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1 INTRODUCTION

Any finite-dimensional representation Il of a compact Lie group G
decomposes into a direct sum of irreducible representations when re-
stricted to a subgroup G’ of G. A classical result by H. Weyl (1946)
shows that there is an interlacing pattern between the highest weights
of the irreducible summands of II|¢ and of the highest weight of II
itself. Fix an irreducible representation 7 of G’ and consider the
dimension of Home (II|g/, ) as a function of the highest weight of
II. This function (multiplicity) takes only the values 0 and 1 and
we can read off the value from the interlacing pattern of the highest
weights. In this article, we provide a new proof of the classical result of
H. Weyl in Section 3 and describe analogous results for certain infinite-
dimensional representations of non-compact Lie groups, which are real
forms GL(n,C).
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In contrast to representations of compact Lie groups, the restriction
of an irreducible admissible representation of a reductive Lie group
to a non-compact subgroup G’ is generally not a direct sum of irre-
ducible representations. Instead of directly decomposing, it is useful
to consider symmetry breaking operators (SBOs), which are continu-
ous GG’-homomorphisms from a topological G-module to a topological
G'-module. In this article, we are concerned mainly with the category
M(G) of admissible smooth representations of G of finite length hav-
ing moderate growth, which are defined on topological Fréchet vector
spaces [35, Chap. 11]. Let Irr(G) denote the set of irreducible objects
in M(G).

We denote by

(11) HOHIG/(H‘G/,’]T)

the space of SBOs, that is, G’-homomorphisms from II € M(G) to
m € M(G'), where the operators are continuous in the corresponding
Fréchet topology. The dimension of (1.1) is referred to as the multi-
plicity, which we denote by [II|g : 7).

Explicit results on symmetry breaking and multiplicities for individ-
ual non-tempered representations are still sparse. For recent works, see
[17, 20, 21, 26] for example. If both G and G” are classical linear reduc-
tive Lie groups with complexified Lie algebras (gc, g¢) = (gl,41, gl,) or
(80,,41,50,), and they satisfy Harish-Chandra’s rank conditions, then
the GGP conjectures/theorems are mostly concerned with non-zero
symmetry breaking for L-packets or Vogan-packets of discrete series
representations [5].

For a pair of representations of groups (G, G'), where
G=GL(n,R), G'=GL(n—1,R),

the dimension of the space of symmetry breaking operators is at most
one [30]. In this article, we introduce a new approach to detecting
the non-vanishing of SBOs between irreducible representations that
are not necessarily tempered, along with a vanishing result and several

new non-vanishing results.
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In Section 2, we also introduce the notion of “fences” for interlacing
patterns, in contrast to the usual concept of “walls” for Weyl cham-
bers. While translation functors can significantly alter the nature of
symmetry breaking even inside the Weyl chamber (see Example 3.1 for
instance), the concept of “fences” plays a crucial role in understanding
the behavior of symmetry breaking under translations.

Building on the key results of Theorems 2.1 and 2.2, we prove a new
stability theorem for the multiplicities in symmetry breaking (Theorem
2.5). This theorem applies to general irreducible representations of
G and @', which are not necessarily tempered or even unitary. Here,
(G,G") denotes an arbitrary real form of the pair
(GL(n,C),GL(n—1,C)), and the theorem asserts that the multiplicity
remains constant unless one crosses “fences”.

In addition, we establish another new result: a general vanishing
theorem for symmetry breaking (Theorem 2.9), formulated in terms of
T-invariants of irreducible representations.

In Section 3, we illustrate these theorems through known examples
of symmetry breaking, focusing on tempered representations, such as
Weyl’s branching laws for finite dimensional representations of
(U(n),U(n — 1)) and the Gan—Gross—Prasad conjecture for discrete
series representations of the pair (U(p,q),U(p — 1,q)).

In general, proving non-vanishing of symmetry breaking is a diffi-
cult problem. However, thanks to the stability theorem for multiplici-
ties within fences (Theorem 2.5), it suffices to consider representations
specified by particular parameters (A, v) within the fences.

In Section 4, we apply this approach to the branching of special
unitary representations of GL(2m,R) to the subgroups GL(2m —1,R).
In this case, we also obtain non-zero multiplicities for some non-unitary
representations.

In Section 5, we develop a method to detect the existence of a non-
zero symmetry breaking operator using period integrals for reductive
symmetric spaces. Theorem 5.3 provides a new non-vanishing theorem
of period integrals related to discrete series representations of a pair
of reductive symmetric spaces. These results hold for representations
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that are not necessarily tempered; this is illustrated by examples in
Sections 7 and 8.

In Section 7, we discuss symmetry breaking between irreducible rep-
resentations in the discrete spectrum of

L*(G/H) = L*(GL(n,R) /(GL(p,R) x GL(n — p,R)))
and of
L*(G'/H') = L*(GL(n — 1,R) /(GL(p,R) x GL(n — p — 1,R))).

These representations are not tempered if 2p < n — 1.

For this analysis, we examine the phenomenon of “jumping fences” in
Section 7.4, in addition to the non-vanishing theorem of period integrals
(Theorem 5.3).

In Section 8, we discuss symmetry breaking between the irreducible

representations in the discrete spectrum of

L*G/H) = L*(U(p,q)/(U(r,s) x Ulp —r,q — 5)))
and of

LX(G'/H) = L*(U(p—1,9)/(U(r,s) x Ulp —r — 1,9 — 5))).

In Section 9, we conclude the article with some general remarks and
illustrate our results with examples of tempered and non-tempered rep-
resentations, as well as extensions to limits of discrete series represen-

tations.

Proofs of Theorems 2.1 and 2.2 are provided in [8], and details and
proofs of the results in Sections 4 through 8 will be published in forth-
coming articles [22, 23].

Notation: N={0,1,2,...,}, N, ={1,2,3,...,}, RZ = {z e R":
r1> - >r ), RE={z cR" 12y > - > 2.}, ZL = Z"NRL.
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2 SYMMETRY BREAKING UNDER TRANSLATIONS

Let G D G’ be any real forms of GL(n,C) D GL(n — 1,C).
In this section, we discuss the behavior of “translation functors” for

symmetry breaking operators (SBOs) between representations of G' and
G’

2.1. Harish-Chandra Isomorphism and Translation Functor.

Let gc = gl(N,C). We shall use N to refer to n or n — 1 later. We set

(2'1) pN = (N2_17N2_37"'71_2N)'

Let 3(gc) denote the center of the enveloping algebra U(gc). We nor-

malize the Harish-Chandra isomorphism

Homc 14(3(gc), C) ~ CV /&y,

in such a way that the trivial one-dimensional gc-module has the in-
finitesimal character py mod Gy.

For a g-module V and for 7 € Homc i¢(3(gc),C) ~ CV /Gy, let
P.(V) denote the 7-primary component of V', that is,

P(V)=J () Ker(z—7(2)"

k=0 ze€3(gc)

Let {f; : 4 =1,...,N} be the standard basis of Z". We focus on

the following translation functors in the Casselman-Wallach category
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M(G) or in the category of Harish-Chandra modules:

PT+f¢(PT(') ®(CN> if e = =+,

2.2 Prri() =
22 g P (Pr()®(CN)Y) ife=—1L

These functors are particular cases of the translation functors intro-
duced by J.C. Jantzen and G. Zuckerman.

2.2. Non-Vanishing Condition for Translating SBOs. Suppose
that I € M(G) (resp., 7 € M(G’)) has a 3(gc)-infinitesimal character
7€ C"/S,, (resp. 3(gr)-infinitesimal character 7' € C"!/&,,_1).

In [8], we have established the following theorems, which provide

useful information on symmetry breaking under translations.

Theorem 2.1. Let IT € M(G) and 7 € M(G'). Suppose that any
generalized eigenspaces of 3(gc) in 11 ® C" are eigenspaces.

(1) If Home (IT|gr, ) # {0}, then Homg (¢7Hi(I1)|qr, 7) # {0} for
any i such that 7; & {T{ — 3,7 — ,...,Th_1 — 3}.

(2) If Homg (1|, ) = {0}, then Homg (¢7Hi(I)|gr, ) = {0} for

1 ! 1

T

any © such that 7; & {1{ — 5,7 — 1 5 )

5,...7

Theorem 2.2. Let IT € M(G) and 7 € M(G'). Suppose that any
generalized eigenspaces of 3(gc) in I ® (C™)Y are eigenspaces.
(1) 1f Home: (Il ) # {0}, then Home (67~(11), x) # {0} for any i
such that 7, & {r{ + 1,5+ 4,7, +1}.

(2) If Homg (Il|g, ) = {0}, then Homg (67 /i(I)|gr,7) = {0} for
any © such that 7; € {T{ + 3,74+ 3, ., Th_1 + 3 }-

Theorems 2.1 and 2.2 are stated under the assumption that gen-
eralized eigenspaces of 3(gc) in II @ C* and 11 ® (C™)V are actual
eigenspaces. 'This condition holds generically; for example, it is al-
ways satisfied when G is compact, and it is also satisfied for any
Harish-Chandra discrete series representation of G = U(p, q) (see [8,
Prop. 5.5]).
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Theorems 2.1 and 2.2 reveal an intrinsic reason for the appearance of
interlacing patterns in certain branching laws, such as Weyl’s branch-
ing law and the Gan—Gross—Prasad conjecture, as we discuss in the
following section.

Building on Theorems 2.1 and 2.2, we establish in the remainder of
this section two useful results (Theorems 2.5 and 2.9), based on the
concept of fences (Definition 2.3).

2.3. Interleaving Pattern.
We set

RZ :={zx e R": 2y > -+ > x,},
RY :={z € R": 2y > - > 1,}.
72 =Z" NRY.

We introduce the notion of “fences” as combinatorial objects. This
serves as a refinement of the “walls” of the Weyl chambers when we
consider the branching for the restriction G | G', where (G, G') are any
real forms of (GL(n,C),GL(n — 1,C)).

Definition 2.3 (Interleaving Pattern and Fence). For x € R" and
y € R™, an interleaving pattern D in RY x RT is a total order among
{z1,..., 20, Y1,---,Ym}, which is compatible with the underlying in-
equalities x1 > 9 > -+ > x, and y; > y > - -+ > y,,,. For an adjacent
inequality between z; and y; such as z; > y; or y; > x;, we refer to the
hyperplane in R**” defined by z; = y; as a fence.

By an abuse of notation, we also use the same letter D to denote the
region in RZ x RY given by its defining inequalities.
Let B(R™™) denote the set of all interleaving patterns in RZ x RZ.

Example 2.4. There are 35 interleaving patterns for R x R? | such

>
as

D, :{(l’,y) < R4+3 1T > YL > T > Yg > T3 > Y3 > .7)4},

Dy ={(z,y) € R Y1 > Yo > T > To > Ty > Ty > Ys)
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The interleaving pattern Dy is also referred to as the interlacing pattern.

There are six fences associated with D, namely those given by

T1 =Y, Y1 = Ta, Ty = Y2, Yo = T3, T3 = Y3, and yz = T4.

In contrast, there are just two fences associated with Dy, namely those
given by

r1 =1y and x4 = ys.

We also consider interleaving patterns in ]Rg X Rg” such as 1 > y; >
Yo > X9, or those including equalities such as x1 = y; > x5 = ¥y or
r1 > Y1 > T > ys. These interleaving patterns will be called weak
interleaving patterns.

2.4. Stability Theorem for Multiplicities in Symmetry Break-
ing inside Fences.
This section establishes a stability theorem for the multiplicities in sym-
metry breaking under coherent continuation.
Let (G,G") = (GL(n,R),GL(n—1,R)) or (U(p,q),U(p —1,q)).
Let V(G) denote the Grothendieck group of M(G), that is, the
abelian group generated by X € M(G) modulo the equivalence re-
lation

X~Y+7

whenever there is a short exact sequence 0 - Y — X — Z — 0.

Let IT: £ + Z" — V(G) be a coherent family of G-modules, specifi-
cally, II satisfies the following properties:

(1) II, has a 3(gc)-infinitesimal character A if A € £ + Z™;

(2) I ® F~ > I, in V(G) for any finite-dimensional repre-
VEA(F)
sentation F' of G.

Theorem 2.5 (Stability Theorem in Symmetry Breaking). Suppose
that I1 € Irr(G) has a 3(gc)-infinitesimal character & satisfying

Let I1: £ + 7" — V(G) be the coherent family starting from I1¢ = II.
Let v be the infinitesimal character of m € Trr(G'). If (§,v) satisfies an
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interleaving pattern D in RY X RY, then we have
[H|G’ Z7T] = [H)\|G” . 7T]

for all X € E4+Z" such that (N, v) satisfies the same interleaving pattern
D.

Remark 2.6. (1) Such a coherent family exists uniquely because our
assumption guarantees that ¢ is non-singular.

(2) The concept of “fences” is a refinement of the Weyl chambers.
Hence, if we do not cross the fence, that is, if (A, v) € D, then A is non-
singular and remains in the same Weyl chamber with £&. Consequently;,
IT, is irreducible for any such .

We recall our notation that { f;}1<i<, is the standard basis of Z™. To
prove Theorem 2.5, we introduce the finite set defined by

E={tfi:1<i<n}CZ"

Lemma 2.7. Let D € B(R™™). For any (§,v) and (\,v) € D such
that \—& € 7, there exists a sequence \9) € E+7Z" (7 =0,1,2,...,N)
with the following properties:

MO = A =\ N NP eg AD )yeD for1<j<N.

Proof. For an interleaving pattern D, we define m(D) € {0,1,...,n}
as follows: m(D) := 0 if D implies y; > z1, and otherwise,

(2.4) m(D) := the largest i such that x; > y; in D.

There exists a unique element p € £ + Z™ such that (u,v) € D
and that p satisfies the following property for any A € £ + Z" with
(\,v) € D:

i >N ifm(D) <i<n.

First, we assume that A = p. Then it is readily verified by an
inductive argument that Lemma 2.7 holds for A\ = p.

Second, since the existence of the sequences {\V)}o<;<y in Lemma

2.7 defines an equivalence relation ~ among non-singular dominant

elements in & + Z", we have £ ~ u ~ A\, whence the lemma. 0
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Proof of Theorem 2.5. By Lemma 2.7, it suffices to prove Theorem 2.5
when A\ — ¢ € £. For example, suppose that A — & = f; for some
1 <i < n. Then, we have

1

1
§i¢{V1—§7V2—§,

because (\,v) and (&, v) satisfy the same interleaving property.

1
...,Vn—ﬁ}

On the other hand, since ¢ is non-singular and &, — &, € Z for any
1<a<b<n, &+ f; (1 <j<n) lies in the same Weyl chamber as €.
Therefore, g,y ~ qzﬁ?f 7(TI) is either irreducible or zero. Thus, all the
assumptions in Theorem 2.1 are satisfied, and we conclude

Ml = ] = [6¢™" (D) : ] # 0.

The multiplicity-freeness theorem concludes that [IIy|¢ : 7] = 1. The
case A — & = —f; can be proven similarly by using Theorem 2.2. 0

2.5. A General Vanishing Theorem for Symmetry Breaking.
The stability theorem for multiplicities in symmetry breaking (Theo-
rem 2.5) leads to a general vanishing theorem for symmetry breaking,
for which we provide a proof in this section (Theorem 2.9). The theo-
rem is formulated in terms of 7-invariants of representations, which we
briefly recall below.

For a non-singular weight &, the set of integral roots with respect to
¢ is defined by

R(¢) :={a € A(gc,ic) : (a¥,&) € Z}
={e,—eji#yj, &—& €L}

The weight £ is integral if R(§) = A(gc,ic). We define the system of
positive integral roots with respect to £ by

RY (&) :={e;—ej: & — & € NG},
and denote by U*(€) the corresponding set of simple roots in RT(¢).

Definition 2.8 (7-invariant). Suppose that II € Irr(G) has a non-
singular 3(gc)-infinitesimal character £. A simple root a € ¥(§) is
called a T-invariant of the representation II if

ey, =0 for every p € Z" such that (", &+ p) = 0.
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Here II: £ +Z™ — V(G) denotes the coherent continuation so that IL¢

is the originally given representation II.

We denote by 7(IT) C U (€) the set of T-invariants of II.
In what follows, we assume for simplicity that £ is dominant integral;
that is, R(§) = A(gc,jc) and ¥ (&) = {e1 —eay ..., €1 — €4}

Theorem 2.9 (Vanishing Theorem). Suppose that 11 € Irr(G) has
a non-singular 3(gc)-infinitesimal character A € RZ. Let D be an
interleaving pattern in RZ X Rg‘l.
Assume that there ezists i (1 < i < n — 1) such that the following
two conditions hold:
(1) e; — eip1 € T(II);
(2) NiXiz1 appears as an adjacent string; in other words, there is

no v; such that the inequality A\; > v; > A\ip1 48 allowed in D.
Then
[H’Gw . 7'('] = 0.

Proof of Theorem 2.9. Let 11: A + Z" — V(G) be the coherent family
starting from II, = II.

Suppose that \;\; 1 appears as an adjacent string in the interleaving
pattern D for (A, v). Then, there exists p € Z" such that the following
three conditions are satisfied:

® (At e —eip1) = 0;
e (A\+pu,B) #0 for any € At(gc,ic) \ {e:i — e };
e the pair (A + p, v) satisfies the same interleaving pattern D.
As in Lemma 2.7, there exists a sequence A9 € A+ Z" (j =
0,1,..., N) with the following properties:
A0 A=Y are non-singular;
MO = X AN = X+
M) —\GD g (WD vyeD foralll<j<N.
We note that A(@ ... AN~ satisfy the regularity assumption (2.3) in
Theorem 2.5, whereas A™) does not. It then follows from the proof of
Theorem 2.5 that we obtain

(2.5) [HA(0)|G’ . 71'] === [HA(N—1)|G/ . 71'] S []._.[)\(N)|G/ . 7T].
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On the other hand, since e; —e; 1 € 7(II), IT vy = 1, = 0. Thus, the
right-hand side of (2.5) is zero, and hence, the theorem is proved. [

Theorem 2.9, when applied to the pair of compact Lie groups (G, G') =
(U(n),U(n — 1)), yields a new proof of the necessity of the interlacing
pattern (3.2) below in Weyl’s branching laws, as we shall see in the

next section.

3 KNOwN EXAMPLES FOR (G,G’) = (U(p,q),U(p —1,q))

We begin in this section by demonstrating how Theorems 2.1 and
2.2 provide a new perspective in the interlacing patterns that ap-
pear in known examples of branching laws, such as Weyl’s branch-
ing law for finite-dimensional representations regarding the restriction
U(n) ] U(n — 1) and the patterns [10] in the Gan—Gross—Prasad con-
jecture regarding the branching of discrete series representations for
the restriction U(p,q) | U(p — 1, q).

The cases in the branching of non-tempered representations for the
restriction GL(n,R) | GL(n — 1,R) are more involved, which we will
discuss in Section 4 through Section 7, along with the phenomenon of
Jumping fences. We revisit the branching for U(p,q) | U(p — 1, q) by

considering non-tempered representations in Section 8.

3.1. Weyl’s Branching Law for U(n) | U(n — 1).
We begin by illustrating the concept of fences (Definition 2.3) with the
branching for finite-dimensional representations.

Let F%(z) denote the irreducible finite-dimensional representation
of G := U(n) with highest weight € ZZ in the standard coordi-
nates. Similarly, let F& (y) denote the irreducible representation of
G' = U(n — 1) with highest weight y € 22",

According to Weyl’s branching law, the restriction of an irreducible
representation F'%(x) of G to the subgroup G’ contains the irreducible
representation F'¢ (y) of G, that is,

(3.1) [FOa)|e : F¥(y)] # 0, (equivalently, [FC(z)|e : F¥(y)] = 1)
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if and only if the highest weights satisfy the interlacing inequalities:
(3.2) TIZ2 Y1 2 X2 Y > 2 Ty 2 Yno1 > T

This section reinterprets the above classical result from the new per-
spective of translation for symmetry breaking, as formulated in Theo-
rems 2.1 and 2.2. To this end, we reformulate the condition (3.2) in
terms of the infinitesimal characters.

Recall from (2.1) that

1 1
pnzé(n—l,...,l—n), and pn_lzé(n—Q,...,2—n).
Then the 3(gc)-infinitesimal character of the G-module F(z) and
the 3(gj)-infinitesimal character of of the G’-module F¢ (y) are given,

respectively, by 7 mod &,, and 7" mod &,,_;, where

Ti=x+p, and T i =y+p._1.
Thus, the inequality (3.2) for highest weights is equivalent to the fol-

lowing strict inequality:

(3.3) TI>T >Te>Ty> > Tpg > Ty > Tn.

We begin with an observation that translation functors within the
same dominant chamber can easily alter the multiplicity [F%(z)|q :

F%(y)] in symmetry breaking.
Example 3.1. Consider (G,G") = (U(3),U(2)). Let
Fy = FY%1,0,0), F,:=F%1,1,0), F" :=F%0,0),

that is, Fy, I, and F” are, respectively, the standard representation C3
of G, its exterior representation A2C3, and the trivial representation of

G' =U(2).
The 3(gc)-infinitesimal character of F; and F, are given by
71 =1(2,0,—-1) and 7 =(2,1,—1) mod Ss.

respectively. Then the translation functors, as defined in (2.2), are
performed without crossing walls, that is, both 7 = 7 — f5 and 7 =
71 + fo lie in the same (strict) Weyl chamber, giving

PR R(F) = Fy,  ¢nHR(F) ~ F.
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However, the multiplicities are given as
[Fl‘G’ :F’]:l, [ngg/ ZF/] =0.

This shows that translation functors can significantly alter the nature
of symmetry breaking even inside the Weyl chamber.

On the other hand, Theorems 2.1 and 2.2 are formulated in terms
of fences, rather than in terms of the usual notion of walls for Weyl
chambers.

We now explain how these theorems recover the sufficiency of the
interlacing property (3.2) for highest weights (or, equivalently, (3.3)
for infinitesimal characters) in a simple and specific case.

To see this, suppose that we are given any y € Z’;l and any x,, such
that y,_1 > x,. We set

T:= (Y1, Yn-1,Tn) € ZL.

Then [F%(Z)|e : F(y)] # 0 because the highest weight vector of
FC(Z) generates the irreducible G’-submodule F'% (y).

We now apply Theorem 2.2 to m := F%(y) € M(G"), and consider
the translation functors for M(G). Due to the integral condition 7; —
7; € Z for all 1 < ¢, 5 < n, the translation

T~T4+¢ef; (=41 or —1)

does not cross any wall of the same Weyl chamber of G; hence, the

translation ¢7 /i (F(z)) is either 0 or irreducible. More precisely,
o7 (FC(2)) = FO(a + i)

if x; # x;_.. Therefore, an iterated application of Theorem 2.2 implies
that

[FE@)le = FE(y)] #0
as long as the pair (x + p,,,y + pn—1) satisfies (3.3).

We now give a new proof for the necessity of the interlacing property
(3.2), using the vanishing results based on Theorem 2.9.

Let II be an irreducible finite-dimensional representation of G =
U(n) with highest weight x, and let 7 be an irreducible representation
of G’ = U(n — 1) with highest weight y.
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Suppose that (z,y) does not satisfy the interlacing property (3.2),
or equivalently, that their infinitesimal characters A = z + p, and v =
Yy + pn_1 do not satisfy the interlacing property (3.3). This implies
that there exists 7 (1 < ¢ < n — 1) such that \;A\;;; appears as an
adjacent string in their interleaving pattern for (\,v). However, for
a finite-dimensional representation II, all simple roots constitute its

T-invariant. Hence, it follows from Theorem 2.9 that
[H’Gv . 7T] = O

This completes the proof of the reverse implication.

3.2. Gan—Gross—Prasad conjecture for U(p,q) L U(p — 1,q).
In the non-compact setting (G,G") = (U(p,q),U(p — 1,¢q)), an analo-
gous interleaving property to (3.3) arises, which we now recall.

Let G = U(p,q) and K = U(p) x U(q). The complexifications are
given by G¢ = GL(p + ¢,C) and K¢ = GL(p,C) x GL(q,C), respec-
tively. Let Wg = 6,44 and Wi = &, x G, be the Weyl groups for the
root systems A(gc) and A(tc), respectively. We define

W= {w € Wg : wv is AT (€)-dominant for any A(g)-dominant v}.

This means that w € W' if w € Wg = 6,4, satisfies w™ (i) < w™(4)
whenever 1 <i<j<porp+1<i<j<p+q.

Then W is the set of complete representatives of Wy \Wg, which
parametrizes closed K¢-orbits on the full flag variety of G¢. We further
define

Coi={zeR": 2> - >ux,,.}
For w € W, the set wCy defines an interlacing pattern in RZ x R%:
wCy ={x e R ay >y, > >, 1
For e € %Z, we define
Ze =7 +c¢.
(Ze )2t = {x € (L) 2y # xy if i # j},
(Z)2 = {r € (Z)PT 2y > -+ > iy},

(34) (Z)2T:={x € (Z)PL 21> - >mxpand xpy1 > - > Tpig}-

reg
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Let Disc(G) denote the set of discrete series representations of G,
which is parametrized for G = U(p, q) as follows: let € :== 1 (p+¢—1).

Disc(G) =~ (Z)27 ~ (Z )2 x Wt I, = T"(\T) & A« (AT, w),

where A = wA". The geometric meaning of w is that the support
of the localization of the (g, K)-module IT*(A")x via the Beilinson—
Bernstein correspondence using D-modules is the closed K¢-orbit that
corresponds to w, while A is the Harish-Chandra parameter, in partic-
ular,

A=)2" mod &,

is its 3(gc)-infinitesimal character.
Let G =U(p,q) and G’ =U(p —1,q). We set

1 1
5:§(p+q—1) and 5’:§(p+q—2).

The classification of a pair (II,7) € Disc(G) x Disc(G’) such that
[II%°| e = m*°] # 0 can be described by the parameters

(AT, v7) e (Z2279)s x (Z]gﬁq_l)>

such that [TTY(A*)|g : 7 (v1)] # 0 for each (w,w’) € W

He [10] determined all such pairs (A, "), relying on the combina-
torics of the theta correspondence. In his theorem, certain interleaving
patterns of (A", v") appears. The following theorem explains an intrin-
sic reason for these interleaving patterns, from a different perspective,
using “translation functor for symmetry breaking”, and reveals why
interleaving patterns occur in the context of the Gan—-Gross—Prasad
conjecture.

For an interleaving pattern D € (RPT4PT4~1) (Definition 2.3), we
set

Dy = D N (ZPF9 x 72771,

Theorem 3.2 (U(p,q) | U(p — 1,q)). Fizw € W, w' € WY and
an interleaving pattern D € SP(RPTEPT4=1) " Then the following two
conditions on the triple (w,w', D) are equivalent:

(i) [\ H)|er : 7' (v)] # 0 for some (A*,vF) € Dy,

(ii) [T(A)|gr = 7 ()] # 0 for all (AT, v1) € Dy
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Theorem 3.2 is derived from the iterated application of Theorems 2.1
and 2.2, along with the use of a spectral sequence for cohomological

parabolic induction.

Example 3.3 (Holomorphic Discrete Series, Thm. 8.11 in [15]). For
v € (Z + BE=1)PF9 subject to the condition

Up > oo > Upyg 1 >V >0 > Uy,

let w(v) denote the corresponding holomorphic discrete series represen-
tation of G'. Take A € (Z + EX£-)P+a such that

~ 1

Aptj 1= Vprjm1 — 5 (17 =4),

AML>UL > > U >N,

For this pair (), v), one readily sees that 7(v) occurs in II(\)|¢ as the
“bottom layer”.

For a general pair (), v) an iterated application of Theorems 2.1 and
2.2 implies that [II(\)|¢ @ 7(v)] # 0 whenever A € ZPT9 satisfies the

same interlacing condition

Up > Apgp1 > oo > Upig1 > Apyqg > AL >V > - >0 > Ay

4 BRANCHING OF SOME SPECIAL REPRESENTATIONS FOR
GL(2m,R) | GL(2m — 1,R)

In this section, we explore an application of Theorem 2.5 to a family
of non-tempered representations of G = GL(2m,R), see [29], when
restricted to the subgroup G’ = GL(2m — 1,R). A detailed proof can
be found in [23].

A key aspect in applying these theorems is a parity condition that
)\i—ujEZ—l—%foreveryl§i§p+qand1§j§p+q—1.

We shall see in Section 7.4 that a phenomenon of “jumping the fences
of interlacing patterns” naturally arises for the parity conditions on A
and v such that \; —v; € Z + %
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4.1. A Family of Representations of GL(2m,R). For ¢ € {0,1},
let

II: (Z+¢)*™ — V(G)
be the coherent family of smooth representations such that IT(\) is the
smooth representation of a special unitary representation studied in

[29], sometimes referred to as the ¢-th Speh representation, if

1
)‘25(677&_67,—5)—1'(07”,,07”) f0r1§€
Here, we recall from (2.1) p,, = (%52, ..., 152). The parity ¢ and £ is

related by £ + 2 +m + 1 € 2Z.

There is a #-stable parabolic subalgebra q = Ic+u of gc = gl(2m, C),
unique up to an inner automorphism of G = GL(2m,R), such that the
real Levi subgroup Ng(q) is isomorphic to L := GL(m,C). The under-
lying (g, K)-module of II(\) is obtained by a cohomological parabolic
induction from an irreducible finite-dimensional representation F of g,

on which the unipotent radical u acts trivially and L acts by
FGL(m,(C) ()\/ . pm) ® FGL(m,(C)()\// — pm)

Here A= (N, \N") € (Z+¢e)" x (Z+¢e)™.
The representation II(A) of G is irreducible if

/\1 >/\2> >)\2m7
and is unitarizable if \y =--- =\, = =\, 11 = = =g

4.2. A Family of Representations of GL(2m — 1,R).
Let L' := GL(1,R)xGL(m—1,C) be a subgroup of G’ := GL(m—1,R).
For

v= v V") € (LZ+e+ I xCx (Z+e+ )T,

and x € {0,1}, let F/(v) denote the irreducible finite-dimensional L'
module given by
Fé(y) = Xvimw Wy,

where

Xvmuwe (@) = |z|"™(sgnz)”, forx € GL(1,R) ~ R*,

Wu’,y” = FGL(m_L(C)(V/ - pm—l) ® FGL(m_LC)(V” - pm—l)'
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There exists a f-stable parabolic subalgebra q’ = [, + v’ of g =
gl(2m — 1,C), unique up to an inner automorphism of G' = GL(2m —
1,R), such that the real Levi subgroup N¢/(q') is isomorphic to L. Let
7x(v) denote the smooth admissible representation of G’ whose un-
derlying (g’, K’)-module is isomorphic to the cohomological parabolic
induction from the irreducible finite-dimensional representation F (v).
In our normalization, v mod Gg,,—1 coincides the 3(gi)-infinitesimal
character of 7, (v). The (g, K')-module 7, () is unitarizable if

Um €EV—IR, vV =cl, 1+ pm_1, and V' = —cl,_1 + pm_1

for some ¢ € IN.
We write simply 7 (v) for 7,.(v) when v, € Z and when

(4.1) K+Vn+2e+m—1¢€2Z.

4.3. Branching for GL(2m,R) | GL(2m — 1, R).

In the same spirit as the reinterpretation of Weyl’s classical branching
laws from the perspective of “translation for symmetry breaking”, as
explained in Section 3.1, we derive the following theorem starting from
a “simpler case”, that is, when

(4.2)

AL >V, Va1 > Aoy AL Aa = Uy,
1 1

We note that such (A, v) lies in the interleaving pattern:
(4.3)
AL >V > A > - > V1 > ANy > Al > Vg1 > 500 > Vo1 > Ao,

Theorem 4.1 ([23]). Let (G,G’) = (GL(2m,R),GL(2m — 1,R)). Let
e€{0,} A€ (Z+e)?, andv € (Z+e+ )" ' XL x (Z+e+1)m!
Satisfying Vm—1 > Vpy > Vg1 and V1 — Vi1 7 1.

If (\,v) satisfies (4.3), then

M(Mer : 7)) = 1.
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5 A NON-VANISHING THEOREM FOR PERIOD INTEGRALS

In general, proving the non-vanishing of symmetry breaking is a
difficult problem. However, thanks to the general results in Theo-
rems 2.1 and 2.2 (see also Theorem 2.5), it suffices to consider rep-
resentations for only specific parameter pairs (A, v) when (gc,g¢) =
(51(n, C), gl(n — 1,C)).

We therefore focus on developing a method for detecting the exis-
tence of a non-zero symmetry breaking operator for such representa-
tions. To this end, we consider the situation where a pair of reductive
groups G’ C G induces a natural embedding of their symmetric spaces
G'/H' C G/H and restrict H-distinguished representations IT € Irr(G)
to the subgroup G’. The classification of triples G’ C G D H for which
the restriction II|g has the uniformly bounded multiplicity property has
been recently accomplished in [19].

In this section, we propose a method for detecting the existence of
a non-zero symmetry breaking operator when II is a discrete series
representation for G/ H, using the idea of period integrals for the pair
of reductive symmetric pairs.

The main result of this section is Theorem 5.3, which provides a suf-
ficient condition for the non-vanishing of period integrals in the general
setting where G D G’ are arbitrary pairs of real reductive Lie groups.

These results also apply to representations that are not necessarily
tempered.

5.1. Discrete Series Representations for X = G/H.

Let (X, ) be a measure space and suppose that a group G acts on
X in a measure-preserving fashion. Then, there is a natural unitary
representation of G on the Hilbert space L?(X) of square-integrable
functions.

An irreducible unitary representation II is called a discrete series
representation for X, if IT can be realized in a closed subspace of L*(X).
Let Disc(X) denote the set of discrete series representations for X.
Then Disc(X) is a (possibly, empty) subset of the unitary dual G of G.
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ForIT € @, let ITV (resp. IT) denote the contragredient (resp. complex
conjugate) representation of II. Then ITV and II are unitarily equiva-
lent representations. Moreover, the set Disc(X) is closed under taking
contragredient representations.

5.2. Reductive Symmetric Spaces.
Let G be a linear real reductive Lie group, o be an involutive automor-
phism of G, and H an open subgroup of G? := {g € G : 0g = g}. The
homogeneous space X = G/H is called a reductive symmetric space.
We take a Cartan involution 6 of G that commutes with o. Let K be
the corresponding maximal compact subgroup of G. Flensted-Jensen
[4] and Matsuki-Oshima [24] proved that Disc(G/H) # 0 if and only
if

(5.1) rank G/H =rank K/H N K,

generalizing the Harish-Chandra rank condition [7], rank G = rank K,
for the existence of discrete series representations of the group manifold
G.

In contrast to Harish-Chandra’s discrete series representations for
group manifolds, not every II € Disc(G/H) is tempered. There ex-
ist representations II € Disc(G/H) that are tempered (in the sense
of Harish-Chandra) if and only if the centralizer Z(t) is amenable,
where t is a Cartan subalgebra associated with the compact symmet-
ric pair (K, H N K). However, this condition does not imply that all
representations in Disc(G/H) are tempered (see [2, Sect. 8.5]).

Similarly, in contrast to Harish-Chandra’s discrete series representa-
tions for group manifolds, not every II € Disc(G/H) has a non-singular
3(gc)-infinitesimal character. This implies that if we realize the un-
derlying (g, K)-module I via cohomological parabolic induction, the
parameter is not necessarily in “good range” for this induction. In
case the parameters are in the “good range”, the minimal K-type of
I1 € Disc(G/H), which we denote by u(Il) € K, can be computed in a

straight manner.
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5.3. Period Integrals: Generalities.

Let X = G/H be a reductive symmetric space, as in Section 5.2. We
now consider a pair Y C X of symmetric spaces as below. Suppose
that G’ is a reductive subgroup of G, stable under the involutions o
and 0 of G. Let H' := HNG'. Then Y := G'/H' is also a reductive
symmetric space, and there is a natural inclusion ¢: Y < X, which is
G'-equivariant.

Let II be a discrete series representation for X = G/H. By con-
vention, we identify II with its corresponding representation space in
L?(X). Then, the smooth representation I1°® € M(G) is realized as a
subspace of (L? N C>)(X).

The first step is to prove the convergence of period integrals in the
general setting where neither 11 € G nor 7 € G is assumed to be

tempered.

Theorem 5.1 ([22]). For any 11 € Disc(X) and any 7 € Disc(Y), the
following period integral

(5.2) B: I x 7> = C, (F f)— /Y(L*F)(y)f(y)dy

converges. Hence, it defines a continuous G'-invariant bilinear form.
In particular, the bilinear form (5.2) induces a symmetry breaking op-
erator

(5.3) Ty: 11 = (x¥)®, F s B(F,),

where ¥ denotes the contragredient representation of .

The second step is to detect when the period integral Ts does not
vanish. It should be noted that the period integral can vanish, even
when Homg (I1°°|gr, 7°) # 0. This leads to the following question:

Question 5.2. Find a sufficient condition for the period integral (5.2)

not to vanish.

Some sufficient conditions have been derived in the special cases
when both X and Y are group manifolds [9, 31], and when X is a
certain rank-one symmetric space [26, 27]. In a forthcoming paper [22],

we will prove the following theorem for the general pair of reductive
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Lie groups G' C G and for their reductive symmetric spaces Y C X of
higher rank:

Theorem 5.3 ([22]). Let Y C X be as in the beginning of this section.
Additionally, we assume that G is contained in a connected complex
reductive Lie group G¢c and that K and K’ are in the Harish-Chandra
class. Let I1 € Disc(X) and w € Disc(Y') both have non-singular infin-
itesimal characters. Suppose that the minimal K-types p(I1) € K and
w(m) e K satisfy the following two conditions:

(5:4) (D)5 = ' ()] = 1;
(5.5)
a non-zero highest weight vector of p(I1) is contained in p' ().

Then the period integral (5.2) is non-zero, and consequently, the cor-
responding symmetry breaking operator (SBO) in (5.3) is non-zero.

Remark 5.4. In the case where (G, G') = (GL(n,R), GL(n—1,R)), one
of K = O(n) or K’ = O(n—1) is not in Harish-Chandra class. However,
Theorem 5.3 holds in this case as well, provided that we define minimal
K-types in terms of their irreducible €-summands.

Remark 5.5. Theorem 5.3 applies to general pairs of real reductive Lie
groups, (G,G"). In the specific cases where

(G,G') = (GL(n,R),GL(n — 1,R)) or (U(p,q),U(p — 1,q)),

the assumption (5.4) is automatically derived from (5.5).

Remark 5.6. Yet another sufficient condition for the non-vanishing of
the period integral (5.2) is

dim Hom (u(I1), C*(K/My)) = dim Homg (1'(7), C°(K'/My)) = 1,
where My is the centralizer of a generic element in g=% % in H N K,
and M}, is that of g %77 in H' N K’'. This condition is satisfied, in
particular, when K¢/Mpc and K¢/Mp ¢ are spherical. However, the

settings that we will treat in Sections 7 and 8 are more general.

We give some examples of Theorem 5.1 in Sections 7 and 8 in settings
where X is a symmetric space of G = GL(n,R) and G = U(p,q),

respectively.
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6 A FAMILY OF REPRESENTATIONS OF GL(n,R)

In this section we introduce a family of irreducible unitary repre-
sentations of GL(N,R) for N = n or n — 1 that are not necessarily
tempered, but are discrete series representations of a symmetric space

of GL(n,R).

—

6.1. Weyl’s Notation for O(N).
We observe that the maximal compact subgroup K = O(N) of G =
GL(N,R) is not of Harish-Chandra class when N is even; that is, the
adjoint action Ad(g) on g is not always inner. To discuss the branching
laws for (K, K') = (O(N),O(N—1)), particularly those concerning the
minimal K-types of discrete series representations of GG for reductive
symmetric spaces G/H (see Theorem 5.3), we find that Weyl’s notation
(see [36, Chap. V, Sect. 7])—briefly recalled below—is more convenient
and uniform than the conventional description based on highest weight
theory.

Let O/(JV) denote the set of equivalence classes of irreducible repre-
sentations of O(N). Let AT(O(N)) be the set of A = (A1, ..., Ay) € ZV

in one of the following forms.

TypeI: <)‘17'” 7)\14:707"' 70)7
——

N—k
Type II: Ay, -+, A, 1,---,1,0,---,0),
X
N-2

where Ay > Ay > - > Xy >0and 0 <2k < N.

For any A € AT(O(N)), let vy be the highest weight vector of the
irreducible U(N)-module FU®™)()). Then there exists a unique O(N)-
irreducible submodule containing vy, which we denote by FOWN)()).
Weyl established the following bijection:

—

(6.1) AT(O(N)) =5 O(N), M= FOM()).

6.2. Relative Discrete Series Representations of GL(2,R).

Let 0, (a € N;) denote the relative discrete series representation of



26 TOSHIYUKI KOBAYASHI AND BIRGIT SPEH

GL(2,R) with the following property:

1
infinitesimal character E(a, —a) (Harish-Chandra parameter);
minimal K-type F°® (a4 1,0) (Blattner parameter).

We note that the restriction o] sr(2,r) splits into the direct sum of
a holomorphic (resp. anti-holomorphic) discrete series representation
with minimal K-type C,41 (resp. C_(441))-

6.3. Certain Family of (Non-Tempered) Irreducible Repre-
sentations of GL(n,R).

Let G = GL(n,R). For an integer ¢ with 0 < 2¢ < n, let P, denote a
real parabolic subgroup of G whose Levi part is

Ly := GL(2,R)" x GL(n — 2(,R).

For A = (A1,...,\) € Nﬁ, we define a unitary representation of G
by means of normalized smooth parabolic induction:

¢
(6.2) I,()) = Ind%, (Q)ox, @ 1).
j=1
Then II,(\) is an irreducible unitary representation of GL(n,R) (cf.
[34]). Moreover, it is a tempered unitary representation if and only if
n=20+1 or 2(.
For 2k <n — 1, and for v = (v, ..., 1), we shall use an analogous

notation m(v) for a family of irreducible unitary representations of
G'=GL(n —1,R).

6.4. Cohomological Parabolic Induction for GL(n,R).
An alternative construction of the representations II;(\) is given by
cohomological induction.

Let 2¢ < n and q, be a 6-stable parabolic subalgebra of gc ~ gl(n, C)
with the real Levi subgroup

L = Ng(q) ~ (C*) x GL(n — 20, R).

We set )
Sy = édimK/L ={ln—0-1).
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Suppose that A = (Ay,...,\,) € Z° satisfies \; > -+ > Xy > 0. We
adopt a normalization such that the cohomological parabolic induction

Rff (C,) has a 3(g)-infinitesimal character given by

1
(63) 5()\1,...,/\g,n—2€—1,...,1—|—2€—n,—>\g7...,—/\1) S C”/(‘Sn,
via the Harish-Chandra isomorphism. Then its minimal K-type is
given by
(6.4) =M +1,...,0+1,0,...,0) € AT (O(n))

in Weyl’s notation.
The underlying (g, K)-module of the G-modules II;(A) can be de-
scribed in terms of cohomological parabolic induction:

(6.5) (N g ~ Ry (Cy).

If n > 2( then the O(n)-module FO™ (u,) stays irreducible when re-
stricted to SO(n), and its highest weight is given by
(M+1,...,A+1,0,...,0) in the standard notation. If n = 2¢, then

——
[3]-¢
FOM () splits into the direct sum of two irreducible SO(n)-modules
with  highest weights (A + 1,...,A-1 + 1,A + 1) and
AM+1,. 1+ 1, = —1).

The parameter A = (Aq,..., ) is in the “good range” with respect

to g in the sense of [33] if the following condition is satisfied:

(6.6) A1 >N > > N\ > max(n — 20— 1,0).

7 RESTRICTING DISCRETE SERIES REPRESENTATIONS FOR THE
SYMMETRIC SPACE GL(n,R)/(GL(p,R) x GL(n — p,R)) TO
THE SUBGROUP GL(n — 1,R)

In this section, we prove the existence of a non-zero G’~-homomorphism
from II*° to 7, where II € Disc(X) and 7 € Disc(Y'), by using the
“jumping fences” trick in the translation theorems for symmetry break-

ing, as explained in Section 2.
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Throughout this section, we consider the following setup: X = G/H,
Y =G'/(HNG), where p+ ¢ =n and

(7.1) (G, H) = (GL(n,R), GL(p,R) x GL(q,R)),
(7.2) (&', H') = (GL(n — 1,R), GL(p,R) x GL(q —1,R)).

The first two subsections focus on describing Disc(K/H N K) and
Disc(G/H). We then apply Theorem 5.3 to prove the non-vanishing of
the period integral under the assumption on the minimal K-types, as
described in (5.5). We shall see that the parity condition allows us to
“jump the fences” for this interlacing pattern by iteratively applying
Theorems 2.1 and 2.2. This leads to the whole range of parameters

(A, v) for the non-vanishing of symmetry breaking in the restriction

G | G, as detailed in Theorem 7.8.

7.1. Description of Disc(K/H N K).

In the setting (7.1), the pair of maximal compact subgroups (K, HNK)
is given by (O(p + ¢),O(p) x O(q)). The following result extends the
Cartan—Helgason theorem, which was originally formulated for con-
nected groups, to the case of disconnected groups.

Proposition 7.1. Let ¢ := min(p,q). In Weyl’s notation (see Section
6.1), Disc(O(p + q)/O(p) x O(q)) is given by

max(p,q)

——
{FOUr (1) s = (pa, - 1,0, 0) € QZ)PF4 g > -+ > py > 0}

If p # q, or if yy = 0, then the O(p + ¢)-module FOP+9 (1) remains
irreducible when restricted to SO(p + ¢q). If p = q and p, # 0, then
FO®+9) () decomposes into the direct sum of two irreducible SO (p-+q)-
modules.

7.2. Discrete Series for GL(p + ¢,R)/(GL(p,R) x GL(q,R)).
In this subsection, we provide a complete description of discrete series
representations for G/H in the setting of (7.1).

Let G = GL(n,R) and 0 < 2¢ < n. As recalled in (6.2) and (6.5),

IT,(\) denotes the irreducible unitary representation of G obtained via
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parabolic induction, or equivalently, through cohomological parabolic

induction.

Proposition 7.2. Let n = p+ q and ¢ := min(p,q). Then the set of
discrete series representations for G/H is given by

(TN A=, M) €EQZH1D)5 M > N> - > X\ > 0.

The 3(gc)-infinitesimal character of the G-module II;(\) is non-
singular if (6.6) holds, or equivalently, if A, > n — 2¢ — 1.

To verify Proposition 7.2, we make use of Matsuki—-Oshima’s descrip-
tion [24] of discrete series representations, which may vanish, along with
a detailed computation of cohomological parabolic induction beyond
“good range”, specifically, when \; < n — 2¢ — 1 as in the similar case
thoroughly studied in [11]. We note that for such a singular parame-
ter A, neither the irreducibility nor the non-vanishing of cohomological
parabolic induction is guaranteed by the general theory [33]. However,
it turns out that both non-vanishing and irreducibility do hold in our
specific setting.

We also derive an explicit formula for the minimal K-type pu(Il) of
the G-module II,(\): it is given in Weyl’s notation as follows.

(I (N) = FOMW (A +1,..., A+ 1,0,...,0).

7.3. Comparison of Minimal K-types for Two Groups G’ C
G.

Let n = p+ q. We realize H = GL(p,R) x GL(¢q,R) in the standard
block-diagonal form as a subgroup of G = GL(n,R), and we realize
G' = GL(n — 1,R) as a subgroup of GG, corresponding to the partition
n = (n—1)41. Accordingly, we obtain an embedding of the reductive

symmetric space
Y =GL(n - 1,R)/(GL(p,R) x GL(q — 1,R))

of G' into X = G/H.
We recall from Proposition 7.2 that any discrete series representation

for X with a non-singular 3(gc)-infinitesimal character is of the form
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I1,(\), where £ = min(p, q) and A = (Ay,..., \) € (2Z + 1)*, satisfying
the regularity condition (6.6).

We now assume that 2p < n — 1, where n = p + ¢. In this case,
¢ = min(p,q) = min(p,q — 1). Let m,(v) be the irreducible unitary
representation of G' = GL(n — 1,R), as defined in the same way as
II,(A) for G = GL(n,R). Then, the set of discrete series representations
for the smaller symmetric space:

Y =G'/H =GL(n—1,R)/(GL(p,R) x GL(q — 1,R))
is given by
{me(v) v ="(v1,....00) € QL+ 1", 01 > 15> > 1, >0}

With these preparations, we apply Theorems 5.1 and 5.3 to the pair
(ITe(N), me(v)) € G x G'. The assumption (5.4) on minimal K-types is
automatically satisfied for the pair (K, K') = (O(n), O(n—1)), whereas
the condition (5.5) is computed explicitly as follows.

Lemma 7.3. The condition (5.5) holds if and only if
(7.3) M=y >X=1p>--->N=1,>0.
By Theorem 5.3, we obtain the following.
Proposition 7.4. Suppose 20 < n — 1. Then we have
dim Homey (11, (A) ™| o7, me(v)>°) = 1
for any X\ € (2Z + 1)* and v € (2Z + 1)* satisfying (7.3).

Remark 7.5. Alternatively, we can prove Proposition 7.4 by relying on
the isomorphism (6.5) and Mackey theory. To do this, we use the fact
that the G’-action on the generalized real flag manifold G/P, has an
open dense orbit, and that the isotropy subgroup is contained in P,
which is a parabolic subgroup of GG of the same type.
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7.4. Jumping Fences.

In this section, we analyze a phenomenon in which a certain parity
condition allows us to “jump the fence”, of the interleaving pattern
in Theorems 2.1 and 2.2. We discover that this phenomenon indeed
occurs for some geometric settings in the context of symmetry breaking
for GL(n,R) { GL(n — 1,R). As a result, we provide a refinement of
the (non-)vanishing results of symmetry breaking.

We begin with the setting where II,(\) are irreducible unitary rep-
resentations of G, and 7 (v) are those of G, with 0 < 2¢ < n and
0 <2k <n—1, as introduced in Sections 6.3 and 6.4. In this general-
ity, we impose a slightly stronger than the good range condition (6.6),
that is, the following condition on the parameter \i, ..., Az

(7.4) A > N> o> N >max(n— 20— 1,n— 2k — 3,0).

Remark 7.6. For the application of Corollary 7.7 to Theorem 7.8, we
use the case where ¢ = k. In this case, or more generally, if ¢ < k + 1,
the condition (7.4) reduces to the good range condition (6.6).

Corollary 7.7. Let v € (27 + 1)* satisfying
(7.5) v > vy > >y > max(0,n — 2k — 2).

Then the following two conditions are equivalent:
(i) there exists X € (2Z + 1)* satisfying (7.4) such that

Homer (Ie(A)*|er, m(v) ™) # {0};
(ii) for every X\ € (2Z + 1) satisfying (7.4), one has
Home (e (A)*|er, me(v)>) # {0}

Thus, Corollary 7.7 allows us to tear down all the “fences” of the
weakly interleaving pattern given by Lemma 7.3, resulting in the fol-

lowing result:
Theorem 7.8. Suppose 20 < n. Then

(76) dim HomG/(Hg(/\)OO|G/, 7Tg(l/)oo) =1
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for any \,v € (27 + 1)* satisfying the regularity conditions:
AM>XA>-> N >n—20—1,

v >vy > > >n—20—1.

We already know that the left-hand side of (7.6) is either 0 or
1, according to the multiplicity-freeness theorem [30] for GL(n,R) |
GL(n — 1,R), since II;(\) and m,(v) are irreducible as G- and G'-
modules, respectively. Our claim is that the multiplicity is non-zero,

as a consequence of “jumping all the fences”.

8 RESTRICTING DISCRETE SERIES REPRESENTATIONS FOR THE
SYMMETRIC SPACES U(p,q)/(U(r,s) x U(p —r,q — $)) TO THE
SuBGrOUP U(p — 1,q)

In this section, we revisit the case where

(G,G") = Up.q9),Ulp—1,9),

and discuss the branching of the restriction II|g/, where II is a non-
tempered irreducible representation of G. Specifically, we consider a

discrete series representation II for the symmetric space

G/H=U(p,q)/(U(r,s) xU(p—r,q9—3)),

and prove that Home (I1°|¢r, 7°) # 0 for some family of irreducible
representations 7 € Z:\', which are not necessarily tempered.

The irreducible unitary representations m of the subgroup G’ for
which Home/ (I1°°| ¢/, m°°) # 0 were completely determined when (r, s) =
(0,1), as a particular case of [12, Thm. 3.4], which corresponds to the
discretely decomposable case. In the case where 7 occurs as a discrete
series representation for a symmetric space G'/H’, a non-vanishing re-
sult was recently proven in [27] when (r,s) = (1,0).

We provide a non-vanishing theorem in Theorem 8.6 for the general
case of (p, q,r, s) under a certain interleaving condition on the parame-
ters. Our proof again utilizes the non-vanishing theorem of the period
integral for specific parameters, as stated in Theorem 5.3, as well as
the non-vanishing result of symmetry breaking under translations in-

side “fences”, as stated in Theorem 2.5.
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8.1. A Family of (Non-Tempered) Irreducible Unitary Rep-
resentations of U(p,q).
In this subsection, we define a family of irreducible unitary represen-
tations of G = U(p, ¢q). In the next subsection, Proposition 8.5 shows
that that any discrete series representation for the symmetric space
X =U(p,q)/(U(r,s) xU(p—r,q—s)) is of this form when 2r < p and
25 <q.

Let j be a compact Cartan subalgebra, {H, ..., Hy1,} be the stan-
dard basis v/=1j, and {f1,..., fyrq} its dual basis. We fix a positive
system of A(fc,jc) by defining

AT(te,jc) ={fi—fi:1<i<j<porp+1<i<j<p+gq}.

Given Z = (z1,...,2p1q) € V—1j =~ RPT we define a f-stable par-
abolic subalgebra q = q(Z) = [+ u of gc = gl(p + ¢, C) such that the

set of weights of the unipotent radical u is given by
A(u,jc) = {a € Alge,jc) : a(Z) > 0}.

Any O-stable parabolic subalgebra of g¢ is K-conjugate to q(Z) for
some Z € RY x RL. We are particularly interested in the following:

Setting 8.1. Let 0 < 2r <p, 0 <25 < g, and
(8.1)

Z = (x1,.. 2, 0P~ =21, Ys, 0972~y 1)
with 1 > - >, >0, y1 > --- ,ys > 0, and x; # y; for any 1, j.

In this case, the (real) Levi subgroup L, the normalizer of the 6-
stable parabolic subalgebra q(Z) in G, depends only on r and s, and
is given by
(8.2) L=LY  .~T"" xU(p—2r,q—2s).

p,qiT,s

Lemma 8.2. Let G = U(p,q). We fir r and s such that 2r < p
and 2s < q. Then, there is a one-to-one correspondence among the
following three objects:

(i) O-stable parabolic subalgebras q = q(Z), where Z is of the form as
given in Setting 8.1.
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(i) Interleaving patterns D € P(R™) in RL x RS.
(iii) Data k = {(rj),(s;), M} with 1 < M < min(r, s) and

B3) 0< < <rya<ry=r 0<s <-+-<spy_1<sy=s.

Remark 8.3. We allow the cases r; = 0 or sp;_1 = sy, but assume that
s1 > 0and ry—1 < 7.

Proof. We describe the natural morphisms, which establish the one-to-
one correspondence among (i), (i) and (iii).

(i) < (ii) By definition, an interleaving pattern D in B(R"™*) defines a
g-stable parabolic subalgebra q(Z) via (8.1). Conversely, it is clear that
the @-stable parabolic subalgebra q(Z) associated with Z in Setting 8.1
depends solely on the interleaving pattern of z, y in RY x RS.

(ii) < (iii) Given a condition in (8.3), we associate the following inter-
leaving pattern D in RZ x R? defined by

(8.4)
Ty > > Ty S YL > Yy > Ty > > Ty > Y al >

2 Yspoy 2 g1 > 2 Ty 2 Yspp a1 > 2 Ysays
and vice versa. ]

Let D be an interleaving pattern in R x R as in (8.4). For A € R,

we set
D.op={(z,y) €D :z;> A,y; > Afor any i, j}.

Suppose that L = T* 25 x U(p — 2r,q — 2s) is the real Levi sub-
group for the f-stable parabolic subalgebra ¢, which is associated to
an interleaving pattern D € PB(R™*) in Lemma 8.2. For A = (z,y) €
(Z+ EH=L)r+s, we define a one-dimensional representation of the dou-
ble covering group of the torus T2("**) to be denoted by C5, such that
its differential is given by the formula (8.1). We extend it to a one-
dimensional representation of ¢ = [+u, by letting u(p—2r, g—2s)+u act
trivially. The character Cs is in the fair range (respectively, in the good
range) with respect to q in the sense of [33], if A € D~ (respectively,
A € D.g), where we set

Q::%(erq—l)—r—s.
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When A € D.q, cohomological parabolic induction gives a unitariz-
able (g, K)-module, which is possibly zero ([33]). It is irreducible if
non-zero. Let II) denote the unitarization. The unitary representation
IT, is non-tempered if p # 2r and q # 2s.

In our normalization, the 3(gc)-infinitesimal character of the G-
module II, is given by

BB (QQ—1,...,1-Q,—Q) €C*T/&,,..

When D- ¢, the general theory guarantees that II, is non-zero and that
the highest weight of its minimal K-type is given as follows:

—p+qg+1 )
(MA)i = _(/@\)p—i-l—i = )\z + % + EZ for 1 <1 < T,
p—q+1 ,
(13 )pri = = (N )prgr1—i = Aryi + 9 =Ly for1<i<s,
(pr)i =0 otherwise.

Here, we define ¢; = (;(D) € Z for 1 < i <r + s, depending on the
interleaving pattern D, by
Gi(D) =f{xg s xp >z} — t{yr : yr > 2} for 1 <i<r,
Coi(D) =t{op 2 > v} — k- e > ¥} for 1 <i<s.
Example 8.4. Let (r,s) = (3,2) and D = {x1 > 1 > y2 > x5 > x3}.
Then

(D) = 0, €(D) = —1, l5(D) = 0;£4(D) = 1, £(D) = 0.

8.2. Discrete Series Representations for the Symmetric Space
Up,q)/(U(r,s) x Ulp —1,q — 5)).

Let H = U(p1,q1) x U(ps,q2) be a natural subgroup of G = U(p, q),
where p; + po = p and ¢; + g2 = ¢. The symmetric space G/H has
a discrete series representation if and only if the rank condition (5.1)
holds, that is,

(8.5) min(py, po) + min(qy, g2) = min(py + q1, p2 + ¢2)-

From now on, without loss of generality, we assume that

H=U(r,s)xUp—r,q—s) with 2r < p and 2s < q.
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Discrete series representations for a reductive symmetric space G/H
are decomposed into families corresponding to H%closed orbits on the
real flag variety of G¢. Here, (G%, H?) is the dual symmetric pair of
(G, H), see [4, 24]. In the above setting, we have

(GLHY = (U(r+s,p+q—1—35),U(r,p—7r)xU(s,q— 3)),

(r+s)!

rls!

closed orbits of the subgroup H? on the real flag

and there are

variety of G¢. These orbits are parametrized by interleaving patterns

P(R™) in RT, x RS

Proposition 8.5. Suppose 0 < 2r < p and 0 < 2s < q. Then the set

of discrete series representations

Disc(U(p, qQ)/(U(r,s) xU(p—r,q— 5)))

can be described as the disjoint union

I[I {m:xeD.on(z+ )+

DeP(R™s)

As mentioned in the previous subsection, Iy may vanish if C; is not
in the good range, specifically, if A\ € D~ \ D~¢. The condition for the
non-vanishing of II, involves a number of inequalities of A that depend
heavily on D € B(R™*) (see [11, Chap. 5]).

8.3. Branching for U(p,q) L U(p — 1, q).
We are ready to state our main results of this section.

Theorem 8.6. Suppose that 0 < 2r < p—1, 0 < 2s < q and
D, D" € P(R™). Let q be the O-stable parabolic subalgebra of gc and
({r:i},{si}, M) be the data, associated with D, as in Lemma 8.2. Simi-
larly, let ' be the 0-stable parabolic subalgebra of g¢ and ({7}, {s}}, M")
be the data, associated with D'. We set ) = %(p +qg—1)—r—s and
Q=014

Assume that D = D', or equivalently that M' = M, r; =r; (1 <i <
M) and s; = s; (1 <i < M). Then we have the following identity:

(86) dlm HOI’IlG/<H§\O|G/7 7T§O> = ]_,
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if A= (2,y) € DsgN(Z+ Q)™ and v = (§,n) € DLy N(Z+ Q'
satisfy the following interleaving pattern:

X1 >8> >x, >, >SN >y > >N, > Ysy >
>xr1+1>€r1+1>"'>xrz >€r2>7751+1>ysl+1>"'>7152 > Ysy >

T > Ty > &”M > NMspr 141 = Yspr a1 = 70 > Nspy = Yoy

Remark 8.7. The interleaving pattern on A = (z,y) and v = (£, 7) in
Theorem 8.6 is equivalent to that [DD'+] € P(R™5) x P(R™) is a
coherent pair, where [DD’+] is an interleaving pattern of (\, z,41,v),
defined by the inequalities D for the entries of A and v, along with the
condition that z,,; is smaller than any of the entries of A and v. For

various equivalent definitions of “coherent pairs”, we refer to [8].

By the stability theorem for multiplicities in symmetry breaking
within fences (Theorem 2.5), the proof of Theorem 8.6 reduces to the
following proposition:

Proposition 8.8. In the setting and assumptions of Theorem 8.6, the
equality (8.6) holds if X = (x,y) € R™* and v = (£,1) € R+ satisfy

following conditions:

IN
IN

r),
s).

Proof. We apply the non-vanishing theorem for the period integral of

T =&+ 5 (

8.7
&7 3/1;:772'—% (

1
1

IA

{
l

IN

discrete series representations (Theorem 5.3) to the symmetric spaces
X =G/H and Y = G'/H', where G' = U(p — 1,q) is realized as a
subgroup of G such that H' := HNG' ~U(r,s) xU(p—r —1,q — s).
Condition (8.7) then ensures that the assumption (5.5) on minimal
K-types in Theorem 5.3 is satisfied, while (5.4) is immediate. O

By Theorem 2.5, the result in Proposition 8.8 extends to all the
parameters stated in Theorem 8.6 via translations within the initial
fences. Thus, the non-vanishing of symmetry breaking is established,
completing the proof of Theorem 8.6.
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In contrast to the GL(n,R) case in Section 7.4, we note that jumping
the fences is prohibited in the U(p,q) case due to a different parity

condition.

9 REMARKS AND EXAMPLES

In this section, we make some general remarks and illustrate our
results with examples of tempered and non-tempered representations,

including extensions to limits of discrete series representations.

9.1. Geometric Observations. Following [18, Def. 3.1], we recall
the generalized notions of “Borel subalgebras” (relative Borel subal-
gebras) and complex Levi subalgebras for reductive symmetric spaces
G/ H associated with involutive automorphisms ¢ of G. These notions
were used to refine a generalization of Casselman’s embedding theorem
[19] to representations with H-distinguished vectors.

Let Gy be a maximal compact subgroup of G¢, chosen so that Gy N
G and Gy N H are also maximal compact subgroups of G and H,
respectively. We fix an Ad(G)-invariant, non-degenerate symmetric
bilinear form on the Lie algebra g, which is also non-degenerate on the
subalgebra . We write g = b + b+ for direct sum decomposition, and
gc = be + bg for its complexification.

Recall that each hyperbolic element Y € g determines a parabolic
subalgebra of g, consisting of the sum of eigenspaces of ad(Y’) corre-

sponding to non-negative eigenvalues.

Definition 9.1 (Relative Borel subalgebra for G/H, see [18]). Let
(G, H) be a reductive symmetric pair. A Borel subalgebra bg g for
G/ H is a parabolic subalgebra of gc. It is defined by a generic element

of h¢ N +/—1gy or by its conjugate under an inner automorphism of
Ge.

The relative Borel subalgebra bg, is not necessarily solvable, and
thus its Levi subalgebra [,y is not always abelian. We note that bg/u
and lg/p are determined solely from the complexified symmetric pair

(gc, be)-
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The Levi subalgebra of the relative Borel subalgebra b,y for the

symmetric space
G/H =GL(n,R)/(GL(¢,R) x GL(n —¢,R))
is given by
(9.1) lg/m = C* @ gl(n—2¢,C)
if 20 <n.
On the other hand, for the group G = U(p, q), the symmetric spaces
Up,q)/(U(r,s) xU(p—r,q—3s)), for2r <pand2s<gq

are not isomorphic to each other for different (r, s). However, they share
the same complex Levi subalgebra as long as r+ s is constant (say = ¢).
The corresponding complex Levi subalgebras are also isomorphic to the
complex Levi subalgebra (9.1) of the symmetric space

GL(n,R)/(GL(L,R) x GL(n — ¢, R)).

U
p,q;7,s

logical parabolic induction are different. For the symmetric spaces

In contrast, the real Levi subgroups L that appear in cohomo-

U(p,q)/(U(r,s) x U(p —r,q — s)), the real Levi subgroup is given by

(9.2) LY =T x U(p—2r,q — 2s),

p,q;7,s

whereas for the symmetric space GL(n,R)/(GL(¢,R) x GL(n — {,R)),
the corresponding real Levi subgroup is

Ly, = (C*)" x GL(n — 2(,R).

See also [25] for further examples in more details.

Remark 9.2. (1) The real Levi subgroups of a symmetric space are
Levi subgroups of #-stable parabolic subgroups which were used
to obtain the representations in the discrete spectrum of the
symmetric space via cohomological induction.

(2) Observe that even in the rank one case, the non-compact sym-

metric spaces

Ly 10/ Ly g0 N (U(1,0) x U(p = 1,q))
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and
LE,I/LE,I n (GL(]-aR) X GL(TL - 17R))

of the real Levi subgroups are not isomorphic. On the other
hand, they have the same complex Levi subalgebra given in
Definition 9.1.

(3) Observe that the complex Levi subalgebras of the symmetric
spaces U(2n,2n)/(U(n,n) x U(n,n)) and U(2n,2n)/GL(2n,C)

are isomorphic.

9.2. Arthur Packets and Discrete Series Representations for
Symmetric Spaces. We recall some results about Arthur packets and
representations in the discrete spectrum for the symmetric spaces.

Given a fixed ¢ so that 2¢ < n and non-singular integral infinites-
imal character (6.3), C. Moeglin and D. Renard showed in [25] that
all the representations with this infinitesimal character, which are in
the discrete spectrum of GL(n,R)/(GL(¢{,R) x GL(n — ¢,R)), are in
the same Arthur packet A(\). However, Arthur packets for GL(n,R)
contains only one representation [1]. Thus the irreducible unitary rep-
resentation I1,(\) in Proposition 7.2, satisfying the regularity condition
AL > > Ao > A > max(n—20—1,0), is the only representation in
the Arthur packet with this infinitesimal character. In contrast the uni-
tary representations in the discrete spectrum of the symmetric spaces

Ulp,q)/(U(1,0) x U(p —1,q)) and U(p,q)/(U(0,1) x U(p,q — 1)),

which have the same non-singular infinitesimal character, are not iso-
morphic, but they are in the same Arthur packet [27]. More surprisingly
for fixed non-singular integral infinitesimal character the representa-

tions in discrete spectrum of the symmetric spaces
U(2n,2n)/(U(n,n) x U(n,n)) and U(2n,2n)/GL(2n,C)

are in the same Arthur packet, although the symmetric spaces are not
isomorphic. Thus any generalization of the GGP conjecture to unitary

symmetric spaces for p +¢ =0 mod 4 has to take this into account.
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Using the observation that Arthur packets for GL(n,R) contain ex-
actly one representation, these ideas lead to the reformulation of the
conclusion of Theorem 7.8 as follows.

Let IT and 7 be discrete series representations in

L*(GL(n,R)/(GL(¢,R) x GL(n — ¢, R))),

and
L*(GL(n —1,R)/(GL({,R) x GL(n — ¢ — 1,R))),
respectively, where 2¢ < n — 1. We also assume that they have non-
singular infinitesimal characters. Let Ap and A, be Arthur packets,
such that
ITe Ay and 7€ A,.

We can summarize our discussion as follows.

Corollary 9.3. Under the above assumptions we have:
H0m01<H’G17 7T) =C

for all pairs of representations Il € Ay and w € A,.

9.3. “Operations on the Unitary Dual”. In the article [32], A.
Venkatesh discusses the restriction of representations I1,(A) of GL(n,R)
to a subgroup GL(n — 1,R) embedded in the upper left corner as the
stabilizer of the last coordinate vector. More generally in this paper, he
discusses for GL(n), the effect on the unitary dual of the following op-
erations: restriction to a Levi subgroup, induction from Levi subgroups
and tensor products. Without explicitly computing symmetry break-
ing operators or referring to symmetric spaces, using only the Mackey
machine, A. Venkatesh considers representations induced from a rep-
resentation of GL(p,R) x GL(n —p,R) to GL(n,R) which is tempered
on GL(p,R) and trivial on GL(n — p,R) and their restriction to the
subgroup GL(n — 1,R) proving conjectures by L. Clozel about the au-
tomorphic support of the restriction. We quote from the abstract of the
article by L. Clozel [3]: “The Burger—Sarnak principle states that the
restriction to a reductive subgroup of an automorphic representation

of a reductive group has automorphic support. Arthur’s conjectures
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parametrize automorphic representations by means of the (Langlands)
dual group. Taken together, these principles, combined with some new
arguments, imply that unipotent orbits in a Langlands dual behave
functorially with respect to arbitrary morphisms H — G of semisim-
ple groups. The existence of this functoriality is proven for SL(n),
and combinatorial descriptions of it (due to Kazhdan, Venkatesh, and
Waldspurger) are proposed.”

In this article, we used different techniques to analyze the restric-
tion of a family of non-tempered unitary representations of GL(n,R)
to GL(n—1,R) and proved the existence of non-trivial SBOs. We also
provided a proof for symmetry breaking for some tempered represen-

tations.

9.4. A GGP Theorem for the Symmetric Spaces
GL(n,R)/GL(p,R)xGL(n—p,R) and U(p,q)/U(r,s)xU(p—r,q—s)?
Around 1992, B. Gross and D. Prasad published conjectures concerning
the restriction of discrete series representations of orthogonal groups to
smaller orthogonal groups [6]. These have been generalized to unitary
groups and have been proven by H. He [10] for individual discrete series
representations.

These ideas can be generalized in two directions:

e understand the symmetry breaking of discrete series of sym-
metric spaces and discrete series of subspaces,

e understand the symmetry breaking of representations in Arthur
packets of groups and of subgroups.

Discrete series representations of a symmetric space G/H are gener-
ally not tempered representations. See [2] for the classification of G/H
such that the regular representation on L?(G/H) is non-tempered.
In [25] D. Renard and C. Moeglin examine the relationship between
Arthur packets and discrete series representations of symmetric spaces
of classical groups. The representations in the discrete spectrum of
symmetric spaces are members of an Arthur packet [25]. Not all mem-

bers of such an Arthur packet are discrete series representations of
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a symmetric space, and an Arthur packet may contain discrete se-
ries representations of several symmetric spaces [25]. Generalizing the
GGP conjectures to symmetric spaces involves generalizing them to
the subset of representations in a given Arthur packet which are dis-
crete series of a symmetric space. Moeglin and Renard showed for real
classical groups that if a representation in an Arthur packet is in the
discrete spectrum of a symmetric space, then another representation
in the same packet is either in the discrete spectrum of no symmetric
space or in the discrete spectrum of a unique symmetric space [25].
On the other hand the results in [27] suggest that it may be possible
to generalize the GGP conjectures to discrete series representations of
symmetric spaces or Stiefel manifolds.

9.5. Examples That Illustrate Our Results.

9.5.1 Branching of Limit of Discrete Series. By Theorems 2.1 and 2.2
we can deduce non-vanishing results concerning symmetry breaking for
some limits of discrete series representations from those for discrete
series representations. As an illustration, we consider the pair

(G,G")=(U(2,1),U(1,1)).

We use the conventions from Sections 3 and 8.

The group G = U(2,1) has three families of discrete series repre-
sentations. They are parametrized by the Harish-Chandra parameters
(21, 22,y) € (Z)2 X Z:

(9.3) xT1 > To >, xT1 > Y > T, Yy > x> T,
which we also denote symbolically, following [10], by
th -, A,

The group G' = U(1,1) has two families of discrete series rep-
resentations. They are parametrized by Harish-Chandra parameters

(&n) € (Z+3)*
>, and 1 >¢,

which are denoted symbolically by &6 and ©@®, respectively.
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The 7-invariants (Definition 2.8) of the representations Il 4,4,
Hz) ywo)s Hiywywe) of G = U(2,1) corresponding to (9.3) are e; — ey,
none, and ey — eg, respectively. Applying the vanishing theorem (The-
orem 2.9), we obtain that

Homg (H(:pl,azz,y)|G’a W(ﬁm)) =0

whenever, for instance, 1 > 2o > &>y >nor & > x> 29 >y > 1.
By Theorem 2.9), Home (L4, 4,.4)|c7, T(e,y)) vanishes in a total of 24
interleaving patterns.

An explicit condition on
('lean Y, g’ T’) € ZS X (Z + %)2
such that
Homer (H(zy 0,0 |crs Tieny) # 0
is given in the left column of Table 9.1, as shown by H. He [10]. These

conditions are described by interleaving patterns, for which an intrinsic
explanation was provided in Theorem 3.2 from a different perspective.

Case interleaving ) 0" | limit of discrete series
I |z >&8>m>y>n|++— |00 | vy >E>1=y>n

IT |21 >&E>n>y>a | +—+ |00 | v1>E>0>y =29
Il [z1>y>2e>E>n|+—4+ | @S| 21 =y>22>E>7
Ty >Y=29>& >0
IV [z1>y>n>&E>x | +—+ 6B | vy =y>n>E&> 1
V n>&é>zi>y>a|+—+ |00 | n>E>01 =y > 29
n>§>mx >y =1

VI [ n>y>a1>E>x | —++ |00 | n>y=1a1>& > 29

TABLE 9.1. Interleaving patterns for (U(2,1),U(1,1))

For instance, fix £ > 7, and consider discrete series representation
Ty of G' = U(1,1). The interleaving patterns corresponding to dis-
crete series representations Il;, 4,,) of G = U(2, 1) satisfying

Homer (H(zy .4 lar, T(emy) # 0
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are Cases I, II, and III. Among these three, only interleaving pattern I1
is coherent in the sense of [8, Def. 4.5].

The nondegenerate limits of discrete series representations corre-
sponding to (9.3) are given by xo =y, 1 = y or y = x, and y = 1z,
respectively. They occur as a direct summand of certain reducible prin-
cipal series representations. Applying once again Theorems 2.1 and 2.2
on translation functors for symmetry breaking, we deduce that there
exists a nonzero symmetry breaking operator between the limit of a
generic discrete series representation and a discrete series representa-
tion of U(1,1). This application to limits of discrete series represen-
tations is new. For example, in the interleaving pattern III, the cases
xry = y or x5 = y are allowed. A similar argument applies to the
other interleaving patterns I-VI. These conditions are summarized in
the right column of Table 9.1.

9.5.2 Tempered Case (@ = 2s). We now illustrate Theorem 8.6 with

an example
(G,G")=(U(3,2),U(2,2))
with
(H,H) = (U(1,1) x U(2,1),U(1,1) x U(1,1)).

There are, up to conjugation, two f-stable parabolic subalgebras of
gc = gl(5,C) that describe discrete series representations for G/H.
They are parametrized, as in Lemma 8.2, by interleaving patterns D €
P(R™®) in RL x RS, or equivalently by the data k = {(r;), (s;), M}
with 1 < M < min(r, s), where (r,s) = (1,1):

Case 1: DW = {x >y >0}, thatis, xM = {(1),(1),1},
Case 2: D@ = {y >z >0}, thatis, x® = {(0),(1),1}.

Accordingly, the set of discrete series for G/H is given by
Disc(G/H) = {Tl(4y) : (z,y) € Z* N (DY U D@)}.
The representation Il has a 3(gc)-infinitesimal character
(2,0, —z,y, —y) € C°/&s,

while its minimal K-type has highest weight



46 TOSHIYUKI KOBAYASHI AND BIRGIT SPEH

(2,0, —,y,~y), in Case 1,
X =
(x—1,0,1 —z,y+1,—y — 1), in Case 2.

Similarly, up to conjugation, there are two 6-stable parabolic subal-
gebras of g = gl(4, C) that describe discrete series representations for
G/H. They are parametrized as

Case 1: D'V = {¢ >n >0}, thatis, 'V = {(1),(1),1},
Case 2: D'® = {n>¢ >0}, thatis, &@ = {(0),(1),1}.

Thus, the set of discrete series for G'/H' is given by
Disc(G'/H') = {mem : (&m) € (Z+1)*N (D'M U D',
The representation 7, has a 3(g¢)-infinitesimal character:
(€, =& m,—n) € C'/&,,

while its minimal K-type has highest weight

+5 —&—3 n—35 3—n  (Casel),
_{g_%’ 1-¢ n+i, —n—3 (Case?2).
By the non-vanishing theorem of period integrals (Theorem 5.3),

Home: (H(zy)lar, Tem) # 0

3::5—1-%, y:n—% (Case 1),
r—1=¢+1 y+1=n+1i (Case?2).
Thus, Theorem 2.5 guarantees
r>&>n>y>0 (Casel),
n>y>xz>&>0 (Case?2).
These are the ingredients of Theorem 8.6.
Remark 9.4. In this specific example, all the discrete series represen-

tations are Harish-Chandra’s discrete series. The signatures of the

interleaving patterns are

+e0—-+-90d+ (Casel), ©6—+d+d+—-6 (Case?2);
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none of them forms a coherent pair in the sense of [8]. See [8, Def. 3.1]

for the definition of a signature of a pair of representations.

More generally, when ¢ = 2s, discrete series representations for
G/H =U(p,q)/(U(r,s) x U(p — 2r,q — 2s)) are tempered for generic
parameters. It is worth noting that the non-vanishing results obtained
in Theorem 8.6 hold even when the interleaving patterns do not form

a coherent pair in the sense of [8, Def. 4.5].

9.5.3 Non-Tempered Case. Let

(G,H) = (Ul(p,q),U(p —1,9)).
We begin with the rank-one symmetric spaces G/H and G'/H’, where
(H,H)=(UQ1)xUlp-1,¢),U(1) x Up - 2,q)).

Then the real Levi subgroups for the symmetric spaces G/H and G’/ H',
as given in (9.2), are

LU

p,q;1,

0= TQ X U(p - 27 Q)a Lgfl,q;l,o = T2 X U<p - 37 Q)a

respectively. In this rank-one setting, there is only one 6-stable par-
abolic subalgebra up to conjugation. For z € N + ’%_1 and ¢ €
N+ ’%_2, Theorem 8.6 guarantees that

Home: (I [cr, m¢) # 0

whenever x > £(> 0). Note that II, is non-tempered if p > 3. This
rank-one case is also discussed in [27].

Moreover, the stability theorem of multiplicities within fences (The-
orem 2.5) allows us to extend the non-vanishing result from II, to the
representations obtained by cohomological induction from a character

(21, 22) of qu;ma as long as 1, —x9 > &. (The representation II, cor-
responds to the case x; = —x9 = z.) These representations do not

appear as discrete series representations for the symmetric space G/H
when x1 + xo # 0, but rather as discrete series for the indefinite Stiefel
manifolds U(p, q)/U(p — 1, q) which are not symmetric spaces; see the
case r = s = 1 in [11, Chap. 2, Sect” 3] for further details.
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We now consider the higher-rank, non-tempered case where
(H,H) = (U(r,s) xU(p—r,q—35),U(r,s) xU(p—1—1r,q—s)),
with 2r < p —1 and 2s < ¢. In this setting, we have
rank G/H =rank G'/H' = r + s.
There are (Tjs) f-stable parabolic subalgebras with real Levi subgroup

LY =T x U(p —2r,q — 2s),

PaiTs
(see (9.2)) up to conjugation. The corresponding cohomologically in-
duced representations are non-tempered when ¢ > 2s, yet Theorem 8.6
still guarantees non-vanishing of the corresponding symmetry breaking
operators.
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