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Abstract. We present a new approach to symmetry breaking

for pairs of real forms of (GL(n,C), GL(n − 1,C)). Translation

functors are powerful tools for studying families of representations

of a single reductive group G. However, when applied to a pair of

groups G ⊃ G′, they can significantly alter the nature of symmetry

breaking between the representations of G and G′, even within the

same Weyl chamber of the direct product group G×G′.

We introduce the concept of fences for the interleaving pattern,

which provides a refinement of the usual notion of walls of Weyl

chambers. We then establish a theorem stating that the multiplic-

ity remains constant unless these fences are crossed, together with

a new general vanishing theorem for symmetry breaking.

These general results are illustrated with examples involving

both tempered and non-tempered representations. In addition, we

present a new non-vanishing theorem for period integrals for pairs

of reductive symmetric spaces, which is further strengthened by

this approach.
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1 Introduction

Any finite-dimensional representation Π of a compact Lie group G

decomposes into a direct sum of irreducible representations when re-

stricted to a subgroup G′ of G. A classical result by H. Weyl (1946)

shows that there is an interlacing pattern between the highest weights

of the irreducible summands of Π|G′ and of the highest weight of Π

itself. Fix an irreducible representation π of G′ and consider the

dimension of HomG′(Π|G′ , π) as a function of the highest weight of

Π. This function (multiplicity) takes only the values 0 and 1 and

we can read off the value from the interlacing pattern of the highest

weights. In this article, we provide a new proof of the classical result of

H. Weyl in Section 3 and describe analogous results for certain infinite-

dimensional representations of non-compact Lie groups, which are real

forms GL(n,C).
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In contrast to representations of compact Lie groups, the restriction

of an irreducible admissible representation of a reductive Lie group

to a non-compact subgroup G′ is generally not a direct sum of irre-

ducible representations. Instead of directly decomposing, it is useful

to consider symmetry breaking operators (SBOs), which are continu-

ous G′-homomorphisms from a topological G-module to a topological

G′-module. In this article, we are concerned mainly with the category

M(G) of admissible smooth representations of G of finite length hav-

ing moderate growth, which are defined on topological Fréchet vector

spaces [35, Chap. 11]. Let Irr(G) denote the set of irreducible objects

in M(G).

We denote by

(1.1) HomG′(Π|G′ , π)

the space of SBOs, that is, G′-homomorphisms from Π ∈ M(G) to

π ∈ M(G′), where the operators are continuous in the corresponding

Fréchet topology. The dimension of (1.1) is referred to as the multi-

plicity, which we denote by [Π|G′ : π].

Explicit results on symmetry breaking and multiplicities for individ-

ual non-tempered representations are still sparse. For recent works, see

[17, 20, 21, 26] for example. If both G and G′ are classical linear reduc-

tive Lie groups with complexified Lie algebras (gC, g
′
C) = (gln+1, gln) or

(son+1, son), and they satisfy Harish-Chandra’s rank conditions, then

the GGP conjectures/theorems are mostly concerned with non-zero

symmetry breaking for L-packets or Vogan-packets of discrete series

representations [5].

For a pair of representations of groups (G,G′), where

G = GL(n,R), G′ = GL(n− 1,R),

the dimension of the space of symmetry breaking operators is at most

one [30]. In this article, we introduce a new approach to detecting

the non-vanishing of SBOs between irreducible representations that

are not necessarily tempered, along with a vanishing result and several

new non-vanishing results.
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In Section 2, we also introduce the notion of “fences” for interlacing

patterns, in contrast to the usual concept of “walls” for Weyl cham-

bers. While translation functors can significantly alter the nature of

symmetry breaking even inside the Weyl chamber (see Example 3.1 for

instance), the concept of “fences” plays a crucial role in understanding

the behavior of symmetry breaking under translations.

Building on the key results of Theorems 2.1 and 2.2, we prove a new

stability theorem for the multiplicities in symmetry breaking (Theorem

2.5). This theorem applies to general irreducible representations of

G and G′, which are not necessarily tempered or even unitary. Here,

(G,G′) denotes an arbitrary real form of the pair

(GL(n,C), GL(n−1,C)), and the theorem asserts that the multiplicity

remains constant unless one crosses “fences”.

In addition, we establish another new result: a general vanishing

theorem for symmetry breaking (Theorem 2.9), formulated in terms of

τ -invariants of irreducible representations.

In Section 3, we illustrate these theorems through known examples

of symmetry breaking, focusing on tempered representations, such as

Weyl’s branching laws for finite dimensional representations of

(U(n), U(n − 1)) and the Gan–Gross–Prasad conjecture for discrete

series representations of the pair (U(p, q), U(p− 1, q)).

In general, proving non-vanishing of symmetry breaking is a diffi-

cult problem. However, thanks to the stability theorem for multiplici-

ties within fences (Theorem 2.5), it suffices to consider representations

specified by particular parameters (λ, ν) within the fences.

In Section 4, we apply this approach to the branching of special

unitary representations of GL(2m,R) to the subgroups GL(2m−1,R).
In this case, we also obtain non-zero multiplicities for some non-unitary

representations.

In Section 5, we develop a method to detect the existence of a non-

zero symmetry breaking operator using period integrals for reductive

symmetric spaces. Theorem 5.3 provides a new non-vanishing theorem

of period integrals related to discrete series representations of a pair

of reductive symmetric spaces. These results hold for representations
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that are not necessarily tempered; this is illustrated by examples in

Sections 7 and 8.

In Section 7, we discuss symmetry breaking between irreducible rep-

resentations in the discrete spectrum of

L2(G/H) = L2
(
GL(n,R)

/
(GL(p,R)×GL(n− p,R))

)
and of

L2(G′/H ′) = L2
(
GL(n− 1,R)

/
(GL(p,R)×GL(n− p− 1,R))

)
.

These representations are not tempered if 2p < n− 1.

For this analysis, we examine the phenomenon of “jumping fences” in

Section 7.4, in addition to the non-vanishing theorem of period integrals

(Theorem 5.3).

In Section 8, we discuss symmetry breaking between the irreducible

representations in the discrete spectrum of

L2(G/H) = L2
(
U(p, q)

/
(U(r, s)× U(p− r, q − s))

)
and of

L2(G′/H ′) = L2
(
U(p− 1, q)

/
(U(r, s)× U(p− r − 1, q − s))

)
.

In Section 9, we conclude the article with some general remarks and

illustrate our results with examples of tempered and non-tempered rep-

resentations, as well as extensions to limits of discrete series represen-

tations.

Proofs of Theorems 2.1 and 2.2 are provided in [8], and details and

proofs of the results in Sections 4 through 8 will be published in forth-

coming articles [22, 23].

Notation: N = {0, 1, 2, . . . , }, N+ = {1, 2, 3, . . . , }, Rn
> = {x ∈ Rn :

x1 > · · · > xn}, Rn
≥ = {x ∈ Rn : x1 ≥ · · · ≥ xn}, Zn

≥ = Zn ∩ Rn
≥.
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2 Symmetry Breaking Under Translations

Let G ⊃ G′ be any real forms of GL(n,C) ⊃ GL(n− 1,C).
In this section, we discuss the behavior of “translation functors” for

symmetry breaking operators (SBOs) between representations of G and

G′.

2.1. Harish-Chandra Isomorphism and Translation Functor.

Let gC = gl(N,C). We shall use N to refer to n or n− 1 later. We set

(2.1) ρN := (N−1
2

, N−3
2

, . . . , 1−N
2

).

Let Z(gC) denote the center of the enveloping algebra U(gC). We nor-

malize the Harish-Chandra isomorphism

HomC -alg(Z(gC),C) ≃ CN/SN ,

in such a way that the trivial one-dimensional gC-module has the in-

finitesimal character ρN mod SN .

For a g-module V and for τ ∈ HomC -alg(Z(gC),C) ≃ CN/SN , let

Pτ (V ) denote the τ -primary component of V , that is,

Pτ (V ) =
∞⋃
k=0

⋂
z∈Z(gC)

Ker(z − τ(z))k.

Let {fi : i = 1, . . . , N} be the standard basis of ZN . We focus on

the following translation functors in the Casselman–Wallach category
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M(G) or in the category of Harish-Chandra modules:

(2.2) ϕτ+εfi
τ (·) :=

Pτ+fi(Pτ (·)⊗ CN) if ε = +,

Pτ−fi(Pτ (·)⊗ (CN)∨) if ε = −1.

These functors are particular cases of the translation functors intro-

duced by J.C. Jantzen and G. Zuckerman.

2.2. Non-Vanishing Condition for Translating SBOs. Suppose

that Π ∈ M(G) (resp., π ∈ M(G′)) has a Z(gC)-infinitesimal character

τ ∈ Cn/Sn (resp. Z(g′C)-infinitesimal character τ ′ ∈ Cn−1/Sn−1).

In [8], we have established the following theorems, which provide

useful information on symmetry breaking under translations.

Theorem 2.1. Let Π ∈ M(G) and π ∈ M(G′). Suppose that any

generalized eigenspaces of Z(gC) in Π⊗ Cn are eigenspaces.

(1) If HomG′(Π|G′ , π) ̸= {0}, then HomG′(ϕτ+fi
τ (Π)|G′ , π) ̸= {0} for

any i such that τi ̸∈ {τ ′1 − 1
2
, τ ′2 − 1

2
, . . . , τ ′n−1 − 1

2
}.

(2) If HomG′(Π|G′ , π) = {0}, then HomG′(ϕτ+fi
τ (Π)|G′ , π) = {0} for

any i such that τi ̸∈ {τ ′1 − 1
2
, τ ′2 − 1

2
, . . . , τ ′n−1 − 1

2
}.

Theorem 2.2. Let Π ∈ M(G) and π ∈ M(G′). Suppose that any

generalized eigenspaces of Z(gC) in Π⊗ (Cn)∨ are eigenspaces.

(1) If HomG′(Π|G′ , π) ̸= {0}, then HomG′(ϕτ−fi
τ (Π), π) ̸= {0} for any i

such that τi ̸∈ {τ ′1 + 1
2
, τ ′2 +

1
2
, . . . , τ ′n−1 +

1
2
}.

(2) If HomG′(Π|G′ , π) = {0}, then HomG′(ϕτ−fi
τ (Π)|G′ , π) = {0} for

any i such that τi ̸∈ {τ ′1 + 1
2
, τ ′2 +

1
2
, . . . , τ ′n−1 +

1
2
}.

Theorems 2.1 and 2.2 are stated under the assumption that gen-

eralized eigenspaces of Z(gC) in Π ⊗ Cn and Π ⊗ (Cn)∨ are actual

eigenspaces. This condition holds generically; for example, it is al-

ways satisfied when G is compact, and it is also satisfied for any

Harish-Chandra discrete series representation of G = U(p, q) (see [8,

Prop. 5.5]).
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Theorems 2.1 and 2.2 reveal an intrinsic reason for the appearance of

interlacing patterns in certain branching laws, such as Weyl’s branch-

ing law and the Gan–Gross–Prasad conjecture, as we discuss in the

following section.

Building on Theorems 2.1 and 2.2, we establish in the remainder of

this section two useful results (Theorems 2.5 and 2.9), based on the

concept of fences (Definition 2.3).

2.3. Interleaving Pattern.

We set

Rn
> :={x ∈ Rn : x1 > · · · > xn},

Rn
≥ :={x ∈ Rn : x1 ≥ · · · ≥ xn}.

Zn
≥ :=Zn ∩ Rn

≥.

We introduce the notion of “fences” as combinatorial objects. This

serves as a refinement of the “walls” of the Weyl chambers when we

consider the branching for the restriction G ↓ G′, where (G,G′) are any

real forms of (GL(n,C), GL(n− 1,C)).

Definition 2.3 (Interleaving Pattern and Fence). For x ∈ Rn and

y ∈ Rm, an interleaving pattern D in Rn
> × Rm

> is a total order among

{x1, . . . , xn, y1, . . . , ym}, which is compatible with the underlying in-

equalities x1 > x2 > · · · > xn and y1 > y2 > · · · > ym. For an adjacent

inequality between xi and yj such as xi > yj or yj > xi, we refer to the

hyperplane in Rn+m defined by xi = yj as a fence.

By an abuse of notation, we also use the same letter D to denote the

region in Rn
> × Rm

> given by its defining inequalities.

Let P(Rn,m) denote the set of all interleaving patterns in Rn
> ×Rm

> .

Example 2.4. There are 35 interleaving patterns for R4
> × R3

>, such

as

D1 ={(x, y) ∈ R4+3 : x1 > y1 > x2 > y2 > x3 > y3 > x4},

D2 ={(x, y) ∈ R4+3 : y1 > y2 > x1 > x2 > x3 > x4 > y3}.
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The interleaving patternD1 is also referred to as the interlacing pattern.

There are six fences associated with D1, namely those given by

x1 = y1, y1 = x2, x2 = y2, y2 = x3, x3 = y3, and y3 = x4.

In contrast, there are just two fences associated with D2, namely those

given by

x1 = y2 and x4 = y3.

We also consider interleaving patterns in Rn
≥×Rm

≥ such as x1 > y1 ≥
y2 > x2, or those including equalities such as x1 = y1 > x2 = y2 or

x1 ≥ y1 ≥ x2 > y2. These interleaving patterns will be called weak

interleaving patterns.

2.4. Stability Theorem for Multiplicities in Symmetry Break-

ing inside Fences.

This section establishes a stability theorem for the multiplicities in sym-

metry breaking under coherent continuation.

Let (G,G′) = (GL(n,R), GL(n− 1,R)) or (U(p, q), U(p− 1, q)).

Let V(G) denote the Grothendieck group of M(G), that is, the

abelian group generated by X ∈ M(G) modulo the equivalence re-

lation

X ∼ Y + Z,

whenever there is a short exact sequence 0 → Y → X → Z → 0.

Let Π: ξ + Zn → V(G) be a coherent family of G-modules, specifi-

cally, Π satisfies the following properties:

(1) Πλ has a Z(gC)-infinitesimal character λ if λ ∈ ξ + Zn;

(2) Πλ ⊗ F ≃
∑

ν∈∆(F )

Πλ+ν in V(G) for any finite-dimensional repre-

sentation F of G.

Theorem 2.5 (Stability Theorem in Symmetry Breaking). Suppose

that Π ∈ Irr(G) has a Z(gC)-infinitesimal character ξ satisfying

(2.3) ξi − ξi+1 ≥ 1 (1 ≤ i ≤ n− 1).

Let Π: ξ + Zn → V(G) be the coherent family starting from Πξ := Π.

Let ν be the infinitesimal character of π ∈ Irr(G′). If (ξ, ν) satisfies an
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interleaving pattern D in Rn
> × Rm

≥ , then we have

[Π|G′ : π] = [Πλ|G′ : π]

for all λ ∈ ξ+Zn such that (λ, ν) satisfies the same interleaving pattern

D.

Remark 2.6. (1) Such a coherent family exists uniquely because our

assumption guarantees that ξ is non-singular.

(2) The concept of “fences” is a refinement of the Weyl chambers.

Hence, if we do not cross the fence, that is, if (λ, ν) ∈ D, then λ is non-

singular and remains in the same Weyl chamber with ξ. Consequently,

Πλ is irreducible for any such λ.

We recall our notation that {fi}1≤i≤n is the standard basis of Zn. To

prove Theorem 2.5, we introduce the finite set defined by

E := {±fi : 1 ≤ i ≤ n} ⊂ Zn.

Lemma 2.7. Let D ∈ P(Rn,m). For any (ξ, ν) and (λ, ν) ∈ D such

that λ−ξ ∈ Zn, there exists a sequence λ(j) ∈ ξ+Zn (j = 0, 1, 2, . . . , N)

with the following properties:

λ(0) = ξ, λ(N) = λ, λ(j) − λ(j−1) ∈ E , (λ(j), ν) ∈ D for 1 ≤ j ≤ N .

Proof. For an interleaving pattern D, we define m(D) ∈ {0, 1, . . . , n}
as follows: m(D) := 0 if D implies y1 > x1, and otherwise,

(2.4) m(D) := the largest i such that xi > y1 in D.

There exists a unique element µ ∈ ξ + Zn such that (µ, ν) ∈ D

and that µ satisfies the following property for any λ ∈ ξ + Zn with

(λ, ν) ∈ D:

µi ≤ λi if i ≤ m(D),

µi ≥ λi if m(D) < i ≤ n.

First, we assume that λ = µ. Then it is readily verified by an

inductive argument that Lemma 2.7 holds for λ = µ.

Second, since the existence of the sequences {λ(j)}0≤j≤N in Lemma

2.7 defines an equivalence relation ∼ among non-singular dominant

elements in ξ + Zn, we have ξ ∼ µ ∼ λ, whence the lemma. □
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Proof of Theorem 2.5. By Lemma 2.7, it suffices to prove Theorem 2.5

when λ − ξ ∈ E . For example, suppose that λ − ξ = fi for some

1 ≤ i ≤ n. Then, we have

ξi ̸∈ {ν1 −
1

2
, ν2 −

1

2
, . . . , νn −

1

2
}

because (λ, ν) and (ξ, ν) satisfy the same interleaving property.

On the other hand, since ξ is non-singular and ξa − ξb ∈ Z for any

1 ≤ a ≤ b ≤ n, ξ + fj (1 ≤ j ≤ n) lies in the same Weyl chamber as ξ.

Therefore, Πξ+fj ≃ ϕ
ξ+fj
ξ (Π) is either irreducible or zero. Thus, all the

assumptions in Theorem 2.1 are satisfied, and we conclude

[Πλ|G′ : π] = [ϕ
ξ+fj
ξ (Π) : π] ̸= 0.

The multiplicity-freeness theorem concludes that [Πλ|G′ : π] = 1. The

case λ− ξ = −fi can be proven similarly by using Theorem 2.2. □

2.5. A General Vanishing Theorem for Symmetry Breaking.

The stability theorem for multiplicities in symmetry breaking (Theo-

rem 2.5) leads to a general vanishing theorem for symmetry breaking,

for which we provide a proof in this section (Theorem 2.9). The theo-

rem is formulated in terms of τ -invariants of representations, which we

briefly recall below.

For a non-singular weight ξ, the set of integral roots with respect to

ξ is defined by

R(ξ) := {α ∈ ∆(gC, jC) : ⟨α∨, ξ⟩ ∈ Z}

= {ei − ej : i ̸= j, ξi − ξj ∈ Z}.

The weight ξ is integral if R(ξ) = ∆(gC, jC). We define the system of

positive integral roots with respect to ξ by

R+(ξ) := {ei − ej : ξi − ξj ∈ N+},

and denote by Ψ+(ξ) the corresponding set of simple roots in R+(ξ).

Definition 2.8 (τ -invariant). Suppose that Π ∈ Irr(G) has a non-

singular Z(gC)-infinitesimal character ξ. A simple root α ∈ Ψ(ξ) is

called a τ -invariant of the representation Π if

Πξ+µ = 0 for every µ ∈ Zn such that ⟨α∨, ξ + µ⟩ = 0.
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Here Π: ξ + Zn → V(G) denotes the coherent continuation so that Πξ

is the originally given representation Π.

We denote by τ(Π) ⊂ Ψ+(ξ) the set of τ -invariants of Π.

In what follows, we assume for simplicity that ξ is dominant integral;

that is, R(ξ) = ∆(gC, jC) and Ψ+(ξ) = {e1 − e2, . . . , en−1 − en}.

Theorem 2.9 (Vanishing Theorem). Suppose that Π ∈ Irr(G) has

a non-singular Z(gC)-infinitesimal character λ ∈ Rn
>. Let D be an

interleaving pattern in Rn
> × Rn−1

≥ .

Assume that there exists i (1 ≤ i ≤ n − 1) such that the following

two conditions hold:

(1) ei − ei+1 ∈ τ(Π);

(2) λiλi+1 appears as an adjacent string; in other words, there is

no νj such that the inequality λi > νj > λi+1 is allowed in D.

Then

[Π|G′ : π] = 0.

Proof of Theorem 2.9. Let Π: λ + Zn → V(G) be the coherent family

starting from Πλ = Π.

Suppose that λiλi+1 appears as an adjacent string in the interleaving

pattern D for (λ, ν). Then, there exists µ ∈ Zn such that the following

three conditions are satisfied:

• ⟨λ+ µ, ei − ei+1⟩ = 0;

• ⟨λ+ µ, β⟩ ≠ 0 for any β ∈ ∆+(gC, jC) \ {ei − ei+1};
• the pair (λ+ µ, ν) satisfies the same interleaving pattern D.

As in Lemma 2.7, there exists a sequence λ(j) ∈ λ + Zn (j =

0, 1, . . . , N) with the following properties:

λ(0), . . . , λ(N−1) are non-singular;

λ(0) = λ, λ(N) = λ+ µ;

λ(j) − λ(j−1) ∈ E , (λ(j), ν) ∈ D for all 1 ≤ j ≤ N .

We note that λ(0), . . . , λ(N−1) satisfy the regularity assumption (2.3) in

Theorem 2.5, whereas λ(N) does not. It then follows from the proof of

Theorem 2.5 that we obtain

(2.5) [Πλ(0)|G′ : π] = · · · = [Πλ(N−1)|G′ : π] ≤ [Πλ(N)|G′ : π].
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On the other hand, since ei−ei+1 ∈ τ(Π), Πλ(N) = Πλ+µ = 0. Thus, the

right-hand side of (2.5) is zero, and hence, the theorem is proved. □

Theorem 2.9, when applied to the pair of compact Lie groups (G,G′) =

(U(n), U(n− 1)), yields a new proof of the necessity of the interlacing

pattern (3.2) below in Weyl’s branching laws, as we shall see in the

next section.

3 Known Examples for (G,G′) = (U(p, q), U(p− 1, q))

We begin in this section by demonstrating how Theorems 2.1 and

2.2 provide a new perspective in the interlacing patterns that ap-

pear in known examples of branching laws, such as Weyl’s branch-

ing law for finite-dimensional representations regarding the restriction

U(n) ↓ U(n − 1) and the patterns [10] in the Gan–Gross–Prasad con-

jecture regarding the branching of discrete series representations for

the restriction U(p, q) ↓ U(p− 1, q).

The cases in the branching of non-tempered representations for the

restriction GL(n,R) ↓ GL(n − 1,R) are more involved, which we will

discuss in Section 4 through Section 7, along with the phenomenon of

jumping fences. We revisit the branching for U(p, q) ↓ U(p − 1, q) by

considering non-tempered representations in Section 8.

3.1. Weyl’s Branching Law for U(n) ↓ U(n− 1).

We begin by illustrating the concept of fences (Definition 2.3) with the

branching for finite-dimensional representations.

Let FG(x) denote the irreducible finite-dimensional representation

of G := U(n) with highest weight x ∈ Zn
≥ in the standard coordi-

nates. Similarly, let FG′
(y) denote the irreducible representation of

G′ = U(n− 1) with highest weight y ∈ Zn−1
≥ .

According to Weyl’s branching law, the restriction of an irreducible

representation FG(x) of G to the subgroup G′ contains the irreducible

representation FG′
(y) of G′, that is,

(3.1) [FG(x)|G′ : FG′
(y)] ̸= 0, (equivalently, [FG(x)|G′ : FG′

(y)] = 1)
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if and only if the highest weights satisfy the interlacing inequalities:

(3.2) x1 ≥ y1 ≥ x2 ≥ y2 ≥ · · · ≥ xn−1 ≥ yn−1 ≥ xn.

This section reinterprets the above classical result from the new per-

spective of translation for symmetry breaking, as formulated in Theo-

rems 2.1 and 2.2. To this end, we reformulate the condition (3.2) in

terms of the infinitesimal characters.

Recall from (2.1) that

ρn =
1

2
(n− 1, . . . , 1− n), and ρn−1 =

1

2
(n− 2, . . . , 2− n).

Then the Z(gC)-infinitesimal character of the G-module FG(x) and

the Z(g′C)-infinitesimal character of of the G′-module FG′
(y) are given,

respectively, by τ mod Sn and τ ′ mod Sn−1, where

τ := x+ ρn and τ ′ := y + ρn−1.

Thus, the inequality (3.2) for highest weights is equivalent to the fol-

lowing strict inequality:

(3.3) τ1 > τ ′1 > τ2 > τ ′2 > · · · > τn−1 > τ ′n−1 > τn.

We begin with an observation that translation functors within the

same dominant chamber can easily alter the multiplicity [FG(x)|G′ :

FG′
(y)] in symmetry breaking.

Example 3.1. Consider (G,G′) = (U(3), U(2)). Let

F1 := FG(1, 0, 0), F2 := FG(1, 1, 0), F ′ := FG′
(0, 0),

that is, F1, F2, and F ′ are, respectively, the standard representation C3

of G, its exterior representation Λ2C3, and the trivial representation of

G′ = U(2).

The Z(gC)-infinitesimal character of F1 and F2 are given by

τ1 = (2, 0,−1) and τ2 = (2, 1,−1) mod S3.

respectively. Then the translation functors, as defined in (2.2), are

performed without crossing walls, that is, both τ1 = τ2 − f2 and τ2 =

τ1 + f2 lie in the same (strict) Weyl chamber, giving

ϕτ2−f2
τ2

(F2) ≃ F1, ϕτ1+f2
τ1

(F1) ≃ F2.
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However, the multiplicities are given as

[F1|G′ : F ′] = 1, [F2|G′ : F ′] = 0.

This shows that translation functors can significantly alter the nature

of symmetry breaking even inside the Weyl chamber.

On the other hand, Theorems 2.1 and 2.2 are formulated in terms

of fences, rather than in terms of the usual notion of walls for Weyl

chambers.

We now explain how these theorems recover the sufficiency of the

interlacing property (3.2) for highest weights (or, equivalently, (3.3)

for infinitesimal characters) in a simple and specific case.

To see this, suppose that we are given any y ∈ Zn−1
≥ and any xn such

that yn−1 ≥ xn. We set

x̃ := (y1, . . . , yn−1, xn) ∈ Zn
≥.

Then [FG(x̃)|G′ : FG′
(y)] ̸= 0 because the highest weight vector of

FG(x̃) generates the irreducible G′-submodule FG′
(y).

We now apply Theorem 2.2 to π := FG′
(y) ∈ M(G′), and consider

the translation functors for M(G). Due to the integral condition τi −
τj ∈ Z for all 1 ≤ i, j ≤ n, the translation

τ ⇝ τ + εfi (ε = +1 or − 1)

does not cross any wall of the same Weyl chamber of G; hence, the

translation ϕτ+εfi
τ (FG(x)) is either 0 or irreducible. More precisely,

ϕτ+εfi
τ (FG(x)) ≃ FG(x+ εfi)

if xi ̸= xi−ε. Therefore, an iterated application of Theorem 2.2 implies

that

[FG(x)|G′ : FG′
(y)] ̸= 0

as long as the pair (x+ ρn, y + ρn−1) satisfies (3.3).

We now give a new proof for the necessity of the interlacing property

(3.2), using the vanishing results based on Theorem 2.9.

Let Π be an irreducible finite-dimensional representation of G =

U(n) with highest weight x, and let π be an irreducible representation

of G′ = U(n− 1) with highest weight y.
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Suppose that (x, y) does not satisfy the interlacing property (3.2),

or equivalently, that their infinitesimal characters λ = x+ ρn and ν =

y + ρn−1 do not satisfy the interlacing property (3.3). This implies

that there exists i (1 ≤ i ≤ n − 1) such that λiλi+1 appears as an

adjacent string in their interleaving pattern for (λ, ν). However, for

a finite-dimensional representation Π, all simple roots constitute its

τ -invariant. Hence, it follows from Theorem 2.9 that

[Π|G′ : π] = 0.

This completes the proof of the reverse implication.

3.2. Gan–Gross–Prasad conjecture for U(p, q) ↓ U(p− 1, q).

In the non-compact setting (G,G′) = (U(p, q), U(p − 1, q)), an analo-

gous interleaving property to (3.3) arises, which we now recall.

Let G = U(p, q) and K = U(p) × U(q). The complexifications are

given by GC = GL(p + q,C) and KC = GL(p,C) × GL(q,C), respec-
tively. Let WG = Sp+q and WK = Sp ×Sq be the Weyl groups for the

root systems ∆(gC) and ∆(kC), respectively. We define

W k := {w ∈ WG : wν is ∆+(k)-dominant for any ∆(g)-dominant ν}.

This means that w ∈ W k if w ∈ WG = Sp+q satisfies w−1(i) < w−1(j)

whenever 1 ≤ i < j ≤ p or p+ 1 ≤ i < j ≤ p+ q.

Then W k is the set of complete representatives of WK\WG, which

parametrizes closed KC-orbits on the full flag variety of GC. We further

define

C+ := {x ∈ Rp+q : x1 > · · · > xp+q}.

For w ∈ W , the set wC+ defines an interlacing pattern in Rp
> ×Rq

>:

wC+ = {x ∈ Rp+q : xi1 > xi2 > · · · > xip+q}.

For ε ∈ 1
2
Z, we define

Zε := Z+ ε.

(Zε)
p+q
reg := {x ∈ (Zε)

p+q : xi ̸= xj if i ̸= j},

(Zε)
p+q
> := {x ∈ (Zε)

p+q : x1 > · · · > xp+q},

(Zε)
p,q
> := {x ∈ (Zε)

p+q
reg : x1 > · · · > xp and xp+1 > · · · > xp+q}.(3.4)
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Let Disc(G) denote the set of discrete series representations of G,

which is parametrized for G = U(p, q) as follows: let ε := 1
2
(p+ q− 1).

Disc(G) ≃ (Zε)
p,q
> ≃ (Zε)

p+q
> ×W k, Πλ = Πw(λ+) ↔ λ ↔ (λ+, w),

where λ = wλ+. The geometric meaning of w is that the support

of the localization of the (g, K)-module Πw(λ+)K via the Beilinson–

Bernstein correspondence using D-modules is the closed KC-orbit that

corresponds to w, while λ is the Harish-Chandra parameter, in partic-

ular,

λ ≡ λ+ mod Sn

is its Z(gC)-infinitesimal character.

Let G = U(p, q) and G′ = U(p− 1, q). We set

ε =
1

2
(p+ q − 1) and ε′ =

1

2
(p+ q − 2).

The classification of a pair (Π, π) ∈ Disc(G) × Disc(G′) such that

[Π∞|G′ : π∞] ̸= 0 can be described by the parameters

(λ+, ν+) ∈ (Zp+q
ε )> × (Zp+q−1

ε′ )>

such that [Πw(λ+)|G′ : πw′
(ν+)] ̸= 0 for each (w,w′) ∈ W k.

He [10] determined all such pairs (λ+, ν+), relying on the combina-

torics of the theta correspondence. In his theorem, certain interleaving

patterns of (λ+, ν+) appears. The following theorem explains an intrin-

sic reason for these interleaving patterns, from a different perspective,

using “translation functor for symmetry breaking”, and reveals why

interleaving patterns occur in the context of the Gan–Gross–Prasad

conjecture.

For an interleaving pattern D ∈ P(Rp+q,p+q−1) (Definition 2.3), we

set

Dint := D ∩ (Zp+q
ε × Zp+q−1

ε′ ).

Theorem 3.2 (U(p, q) ↓ U(p − 1, q)). Fix w ∈ W k, w′ ∈ W k′ and

an interleaving pattern D ∈ P(Rp+q,p+q−1). Then the following two

conditions on the triple (w,w′, D) are equivalent:

(i) [Πw(λ+)|G′ : πw′
(ν+)] ̸= 0 for some (λ+, ν+) ∈ Dint,

(ii) [Πw(λ+)|G′ : πw′
(ν+)] ̸= 0 for all (λ+, ν+) ∈ Dint.



18 TOSHIYUKI KOBAYASHI AND BIRGIT SPEH

Theorem 3.2 is derived from the iterated application of Theorems 2.1

and 2.2, along with the use of a spectral sequence for cohomological

parabolic induction.

Example 3.3 (Holomorphic Discrete Series, Thm. 8.11 in [15]). For

ν ∈ (Z+ p+1−1
2

)p+q subject to the condition

νp > · · · > νp+q−1 > ν1 > · · · > νp−1,

let π(ν) denote the corresponding holomorphic discrete series represen-

tation of G′. Take λ̃ ∈ (Z+ p+q+1
2

)p+q such that

λ̃p+j := νp+j−1 −
1

2
(1 ≤ j ≤ q),

λ̃1 > ν1 > · · · > νp−1 > λ̃p.

For this pair (λ̃, ν), one readily sees that π(ν) occurs in Π(λ̃)|G′ as the

“bottom layer”.

For a general pair (λ, ν) an iterated application of Theorems 2.1 and

2.2 implies that [Π(λ)|G′ : π(ν)] ̸= 0 whenever λ ∈ Zp+q
ε satisfies the

same interlacing condition

νp > λp+1 > · · · > νp+q−1 > λp+q > λ1 > ν1 > · · · > νp−1 > λp.

4 Branching of Some Special Representations for

GL(2m,R) ↓ GL(2m− 1,R)

In this section, we explore an application of Theorem 2.5 to a family

of non-tempered representations of G = GL(2m,R), see [29], when

restricted to the subgroup G′ = GL(2m − 1,R). A detailed proof can

be found in [23].

A key aspect in applying these theorems is a parity condition that

λi − νj ∈ Z+ 1
2
for every 1 ≤ i ≤ p+ q and 1 ≤ j ≤ p+ q − 1.

We shall see in Section 7.4 that a phenomenon of “jumping the fences

of interlacing patterns” naturally arises for the parity conditions on λ

and ν such that λi − νj ̸∈ Z+ 1
2
.
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4.1. A Family of Representations of GL(2m,R). For ε ∈ {0, 1},
let

Π: (Z+ ε)2m → V(G)

be the coherent family of smooth representations such that Π(λ) is the

smooth representation of a special unitary representation studied in

[29], sometimes referred to as the ℓ-th Speh representation, if

λ =
1

2
(ℓ, . . . , ℓ,−ℓ, . . . ,−ℓ) + (ρm, ρm) for 1 ≤ ℓ.

Here, we recall from (2.1) ρm = (m−1
2

, . . . , 1−m
2

). The parity ε and ℓ is

related by ℓ+ 2ε+m+ 1 ∈ 2Z.
There is a θ-stable parabolic subalgebra q = lC+u of gC = gl(2m,C),

unique up to an inner automorphism of G = GL(2m,R), such that the

real Levi subgroup NG(q) is isomorphic to L := GL(m,C). The under-
lying (g, K)-module of Π(λ) is obtained by a cohomological parabolic

induction from an irreducible finite-dimensional representation Fλ of q,

on which the unipotent radical u acts trivially and L acts by

FGL(m,C)(λ′ − ρm)⊗ FGL(m,C)(λ′′ − ρm).

Here λ = (λ′, λ′′) ∈ (Z+ ε)m × (Z+ ε)m.

The representation Π(λ) of G is irreducible if

λ1 > λ2 > · · · > λ2m,

and is unitarizable if λ1 = · · · = λm = −λm+1 = · · · = −λ2m.

4.2. A Family of Representations of GL(2m− 1,R).
Let L′ := GL(1,R)×GL(m−1,C) be a subgroup ofG′ := GL(m−1,R).
For

ν ≡ (ν ′, νm, ν
′′) ∈ (Z+ ε+ 1

2
)m−1
> × C× (Z+ ε+ 1

2
)m−1
> ,

and κ ∈ {0, 1}, let F ′
κ(ν) denote the irreducible finite-dimensional L′-

module given by

F ′
κ(ν) = χνm,κ ⊠Wν′,ν′′ ,

where

χνm,κ(x) := |x|νm(sgnx)κ, for x ∈ GL(1,R) ≃ R×,

Wν′,ν′′ := FGL(m−1,C)(ν ′ − ρm−1)⊗ FGL(m−1,C)(ν ′′ − ρm−1).
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There exists a θ-stable parabolic subalgebra q′ = l′C + u′ of g′C =

gl(2m− 1,C), unique up to an inner automorphism of G′ = GL(2m−
1,R), such that the real Levi subgroup NG′(q′) is isomorphic to L′. Let

πκ(ν) denote the smooth admissible representation of G′ whose un-

derlying (g′, K ′)-module is isomorphic to the cohomological parabolic

induction from the irreducible finite-dimensional representation F ′
κ(ν).

In our normalization, ν mod S2m−1 coincides the Z(g′C)-infinitesimal

character of πκ(ν). The (g′, K ′)-module πκ(ν) is unitarizable if

νm ∈
√
−1R, ν ′ = c1m−1 + ρm−1, and ν ′′ = −c1m−1 + ρm−1

for some c ∈ 1
2
N.

We write simply π(ν) for πκ(ν) when νm ∈ Z and when

(4.1) κ+ νm + 2ε+m− 1 ∈ 2Z.

4.3. Branching for GL(2m,R) ↓ GL(2m− 1,R).
In the same spirit as the reinterpretation of Weyl’s classical branching

laws from the perspective of “translation for symmetry breaking”, as

explained in Section 3.1, we derive the following theorem starting from

a “simpler case”, that is, when

λ1 > ν1, ν2m−1 > λ2m, λ1 + λ2m = νm,

(4.2)

λi+1 = νi −
1

2
(1 ≤ i ≤ m− 1), λi = νi +

1

2
(m+ 1 ≤ i ≤ 2m− 1).

We note that such (λ, ν) lies in the interleaving pattern:

(4.3)

λ1 > ν1 > λ2 > · · · > νm−1 > λm > λm+1 > νm+1 > · · · > ν2m−1 > λ2m.

Theorem 4.1 ([23]). Let (G,G′) = (GL(2m,R), GL(2m− 1,R)). Let

ε ∈ {0, 1
2
}, λ ∈ (Z+ ε)2m> , and ν ∈ (Z+ ε+ 1

2
)m−1
> ×Z× (Z+ ε+ 1

2
)m−1
>

satisfying νm−1 > νm > νm+1 and νm−1 − νm+1 ̸= 1.

If (λ, ν) satisfies (4.3), then

[Π(λ)|G′ : π(ν)] = 1.
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5 A Non-Vanishing Theorem for Period Integrals

In general, proving the non-vanishing of symmetry breaking is a

difficult problem. However, thanks to the general results in Theo-

rems 2.1 and 2.2 (see also Theorem 2.5), it suffices to consider rep-

resentations for only specific parameter pairs (λ, ν) when (gC, g
′
C) =

(gl(n,C), gl(n− 1,C)).
We therefore focus on developing a method for detecting the exis-

tence of a non-zero symmetry breaking operator for such representa-

tions. To this end, we consider the situation where a pair of reductive

groups G′ ⊂ G induces a natural embedding of their symmetric spaces

G′/H ′ ⊂ G/H and restrict H-distinguished representations Π ∈ Irr(G)

to the subgroup G′. The classification of triples G′ ⊂ G ⊃ H for which

the restriction Π|G′ has the uniformly bounded multiplicity property has

been recently accomplished in [19].

In this section, we propose a method for detecting the existence of

a non-zero symmetry breaking operator when Π is a discrete series

representation for G/H, using the idea of period integrals for the pair

of reductive symmetric pairs.

The main result of this section is Theorem 5.3, which provides a suf-

ficient condition for the non-vanishing of period integrals in the general

setting where G ⊃ G′ are arbitrary pairs of real reductive Lie groups.

These results also apply to representations that are not necessarily

tempered.

5.1. Discrete Series Representations for X = G/H.

Let (X,µ) be a measure space and suppose that a group G acts on

X in a measure-preserving fashion. Then, there is a natural unitary

representation of G on the Hilbert space L2(X) of square-integrable

functions.

An irreducible unitary representation Π is called a discrete series

representation for X, if Π can be realized in a closed subspace of L2(X).

Let Disc(X) denote the set of discrete series representations for X.

Then Disc(X) is a (possibly, empty) subset of the unitary dual Ĝ of G.
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For Π ∈ Ĝ, let Π∨ (resp. Π) denote the contragredient (resp. complex

conjugate) representation of Π. Then Π∨ and Π are unitarily equiva-

lent representations. Moreover, the set Disc(X) is closed under taking

contragredient representations.

5.2. Reductive Symmetric Spaces.

Let G be a linear real reductive Lie group, σ be an involutive automor-

phism of G, and H an open subgroup of Gσ := {g ∈ G : σg = g}. The
homogeneous space X = G/H is called a reductive symmetric space.

We take a Cartan involution θ of G that commutes with σ. Let K be

the corresponding maximal compact subgroup of G. Flensted-Jensen

[4] and Matsuki–Oshima [24] proved that Disc(G/H) ̸= ∅ if and only

if

(5.1) rankG/H = rankK/H ∩K,

generalizing the Harish-Chandra rank condition [7], rankG = rankK,

for the existence of discrete series representations of the group manifold

G.

In contrast to Harish-Chandra’s discrete series representations for

group manifolds, not every Π ∈ Disc(G/H) is tempered. There ex-

ist representations Π ∈ Disc(G/H) that are tempered (in the sense

of Harish-Chandra) if and only if the centralizer ZG(t) is amenable,

where t is a Cartan subalgebra associated with the compact symmet-

ric pair (K,H ∩ K). However, this condition does not imply that all

representations in Disc(G/H) are tempered (see [2, Sect. 8.5]).

Similarly, in contrast to Harish-Chandra’s discrete series representa-

tions for group manifolds, not every Π ∈ Disc(G/H) has a non-singular

Z(gC)-infinitesimal character. This implies that if we realize the un-

derlying (g, K)-module ΠK via cohomological parabolic induction, the

parameter is not necessarily in “good range” for this induction. In

case the parameters are in the “good range”, the minimal K-type of

Π ∈ Disc(G/H), which we denote by µ(Π) ∈ K̂, can be computed in a

straight manner.
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5.3. Period Integrals: Generalities.

Let X = G/H be a reductive symmetric space, as in Section 5.2. We

now consider a pair Y ⊂ X of symmetric spaces as below. Suppose

that G′ is a reductive subgroup of G, stable under the involutions σ

and θ of G. Let H ′ := H ∩ G′. Then Y := G′/H ′ is also a reductive

symmetric space, and there is a natural inclusion ι : Y ↪→ X, which is

G′-equivariant.

Let Π be a discrete series representation for X = G/H. By con-

vention, we identify Π with its corresponding representation space in

L2(X). Then, the smooth representation Π∞ ∈ M(G) is realized as a

subspace of (L2 ∩ C∞)(X).

The first step is to prove the convergence of period integrals in the

general setting where neither Π ∈ Ĝ nor π ∈ Ĝ′ is assumed to be

tempered.

Theorem 5.1 ([22]). For any Π ∈ Disc(X) and any π ∈ Disc(Y ), the

following period integral

(5.2) B : Π∞ × π∞ → C, (F, f) 7→
∫
Y

(ι∗F )(y)f(y)dy

converges. Hence, it defines a continuous G′-invariant bilinear form.

In particular, the bilinear form (5.2) induces a symmetry breaking op-

erator

(5.3) TB : Π∞ → (π∨)∞, F 7→ B(F, ·),

where π∨ denotes the contragredient representation of π.

The second step is to detect when the period integral TB does not

vanish. It should be noted that the period integral can vanish, even

when HomG′(Π∞|G′ , π∞) ̸= 0. This leads to the following question:

Question 5.2. Find a sufficient condition for the period integral (5.2)

not to vanish.

Some sufficient conditions have been derived in the special cases

when both X and Y are group manifolds [9, 31], and when X is a

certain rank-one symmetric space [26, 27]. In a forthcoming paper [22],

we will prove the following theorem for the general pair of reductive
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Lie groups G′ ⊂ G and for their reductive symmetric spaces Y ⊂ X of

higher rank:

Theorem 5.3 ([22]). Let Y ⊂ X be as in the beginning of this section.

Additionally, we assume that G is contained in a connected complex

reductive Lie group GC and that K and K ′ are in the Harish-Chandra

class. Let Π ∈ Disc(X) and π ∈ Disc(Y ) both have non-singular infin-

itesimal characters. Suppose that the minimal K-types µ(Π) ∈ K̂ and

µ′(π) ∈ K̂ ′ satisfy the following two conditions:

(5.4) [µ(Π)|K′ : µ′(π)] = 1;

(5.5)

a non-zero highest weight vector of µ(Π) is contained in µ′(π).

Then the period integral (5.2) is non-zero, and consequently, the cor-

responding symmetry breaking operator (SBO) in (5.3) is non-zero.

Remark 5.4. In the case where (G,G′) = (GL(n,R), GL(n−1,R)), one
ofK = O(n) orK ′ = O(n−1) is not in Harish-Chandra class. However,

Theorem 5.3 holds in this case as well, provided that we define minimal

K-types in terms of their irreducible k-summands.

Remark 5.5. Theorem 5.3 applies to general pairs of real reductive Lie

groups, (G,G′). In the specific cases where

(G,G′) = (GL(n,R), GL(n− 1,R)) or (U(p, q), U(p− 1, q)),

the assumption (5.4) is automatically derived from (5.5).

Remark 5.6. Yet another sufficient condition for the non-vanishing of

the period integral (5.2) is

dimHomK(µ(Π), C
∞(K/MH)) = dimHomK′(µ′(π), C∞(K ′/M ′

H)) = 1,

where MH is the centralizer of a generic element in g−θ,−σ in H ∩K,

and M ′
H is that of g′−θ,−σ in H ′ ∩ K ′. This condition is satisfied, in

particular, when KC/MH,C and K ′
C/M

′
H,C are spherical. However, the

settings that we will treat in Sections 7 and 8 are more general.

We give some examples of Theorem 5.1 in Sections 7 and 8 in settings

where X is a symmetric space of G = GL(n,R) and G = U(p, q),

respectively.
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6 A Family of Representations of GL(n,R)

In this section we introduce a family of irreducible unitary repre-

sentations of GL(N,R) for N = n or n − 1 that are not necessarily

tempered, but are discrete series representations of a symmetric space

of GL(n,R).

6.1. Weyl’s Notation for Ô(N).

We observe that the maximal compact subgroup K = O(N) of G =

GL(N,R) is not of Harish-Chandra class when N is even; that is, the

adjoint action Ad(g) on g is not always inner. To discuss the branching

laws for (K,K ′) = (O(N), O(N−1)), particularly those concerning the

minimal K-types of discrete series representations of G for reductive

symmetric spaces G/H (see Theorem 5.3), we find that Weyl’s notation

(see [36, Chap. V, Sect. 7])—briefly recalled below—is more convenient

and uniform than the conventional description based on highest weight

theory.

Let Ô(N) denote the set of equivalence classes of irreducible repre-

sentations of O(N). Let Λ+(O(N)) be the set of λ = (λ1, . . . , λN) ∈ ZN

in one of the following forms.

Type I : (λ1, · · · , λk, 0, · · · , 0︸ ︷︷ ︸
N−k

),

Type II : (λ1, · · · , λk, 1, · · · , 1︸ ︷︷ ︸
N−2k

, 0, · · · , 0︸ ︷︷ ︸
k

),

where λ1 ≥ λ2 ≥ · · · ≥ λk > 0 and 0 ≤ 2k ≤ N .

For any λ ∈ Λ+(O(N)), let vλ be the highest weight vector of the

irreducible U(N)-module FU(N)(λ). Then there exists a unique O(N)-

irreducible submodule containing vλ, which we denote by FO(N)(λ).

Weyl established the following bijection:

(6.1) Λ+(O(N))
∼−→ Ô(N), λ 7→ FO(N)(λ).

6.2. Relative Discrete Series Representations of GL(2,R).
Let σa (a ∈ N+) denote the relative discrete series representation of
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GL(2,R) with the following property:

infinitesimal character
1

2
(a,−a) (Harish-Chandra parameter);

minimal K-type FO(2)(a+ 1, 0) (Blattner parameter).

We note that the restriction σa|SL(2,R) splits into the direct sum of

a holomorphic (resp. anti-holomorphic) discrete series representation

with minimal K-type Ca+1 (resp. C−(a+1)).

6.3. Certain Family of (Non-Tempered) Irreducible Repre-

sentations of GL(n,R).
Let G = GL(n,R). For an integer ℓ with 0 ≤ 2ℓ ≤ n, let Pℓ denote a

real parabolic subgroup of G whose Levi part is

Lℓ := GL(2,R)ℓ ×GL(n− 2ℓ,R).

For λ = (λ1, . . . , λℓ) ∈ Nℓ
+, we define a unitary representation of G

by means of normalized smooth parabolic induction:

(6.2) Πℓ(λ) := IndG
Pℓ

( ℓ⊗
j=1

σλj
⊗ 1

)
.

Then Πℓ(λ) is an irreducible unitary representation of GL(n,R) (cf.

[34]). Moreover, it is a tempered unitary representation if and only if

n = 2ℓ+ 1 or 2ℓ.

For 2k ≤ n − 1, and for ν = (ν1, . . . , νk), we shall use an analogous

notation πk(ν) for a family of irreducible unitary representations of

G′ = GL(n− 1,R).

6.4. Cohomological Parabolic Induction for GL(n,R).
An alternative construction of the representations Πq(λ) is given by

cohomological induction.

Let 2ℓ ≤ n and qℓ be a θ-stable parabolic subalgebra of gC ≃ gl(n,C)
with the real Levi subgroup

L ≡ NG(qℓ) ≃ (C×)ℓ ×GL(n− 2ℓ,R).

We set

Sℓ :=
1

2
dimK/L = ℓ(n− ℓ− 1).
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Suppose that λ = (λ1, . . . , λℓ) ∈ Zℓ satisfies λ1 > · · · > λℓ > 0. We

adopt a normalization such that the cohomological parabolic induction

RSℓ
qℓ
(Cλ) has a Z(g)-infinitesimal character given by

(6.3)
1

2
(λ1, . . . , λℓ, n− 2ℓ− 1, . . . , 1+2ℓ−n,−λℓ, . . . ,−λ1) ∈ Cn/Sn,

via the Harish-Chandra isomorphism. Then its minimal K-type is

given by

(6.4) µλ = (λ1 + 1, . . . , λℓ + 1, 0, . . . , 0) ∈ Λ+(O(n))

in Weyl’s notation.

The underlying (g, K)-module of the G-modules Πℓ(λ) can be de-

scribed in terms of cohomological parabolic induction:

(6.5) Πℓ(λ)K ≃ RSℓ
qℓ
(Cλ).

If n > 2ℓ then the O(n)-module FO(n)(µλ) stays irreducible when re-

stricted to SO(n), and its highest weight is given by

(λ1 + 1, . . . , λℓ + 1, 0, . . . , 0︸ ︷︷ ︸
[n
2
]−ℓ

) in the standard notation. If n = 2ℓ, then

FO(n)(µλ) splits into the direct sum of two irreducible SO(n)-modules

with highest weights (λ1 + 1, . . . , λℓ−1 + 1, λℓ + 1) and

(λ1 + 1, . . . , λℓ−1 + 1,−λℓ − 1).

The parameter λ = (λ1, . . . , λℓ) is in the “good range” with respect

to qℓ in the sense of [33] if the following condition is satisfied:

(6.6) λ1 > λ2 > · · · > λℓ > max(n− 2ℓ− 1, 0).

7 Restricting Discrete Series Representations for the

Symmetric Space GL(n,R)/(GL(p,R)×GL(n− p,R)) to

the Subgroup GL(n− 1,R)

In this section, we prove the existence of a non-zeroG′-homomorphism

from Π∞ to π∞, where Π ∈ Disc(X) and π ∈ Disc(Y ), by using the

“jumping fences” trick in the translation theorems for symmetry break-

ing, as explained in Section 2.
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Throughout this section, we consider the following setup: X = G/H,

Y = G′/(H ∩G′), where p+ q = n and

(G,H) = (GL(n,R), GL(p,R)×GL(q,R)),(7.1)

(G′, H ′) = (GL(n− 1,R), GL(p,R)×GL(q − 1,R)).(7.2)

The first two subsections focus on describing Disc(K/H ∩ K) and

Disc(G/H). We then apply Theorem 5.3 to prove the non-vanishing of

the period integral under the assumption on the minimal K-types, as

described in (5.5). We shall see that the parity condition allows us to

“jump the fences” for this interlacing pattern by iteratively applying

Theorems 2.1 and 2.2. This leads to the whole range of parameters

(λ, ν) for the non-vanishing of symmetry breaking in the restriction

G ↓ G′, as detailed in Theorem 7.8.

7.1. Description of Disc(K/H ∩K).

In the setting (7.1), the pair of maximal compact subgroups (K,H∩K)

is given by (O(p + q), O(p) × O(q)). The following result extends the

Cartan–Helgason theorem, which was originally formulated for con-

nected groups, to the case of disconnected groups.

Proposition 7.1. Let ℓ := min(p, q). In Weyl’s notation (see Section

6.1), Disc(O(p+ q)/O(p)×O(q)) is given by

{FO(p+q)(µ) : µ = (µ1, . . . , µℓ,

max(p,q)︷ ︸︸ ︷
0, . . . , 0) ∈ (2Z)p+q, µ1 ≥ · · · ≥ µℓ ≥ 0}.

If p ̸= q, or if µℓ = 0, then the O(p+ q)-module FO(p+q)(µ) remains

irreducible when restricted to SO(p + q). If p = q and µℓ ̸= 0, then

FO(p+q)(µ) decomposes into the direct sum of two irreducible SO(p+q)-

modules.

7.2. Discrete Series for GL(p+ q,R)/(GL(p,R)×GL(q,R)).
In this subsection, we provide a complete description of discrete series

representations for G/H in the setting of (7.1).

Let G = GL(n,R) and 0 ≤ 2ℓ ≤ n. As recalled in (6.2) and (6.5),

Πℓ(λ) denotes the irreducible unitary representation of G obtained via
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parabolic induction, or equivalently, through cohomological parabolic

induction.

Proposition 7.2. Let n = p + q and ℓ := min(p, q). Then the set of

discrete series representations for G/H is given by

{Πℓ(λ) : λ = (λ1, . . . , λℓ) ∈ (2Z+ 1)ℓ, λ1 > λ2 > · · · > λℓ > 0}.

The Z(gC)-infinitesimal character of the G-module Πℓ(λ) is non-

singular if (6.6) holds, or equivalently, if λℓ > n− 2ℓ− 1.

To verify Proposition 7.2, we make use of Matsuki–Oshima’s descrip-

tion [24] of discrete series representations, which may vanish, along with

a detailed computation of cohomological parabolic induction beyond

“good range”, specifically, when λℓ ≤ n− 2ℓ− 1 as in the similar case

thoroughly studied in [11]. We note that for such a singular parame-

ter λ, neither the irreducibility nor the non-vanishing of cohomological

parabolic induction is guaranteed by the general theory [33]. However,

it turns out that both non-vanishing and irreducibility do hold in our

specific setting.

We also derive an explicit formula for the minimal K-type µ(Πℓ) of

the G-module Πℓ(λ): it is given in Weyl’s notation as follows.

µ(Πℓ(λ)) = FO(n)(λ1 + 1, . . . , λℓ + 1, 0, . . . , 0).

7.3. Comparison of Minimal K-types for Two Groups G′ ⊂
G.

Let n = p + q. We realize H = GL(p,R) × GL(q,R) in the standard

block-diagonal form as a subgroup of G = GL(n,R), and we realize

G′ = GL(n− 1,R) as a subgroup of G, corresponding to the partition

n = (n− 1)+1. Accordingly, we obtain an embedding of the reductive

symmetric space

Y = GL(n− 1,R)
/(

GL(p,R)×GL(q − 1,R)
)

of G′ into X = G/H.

We recall from Proposition 7.2 that any discrete series representation

for X with a non-singular Z(gC)-infinitesimal character is of the form
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Πℓ(λ), where ℓ = min(p, q) and λ = (λ1, . . . , λℓ) ∈ (2Z+ 1)ℓ, satisfying

the regularity condition (6.6).

We now assume that 2p ≤ n − 1, where n = p + q. In this case,

ℓ = min(p, q) = min(p, q − 1). Let πℓ(ν) be the irreducible unitary

representation of G′ = GL(n − 1,R), as defined in the same way as

Πℓ(λ) forG = GL(n,R). Then, the set of discrete series representations
for the smaller symmetric space:

Y = G′/H ′ = GL(n− 1,R)
/(

GL(p,R)×GL(q − 1,R)
)

is given by{
πℓ(ν) : ν = (ν1, . . . , νℓ) ∈ (2Z+ 1)ℓ, ν1 > ν2 > · · · > νℓ > 0

}
.

With these preparations, we apply Theorems 5.1 and 5.3 to the pair

(Πℓ(λ), πℓ(ν)) ∈ Ĝ× Ĝ′. The assumption (5.4) on minimal K-types is

automatically satisfied for the pair (K,K ′) = (O(n), O(n−1)), whereas

the condition (5.5) is computed explicitly as follows.

Lemma 7.3. The condition (5.5) holds if and only if

(7.3) λ1 = ν1 > λ2 = ν2 > · · · > λℓ = νℓ > 0.

By Theorem 5.3, we obtain the following.

Proposition 7.4. Suppose 2ℓ ≤ n− 1. Then we have

dimHomG′(Πℓ(λ)
∞|G′ , πℓ(ν)

∞) = 1

for any λ ∈ (2Z+ 1)ℓ and ν ∈ (2Z+ 1)ℓ satisfying (7.3).

Remark 7.5. Alternatively, we can prove Proposition 7.4 by relying on

the isomorphism (6.5) and Mackey theory. To do this, we use the fact

that the G′-action on the generalized real flag manifold G/Pℓ has an

open dense orbit, and that the isotropy subgroup is contained in P ′
ℓ,

which is a parabolic subgroup of G of the same type.
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7.4. Jumping Fences.

In this section, we analyze a phenomenon in which a certain parity

condition allows us to “jump the fence”, of the interleaving pattern

in Theorems 2.1 and 2.2. We discover that this phenomenon indeed

occurs for some geometric settings in the context of symmetry breaking

for GL(n,R) ↓ GL(n − 1,R). As a result, we provide a refinement of

the (non-)vanishing results of symmetry breaking.

We begin with the setting where Πℓ(λ) are irreducible unitary rep-

resentations of G, and πk(ν) are those of G′, with 0 ≤ 2ℓ ≤ n and

0 ≤ 2k ≤ n− 1, as introduced in Sections 6.3 and 6.4. In this general-

ity, we impose a slightly stronger than the good range condition (6.6),

that is, the following condition on the parameter λ1, . . . , λℓ:

(7.4) λ1 > λ2 > · · · > λℓ > max(n− 2ℓ− 1, n− 2k − 3, 0).

Remark 7.6. For the application of Corollary 7.7 to Theorem 7.8, we

use the case where ℓ = k. In this case, or more generally, if ℓ ≤ k + 1,

the condition (7.4) reduces to the good range condition (6.6).

Corollary 7.7. Let ν ∈ (2Z+ 1)k satisfying

(7.5) ν1 > ν2 > · · · > νk > max(0, n− 2k − 2).

Then the following two conditions are equivalent:

(i) there exists λ ∈ (2Z+ 1)ℓ satisfying (7.4) such that

HomG′(Πℓ(λ)
∞|G′ , πk(ν)

∞) ̸= {0};

(ii) for every λ ∈ (2Z+ 1)ℓ satisfying (7.4), one has

HomG′(Πℓ(λ)
∞|G′ , πk(ν)

∞) ̸= {0}.

Thus, Corollary 7.7 allows us to tear down all the “fences” of the

weakly interleaving pattern given by Lemma 7.3, resulting in the fol-

lowing result:

Theorem 7.8. Suppose 2ℓ < n. Then

(7.6) dimHomG′(Πℓ(λ)
∞|G′ , πℓ(ν)

∞) = 1
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for any λ, ν ∈ (2Z+ 1)ℓ satisfying the regularity conditions:

λ1 > λ2 > · · · > λℓ > n− 2ℓ− 1,

ν1 > ν2 > · · · > νℓ > n− 2ℓ− 1.

We already know that the left-hand side of (7.6) is either 0 or

1, according to the multiplicity-freeness theorem [30] for GL(n,R) ↓
GL(n − 1,R), since Πℓ(λ) and πℓ(ν) are irreducible as G- and G′-

modules, respectively. Our claim is that the multiplicity is non-zero,

as a consequence of “jumping all the fences”.

8 Restricting Discrete Series Representations for the

Symmetric Spaces U(p, q)/(U(r, s)× U(p− r, q − s)) to the

Subgroup U(p− 1, q)

In this section, we revisit the case where

(G,G′) = (U(p, q), U(p− 1, q)),

and discuss the branching of the restriction Π|G′ , where Π is a non-

tempered irreducible representation of G. Specifically, we consider a

discrete series representation Π for the symmetric space

G/H = U(p, q)/(U(r, s)× U(p− r, q − s)),

and prove that HomG′(Π∞|G′ , π∞) ̸= 0 for some family of irreducible

representations π ∈ Ĝ′, which are not necessarily tempered.

The irreducible unitary representations π of the subgroup G′ for

which HomG′(Π∞|G′ , π∞) ̸= 0 were completely determined when (r, s) =

(0, 1), as a particular case of [12, Thm. 3.4], which corresponds to the

discretely decomposable case. In the case where π occurs as a discrete

series representation for a symmetric space G′/H ′, a non-vanishing re-

sult was recently proven in [27] when (r, s) = (1, 0).

We provide a non-vanishing theorem in Theorem 8.6 for the general

case of (p, q, r, s) under a certain interleaving condition on the parame-

ters. Our proof again utilizes the non-vanishing theorem of the period

integral for specific parameters, as stated in Theorem 5.3, as well as

the non-vanishing result of symmetry breaking under translations in-

side “fences”, as stated in Theorem 2.5.
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8.1. A Family of (Non-Tempered) Irreducible Unitary Rep-

resentations of U(p, q).

In this subsection, we define a family of irreducible unitary represen-

tations of G = U(p, q). In the next subsection, Proposition 8.5 shows

that that any discrete series representation for the symmetric space

X = U(p, q)/(U(r, s)×U(p− r, q− s)) is of this form when 2r ≤ p and

2s ≤ q.

Let j be a compact Cartan subalgebra, {H1, . . . , Hp+q} be the stan-

dard basis
√
−1j, and {f1, . . . , fp+q} its dual basis. We fix a positive

system of ∆(kC, jC) by defining

∆+(kC, jC) = {fi − fj : 1 ≤ i < j ≤ p or p+ 1 ≤ i < j ≤ p+ q}.

Given Z = (z1, . . . , zp+q) ∈
√
−1j ≃ Rp+q, we define a θ-stable par-

abolic subalgebra q ≡ q(Z) = l + u of gC = gl(p + q,C) such that the

set of weights of the unipotent radical u is given by

∆(u, jC) = {α ∈ ∆(gC, jC) : α(Z) > 0}.

Any θ-stable parabolic subalgebra of gC is K-conjugate to q(Z) for

some Z ∈ Rp
≥ × Rq

≥. We are particularly interested in the following:

Setting 8.1. Let 0 ≤ 2r ≤ p, 0 ≤ 2s ≤ q, and

(8.1)

Z = (x1, . . . , xr, 0
p−2r,−xr, . . . ,−x1; y1, . . . , ys, 0

q−2s,−ys, . . . ,−y1)

with x1 > · · · > xr > 0, y1 > · · · , ys > 0, and xi ̸= yj for any i, j.

In this case, the (real) Levi subgroup L, the normalizer of the θ-

stable parabolic subalgebra q(Z) in G, depends only on r and s, and

is given by

(8.2) L ≡ LU
p,q;r,s ≃ T2r+2s × U(p− 2r, q − 2s).

Lemma 8.2. Let G = U(p, q). We fix r and s such that 2r ≤ p

and 2s ≤ q. Then, there is a one-to-one correspondence among the

following three objects:

(i) θ-stable parabolic subalgebras q ≡ q(Z), where Z is of the form as

given in Setting 8.1.
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(ii) Interleaving patterns D ∈ P(Rr,s) in Rr
> × Rs

>.

(iii) Data κ = {(rj), (sj),M} with 1 ≤ M ≤ min(r, s) and

(8.3) 0 ≤ r1 < · · · < rM−1 < rM = r, 0 < s1 < · · · < sM−1 ≤ sM = s.

Remark 8.3. We allow the cases r1 = 0 or sM−1 = sM , but assume that

s1 > 0 and rM−1 < rM .

Proof. We describe the natural morphisms, which establish the one-to-

one correspondence among (i), (ii) and (iii).

(i) ⇔ (ii) By definition, an interleaving pattern D in P(Rr,s) defines a

θ-stable parabolic subalgebra q(Z) via (8.1). Conversely, it is clear that

the θ-stable parabolic subalgebra q(Z) associated with Z in Setting 8.1

depends solely on the interleaving pattern of x, y in Rr
> × Rs

>.

(ii) ⇔ (iii) Given a condition in (8.3), we associate the following inter-

leaving pattern D in Rr
> × Rs

> defined by

(8.4)

x1 > · · · > xr1 > y1 > · · · > ys1 > xr1+1 > · · · > xr2 > ys1+1 > · · ·

· · · > ysM−1
> xrM−1+1 > · · · > xrM > ysM−1+1 > · · · > ysM ,

and vice versa. □

Let D be an interleaving pattern in Rr
>×Rs

> as in (8.4). For A ∈ R,
we set

D>A := {(x, y) ∈ D : xi > A, yj > A for any i, j}.

Suppose that L = T2r+2s × U(p − 2r, q − 2s) is the real Levi sub-

group for the θ-stable parabolic subalgebra q, which is associated to

an interleaving pattern D ∈ P(Rr,s) in Lemma 8.2. For λ = (x, y) ∈
(Z+ p+q−1

2
)r+s, we define a one-dimensional representation of the dou-

ble covering group of the torus T2(r+s), to be denoted by Cλ̃, such that

its differential is given by the formula (8.1). We extend it to a one-

dimensional representation of q = l+u, by letting u(p−2r, q−2s)+u act

trivially. The character Cλ̃ is in the fair range (respectively, in the good

range) with respect to q in the sense of [33], if λ ∈ D>0 (respectively,

λ ∈ D>Q), where we set

Q :=
1

2
(p+ q − 1)− r − s.



RESTRICTION OF Aq(λ) FOR (GL(n,R), GL(n− 1,R)) 35

When λ ∈ D>0, cohomological parabolic induction gives a unitariz-

able (g, K)-module, which is possibly zero ([33]). It is irreducible if

non-zero. Let Πλ denote the unitarization. The unitary representation

Πλ is non-tempered if p ̸= 2r and q ̸= 2s.

In our normalization, the Z(gC)-infinitesimal character of the G-

module Πλ is given by

(8.1)⊕ (Q,Q− 1, . . . , 1−Q,−Q) ∈ Cp+q/Sp+q.

When D>Q, the general theory guarantees that Πλ is non-zero and that

the highest weight of its minimal K-type is given as follows:

(µλ)i = −(µλ)p+1−i = λi +
−p+ q + 1

2
+ ℓi for 1 ≤ i ≤ r,

(µλ)p+i = −(µλ)p+q+1−i = λr+i +
p− q + 1

2
− ℓr+i for 1 ≤ i ≤ s,

(µλ)i = 0 otherwise.

Here, we define ℓi ≡ ℓi(D) ∈ Z for 1 ≤ i ≤ r + s, depending on the

interleaving pattern D, by

ℓi(D) :=♯{xk : xk > xi} − ♯{yk : yk > xi} for 1 ≤ i ≤ r,

ℓr+i(D) :=♯{xk : xk > yi} − ♯{yk : yk > yi} for 1 ≤ i ≤ s.

Example 8.4. Let (r, s) = (3, 2) and D = {x1 > y1 > y2 > x2 > x3}.
Then

ℓ1(D) = 0, ℓ2(D) = −1, ℓ3(D) = 0; ℓ4(D) = 1, ℓ5(D) = 0.

8.2. Discrete Series Representations for the Symmetric Space

U(p, q)/(U(r, s)× U(p− r, q − s)).

Let H = U(p1, q1) × U(p2, q2) be a natural subgroup of G = U(p, q),

where p1 + p2 = p and q1 + q2 = q. The symmetric space G/H has

a discrete series representation if and only if the rank condition (5.1)

holds, that is,

(8.5) min(p1, p2) + min(q1, q2) = min(p1 + q1, p2 + q2).

From now on, without loss of generality, we assume that

H = U(r, s)× U(p− r, q − s) with 2r ≤ p and 2s ≤ q.
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Discrete series representations for a reductive symmetric space G/H

are decomposed into families corresponding to Hd-closed orbits on the

real flag variety of Gd. Here, (Gd, Hd) is the dual symmetric pair of

(G,H), see [4, 24]. In the above setting, we have

(Gd, Hd) = (U(r + s, p+ q − r − s), U(r, p− r)× U(s, q − s)),

and there are (r+s)!
r!s!

closed orbits of the subgroup Hd on the real flag

variety of Gd. These orbits are parametrized by interleaving patterns

P(Rr,s) in Rr
> × Rs

>.

Proposition 8.5. Suppose 0 ≤ 2r ≤ p and 0 ≤ 2s ≤ q. Then the set

of discrete series representations

Disc
(
U(p, q)/(U(r, s)× U(p− r, q − s))

)
can be described as the disjoint union∐

D∈P(Rr,s)

{
Πλ : λ ∈ D>0 ∩ (Z+ p+q−1

2
) r+s

}
.

As mentioned in the previous subsection, Πλ may vanish if Cλ̃ is not

in the good range, specifically, if λ ∈ D>0 \D>Q. The condition for the

non-vanishing of Πλ involves a number of inequalities of λ that depend

heavily on D ∈ P(Rr,s) (see [11, Chap. 5]).

8.3. Branching for U(p, q) ↓ U(p− 1, q).

We are ready to state our main results of this section.

Theorem 8.6. Suppose that 0 ≤ 2r ≤ p − 1, 0 ≤ 2s ≤ q and

D,D′ ∈ P(Rr,s). Let q be the θ-stable parabolic subalgebra of gC and

({ri}, {si},M) be the data, associated with D, as in Lemma 8.2. Simi-

larly, let q′ be the θ-stable parabolic subalgebra of g′C and ({r′j}, {s′j},M ′)

be the data, associated with D′. We set Q = 1
2
(p + q − 1)− r − s and

Q′ = Q− 1
2
.

Assume that D = D′, or equivalently that M ′ = M , r′i = ri (1 ≤ i ≤
M) and s′i = si (1 ≤ i ≤ M). Then we have the following identity:

(8.6) dimHomG′(Π∞
λ |G′ , π∞

ν ) = 1,
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if λ = (x, y) ∈ D>Q ∩ (Z+Q)r+s and ν = (ξ, η) ∈ D′
>Q′ ∩ (Z+Q′)r

′+s

satisfy the following interleaving pattern:

x1 > ξ1 > · · · > xr1 > ξr1 > η1 > y1 > · · · > ηs1 > ys1 >

> xr1+1 > ξr1+1 > · · · > xr2 > ξr2 > ηs1+1 > ys1+1 > · · · > ηs2 > ys2 >

· · · > xrM > ξrM > ηsM−1+1 > ysM−1+1 > · · · > ηsM > ysM .

Remark 8.7. The interleaving pattern on λ = (x, y) and ν = (ξ, η) in

Theorem 8.6 is equivalent to that [DD′+] ∈ P(Rr+1,s) × P(Rr,s) is a

coherent pair, where [DD′+] is an interleaving pattern of (λ, xr+1, ν),

defined by the inequalities D for the entries of λ and ν, along with the

condition that xr+1 is smaller than any of the entries of λ and ν. For

various equivalent definitions of “coherent pairs”, we refer to [8].

By the stability theorem for multiplicities in symmetry breaking

within fences (Theorem 2.5), the proof of Theorem 8.6 reduces to the

following proposition:

Proposition 8.8. In the setting and assumptions of Theorem 8.6, the

equality (8.6) holds if λ = (x, y) ∈ Rr+s and ν = (ξ, η) ∈ Rr′+s satisfy

following conditions:

(8.7)

xi = ξi +
1
2

(1 ≤ i ≤ r),

yi = ηi − 1
2

(1 ≤ i ≤ s).

Proof. We apply the non-vanishing theorem for the period integral of

discrete series representations (Theorem 5.3) to the symmetric spaces

X = G/H and Y = G′/H ′, where G′ = U(p − 1, q) is realized as a

subgroup of G such that H ′ := H ∩G′ ≃ U(r, s)× U(p− r − 1, q − s).

Condition (8.7) then ensures that the assumption (5.5) on minimal

K-types in Theorem 5.3 is satisfied, while (5.4) is immediate. □

By Theorem 2.5, the result in Proposition 8.8 extends to all the

parameters stated in Theorem 8.6 via translations within the initial

fences. Thus, the non-vanishing of symmetry breaking is established,

completing the proof of Theorem 8.6.
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In contrast to the GL(n,R) case in Section 7.4, we note that jumping

the fences is prohibited in the U(p, q) case due to a different parity

condition.

9 Remarks and Examples

In this section, we make some general remarks and illustrate our

results with examples of tempered and non-tempered representations,

including extensions to limits of discrete series representations.

9.1. Geometric Observations. Following [18, Def. 3.1], we recall

the generalized notions of “Borel subalgebras” (relative Borel subal-

gebras) and complex Levi subalgebras for reductive symmetric spaces

G/H associated with involutive automorphisms σ of G. These notions

were used to refine a generalization of Casselman’s embedding theorem

[19] to representations with H-distinguished vectors.

Let GU be a maximal compact subgroup of GC, chosen so that GU ∩
G and GU ∩ H are also maximal compact subgroups of G and H,

respectively. We fix an Ad(G)-invariant, non-degenerate symmetric

bilinear form on the Lie algebra g, which is also non-degenerate on the

subalgebra h. We write g = h+ h⊥ for direct sum decomposition, and

gC = hC + h⊥C for its complexification.

Recall that each hyperbolic element Y ∈ g determines a parabolic

subalgebra of g, consisting of the sum of eigenspaces of ad(Y ) corre-

sponding to non-negative eigenvalues.

Definition 9.1 (Relative Borel subalgebra for G/H, see [18]). Let

(G,H) be a reductive symmetric pair. A Borel subalgebra bG/H for

G/H is a parabolic subalgebra of gC. It is defined by a generic element

of h⊥C ∩
√
−1gU or by its conjugate under an inner automorphism of

GC.

The relative Borel subalgebra bG/H is not necessarily solvable, and

thus its Levi subalgebra lG/H is not always abelian. We note that bG/H

and lG/H are determined solely from the complexified symmetric pair

(gC, hC).
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The Levi subalgebra of the relative Borel subalgebra bG/H for the

symmetric space

G/H = GL(n,R)/(GL(ℓ,R)×GL(n− ℓ,R))

is given by

(9.1) lG/H = C2ℓ ⊕ gl(n− 2ℓ,C)

if 2ℓ ≤ n.

On the other hand, for the group G = U(p, q), the symmetric spaces

U(p, q)/(U(r, s)× U(p− r, q − s)), for 2r ≤ p and 2s ≤ q

are not isomorphic to each other for different (r, s). However, they share

the same complex Levi subalgebra as long as r+s is constant (say = ℓ).

The corresponding complex Levi subalgebras are also isomorphic to the

complex Levi subalgebra (9.1) of the symmetric space

GL(n,R)/(GL(ℓ,R)×GL(n− ℓ,R)).

In contrast, the real Levi subgroups LU
p,q;r,s that appear in cohomo-

logical parabolic induction are different. For the symmetric spaces

U(p, q)/(U(r, s)× U(p− r, q − s)), the real Levi subgroup is given by

(9.2) LU
p,q;r,s = T2r+2s × U(p− 2r, q − 2s),

whereas for the symmetric space GL(n,R)/(GL(ℓ,R)×GL(n− ℓ,R)),
the corresponding real Levi subgroup is

LR
n;p = (C×)ℓ ×GL(n− 2ℓ,R).

See also [25] for further examples in more details.

Remark 9.2. (1) The real Levi subgroups of a symmetric space are

Levi subgroups of θ-stable parabolic subgroups which were used

to obtain the representations in the discrete spectrum of the

symmetric space via cohomological induction.

(2) Observe that even in the rank one case, the non-compact sym-

metric spaces

LU
p,q;1,0/L

U
p,q;1,0 ∩ (U(1, 0)× U(p− 1, q))
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and

LR
n,1/L

R
n,1 ∩ (GL(1,R)×GL(n− 1,R))

of the real Levi subgroups are not isomorphic. On the other

hand, they have the same complex Levi subalgebra given in

Definition 9.1.

(3) Observe that the complex Levi subalgebras of the symmetric

spaces U(2n, 2n)/(U(n, n)×U(n, n)) and U(2n, 2n)/GL(2n,C)
are isomorphic.

9.2. Arthur Packets and Discrete Series Representations for

Symmetric Spaces. We recall some results about Arthur packets and

representations in the discrete spectrum for the symmetric spaces.

Given a fixed ℓ so that 2ℓ ≤ n and non-singular integral infinites-

imal character (6.3), C. Moeglin and D. Renard showed in [25] that

all the representations with this infinitesimal character, which are in

the discrete spectrum of GL(n,R)/(GL(ℓ,R) × GL(n − ℓ,R)), are in

the same Arthur packet A(λ). However, Arthur packets for GL(n,R)
contains only one representation [1]. Thus the irreducible unitary rep-

resentation Πℓ(λ) in Proposition 7.2, satisfying the regularity condition

λ1 > · · · > λℓ−1 > λℓ > max(n−2ℓ−1, 0), is the only representation in

the Arthur packet with this infinitesimal character. In contrast the uni-

tary representations in the discrete spectrum of the symmetric spaces

U(p, q)/(U(1, 0)× U(p− 1, q)) and U(p, q)/(U(0, 1)× U(p, q − 1)),

which have the same non-singular infinitesimal character, are not iso-

morphic, but they are in the same Arthur packet [27]. More surprisingly

for fixed non-singular integral infinitesimal character the representa-

tions in discrete spectrum of the symmetric spaces

U(2n, 2n)/(U(n, n)× U(n, n)) and U(2n, 2n)/GL(2n,C)

are in the same Arthur packet, although the symmetric spaces are not

isomorphic. Thus any generalization of the GGP conjecture to unitary

symmetric spaces for p+ q ≡ 0 mod 4 has to take this into account.
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Using the observation that Arthur packets for GL(n,R) contain ex-

actly one representation, these ideas lead to the reformulation of the

conclusion of Theorem 7.8 as follows.

Let Π and π be discrete series representations in

L2(GL(n,R)/(GL(ℓ,R)×GL(n− ℓ,R))),

and

L2(GL(n− 1,R)/(GL(ℓ,R)×GL(n− ℓ− 1,R))),

respectively, where 2ℓ ≤ n − 1. We also assume that they have non-

singular infinitesimal characters. Let AΠ and Aπ be Arthur packets,

such that

Π ∈ AΠ and π ∈ Aπ.

We can summarize our discussion as follows.

Corollary 9.3. Under the above assumptions we have:

HomG′(Π|G′ , π) = C

for all pairs of representations Π ∈ AΠ and π ∈ Aπ.

9.3. “Operations on the Unitary Dual”. In the article [32], A.

Venkatesh discusses the restriction of representations Πℓ(λ) ofGL(n,R)
to a subgroup GL(n − 1,R) embedded in the upper left corner as the

stabilizer of the last coordinate vector. More generally in this paper, he

discusses for GL(n), the effect on the unitary dual of the following op-

erations: restriction to a Levi subgroup, induction from Levi subgroups

and tensor products. Without explicitly computing symmetry break-

ing operators or referring to symmetric spaces, using only the Mackey

machine, A. Venkatesh considers representations induced from a rep-

resentation of GL(p,R)×GL(n− p,R) to GL(n,R) which is tempered

on GL(p,R) and trivial on GL(n − p,R) and their restriction to the

subgroup GL(n− 1,R) proving conjectures by L. Clozel about the au-

tomorphic support of the restriction. We quote from the abstract of the

article by L. Clozel [3]: “The Burger–Sarnak principle states that the

restriction to a reductive subgroup of an automorphic representation

of a reductive group has automorphic support. Arthur’s conjectures
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parametrize automorphic representations by means of the (Langlands)

dual group. Taken together, these principles, combined with some new

arguments, imply that unipotent orbits in a Langlands dual behave

functorially with respect to arbitrary morphisms H → G of semisim-

ple groups. The existence of this functoriality is proven for SL(n),

and combinatorial descriptions of it (due to Kazhdan, Venkatesh, and

Waldspurger) are proposed.”

In this article, we used different techniques to analyze the restric-

tion of a family of non-tempered unitary representations of GL(n,R)
to GL(n− 1,R) and proved the existence of non-trivial SBOs. We also

provided a proof for symmetry breaking for some tempered represen-

tations.

9.4. A GGP Theorem for the Symmetric Spaces

GL(n,R)/GL(p,R)×GL(n−p,R) and U(p, q)/U(r, s)×U(p−r, q−s)?

Around 1992, B. Gross and D. Prasad published conjectures concerning

the restriction of discrete series representations of orthogonal groups to

smaller orthogonal groups [6]. These have been generalized to unitary

groups and have been proven by H. He [10] for individual discrete series

representations.

These ideas can be generalized in two directions:

• understand the symmetry breaking of discrete series of sym-

metric spaces and discrete series of subspaces,

• understand the symmetry breaking of representations in Arthur

packets of groups and of subgroups.

Discrete series representations of a symmetric space G/H are gener-

ally not tempered representations. See [2] for the classification of G/H

such that the regular representation on L2(G/H) is non-tempered.

In [25] D. Renard and C. Moeglin examine the relationship between

Arthur packets and discrete series representations of symmetric spaces

of classical groups. The representations in the discrete spectrum of

symmetric spaces are members of an Arthur packet [25]. Not all mem-

bers of such an Arthur packet are discrete series representations of
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a symmetric space, and an Arthur packet may contain discrete se-

ries representations of several symmetric spaces [25]. Generalizing the

GGP conjectures to symmetric spaces involves generalizing them to

the subset of representations in a given Arthur packet which are dis-

crete series of a symmetric space. Moeglin and Renard showed for real

classical groups that if a representation in an Arthur packet is in the

discrete spectrum of a symmetric space, then another representation

in the same packet is either in the discrete spectrum of no symmetric

space or in the discrete spectrum of a unique symmetric space [25].

On the other hand the results in [27] suggest that it may be possible

to generalize the GGP conjectures to discrete series representations of

symmetric spaces or Stiefel manifolds.

9.5. Examples That Illustrate Our Results.

9.5.1 Branching of Limit of Discrete Series. By Theorems 2.1 and 2.2

we can deduce non-vanishing results concerning symmetry breaking for

some limits of discrete series representations from those for discrete

series representations. As an illustration, we consider the pair

(G,G′) = (U(2, 1), U(1, 1)).

We use the conventions from Sections 3 and 8.

The group G = U(2, 1) has three families of discrete series repre-

sentations. They are parametrized by the Harish-Chandra parameters

(x1, x2, y) ∈ (Z)2> × Z:

(9.3) x1 > x2 > y, x1 > y > x2, y > x1 > x2,

which we also denote symbolically, following [10], by

+ +−, +−+, −++.

The group G′ = U(1, 1) has two families of discrete series rep-

resentations. They are parametrized by Harish-Chandra parameters

(ξ, η) ∈ (Z+ 1
2
)2:

ξ > η, and η > ξ,

which are denoted symbolically by ⊕⊖ and ⊖⊕, respectively.
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The τ -invariants (Definition 2.8) of the representations Π(x1,x2,y),

Π(x1,y,x2), Π(y,x1,x2) of G = U(2, 1) corresponding to (9.3) are e1 − e2,

none, and e2 − e3, respectively. Applying the vanishing theorem (The-

orem 2.9), we obtain that

HomG′
(
Π(x1,x2,y)|G′ , π(ξ,η)

)
= 0

whenever, for instance, x1 > x2 > ξ > y > η or ξ > x1 > x2 > y > η.

By Theorem 2.9), HomG′(Π(x1,x2,y)|G′ , π(ξ,η)) vanishes in a total of 24

interleaving patterns.

An explicit condition on

(x1, x2, y; ξ, η) ∈ Z3 ×
(
Z+ 1

2

)2
such that

HomG′
(
Π(x1,x2,y)|G′ , π(ξ,η)

)
̸= 0

is given in the left column of Table 9.1, as shown by H. He [10]. These

conditions are described by interleaving patterns, for which an intrinsic

explanation was provided in Theorem 3.2 from a different perspective.

Case interleaving δ δ′ limit of discrete series

I x1 > ξ > x2 > y > η ++− ⊕⊖ x1 > ξ > x2 = y > η

II x1 > ξ > η > y > x2 +−+ ⊕⊖ x1 > ξ > η > y = x2

III x1 > y > x2 > ξ > η +−+ ⊕⊖ x1 = y > x2 > ξ > η

x1 > y = x2 > ξ > η

IV x1 > y > η > ξ > x2 +−+ ⊖⊕ x1 = y > η > ξ > x2

V η > ξ > x1 > y > x2 +−+ ⊖⊕ η > ξ > x1 = y > x2

η > ξ > x1 > y = x2

VI η > y > x1 > ξ > x2 −++ ⊖⊕ η > y = x1 > ξ > x2

Table 9.1. Interleaving patterns for (U(2, 1), U(1, 1))

For instance, fix ξ > η, and consider discrete series representation

π(ξ,η) of G
′ = U(1, 1). The interleaving patterns corresponding to dis-

crete series representations Π(x1,x2,y) of G = U(2, 1) satisfying

HomG′(Π(x1,x2,y)|G′ , π(ξ,η)) ̸= 0
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are Cases I, II, and III. Among these three, only interleaving pattern II

is coherent in the sense of [8, Def. 4.5].

The nondegenerate limits of discrete series representations corre-

sponding to (9.3) are given by x2 = y, x1 = y or y = x2, and y = x1,

respectively. They occur as a direct summand of certain reducible prin-

cipal series representations. Applying once again Theorems 2.1 and 2.2

on translation functors for symmetry breaking, we deduce that there

exists a nonzero symmetry breaking operator between the limit of a

generic discrete series representation and a discrete series representa-

tion of U(1, 1). This application to limits of discrete series represen-

tations is new. For example, in the interleaving pattern III, the cases

x1 = y or x2 = y are allowed. A similar argument applies to the

other interleaving patterns I–VI. These conditions are summarized in

the right column of Table 9.1.

9.5.2 Tempered Case (q = 2s). We now illustrate Theorem 8.6 with

an example

(G,G′) = (U(3, 2), U(2, 2))

with

(H,H ′) = (U(1, 1)× U(2, 1), U(1, 1)× U(1, 1)).

There are, up to conjugation, two θ-stable parabolic subalgebras of

gC = gl(5,C) that describe discrete series representations for G/H.

They are parametrized, as in Lemma 8.2, by interleaving patterns D ∈
P(Rr,s) in Rr

> × Rs
>, or equivalently by the data κ = {(rj), (sj),M}

with 1 ≤ M ≤ min(r, s), where (r, s) = (1, 1):

Case 1: D(1) = {x > y > 0}, that is, κ(1) = {(1), (1), 1},
Case 2: D(2) = {y > x > 0}, that is, κ(2) = {(0), (1), 1}.

Accordingly, the set of discrete series for G/H is given by

Disc(G/H) = {Π(x,y) : (x, y) ∈ Z2 ∩ (D(1) ∪D(2))}.

The representation Π(x,y) has a Z(gC)-infinitesimal character

(x, 0,−x, y,−y) ∈ C5/S5,

while its minimal K-type has highest weight
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µλ =

(x, 0,−x, y,−y), in Case 1,

(x− 1, 0, 1− x, y + 1,−y − 1), in Case 2.

Similarly, up to conjugation, there are two θ-stable parabolic subal-

gebras of g′C = gl(4,C) that describe discrete series representations for
G/H. They are parametrized as

Case 1: D′(1) = {ξ > η > 0}, that is, κ′(1) = {(1), (1), 1},
Case 2: D′(2) = {η > ξ > 0}, that is, κ′(2) = {(0), (1), 1}.

Thus, the set of discrete series for G′/H ′ is given by

Disc(G′/H ′) = {π(ξ,η) : (ξ, η) ∈ (Z+ 1
2
)2 ∩ (D′(1) ∪D′(2))}.

The representation π(ξ,η) has a Z(g′C)-infinitesimal character:

(ξ,−ξ, η,−η) ∈ C4/S4,

while its minimal K-type has highest weight

µλ =

{
ξ + 1

2
, − ξ − 1

2
, η − 1

2
, 1

2
− η (Case 1),

ξ − 1
2
, 1

2
− ξ, η + 1

2
, − η − 1

2
(Case 2).

By the non-vanishing theorem of period integrals (Theorem 5.3),

HomG′(Π(x,y)|G′ , π(ξ,η)) ̸= 0

if {
x = ξ + 1

2
, y = η − 1

2
(Case 1),

x− 1 = ξ + 1
2
, y + 1 = η + 1

2
(Case 2).

Thus, Theorem 2.5 guaranteesx > ξ > η > y > 0 (Case 1),

η > y > x > ξ > 0 (Case 2).

These are the ingredients of Theorem 8.6.

Remark 9.4. In this specific example, all the discrete series represen-

tations are Harish-Chandra’s discrete series. The signatures of the

interleaving patterns are

+⊕⊖−+−⊖⊕+ (Case 1), ⊖−+⊕+⊕+−⊖ (Case 2);
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none of them forms a coherent pair in the sense of [8]. See [8, Def. 3.1]

for the definition of a signature of a pair of representations.

More generally, when q = 2s, discrete series representations for

G/H = U(p, q)/(U(r, s) × U(p − 2r, q − 2s)) are tempered for generic

parameters. It is worth noting that the non-vanishing results obtained

in Theorem 8.6 hold even when the interleaving patterns do not form

a coherent pair in the sense of [8, Def. 4.5].

9.5.3 Non-Tempered Case. Let

(G,H) = (U(p, q), U(p− 1, q)).

We begin with the rank-one symmetric spaces G/H and G′/H ′, where

(H,H ′) = (U(1)× U(p− 1, q), U(1)× U(p− 2, q)).

Then the real Levi subgroups for the symmetric spacesG/H andG′/H ′,

as given in (9.2), are

LU
p,q;1,0 = T2 × U(p− 2, q), LU

p−1,q;1,0 = T2 × U(p− 3, q),

respectively. In this rank-one setting, there is only one θ-stable par-

abolic subalgebra up to conjugation. For x ∈ N + p+q−1
2

and ξ ∈
N+ p+q−2

2
, Theorem 8.6 guarantees that

HomG′(Πx|G′ , πξ) ̸= 0

whenever x > ξ(> 0). Note that Πx is non-tempered if p ≥ 3. This

rank-one case is also discussed in [27].

Moreover, the stability theorem of multiplicities within fences (The-

orem 2.5) allows us to extend the non-vanishing result from Πx to the

representations obtained by cohomological induction from a character

(x1, x2) of L
U
p,q;1,0, as long as x1,−x2 > ξ. (The representation Πx cor-

responds to the case x1 = −x2 = x.) These representations do not

appear as discrete series representations for the symmetric space G/H

when x1 + x2 ̸= 0, but rather as discrete series for the indefinite Stiefel

manifolds U(p, q)/U(p− 1, q) which are not symmetric spaces; see the

case r = s = 1 in [11, Chap. 2, Sect˙ 3] for further details.
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We now consider the higher-rank, non-tempered case where

(H,H ′) = (U(r, s)× U(p− r, q − s), U(r, s)× U(p− 1− r, q − s)),

with 2r ≤ p− 1 and 2s ≤ q. In this setting, we have

rankG/H = rankG′/H ′ = r + s.

There are
(
r+s
r

)
θ-stable parabolic subalgebras with real Levi subgroup

LU
p,q;r,s = T2r+2s × U(p− 2r, q − 2s),

(see (9.2)) up to conjugation. The corresponding cohomologically in-

duced representations are non-tempered when q > 2s, yet Theorem 8.6

still guarantees non-vanishing of the corresponding symmetry breaking

operators.
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