, the principal
graph of the asymptotic inclusion is D6 as in [3, §III. 1], so the dual principal graph
is also D6 and its even vertices give the M∞-M∞ bimodules. The Perron-Frobenius
weight of the even vertices of D6 is given by 1, φ2, φ, φ, where we have φ2 = φ + 1.
Then the global index [M∞] is 1 + φ4 + φ2 + φ2 = 5φ2, and the above formula give
the dimension 5φ2(1 + φ−4 + φ−2 + φ−2) = 25, if χ = −2, for example.

If we start from a subfactor of type An, n ≥ 4, then the labeling of the M∞-
M∞ bimodules is given by the following. We take all the pairs (a, b) of integers
a, b ∈ {1, 2, . . . , n} with a ≡ b mod 2 and define an equivalence relation (a, b) ∼ (ā, b̄),
where ā = n+1−a. If n is even, theM∞-M∞ bimodules are labeled by the equivalence
classes of these pairs, and in particular, the number of the M∞-M∞ bimodules is
n2/4. If n is odd, we take all the equivalence classes of these pairs and split the class
((n + 1)/2, (n + 1)/2) into two, ((n + 1)/2, (n + 1)/2)+ and ((n + 1)/2, (n + 1)/2)−.
Then the M∞-M∞ bimodules are labeled by these, and in particular, the number of
the M∞-M∞ bimodules is (n2 + 7)/4. These are the dimensions of the Hilbert space
HS1×S1 associated to the two dimensional torus S1 × S1.

2 Braided systems of bimodules

We start with a finite system M of N -N bimodules, e.g., arising from a subfactor
with finite depth. (Here we consider only one kind of bimodule.) The tensor prod-
uct operation of the N -N bimodules is not commutative in general, but we assume
that it is commutative. Even under such an assumption, we have no distinguished
homomorphism (intertwiner) ξ ∈ Hom(a ⊗ b, b ⊗ a) for two N -N bimodules a, b in
the system in general. We define a notion of “braiding” as a possibility of systematic
choices of intertwiners from a⊗ b to b⊗ a.
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Definition 2.1 We say that the system M is braided if for any pair a, b of the N -N
bimodules in M, there is a system ε of non-zero intertwiners εab = ξ ∈ Hom(a ⊗
b, b⊗ a) denoted by the following picture

? ?

�

�

b

b

a a

with the following three axioms.
First, we define actions of the two matrices

S =

(
0 1
−1 0

)
, Γ =

(
1 0
0 −1

)

as follows. For an intertwiner ξ : a⊗b → b⊗a denoted by the above picture, we apply
the Frobenius reciprocity map [4] twice to get the intertwiner aξa : b ⊗ ā → ā ⊗ b.
This is the image of ξ with the action of S, and denoted by the following picture.

? ?

�

�

ā

ā

b b

Graphically, this action is regarded as a counterclockwise 90 degree rotation. Note
that the action of S is a linear unitary. Next we define an action of Γ on ξ by
aξa : a ⊗ b̄ → b̄ ⊗ a. Graphically, this is regarded as a reflection with respect to a
vertical axis, and denoted by the following picture.
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Note that this action is a conjugate linear unitary. The first axiom for ε states that
the system ε is invariant under the action S2. The second axiom states that the
system ε is invariant under the action SΓ.

The third axiom, the crossing-fusion axiom, is stated graphically as follows.
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=

Here the following picture means an intertwiner (labeled by •) from a⊗ b to c.
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The choice ε is called a crossing.

In the picture of the crossing-fusion axiom, the intertwiners denoted by • on the
both hand sides are equal. The both pictures denote intertwiners from a ⊗ c ⊗ d to
b⊗ a, and we require these two intertwiners are equal.

In the picture of the crossing-fusion axiom, we can take the “tail” of the “Y”
shape to be the identity bimodule, we get the following picture.
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In the picture, the left picture denotes an intertwiner from a⊗ b to a⊗ b. The right
picture means the identity intertwiner on a⊗ b. This is regarded as invariance under
Reidemeister move II.

The fact that a ⊗ b is decomposed into a direct sum of N -N bimodules c is
represented by the following picture,
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c
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and this implies the Yang-Baxter equation together with the crossing-fusion axiom
as in the following picture.
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This is invariance under Reidemeister move III.
Reidemeister move I simplifies, for a given label a, to a scalar multiple of the

identity τ(a)1a.
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By using Reidemeister II move on the sphere S2, one shows that τ(a)τ(a) = 1.
In the crossing-fusion axiom, it is enough to give the crossing coefficients for

generators of the fusion algebra, because of the fusion axiom. This is a general form
of relations like the one satisfied by the Jones polynomial.
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= q − q−1

where the coefficient q satisfies qn = 1.

Definition 2.2 For a crossing ε, we define the opposite, or conjugate crossing by
ε̄ = S(ε).

On the commutative fusion algebra given by M, we define a character as follows.

Definition 2.3 For a braided system of bimodules, we define a character χx(a) ∈ C
for N -N bimodules a, x by the following picture, up to a normalization constant.
This is the Hopf link.
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Note that this picture is regarded as an assignment of bimodules/intertwiners to the
boundary of a 3-ball, then the partition function scheme with 6j-symbols produce
the number, which is the meaning of the above picture. (We assign a dotted square
to each of the two crossing of the above knot. Then two squares glued together make
a 2-sphere and intertwiners are assigned on it.) This is also equal to a weighted trace
value of an intertwiner from a⊗ x to itself.

This character is an invariant of the colored Hopf link, and gives an analogue of
the S-matrix. We can prove the following.

Proposition 2.4 For three N-N bimodules x, a, b, we have

χx(a)χx(b) =
∑
c

N c
abχx(c).

Definition 2.5 If a braided system of bimodules satisfies the following identity, then
the system is called nondegenerate.

�

�

�

�

�
�

�
�

a

x∑
x

[x]1/2[M]−1 = δa,1

With the above, we make the following definition of a killing ring.

Definition 2.6 We define an element in the fusion algebra by the following formula,
and call it a killing ring.
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x

[x]1/2[M]−1

x

The killing ring satisfies the slide move, as in Figure 5 (c)–(f). The wire a in
(c) expands as in (d) to the symmetric expression in (e) which further yields (f).
The normalization coefficients have been omitted. This property was introduced (for
SU(2)q) by L. Kauffman.

With the above definition, the condition “nondegenerate” can also be stated as
follows.



�

	
�

a

=



0, a 6= 1.

a = 1.

··
··
··

In the right hand side of the formula, the dotted vertical line means the identity
bimodule NNN .

Here is an example of the character.

Example 2.7 Take a subfactor of type An. We label even vertices of the graph
An by 1, 3, 5 . . .. Then the character pairing (j, k) is given by sin(jkπ/(n + 1)) up
to normalization constant. We list the tables for A4 and A5 (up to normalization
constants).

j \ k 1 3
1 1 −φ
3 φ −1

j \ k 1 3 5
1 1 2 1
3 2 −2 2
5 1 2 1

These show that the system A4 is nondegenerate, but A5 is degenerate.

The element a satisfying the following identity is called degenerate. The degen-
erate elements give a sub-fusion algebra.
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The operator
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a

7→

a

is the projection onto the degenerates.
We have the following theorem for nondegenerate braided system of bimodules.

Theorem 2.8 Suppose that a braided system M of bimodules is nondegenerate.
Then the center of the corresponding tube algebra is labeled by pairs (a, b) of N-N
bimodules a and b.

Graphically, each label is denoted by a link of three components drawn on the
surface of the two-dimensional torus; one is a killing ring set as a meridian, and the
other two are set longitudinally and labeled by a, b respectively. The point is that the
crossing of a and the killing ring is the opposite of the crossing of b and the killing
ring. These label the Hilbert space of the two-dimensional torus of the TQFT.

The crossing εa,b between wires a, b ∈ M lives in the Hilbert space of the square
with matching opposite edges, i.e., the space of the torus with one point. In general,
εa,b is not in the center of the tube algebra. However the sum ε∗(a) = [M]−1∑

b εa,b is
central, and thus lives in the intrinsic space of the torus with no points. We represent
ε∗(a) by a longitudinal circle labeled a lying on top of the killing ring arranged as a
a meridian. For a ∈ M, denote by pa the degenerate tube with two opposite edges
labeled a and the other edges labeled 1 given by 1 ∈ Hom(a⊗ 1, 1⊗ a). Then pa is a
projection in the tube algebra.
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Theorem 2.9 Given a crossing ε on M, for every a ∈ M, the element ε∗(a) is a
minimal projection in the tube algebra Tube M of M, which is central and satisfies
ε∗(a) ≤ pa.

The map ε∗ : M → T gives an embedding of (M, ε) (with fusion and braiding)
into the system T with the natural braiding. The vector ε = [M]

∑
a∈M ε∗(a) ∈

Tube M satisfies S2(ε) = SΓ(ε) = ε. The image ε∗(M) is closed under the fusion
and satisfies ε∗(M)′ = ε∗(M) = Γ(ε∗(M)).

Conversely, suppose given a map ρ : M → M with ρ(a) ≤ pa for any a ∈ M
such that the vector ξρ =

∑
a∈M ρ(a) satisfies the properties S2(ξρ) = SΓ(ξρ) = ξρ.

Then ρ is an embedding of the system M into T and yields a braiding ερ on M, the
preimage of the canonical braiding on T . We have ρ = (ερ)∗.

Definition 2.10 We say that the labels a and b permutes if the following graphically
represented equality holds.

? ? ? ?

�

�

�

�

b

b

b

b

a a a a=

We define the relative permutant N ′ ∩M of a subset N of M as the elements of
M which permute with all the elements of N .

Note that a is degenerate if it permutes with all b and that the degenerates are
M′ ∩M.

For the tube system T , we have the following bipermutant property.

Theorem 2.11 For any subsystem N of T , we have (N ′ ∩ T )′ ∩ T = N .

We say that the tube system is reflexive.
Next we study extensions of systems of bimodules.

Definition 2.12 A nondegenerate extension M ⊂ P is called minimal nondegener-
ate if M′ ∩ P = M′ ∩M.

We then have the following theorem.
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Theorem 2.13 For any braided bimodule system, there is an essentially unique min-
imal nondegenerate extension M ⊂ P, also called the ghost extension. The elements
in the complement of M are called the ghosts.

For example, for the case of A2n+1, the system of N -N bimodules corresponds to
the integer spin system. Its minimal nondegenerate extension is the embedding into
the system of all the half-integer spins.

Besides the minimal nondegenerate extension,which is quite difficult to construct,
there is another nondegenerate extension, the standard one. The intuitive idea of
the standard extension is to take the picture of a crossing and drill tubes under each
wire, thus obtaining a picture with wires but no crossings on a nontrivial surface. In
the latter picture everything is determined by fusion alone. Here is an example of a
standard nondegenerate extension.

Example 2.14 Let M denote the system of the M -M bimodules of the Jones sub-
factor N ⊂ M of index 3 with principal graph A5. Let G be the symmetric group S3

with generators a, b of order 3, 2 respectively and irreducible representations 1, σ, ε of
dimensions 1, 2, 1 respectively. The conjugacy orbits of G have representatives 1, a, b.
The centralizers of 1, a, b are the groups S3,Z3,Z2 and have irreducible representations
{1, σ, ε}, {1, α, ᾱ},{1, ε} respectively. (Here ε denotes the sign representation and α
is a primitive third root of 1). Identify the bimodules in M with Irr G = {1, σ, ε} and
the elements of T with the pairs (orbit representative, irreducible of centralizer), i.e.,
{(1, 1), (1, σ), (1, ε), (a, 1), (a, α), (a, α), (b, 1), (b, ε)}. Each element of T is selfconju-
gate, and Γ permutes (a, α), (a, α) and leaves the other labels fixed. There are three
different braidings of M, one selfconjugate and the other two conjugate to each other.
For any braiding, the associated embedding of 1, ε ∈ M can be only (1, 1), (1, ε) re-
spectively. The element σ can be mapped into any of (1, σ), (a, α), (a, α), which gives
the three crossings. The first map is ρ0 : Irr G 3 π 7→ (1, π). This corresponds to
the canonical braiding on Irr G which is completely degenerate, i.e., the canonical
homomorphism α ⊗ β → β ⊗ α for α, β ∈ Irr G. The other two maps ρ+, ρ− with
images {(1, 1), (a, α), (1, ε)}, {(1, 1), (a, α), (1, ε)} respectively correspond to the iden-
tification of M with the integer spin representations of SU(2)q, q = exp(πi/6). Since
ρ+(M) and ρ−(M) are the permutant of each other, the degenerate part of each is
their intersection {(1, 1), (1, ε)}.

A braided bimodule system in which any two wires permute is called a com-
pletely degenerate system. An example is given by the natural permutation of a
pair of representations of a finite (or compact) group. Using quantum deformations,
this degenerate braiding is deformed to nondegenerate braidings. For completely
degenerate systems, the minimal extension is easy to construct.

Theorem 2.15 If M is completely degenerate, then the minimal extension coincides
with the standard extension T .

13



Let M be a braided bimodule system with degenerate subsystem D = M′ ∩M
and minimal extension P .

Consider the finite dimensional Hilbert space K consisting of vectors ξ ∈⊕
x,y∈P,m∈M Hom(x⊗ y,m). The space A consisting of vectors

ξ ∈
⊕

x1,y1,x2,y2∈P
Hom(x1 ⊗ x2, y1 ⊗ y2)

=
⊕

x1,y1,x2,y2∈P

⊕
p∈P

Hom(x1 ⊗ x2, p)⊗C Hom(p, y1 ⊗ y2),

for which

ξ ∈
⊕

x1,y1,x2,y2∈P

⊕
m∈M

Hom(x1 ⊗ x2,m)⊗C Hom(m, y1 ⊗ y2) = K ⊗K,

as in Figure 5 (g), and

Sξ = y1ξx2 ∈
⊕

x1,y1,x2,y2∈P

⊕
d∈D

Hom(y1 ⊗ x1, d)⊗C Hom(d, y2 ⊗ x2),

as in Figure 5 (h). Then A ⊂ K ⊗ K = End(K) is closed under composition of
homomorphisms, and has a finite dimensional C∗-algebra structure. The subalgebra
End(K) is obtained from the algebra

⊕
x1,y1,x2,y2∈P Hom(x1⊗x2, y1⊗y2) by reduction

with the central projection π in Figure 5 (i), where the dotted killing ring is labeled by
the degenerate elementsD; it is here that we use the minimality propertyD′∩P = M.
The conditional expectation EA : End(K) → A is shown in Figure 5 (j), where the
dashed killing ring is labeled by the observable elements M, and we use the fact that
M′ ∩ P = D.

Theorem 2.16 The tube algebra Tube M is isomorphic to the relative commutant
A′ ∩ End(K). The tube system T is labeled by the minimal projections in the center
of the algebra A.

The algebra A′ ∩ End(K) = K ⊗A K is contained into the subset⊕
m1,m2∈M

⊕
x,y∈P

Hom(m1, x⊗ y)⊗C Hom(x⊗ y,m2) ⊂ K ⊗K

and map into Tube M as in the Figure 5 (l)–(m). The killing ring marked by the
dashed line is the killing ring of the system M. The Figure 5 (l)–(m) shows that this
map is well defined on K ⊗A K. Note that in spite of the presence of elements of the
minimal extension P , by composing the elements in the tube one obtains an element
of Tube M, i.e., the “ghosts” in P are not observable. This motivates our terminology
by analogy with the Faddeev-Popov ghosts in which non-observable half integer spin
elements are introduced to remove the degeneracy of integer spin elements.

A tube (Figure 6 (a), with x, y, a, b ∈ M) is written in terms of the above basis
with coefficients as in the Figure 6 (b), where t+, t− ∈ P , ξ, η ∈ K and the dashed
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killing ring is labeled by M. The proof of this crucial observation transforms (a) into
the intermediate step (c), in which the dashed killing ring (labeled by M) is killed by
the dotted killing ring labeled by P . The latter expands as in (d), and a slide move
brings it to the form (e), from which (b) follows. Note that the sum in (b) is always
in the image of K ⊗A K.

The Figure 6 (f) shows that the product of tubes corresponds to the product in
K ⊗A K,

(ξ1 ⊗A η1) · (ξ2 ⊗A η2) = ξ1 ⊗A 〈η1, ξ2〉A · η2 = ξ1 ⊗A EA(η1 ⊗ ξ2) · η2.

The original system M embeds via the map ε∗ into the tube algebra as in the
Figure 6 (g). The product in (h) between a tube and ε∗(u) is equal, as in (i), (j) to
a scalar multiple of ε∗(u). Thus ε∗(u) is a minimal projection which is central. The
general intertwiner in Hom(ε∗(a) ⊗ ε∗(b), ε∗(c)), shown in (k) transforms, using the
slide moves in (l), into an element of ε∗(Hom(a⊗ b, c)) in (m), thus showing that the
homomorphism spaces of M and ε∗(M) are naturally isomorphic.

Consider the asymptotic system M∞ arising from a subfactor with finite depth.
The bimodules (labels of edges) of the asymptotic system are naturally associated to
labels of circles and to minimal central projections in the tube algebra in the TQFT
of the initial system. The triangles in the asymptotic systems correspond to trinion
(trouser) surfaces in the initial theory. The natural braiding is then obtained as
follows.

Take a ball in R3 and remove two disjoint cylindrically holes through it, one above
the other (i.e., make a solid picture of the crossing into a ball). The surface of of
this body is made of two tubes together with a four-holed sphere (which decomposes
into two trinions). On the tubes, put vectors corresponding to two asymptotic labels.
The TQFT gives then a vector in the space of the four-holed sphere. This is a 3-
dimensional thickening of the right hand side of the equality decomposing a crossing
into fusions, after Definition 2.1. Take the boundary of a small tubular neighborhood
of each member of this equality. Remark that the crossing tubes in the left member
can be put inside inflated letter “H” in the right member, and then the boundaries
of the two members can be joined on four circles, to give a 3-dimensional manifold
with boundary. The invariant of this manifold gives the coefficient of the crossing.
In this way, we get the following theorem.

Theorem 2.17 The asymptotic system has a natural braiding. This braiding is non-
degenerate if and only if the fusion graph is connected. The labels of the minimal
nondegenerate extension of this system are the minimal projections in the center of
the tube algebra.

3 Chirality and TQFT

Given a link L in S3, choose a projection L0 on S2 for which the writhe is 0 (i.e., the
canonical framing of L coincides with the vertical framing — also called blackboard
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framing — of L0; this can be done from any projection of L by adding twists on
each component). Choose arbitrary labels for each link component. Then we have an
assignment of a dotted square at each crossing, which means we have intertwiners at
squares that make a 2-sphere. (Note that the first two axioms in the definition of the
braiding system imply that this assignment of intertwiners is well-defined.) This is
regarded as a labeling of the boundary of a 3-ball, thus the state sum gives a complex
number associated to L0. This is an invariant of L. For SU(2)k and the spin 1/2
label, this coincides with the value of the Jones polynomial at roots of unity.

Take now an arbitrary link projection and sum the previous invariants, by replac-
ing each link component with the killing ring. Then we obtain an invariant of the
3-manifold given by Dehn surgery with vertical framing on L. The crossing-fusion
axiom implies invariance under handle slides, thus our invariant of framed links is in-
variant under Kirby moves and we get an invariant of compact oriented 3-manifolds.
This is a generalization of the Reshetikhin-Turaev TQFT [6], which is essentially a
weighted sum of invariants of a framed link over all the colorings for Uq(sl2). Thus
we have two methods to construct a TQFT from a system M. One is based on tri-
angulation and the quantum 6j-symbols for M [4] and the other is based on vertical
surgery as above. The relation between the two is given as follows.

Theorem 3.1 Suppose that the system M of bimodules is braided and nondegener-
ate. Then the TQFT based on triangulation splits as a tensor product of another
TQFT based on vertical surgery and its complex conjugate.

This generalizes a result of Turaev [7], which is based on his theory of shadows
and 4-dimensional manifolds.

We give a sketch of our proof of the above theorem. We use Figures 1 – 3 at the
end of this paper. We start with a 3-manifold given by a surgery with a link with
vertical framing, and compute the invariant based on triangulation first.

In Figure 1, the first picture represents the fact that the manifold obtained by ver-
tical surgery on a link is obtained by joining wedges (called thin wedges, in which the
two tubes are contracted to circles) on the adjacent faces; this is a purely topological
observation.

In Figure 1, the dashed circles (killing rings) and the 4 wires crossing the edges
of the wedge (all pictured thick black) are in the plane of the surface of the wedge.
The thick darker wires (one in each hole) are slightly above the killing ring and the
thick lighter wires are slightly below the killing ring; both go through the hole of the
wedge. The same convention applies in the other pictures. The black wire is in the
plane, dark slightly above and light slightly below.

The first one describes a basis of the Hilbert space of the surface of the wedge;
the drawings are links with crossings on the surface of the wedge. Compare this
situation with that in the remark after Theorem 2.8. (Only the thick wires matter
on the wedge; the others merely show its shape.)

The fact used next is that the invariant for a picture on the surface of a ball B3 is
obtained by composing the respective homomorphisms. For a sphere with handles, if
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there is a single wire labeled a on a handle, then the result is 0 if a 6= 1, and if a = 1
then one removes the wire a and cuts the handle. (This expresses the fact that the
handle is full).

The slide move is applied to the bottom killing ring, after which there are only
killing rings left on the two handles. These are cut as above and the picture remaining
on the sphere is simplified to obtain the final picture of Figure 1.

That is, we find a basis in the Hilbert space of an annulus with two entries and
exits. The surface of the wedge is made of two such annuli. Take arbitrary labels for
the thick wires and intertwiners for the eight triple points. The partition function of
the wedge applied to these will be the evaluation of the last picture in Figure 1.

The we have two links with opposite crossings which slide away, and we are done.
The pictures in Figure 3 describes a proof of the equivalence between a spin model,

in which there are numbers at each crossing having matching faces (the blobs are
arbitrary) and a wire model. There are “bridge” moves and “close” moves, done until
all faces of the knot projection are exhausted (a leftover ring cancels a normalization
coefficient). The regions of the complement of the link projection must be ordered so
that the union of the first k be simply connected for each k. In particular, this gives
an easy proof of the equivalence between two models of Reshetikhin for SU(2)q, first
proved in a quite complicated way by Viro. If blobs are replaced by our computation
of the wedge, one can finish the proof as in Figure 1. The point is that this proof
extends easily to the degenerate case.

In summary, the pair of triple points on each face of the wedge must be matched
to a pair of triple points on a neighboring wedge, and then summed. This is done
in Figure 1 using the theorem proved in Figure 3. The result is two separate copies
of the link. This all works in the nondegenerate case. In the degenerate case, the
“over” and “under” worlds are connected by degenerates.

Let the closed 3-manifold V be obtained by vertical surgery on a link L with
components Li, i ∈ I. Let M be a braided system of bimodules with degenerate
subsystem D and minimal nondegenerate extension P . Let λ denote a labeling of the
components of L by elements of P , with Li labeled by pi ∈ P , and denote by τλ(L)
the corresponding knot invariant of L. Let PI denote the set of labelings λ above.
For p, q ∈ P let

[p, q]M = [M]−1[P ]−1
∑

m∈M
Nm

p,q[m]1/2.

Here the fusion number Nm
p,q denotes the multiplicity of m in p ⊗ q. Since m ∈ M

induces the trivial character on the degenerate algebra D, the only pairs p, q ∈ P with
[p, q]M 6= 0 are the pairs for which p and q induce the same degenerate character.

A modification of the argument described in the Figures 1–3 proves the following
result.

Theorem 3.2 The triangulation invariant Z(M)(V ) satisfies

Z(M)(V ) =
∑

λ,µ∈PI

∏
i∈I

[λi, µi]Mτλ(L)τµ(L).
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A sketch of the proof of this result is the following. In the Figure 2 (e), one
obtains a copy of the projection π in Figure 5 (i) for every link segment between two
crossings of the original link. Up to this point the computations were done in M; we
switch now to the system P . Since we are computing the invariant of the ball B3 with
marked surface, the invariant is simply multiplied in this process by a normalization
factor. We now go backwards to (c), to find that we are computing the invariant
of the link (c) with each tube component marked by the projection π. The inner
product of π with a minimal central projection of Tube (P) labeled with projections
p, q ∈ P (recall that P is nondegenerate) is, up to a factor, precisely [p, q]M described
above.

In particular, this result shows that although the subfactor of type E6 generates
an abelian bimodule system, there exists no braiding on it, since Niţică and Török
have shown that the invariant of the lens space L(3, 1) is not real.

At the end, we explain two examples of nondegenerate braided systems of bimod-
ules.

From a finite depth subfactor, we pass to the asymptotic inclusion M ∨ (M ′ ∩
M∞) ⊂ M∞. Then the system of M∞-M∞ bimodules is braided and nondegenerate
as mentioned above, if the fusion graph is connected. The above theorem implies
splitting of the corresponding TQFT, but it is easy to see the splitting directly.
Instead of the M∞-M∞ bimodules, we can use the M ∨ (M ′ ∩M∞)-M ∨ (M ′ ∩M∞)
bimodules. Then from the description of the corresponding quantum 6j-symbols,
the TQFT splits as a tensor product of a TQFT based on the triangulation for the
original inclusion N ⊂ M with the system of the M -M bimodules and its complex
conjugate.

Consider the subfactors of type An. The even vertices of the principal graph cor-
respond to N -N bimodules and odd vertices to N -M bimodules. So it is impossible
to define multiplication among the odd vertices in general, but in the case of An

subfactors, we can make a fusion algebra in which all the multiplications are possi-
ble regardless parity of the vertices by using endomorphisms. In this way, we can
construct a TQFT based on triangulation from the An subfactors, and then this is
exactly same as the one considered by Turaev-Viro [8] with q = exp(πi/(n+1)). This
system is braided and nondegenerate, and the above theorem gives another proof of
a theorem of Turaev [7] that the Turaev-Viro TQFT [8] is a tensor product of the
Reshetikhin-Turaev TQFT [6] and its complex conjugate.
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