Proper Actions and Representation Theory. I — Discontinuous dual and properness criterion

Toshiyuki Kobayashi

Graduate School of Mathematical Sciences The University of Tokyo http://www.ms.u-tokyo.ac.jp/~toshi/

Mini-courses of Mini-lectures
AIM Research Community
Representation Theory & Noncommutative Geometry
Organizers: P. Clare, N. Higson, and B. Speh
April 25, 2022

Mini · Mini · Mini — Proper actions and representation theory

Some general rules that I try to follow:

- Mini series
 (possibly loosely related) topics
- Mini lectures
 (short talks that fit into teatime)
- Minimal prerequizites.

I am going to talk about some aspects of transformation groups in loose relationship to representation theory, hopefully somewhat relaxing for teatime/bedtime.

The Calabi-Markus phenomenon (1962)

In contrast to the Bonnet–Myers theorem in Riemannian geometry, global features of pseudo-Riemannian manifolds are quite mysterious:

Theorem 1.(Calabi–Markus, 1962*)
Any de Sitter manifold is non-compact.

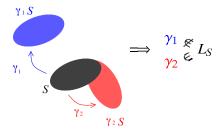
de Sitter mfd = Lorentzian manifold with sectional curvature $\equiv 1$

Model space:
$$\{(x_1,\cdots,x_{n+1}): x_1^2+\cdots+x_n^2-x_{n+1}^2=1\}$$
 in $\mathbb{R}^{n,1}=(\mathbb{R}^{n+1},dx_1^2+\cdots+dx_n^2-dx_{n+1}^2)$

^{*} E. Calabi-L. Markus, Relativistic space forms, Ann. Math., 75, (1962), 63-76.

Basic notion · · · proper [properly discontinuous, free] action

$$X$$
 L subset $\cup \sim \cup$ S \cup $L_S := \{ \gamma \in L : \gamma S \cap S \neq \emptyset \}$

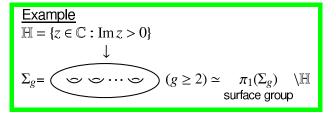


Basic notion · · · proper [properly discontinuous, free] action

$$\begin{array}{ccc} X & L \\ \text{subset} \cup & \leadsto & \cup \\ S & L_S := \{ \pmb{\gamma} \in L : \pmb{\gamma} S \cap S \neq \emptyset \} \\ \\ S = \{ x \} & \leadsto & L_{\{x\}} \equiv L_x = \text{stabilizer of } x \end{array}$$

Covering transformation and properly discontinuous action

 $\begin{array}{ccc} & \Gamma \overset{\frown}{\sim} & X & \text{properly discontinuously and freely} \\ \Longrightarrow & \text{The quotient } \Gamma \backslash X \text{ carries a } C^{\infty}\text{-manifold structure} \\ & \text{such that } X \to \Gamma \backslash X \text{ is a covering.} \end{array}$



Uniformization theorem (Klein-Poincaré-Koebe)

Properly discontinuous actions: Riemannian geometry

(X,g): a complete Riemannian manifold, $G = \operatorname{Isom}(X)$: the group of isometries, $\Gamma \subset G$ subgroup.

Proposition 2 (i) \iff (ii) on Γ

- (i) Γ is discrete subgroup in G.
- (ii) Γ acts properly discontinuously on X.
- $(ii) \Rightarrow (i)$ easy.
- (i) \Rightarrow (ii) The proof depends heavily on the positivity of g. Use Ascoli–Arzela to the metric space (X,g).

Calabi-Markus phenomenon (1962) in group language

Riemannian geometry

Actions of discrete subgroups of isometries

⇔ isometric property discontinuous actions

Lorentzian geometry

Actions of discrete subgroups of isometries

⇔ isometric properly discontinuous actions

$$\Gamma \subset G \cap G \cap G \cap G/H \simeq \{x_1^2 + \dots + x_n^2 - x_{n+1}^2 = 1\} \subset \mathbb{R}^{n,1}$$
 de Sitter space

<u>Theorem 1'.</u>(Calabi–Markus)* Let (G, H) = (O(n, 1), O(n - 1, 1)). If a discrete subgroup Γ of G acts on G/H properly discontinuously, then Γ must be a finite group.

^{*} E. Calabi-L. Markus, Relativistic space forms, Ann. Math., 75, (1962), 63-76.

proper + discrete = properly discontinuous

proper + discrete = properly discontinuous

action properly discontinuous action

||
action proper action
+
group is discrete

<u>Definition</u> (discontinuous group for X) For a G-space X, we say Γ is a discontinuous group for X if Γ is a discrete subgroup of G and the Γ -action on X is proper.

Proper actions and proper maps

G: locally compact group

X: locally compact, Hausdorff space

Definition (proper action)

$$L^{\curvearrowright}X$$
 is proper

$$\iff L \times X \to X \times X, \quad (g, x) \mapsto (x, gx) \text{ is a proper map.}$$

$$\iff L \times X \to X \times X, \quad (g, x) \mapsto (x, gx) \text{ is a proper map.}$$
 $\iff L_{S \to T} \text{ is compact} \qquad \qquad \forall \text{ compact } S, T \subset X.$

$$\iff L_S \ (\equiv L_{S \to S}) \text{ is compact } \ ^{\forall} \text{ compact } S \subset X.$$

$$L_{S \to T} := \{g \in L : gS \cap T \neq \emptyset\} \text{ for } S, T \subset X.$$

Definition A continuous map $f: X \to Y$ is proper if $f^{-1}(S)$ is compact for any compact $S \subset Y$.

Proper maps and representation theory

<u>Definition</u> A continuous map $f: X \to Y$ is <u>proper</u> if $f^{-1}(S)$ is compact for any compact $S \subset X$.

cf. Branching problem in rep theory: Study the restriction $\pi|_H$ for

$$H \subset G \xrightarrow{\pi} GL(\mathcal{H})$$
.

* T. Kobayashi, Ann. Math. (1998); Duflo-Vargas, Proc. Japan Acad., (2010)

Proper actions and representation theory

$$L^{\curvearrowright}X$$
 is a proper action. $\iff L_{S \to T}$ is compact Y compact $S, T \subset X$.

$$L_{S \to T} := \{g \in L : gS \cap T \neq \emptyset\} \text{ for } S, T \subset X.$$

- Geometric viewpoint
 - The local to global study of geometries
 - When we highlight "homogeneous structure" as a local property,
 - "discontinuous groups" are responsible for the global geometry.
- Analytic viewpoint & Representation theory
 Quantify "properness" of actions (3rd and 4th lectures)

 e.g., asymptotic estimates of volume.

Proper actions and representation theory

Plan

1	Discontinuous dual and properness criterior	า (4/25)
2	The Mackey analogy and proper actions	(5/2)
3	Tempered subgroups	(5/9)
4	Tempered homogeneous spaces	(5/16)

Elementary consequences of proper actions

L: locally compact group.

X: locally compact, Hausdorff space.

<u>Proposition</u> If L acts properly on X, then one has

- (1) L/X is Hausdorff in the quotient topology;
- (2) Any orbit $L \cdot x$ is closed in X;
- (3) Any isotropy subgroup L_x is compact.

• (2) and (3) are easily verified.

Delicate examples

 $L^{\frown}X$ manifold

(A)	free action	$\stackrel{?}{\Longrightarrow}$ proper action
(B)	any orbit is closed	$\stackrel{?}{\Longrightarrow} L \backslash X$ is Hausdorff

Shall see counterexamples to (A) and (B).

Delicate examples

$$a \in \mathbb{R}_{>0} \curvearrowright X = \mathbb{R}^2 \setminus \{ \begin{pmatrix} 0 \\ 0 \end{pmatrix} \}, \quad \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} ax \\ \frac{1}{a}y \end{pmatrix}$$

This action is free, and any orbit is closed.

But the action is not proper, and $\mathbb{R}_{>0}\backslash X$ is not Hausdorff.

Interpretation in group language

$$A = \{ \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix} : a > 0 \} \subset G = SL(2, \mathbb{R}) \supset N = \{ \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} : n \in \mathbb{R} \}$$

$$\mathbb{R}_{>0} \simeq A \curvearrowright G/N \simeq X = \mathbb{R}^2 \setminus \{ \begin{pmatrix} 0 \\ 0 \end{pmatrix} \}$$

 $A \curvearrowright G/N$ non-proper $\iff N \curvearrowright G/A$ non-proper (Lorentz isometry)

Lipsman's conjecture (1995)

Setting
$$X = G/H$$
 where $L \subset G \supset H$ closed subgp

Lipsman's conjecture(1995)*
$$G$$
: 1-conn nilpotent Lie group $L \curvearrowright X$ free $\stackrel{?}{\Longleftrightarrow} L \curvearrowright X$ proper

True : *G*: 2-step nilpotent Lie group (Nasrin '01)

G: 3-step nilpotent Lie group (Baklouti '05, Yoshino '07)**

^{*} R. Lipsman, Proper actions and a cocompactness condition, J. Lie Theory 5 (1995), 25–39.

^{**} A. Baklouti, Internat. J. Math. 16 (2005); T. Yoshino, Internat. J. Math. 18 (2007).

Lipsman's conjecture (1995)

Setting
$$X = G/H$$
 where $L \subset G \supset H$ closed subgp

Lipsman's conjecture(1995)*
$$G$$
: 1-conn nilpotent Lie group $L \curvearrowright X$ free $\stackrel{?}{\Longleftrightarrow} L \curvearrowright X$ proper

True : G: 2-step nilpotent Lie group (Nasrin '01)

G: 3-step nilpotent Lie group (Baklouti '05, Yoshino '07)**

False: G: 4-step nilpotent Lie group (Yoshino)***

$$L \simeq \mathbb{R}^2 \curvearrowright X \simeq \mathbb{R}^5$$
 (nilmanifold)

^{*} R. Lipsman, Proper actions and a cocompactness condition, J. Lie Theory 5 (1995), 25–39.

^{**} A. Baklouti, Internat. J. Math. 16 (2005); T. Yoshino, Internat. J. Math. 18 (2007).

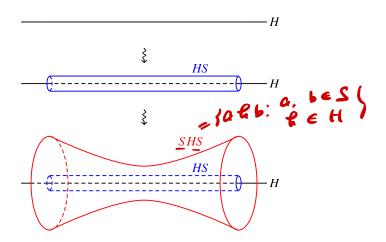
T. Yoshino, A counterexample to Lipsman's conjecture, Internat. J. Math. 16 (2005), pp. 561–566.

Proper actions — three directions

- Give a "handy" criterion to detect proper actions
 yeometric applications.
- Relax the definition of proper actions, e.g. "measurably proper"
 connection to representation theory.
- Quantify "proper actions"
 connection to global analysis.

Expanding H by compact set S

 $G \supset H$ S: compact subset



\pitchfork and \sim for locally compact group G

$$L \subset G \supset H$$

Idea: forget even that L and H are subgroups

Definition

- 1) $L \pitchfork H \Longleftrightarrow \overline{L \cap SHS}$ is compact for any compact subset $S \subset G$
- 2) $L \sim H \iff$ \exists compact subset $S \subset G$. such that $L \subset SHS$ and $H \subset SLS$.
 - SHS HS

\uparrow and \sim for locally compact group G

$$L \subset G \supset H$$

Idea: forget even that L and H are subgroups

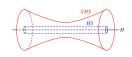
Definition

- 1) $L \cap H \iff \overline{L \cap SHS}$ is compact $\text{for any compact subset } S \subset G$ 2) $L \sim H \Longleftrightarrow \exists \text{ compact subset } S \subset G.$
 - such that $L \subset SHS$ and $H \subset SLS$.

$$\underline{Ex.} \quad G = \mathbb{R}^n; L, H \text{ subspaces}$$

$$L \cap H \iff L \cap H = \{0\}.$$

$$L \sim H \iff L = H.$$



\pitchfork and \sim (meaning)

$$L \quad \subset \quad \begin{array}{c} G \\ \text{loc compact group} \end{array} \quad \supset \quad H$$

Meaning of \pitchfork : If both L and H are closed subgroups, then

$$L \pitchfork H \iff L ^{igcap}G/H$$
 proper action $\ \updownarrow \ \ H \pitchfork L \iff H ^{igcap}G/L$ proper action

 \sim defines an equivalence relation suitable for \pitchfork

$$H \sim H' \Longrightarrow H \pitchfork L \Longleftrightarrow H' \pitchfork L$$

Discontinuous duality theorem

G: locally compact topological group, separable

 $G \supset H$ subset

 $\rightsquigarrow \pitchfork (H : G) := \{L : L \pitchfork H\}$ discontinuous dual

<u>Theorem 3</u> (Yoshino (2007) *, discontinuous duality theorem)** Any subset H is determined uniquely by $\pitchfork (H : G)$ up to \sim .

cf. $G \rightsquigarrow \widehat{G}$ (unitary dual)

<u>Fact</u> (Pontrjagin–Tannaka–Tatsuuma duality theorem) G is recovered from the unitary dual \widehat{G} .

^{**} T. Yoshino, Discontinuous duality theorem, Internat, J. Math. 18 (2007), pp. 887–893, · · · loc, compact op

G: real reductive Lie group Want to find a handy criterion for two subsets $L, H \subset G$ such that

 $L \cap H$,

or

 $L \sim H$.

G: real reductive Lie group

Want to find a handy criterion for two subsets $L, H \subset G$ such that $L \pitchfork H$, or $L \sim H$.

 $G = K \exp(\mathfrak{a})K$: Cartan decomposition $\mu: G \to \mathfrak{a}/W$: Cartan projection $(W \equiv W(\Sigma(\mathfrak{g}, \mathfrak{a})))$: Weyl gp.)

E.g.
$$\mu$$
: $GL(n,\mathbb{R}) \longrightarrow \mathbb{R}^n/\mathfrak{S}_n$
 $g \mapsto \frac{1}{2}(\log \lambda_1, \cdots, \log \lambda_n)$
Here, $\lambda_1 \ge \cdots \ge \lambda_n (>0)$ are the eigenvalues of ${}^t gg$.

$$G = GL(n, \mathbb{R})$$
 $K = O(n)$
 $\mathfrak{a} \simeq \mathbb{R}^n$
Weyl group $\simeq S_n$

G: real reductive Lie group

Want to find a handy criterion for two subsets $L, H \subset G$ such that $L \cap H$, or $L \sim H$.

 $G = K \exp(\mathfrak{a})K$: Cartan decomposition

 $\mu: G \to \mathfrak{a}/W$: Cartan projection $(W \equiv W(\Sigma(\mathfrak{g}, \mathfrak{a})))$: Weyl gp.)

Theorem 4 *

- (1) $L \sim H$ in $G \iff \mu(L) \sim \mu(H)$ in a. (2) $L \pitchfork H$ in $G \iff \mu(L) \pitchfork \mu(H)$ in a.

abelian



T. Kobayashi, Math. Ann. (1989); J. Lie Theory 6 (1996) 147-163.; Y. Benoist, Ann. Math., 144 (1996) 315-347.

G: real reductive Lie group

Want to find a handy criterion for two subsets $L, H \subset G$ such that $L \cap H$, or $L \sim H$.

 $G = K \exp(\mathfrak{a})K$: Cartan decomposition

 $\mu: G \to \mathfrak{a}/W$: Cartan projection $(W \equiv W(\Sigma(\mathfrak{g}, \mathfrak{a})))$: Weyl gp.)

Theorem 4 *

- (1) $L \sim H$ in $G \iff \mu(L) \sim \mu(H)$ in a. (2) $L \pitchfork H$ in $G \iff \mu(L) \pitchfork \mu(H)$ in a.

abelian

Special cases include

- \Rightarrow in (1): Uniform error estimates of eigenvalues when a matrix is perturbed.
- ⇔ in (2): Criterion for proper actions.
 - Quantitative estimate for properness (3rd lecture)

T. Kobayashi, Math. Ann. (1989); J. Lie Theory **6** (1996) 147–163.; Y. Benoist, Ann. Math., **144** (1996) 315–347.

Properness criterion — special case (H, L reductive)

Give a flavor of proof in a special case.

For a reductive subgroup G' in G, the Cartan projection of G' takes the form $\mu(G') = W \cdot \mathfrak{a}_{G'}$ in \mathfrak{a} (after conjugation of G' in G):

$$g = f + p \supset p \longrightarrow a$$

$$\max \text{ abelian}$$

$$\cup \quad \cup \quad \cup \quad \cup$$

$$g' = f' + p' \supset p' \longrightarrow a_{G'} := a \cap g'.$$

$$\max \text{ abelian}$$

A special case of Theorem 4 includes:

Theorem 5* Assume $H, L \subset G$ are reductive subgroups. $L \curvearrowright G/H$ proper $\iff \mathfrak{a}_H \cap W \cdot \mathfrak{a}_L = \{0\}$ in \mathfrak{a} .

Remark easy to see $\mu(H) \pitchfork \mu(L)$ in $\mathfrak{a} \iff \mathfrak{a}_H \cap W \cdot \mathfrak{a}_L = \{0\}$.

^{*} Kobayashi, Proper action on homogeneous spaces of reductive type, Math. Ann. (1989).

Reduction of properness criterion to abelian subgps

 $G = K \exp(\mathfrak{a})K$ Cartan decomposition W: Weyl group of $\Sigma(\mathfrak{g}, \mathfrak{a})$

Suppose $\mathfrak{l},\mathfrak{h}\subset\mathfrak{a}$ abelian subspaces, $L=\exp\mathfrak{l},H=\exp\mathfrak{h}.$

Theorem 5' $L^{\frown}G/H$ proper \iff 1 \cap Wh = {0}.

← non-trivial.

Proof of Theorem 5' for abelian $H, L \subset G$: Step 1

Suppose $I, h \subset a$.

<u>Want to prove:</u> L $^{\frown}G/H$ not proper \Rightarrow ! \cap W! \neq $\{0\}$.

Assume $L \cap SHS$ is non-compact for some compact subset $S \subset G$. One can find sequences

$$\begin{cases} \exp(t_n Y_n) = c_n \exp(t_n' Z_n) d_n & \text{in } G. \\ & \cap & \cap & \cap & \cap \\ & I & S & \text{if } S \end{cases} \\ 0 < t_n \uparrow \infty \\ c_n \to c, \ d_n \to d \text{in } S \\ Y_n \to Y(\neq 0) \in I, \ Z_n \to Z(\neq 0) \in \mathfrak{f}. \end{cases}$$

By taking subsequences, renormalizing, and replacing $\mathfrak{h} \rightsquigarrow w \cdot \mathfrak{h}$ $(w \in W)$, $S \rightsquigarrow KSK$, we may assume $t'_n = t_n$ and $Y, Z \in \overline{\mathfrak{a}_+}$.

Proof of Theorem 5' for abelian $H, L \subset G$ **: Step 2**

$$\underline{\mathsf{Plan}}\ L \not \pitchfork H \Rightarrow Y = Z \Rightarrow \mathfrak{l} \cap W\mathfrak{h} \neq \{0\}.$$

Have seen, if $L \not \cap H$, one finds sequences (after replacing \mathfrak{h} by $w \cdot \mathfrak{h}$ for some $w \in W$):

$$\begin{cases} c_n = \exp(t_n Y_n) d_n^{-1} \exp(-t_n Z_n) & (1) \\ t_n \uparrow \infty; c_n \to c, \ d_n \to d \text{ in } G. \\ Y_n \to Y \in \mathbb{I} \cap \overline{\alpha_+}, \ Z_n \to Z \in \mathfrak{h} \cap \overline{\alpha_+}. \end{cases}$$

This argument leads us to $Y = Z \in I \cap \mathfrak{h}$. $\Longrightarrow I \cap W \cdot \mathfrak{h} \neq \{0\}$.

Criterion for the Calabi-Markus phenomenon

Corollary 6 (criterion of Calabi-Markus phenomenon) *

 $\overline{G \supset H}$ pair of real reductive Lie groups.

Then (i) \iff (ii) \iff (iv).

(i) G/H admits a discontinuous group $\Gamma \simeq \mathbb{Z}$.

(ii) G/H admits an infinite discontinuous group Γ .

(iii) $G \nsim H$.

(iv) $\operatorname{rank}_{\mathbb{R}} G > \operatorname{rank}_{\mathbb{R}} H$.

$$(i) \underset{\Gamma \ \pitchfork}{\Longrightarrow} (ii) \underset{\Gamma \ \pitchfork}{\Longrightarrow} (iii) \underset{Cartan \ decomposition}{\Longrightarrow} (iv) \underset{Theorem \ 5}{\Longrightarrow} (i)$$

Theorem 1' (Calabi–Markus, 1962)** (G, H) = (O(n, 1), O(n - 1, 1)). G/H does not admit an infinite discontinuous group.

^{*} Kobayashi, Proper action on homogeneous spaces of reductive type, Math. Ann. (1989).
** E. Calabi-L. Markus, Relativistic space forms, Ann. Math., 75, (1962), 63-76.

Example $G/H = SL(n, \mathbb{R})/SL(m, \mathbb{R}) \ (n > m)$

Ex. \exists proper action of $SL(2,\mathbb{R})$ on $SL(n,\mathbb{R})/SL(m,\mathbb{R})$ if n is even.

• Cartan projection $\mu: G \to \mathfrak{a}/\mathfrak{S}_n$ for $G = SL(n, \mathbb{R})$.

$$W \simeq \mathfrak{S}_n \curvearrowright \mathfrak{a} := \{(a_1, \cdots, a_n) : \sum_{j=1}^n a_j = 0\} \underset{\text{diag}}{\hookrightarrow} \mathfrak{g} = \mathfrak{sl}(n, \mathbb{R})$$

• For $H = SL(m, \mathbb{R})$ (m < n),

$$\therefore \mu(H) = \mathfrak{S}_n \cdot \mathfrak{a}_H = \mathfrak{S}_n \cdot \{(b_1, \cdots, b_m, 0, \cdots, 0) : \sum_{i=1}^m b_i = 0\}.$$

• For $L := \varphi(SL(2,\mathbb{R}))$, where $\varphi : SL(2,\mathbb{R}) \to SL(n,\mathbb{R})$ is an irreducible n-dimensional rep,

$$\mu(L) = \mathfrak{S}_n \cdot \mathfrak{a}_L = \mathfrak{S}_n \cdot \mathbb{R}(n-1, n-3, \cdots, 1-n).$$

$$\therefore L^{\frown}G/H \text{ proper} \iff \mu(L) \pitchfork \mu(H) = \{0\}$$
$$\iff n \text{ is even or } n-m \geq 2.$$

Properly discontinuous action of surface group

$$\pi_1(\Sigma_g) \cdots$$
 surface group $(g \ge 2)$

Theorem 7

If G/H is a reductive symmetric space then (i) \iff (ii) \iff (iii).

- (i) G/H admits a discontinuous group $\Gamma \simeq \mathbb{Z}$ generated by a unipotent element.
- (ii) G/H admits a proper action of a subgroup L which is locally isomoprhic to $SL(2,\mathbb{R})$.
- (iii) G/H admits a discontinuous group $\Gamma \simeq$ surface group.

For a pair of real reductive Lie groups $G \supset H$, (i) \iff (ii) \implies (iii).

Proper actions and representation theory

Plan

1 Discontinuous dual and properness criterion (4/2)	:5)
---	-----

- 2 The Mackey analogy and proper actions (5/2)
- 3 Tempered subgroups (5/9)
- 4 Tempered homogeneous spaces (5/16)