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Abstract. This article is a record of the lecture at the centen-

nial conference for Harish-Chandra. The admissibility theorem of

Harish-Chandra concerns the restrictions of irreducible representa-

tions to maximal compact subgroups. In this article, we begin with

a brief explanation of two directions for generalizing his pioneering

work to non-compact reductive subgroups: one emphasizes dis-

crete decomposability with the finite multiplicity property, while

the other focuses on finite/uniformly bounded multiplicity prop-

erties. We discuss how the recent representation-theoretic devel-

opments in these directions collectively offer a powerful method

for the new spectral analysis of standard locally symmetric spaces,

extending beyond the classical Riemannian setting.
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1 Admissible Restriction à la Harish-Chandra

Harish-Chandra’s celebrated admissibility theorem of real reductive

Lie groups G (Theorem 1.1 below) concerns the restriction of repre-

sentations of G to maximal compact subgroups K. This theorem has

become foundational for an algebraic theory of infinite-dimensional rep-

resentations of G using the notion of Harish-Chandra modules. It also

plays a crucial role in proving that reductive groups G are of type

I in the Murray–von Neumann sense (see [D77]), which implies that

irreducible decompositions of any unitary representations of G are es-

sentially unique.

An analogous statement to Harish-Chandra’s admissibility does not

generally hold for the restriction to reductive symmetric pairs such as

(GL(n,R), O(p, n− p)).

In this exposition, we investigate two avenues of research inspired

by Harish-Chandra’s admissibility theorem for the last three decades.

We do so in a more general setting, focusing on the restriction to non-

compact subgroups. In Section 5, we demonstrate that these general-

izations provide a new tool to explore the spectral theory of standard

pseudo-Riemannian locally symmetric spaces.

1.1. Reminder: Harish-Chandra’s admissibility theorem.

Let G be a linear real reductive Lie group, and let K be a maximal

compact subgroup. We denote by Irr(K) the set of equivalence classes

of irreducible (finite-dimensional) representations of the compact group

K.

Harish-Chandra proved the following fundamental result [HC53, HC54b],

combining with Segal’s theorem [Se52].

Theorem 1.1 (Harish-Chandra’s admissibility theorem). For any ir-

reducible unitary representation Π of G, one has the following finite-

multiplicity property:

(1.1) [Π|K : π] < ∞ for any π ∈ Irr(K).

Here [Π|K : π] denotes the multiplicity of the representation π occurring

in the restriction of Π to K.

1.2. From Riemannian to reductive symmetric pairs.
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One may think of Harish-Chandra’s admissibility as a theorem about

the restriction of representations of G to K, symbolically written as

G ↓ K. The pair (G,K) is referred to as a Riemannian symmet-

ric pair from a differential-geometric perspective, as the homogeneous

space G/K carries a G-invariant Riemannian metric such that the ge-

odesic symmetry at every point defines a global isometry. A typical

example is (G,K) = (GL(n,R), O(n)). More generally, pairs such as

(GL(n,R), O(p, q)) where p+ q = n have a similar geometric property,

and are referred to as reductive symmetric pairs.

Definition 1.2. Let G be a real reductive Lie group, σ an involutive

automorphism of G, and G′ an open subgroup of the fixed point group

Gσ. The pair (G,G′) is called a reductive symmetric pair.

Here are typical examples of reductive symmetric pairs.

Example 1.3. (1) The Riemannian symmetric pair (G,K) correspond-

ing to the Cartan involution θ.

(2) The pair (‵G× ‵G, diag ‵G). Let σ be the involutive automorphism

of the direct product group G = ‵G × ‵G defined by σ(x, y) = (y, x).

Then the fixed-point subgroup Gσ = diag ‵G.

(3) The pair (GL(n,R), O(p, q)) with p+ q = n.

(4) The pair (O(p, q), O(p1, q1)×O(p2, q2)) with p1+p2 = p, q1+q2 = q.

In Example 1.3 (1), the decomposition of a representation Π of the

group G with respect to the Riemannian symmetric pair (G,K) is

referred to as the K-type formula.

In Example 1.3 (2), the tensor product representation π1 ⊗ π2 of

two representations π1 and π2 of the group ‵G can be viewed as the

restriction of the outer tensor product π1⊠π2 of the group G = ‵G× ‵G
to the diagonal subgroup diag ‵G.

Thus, the restriction of a representation of the group G with respect

to a symmetric pair (G,G′) can be considered as a generalization of

these two examples.

We consider two avenues for generalizing Harish-Chandra’s admissi-

bility theorem for pairs G ⊃ G′ of reductive Lie groups, particularly

for reductive symmetric pairs:
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• G′-admissible restriction (Section 2),

• Finite multiplicity property (Section 3).

The former theme focuses on the property of the irreducible decom-

position of the restriction Π|G′ not containing continuous spectrum

when the representation Π of G is unitary. In contrast, the latter al-

lows Π to be non-unitary and focuses only on the finite-multiplicity

property.
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2 Admissible Restriction to Non-Compact Subgroups

Let G ⊃ G′ be a pair of real reductive Lie groups, particularly when

G′ is a non-compact subgroup, and Π an irreducible unitary represen-

tation of G. In what follows, we shall use the upper case letter Π for

representations of a group G, and the lower case letter π for those of the

subgroup G′. Our main concern in this section is how and when the

restriction Π|G′ behaves like Harish-Chandra’s admissibility theorem

(Theorem 1.1) for Π|K .
2.1. Admissible restriction G ↓ G′ for a non-compact sub-

group.

By a theorem of Mautner [Mt50], the restriction Π|G′ of any unitary

representation Π decomposes into a direct integral of irreducible uni-

tary representations of G′. The irreducible decomposition (the branch-

ing law) usually contains continuous spectrum when G′ is non-compact.

The following notion of G′-admissible restriction was introduced in

[Ko94] for a non-compact subgroupG′, partly inspired by Harish-Chandra’s

admissibility theorem:

Definition 2.1. The restriction Π|G′ is said to be G′-admissible if it

can be decomposed discretely into a direct sum of irreducible unitary
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representations π of G′:

Π|G′ ≃
∑
π∈Ĝ′

⊕
mππ (discrete sum)

with the multiplicity mπ := [Π|G′ : π] is finite for every π ∈ Ĝ′.

Here Ĝ′ denotes the unitary dual of the group G′, that is, the set of

equivalence classes of irreducible unitary representations of G′.

The key aspect of Definition 2.1 is that we require not only the ab-

sence of continuous spectrum but also the finiteness of each multiplicity

mπ.

When the subgroup G′ is compact, the discrete decomposability of

the restriction Π|G′ is automatically guaranteed, thus the main concern

is the finiteness of each multiplicitymπ. Harish-Chandra’s admissibility

(Theorem 1.1) corresponds to the case G′ = K, stating that any Π ∈ Ĝ

is K-admissible, in our terminology.

Remark 2.2. The absence of continuous spectrum is also formalized

algebraically in the category of (g, K)-modules without requiring the

unitarizability in [Ko98b]. See also Corollary 2.4.

2.2. Restriction to compact subgroups K ′ (⊂ K).

Our interest is in analyzing the restriction Π|G′ of Π ∈ Ĝ for a pair of

real reductive Lie groups G ⊃ G′.

The key idea in [Ko94] is first to focus on the K ′-structure of the

G-module Π, where K and K ′ are maximal compact subgroups of G

and G′, respectively, see below.

G ⊃ G′ real reductive groups

∪ ∪
K ⊃ K ′ maximal compact subgroups

Theorem 2.3 (Criterion for K ′-admissibility). Suppose Π ∈ Ĝ. Then

the following two conditions (i) and (ii) on the triple (Π, G,K ′) are

equivalent:

(i) (multiplicity) [Π|K′ : π] < ∞ for any π ∈ Irr(K ′).

(ii) (geometry) ASK(Π) ∩ CK(K
′) = {0}.
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The condition (ii) in Theorem 2.3 uses two closed cones ASK(Π) and

CK(K
′) in the dual space of a Cartan subalgebra of k. ASK(Π) is the

asymptotic K-support of the representation Π. There are only finitely

many possibilities for ASK(Π) among Π ∈ Irr(G). The closed cone

CK(K
′) is the momentum set associated with the Hamiltonian action

on the cotangent bundle T ∗(K/K ′); see [Ko05b, Chap. 6] for a detailed

exposition.

Theorem 2.3 holds without assuming that the representation Π is

unitary. The implication (i) ⇒ (ii) was proved in full generality in

[Ko98a] based on an estimate of the singularity spectrum of hyper-

function characters (or the wavefront set of distribution characters).

An alternative and algebraic proof was given in [Ko21b]. The converse

implication (ii) ⇒ (i) was originally given in [Ko02, Ko05b] with a

sketch of the proof, while the full proof is provided in [Ko21b].

2.3. Admissible restriction G ↓ G′.

By Theorem 2.3, we obtain the discrete decomposability of the restric-

tion of Π ∈ Ĝ with respect to G ↓ G′.

Corollary 2.4 (Criterion for admissible restriction). Suppose that a

triple (Π, G,G′) such that Π ∈ Ĝ and G ⊃ G′ satisfies one of (there-

fore, any of) the equivalent conditions in Theorem 2.3.

(1) ([Ko94]) The restriction Π|G′ is G′-admissible (Definition 2.1).

(2) ([Ko98b]) The underlying (g, K)-module ΠK is discretely decom-

posable as a (g′, K ′)-module (Remark 2.2).

Remark 2.5. In the case K ′ = K, one has clearly CK(K
′) = {0}. Thus

Corollary 2.4 (1) can be viewed as a generalization of Harish-Chandra’s

admissibility (Theorem 1.1).

2.4. Examples of admissible restrictions Π|G′.

For Π ∈ Ĝ and G ⊃ G′, we collect typical examples of the triples

(Π, G,G′) such that the restriction Π|G′ is G′-admissible, namely, it

decomposes discretely with finite multiplicity, as if it were Harish-

Chandra’s admissibility for the restriction to a maximal compact sub-

group K.

Example 2.6 (Theta correspondence). LetG be the metaplectic group

Mp(n,R), a double covering group of the symplectic group Sp(n,R) of
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rank n, and G′ = G′
1 ·G′

2 be a compact dual pair. Then the restriction

Π|G′ of the oscillator representation, also referred to as the Segal–Shale–

Weil representation, is G′-admissible. Moreover, the branching law is

multiplicity-free [H79].

Example 2.7. The tensor product of any two holomorphic discrete

series representations decomposes discretely, and each multiplicity is

finite [R79]. Moreover, the multiplicities are uniformly bounded [Ko07].

Its generalization to reductive symmetric pairs along with some explicit

branching laws can be found in [Ko07].

2.5. Classification theory: Admissible restriction Π|G′.

Corollary 2.4 together with a necessary condition for the algebraic

discrete decomposability (Remark 2.2) given in [Ko98b] provides a fam-

ily of triples (Π, G,G′) where Π ∈ Ĝ and G ⊃ G′ such that the restric-

tion Π|G′ is G′-admissible, namely, it decomposes discretely decompos-

able with finite multiplicity.

Some classification results of such triples (Π, G,G′) highlighted the

following cases:

• ([KOy15]) The tensor product Π1 ⊗ Π2 for Π1, Π2 ∈ Ĝ.

• ([KOy12]) (G,G′) is a reductive symmetric pair, Π is a discrete se-

ries representation of G, or more generally, when the underlying (g, K)-

module ΠK is Zuckerman’s derived functor module Aq(λ).

• ([KOy15]) (G,G′) is a reductive symmetric pair, and Π is the min-

imal representation of G.

• ([DGV17]) (G,G′) is a non-symmetric pair where G′ = SL(2,R),
Π is a discrete series representation of G.

Example 2.8. In Section 5, we give yet another geometric setting such

that the restriction Π|G′ is G′-admissible if

• X is a G-space on which G′ acts properly and spherically,

• Π ∈ Ĝ occurs in the space D′(X) of distributions.

This geometric setting is motivated by new spectral theory on pseudo-

Riemannian locally symmetric spaces and theG′-admissibility is proved

without relying on Theorem 2.3, see Theorem 5.13 below.
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For some explicit discrete branching laws, see [Ko94, GW00, Ko07,

O24]; for further topics on discretely decomposable restrictions, see

[Ki24, Ko24].

3 Bounded/Finite Multiplicity Pairs for Restriction

Let G ⊃ G′ be a pair of real reductive Lie groups. In the previous

section, we focused on G′-admissible restrictions of irreducible unitary

representations Π, as a way to generalize Harish-Chandra’s admissi-

bility to non-compact subgroups by requiring discrete decomposability

and finiteness of multiplicities. The absence of continuous spectrum

facilitates an algebraic approach to the restriction Π|G′ of the unitary

representation Π, even when G′ is non-compact.

In this section, we focus solely on the multiplicity by dropping the

requirement of discrete decomposability.

We will see that the finite-multiplicity property is not obvious even

for reductive symmetric pairs, such as

(GL(n,R), O(p, q)) or (GL(n,R), GL(p,R)×GL(q,R)) when p+ q = n.

We also explore a stronger condition referred to as bounded multiplicity

property, which does not generally hold even for restrictions related to

Riemannian symmetric pairs (G,K) but it still holds for some reductive

symmetric pairs (Theorem 3.12). These perspectives lead us to yet

another avenue of the restriction problem.

3.1. Reminder: smooth representations of moderate growth.

It is observed that irreducible continuous representations Π of real re-

ductive groups can exhibit wild behavior if they are not unitary. Even

when G = R, there exists an infinite-dimensional irreducible represen-

tation of the abelian group G on a Banach space, as a consequence of a

counterexample to the invariant subspace problem by Enflo, cf. [E87].

Harish-Chandra’s admissibility provides a guiding principle for iden-

tifying “reasonable” classes of continuous representations of reductive

Lie groups avoiding such counterexamples, defined as below.
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Definition 3.1 (admissible representation). A continuous representa-

tion Π of G is said to be admissible (K-admissible for later terminology)

if

[Π|K : π] < ∞ for every π ∈ Irr(K).

To be rigorous about ‘multiplicities’ for infinite-dimensional repre-

sentations, we need to specify the topology of the representation spaces.

For this purpose, let G be a real reductive Lie group, and M(G) de-

note the category of smooth admissible representations of finite length

with moderate growth, which are defined on Fréchet topological vector

spaces [Wa88, Chap. 11]. Casselman–Wallach’s theory shows that there

is a natural category equivalence between M(G) and the category of

(g, K)-modules of finite length.

Let Irr(G) denote the set of irreducible objects in M(G).

If Π is an admissible continuous representation of finite length on a

Banach space, then the representation Π∞ acting on the Fréchet space

of C∞-vectors belongs to M(G). In particular, this yields a natural

injection:

Ĝ
unitary dual

↪→ Irr(G), Π 7→ Π∞.

3.2. Multiplicity of the restriction Π|G′.

We use the category M(G) to define the “multiplicity” in the re-

striction Π|G′ .

Definition 3.2 (Symmetry Breaking Operator). Let Π ∈ M(G) and

π ∈ M(G′). A continuous G′-homomorphism from Π|G′ to π is referred

to as a symmetry breaking operator. Let HomG′(Π|G′ , π) denote the

vector space of symmetry breaking operators. The multiplicity of π in

the restriction Π|G′ is defined by its dimension, that is,

(3.1) [Π|G′ : π] := dimHomG′(Π|G′ , π) ∈ N ∪ {∞}.

The definition of the multiplicity (3.1) in the category M(G) coin-

cides with the multiplicity in the category of unitary representations if

the restriction is G′-admissible (Definition 2.1).
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3.3. Comparison: GL(n,R) ↓ O(n) vs GL(n,R) ↓ O(p, n− p).

Harish-Chandra’s admissibility theorem (Theorem 1.1) concerns the

restriction with respect to a Riemannian symmetric pair

G ⊃ K, e.g., GL(n,R) ⊃ O(n)

and asserts that

[Π|K : π] < ∞ for any Π ∈ Irr(G) and for any π ∈ Irr(K).

In contrast, for a reductive symmetric pair

G ⊃ G′, e.g., GL(n,R) ⊃ O(p, n− p)

it may occur that

[Π|G′ : π] = ∞ for some Π ∈ Irr(G) and π ∈ Irr(G′).

The classification of reductive symmetric pairs (G,G′) having the

finite multiplicity property

[Π|K : π] < ∞ for any Π ∈ Irr(G) and for any π ∈ Irr(G′).

has been established in [KM14] using the criterion in Theorem 3.10

below. We will explain the background of the theory.

3.4. Spherical vs real spherical.

Let GC be a complex reductive Lie group, and XC a connected complex

manifold on which GC acts holomorphically.

Definition 3.3. The GC-space XC is spherical if a Borel subgroup B

of GC has an open orbit in XC.

Example 3.4 ([Wo69]). Complex reductive symmetric spaces are spher-

ical.

In search of a broader framework for global analysis on homoge-

neous spaces than those known in the late 1980s (e.g. group manifolds,

semisimple symmetric spaces), the author advocated introducing the

following concept from the viewpoint of the finite multiplicity property.

Definition 3.5 ([Ko95]). Let X be a connected C∞ manifold on which

a real reductive Lie group G acts as diffeomorphisms. We say X is real

spherical if a minimal parabolic P of G has an open orbit in X.
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In what follows, we assume that G is a real reductive group with

complexification GC, and that H is an algebraic reductive subgroup of

G with complexification HC. We write X = G/H and XC = GC/HC.

Remark 3.6. It is important to emphasize that the following two notions

differ:

• real forms of spherical spaces,

• real spherical spaces.

The former is stronger than the latter; namely, if GC/HC is spherical

then its real form G/H is always real spherical ([KOt13, Lem. 3.5]).

The converse is not necessarily true. For instance, any homogeneous

G/H is real spherical if G is compact, but its complexification GC/HC

is not necessarily spherical.

Remark 3.7. (1) The definition of real sphericity ofX = G/H in Defini-

tion 3.5 is equivalent to the condition that #(P\G/H) < ∞ (Kimelfeld,

Matsuki, Bien). This extends a theorem by Brion and Vinberg, which

asserts that a GC-space XC is spherical if and only if #(B\XC) < ∞.

(2) For compact H, Akhiezer–Vinberg [AV99] proved that G/H is a

weakly symmetric space in the sense of Selberg if and only if GC/HC

is spherical.

(3) For compact G, Tanaka [Tn22] proved thatXC is G-strongly visible

in the sense of [Ko05b] if and only if XC is GC-spherical.

3.5. Analytic view of real spherical spaces.

A fundamental requirement in non-commutative harmonic analysis for

a G-space X is that the space of functions on X should be well-

controlled by the group G. To be rigorous, we formalize the degree of

control of the groupG in terms of the multiplicity dimHomG(Π, C
∞(X)),

that is, the number of times each irreducible representation Π ∈ Irr(G)

occurs in C∞(X).

The following theorem provides a geometric criterion for the finite-

ness of the multiplicity:

Theorem 3.8 (Finite Multiplicity Space). Let G be a reductive Lie

group, H a reductive algebraic subgroup of G, and X = G/H. Then

the following two conditions on the pair (G,H) are equivalent.
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(i) (Global analysis) dimHomG(Π, C
∞(X)) < ∞ for every Π ∈ Irr(G).

(ii) (Geometry) X is G-real spherical.

In the original proof ([KOt13, Thm. A]), we consider a more gen-

eral setting for the space of distribution sections of equivariant vector

bundles over X = G/H, where H is not necessarily reductive, and not

only gives a qualitative result (the equivalence in Theorem 3.8) but also

provides quantitative results. Specifically, we give an upper estimate

of the multiplicity by using hyperfunction boundary value maps for

partial differential equations. For a lower estimate, we generalize an

idea of the classical Poisson transform, see [Ko14, Sec. 6.1] for more de-

tails. These estimates from the above and below establish a necessary

and sufficient condition for the uniform boundedness of the multiplic-

ity, which gives a stronger degree of control of the group G over the

function space of X, as discussed in the next section.

3.6. Analytic view of spherical spaces.

A discovery in [Ko05a, KOt13] reveals the fact that the uniform bound-

edness property of the multiplicity in C∞(X) is determined solely by

the complexification XC = GC/HC. This is in sharp contrast to the

finiteness criterion established in Theorem 3.8.

The results are summarized in the following theorem, which shows a

harmony of analysis, geometry, and algebra:

Geometry Analysis

GC
↷XC ⇝ G↷C∞(X)

⇝
⇝

DG(X)

Algebra

Theorem 3.9 (Criterion for Uniformly Bounded Multiplicity). Let

G ⊃ H be a pair of real reductive Lie groups, and X = G/H. Then

the following conditions (i), (ii), (iii), and (iii)′ on the pair (G,H) are

equivalent:
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(i) (Global analysis) There exists a constant C > 0 such that

(3.2) dimHomG(π,C
∞(X)) ≤ C for all π ∈ Irr(G).

(ii) (Complex geometry) XC is GC-spherical.

(iii) (Ring structure) The algebra DGC(XC) is a commutative ring.

(iii) ′(Ring structure) The algebra DGC(XC) is a polynomial ring.

The proof of the equivalence (iii) ⇔ (iii)′ is given in Knop [Kn94],

and the equivalence (ii) ⇔ (iii) was established earlier, see Vinberg

[Vi01] and references therein.

In contrast to conditions (ii), (iii), and (iii)′, depending solely on

the complexifications (GC, HC), the objects in (i) such as Irr(G) and

C∞(G) are strongly dependent on the choice of the real forms G and

X of GC and XC. The equivalence (i) ⇔ (ii) was established by the

author in collaboration with T. Oshima [KOt13].

3.7. Restriction G ↓ G′ with finite multiplicity property.

We apply Theorem 3.8 to the homogeneous space (G×G′)/ diagG′ ≃ G

to study the restriction of representations with respect to G ↓ G′.

Theorem 3.10 (Finite Multiplicity Pairs for Restriction, [Ko14]). The

following two conditions (i) and (ii) for a pair of real reductive groups

G ⊃ G′ are equivalent:

(i) (Representation theory) [Π|G′ : π] < ∞ for every Π ∈ Irr(G),

and for every π ∈ Irr(G′).

(ii) (Geometry) (G×G′)/ diagG′ is real spherical.

Example 3.11 (Harish-Chandra’s admissibility). The geometric con-

dition (ii) in Theorem 3.10 holds when G′ = K by the Gauss–Iwasawa

decomposition G = KAN . The representation-theoretic condition (i)

corresponds to Harish-Chandra’s admissibility when G′ = K.

A complete classification of reductive symmetric pairs (G,G′), where

G′ is non-compact, satisfying the geometric condition (ii) was estab-

lished by the author in collaboration with Matsuki [KM14].

3.8. Restriction G ↓ G′ with uniformly bounded multiplicity

property.
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As in Theorem 3.10, applying Theorem 3.9 to the homogeneous space

(G × G′)/ diagG′ yields a necessary and sufficient condition for the

uniform boundedness property of the restriction G ↓ G′:

Theorem 3.12 (Uniformly Bounded Multiplicity Pairs for Restric-

tion). Let G ⊃ G′ be a pair of real reductive groups. Then the following

four conditions (i), (ii), (iii), and (iii)′ are equivalent:

(i) (Representation Theory) sup
Π∈Irr(G)

sup
π∈Irr(G′)

[Π|G′ : π] < ∞.

(ii) (Complex Geometry) (GC ×G′
C)/ diagG

′
C is spherical.

(iii) (Ring) The algebra U(gC)
G′

is a commutative ring.

(iii)′ (Ring) The algebra U(gC)
G′

is a polynomial ring.

See [Ko14] for some other equivalent conditions, as well as for the

proof of the equivalence (i) ⇔ (ii). See also [Ko95, KOt13]. There

are a few pairs (G,G′) satisfying (i)–(iii)′ but in which the supremum

in (i) is greater than one. However, for most of the important cases,

a sharper estimate for (ii) ⇒ (i) holds, that is, the supremum in (i)

equals one (Sun–Zhu [SZ12]).

In the trivial case where G = G′, the finiteness condition (i) is evi-

dent. The sphericity condition (ii) is guaranteed by the Bruhat decom-

position, while the ring structure (iii)′ is established via the Harish-

Chandra isomorphism [HC58].

The classification of such complex pairs (gC, g
′
C) was provided by

Krämer [Kr76] and Kostant in 1970s if gC is simple, specifically (gC, g
′
C)

being (sl(n,C), gl(n − 1,C)), (so(n,C), so(n − 1,C)), up to abelian

factors and possibly considering outer automorphisms.

3.9. Example: O(p, q) ↓ O(p1, q1)×O(p2, q2).

We examine the finiteness criterion (Theorem 3.10) and the uniform

boundedness criterion (Theorem 3.12) in the context of the symmetric

pair (G,G′) = (O(p, q), O(p1, q1) × O(p2, q2)) where p1 + p2 = p and

q1 + q2 = q, and p+ q ≥ 5.

Our criteria tell us the following equivalences:

• sup
Π∈Irr(G)

sup
π∈Irr(G′)

[Π|G′ : π] < ∞ ⇐⇒ p1 + q1 = 1 or p2 + q2 = 1;

• [Π|G′ : π] < ∞ for every Π ∈ Irr(G) and for every π ∈ Irr(G′)

⇐⇒ p1 + q1 = 1, p2 + q2 = 1, p = 1, q = 1, or G′ compact.
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The proof of Theorem 3.10 shows that for general values of p1, p2,

q1, q2, it can occur that the multiplicity

[Π|G′ : π] = ∞

for some principal series representations Π ∈ Irr(G) and π ∈ Irr(G′),

which contrasts with the case where G′ is compact (Harish-Chandra’s

admissibility).

3.10. Question: Bounded multiplicity Π|G′ for “small” Π.

By inspecting the above examples, one sees that refining the question

should broaden the concept of “good classes” for branching problems.

Thus, we consider a triple (Π, G,G′), where Π ∈ Irr(G) and G ⊃ G′,

instead of just a pair (G,G′), as in the formulation of the admissible

restriction (Corollary 2.4). We now pose the following question.

Question 3.13. Given a reductive symmetric pair G ⊃ G′, does there

exist at least one infinite-dimensional Π ∈ Irr(G) with the following

bounded multiplicity property?

sup
π∈Irr(G′)

[Π|G′ : π] < ∞.

3.11. An affirmative answer to Question 3.13.

In [Ko07], we provided an affirmative answer to Question 3.13 in the

context of the reductive symmetric pair (G,G′) given by Hermitian Lie

groups such as (U(p, q), U(p1, q1) × U(p2, q2)) where p1 + p2 = p and

q1 + q2 = q using the theory of visible actions on complex manifolds.

For the general case, we have proved the following result.

Theorem 3.14 ([Ko22a]). Let G be a simply connected, non-compact,

real semisimple Lie group. There exist a constant C ≡ C(G) > 0 and

an infinite-dimensional irreducible representation Π of G such that

sup
π∈Irr(G′)

[Π|G′ : π] ≤ C

for all symmetric pairs (G,G′).

Example 3.15 (tensor product). There exist a constant C > 0 and

infinite-dimensional irreducible representations Π1, Π2 of G such that

[Π1 ⊗ Π2 : Π] ≤ C for every Π ∈ Irr(G).
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It is important to note that Theorem 3.14 establishes the uniformly

bounded multiplicity property. Thus, even in the special case ofG′ = K

in Theorem 3.14, the result does not follow from Harish-Chandra’s

admissibility theorem, which guarantees only individual finiteness but

not the uniformly bounded multiplicity property.

Another example of Π ∈ Ĝ that gives an affirmative answer to Ques-

tion 3.13 is the minimal representation:

Theorem 3.16 ([Ko22b]). Let G be a real reductive Lie group. If the

associated variety of Π ∈ Irr(G) is the minimal nilpotent orbit in g∗C,

then there exists a constant C ≡ C(Π) > 0 such that

sup
π∈Irr(G′)

[Π|G′ : π] ≤ C

for all reductive symmetric pairs (G,G′).

3.12. Methods of proof.

The original approach in [KOt13] to prove the finiteness/uniform bound-

edness for multiplicities under certain geometric conditions (e.g., (ii)

⇒ (i) in Theorem 3.8, (ii) ⇒ (i) in Theorem 3.9, and (ii) ⇒ (i) in The-

orem 3.10, etc.) was to use partial differential equations with regular

singularities at the boundary of a specific compactification. Further ap-

proaches used by Tauchi, Kitagawa, Kobayashi, Aisenbud–Gourevich,

Tanaka and other researchers include holonomic D-modules [Tu22],

visible actions on complex manifolds [Ko05a, Tn24], and coisotropic

actions on symplectic manifolds [Ki21], etc.

Some of these methods have broader applications, though upper es-

timates of the multiplicities are not necessarily as sharp as those in

[KOt13].

The proof of the converse statement employs integral transforms

[Ko14], which provide lower bounds for the multiplicities in Theorems

3.9 and 3.12.

4 Bounded Multiplicity Triple for Restriction

In search of a natural framework for a detailed and potentially fruit-

ful analysis of branching problems (for example, Stage C in the ABC

program [Ko15], which studies the restriction of representations), we
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focus on a specific family of “small” representations Π ∈ Irr(G) for

which the restriction has the uniformly bounded property: By unifor-

mity, we consider not only representations π ∈ Irr(G′) but also the

family of representations Π ∈ Irr(G) as described below.

Question 4.1. Find a triple (Ω, G,G′) where Ω ⊂ Irr(G) and G ⊃ G′

which satisfies the following uniform boundedness property:

(4.1) sup
Π ∈ Ω

sup
π ∈ Irr(G′)

[Π|G′ : π] < ∞.

This question further explores Question 3.13. We have seen several

affirmative results in the previous sections, such as

Ω = Irr(G) (Theorem 3.12)

Ω = {minimal representations} (Theorem 3.16)

In the next section, we will discuss Question 4.1, focusing on Ω :=

{H-distinguished representations}.
4.1. Restriction of H-distinguished representations H ↗ G.

We set up some notation. Let H be a closed subgroup of a Lie group

G.

Definition 4.2. We say Π ∈ Irr(G) is an H-distinguished representa-

tion of G, if (Π−∞)H ̸= {0}, or equivalently if

HomG(Π, C
∞(G/H)) ̸= {0}

by the Frobenius reciprocity. Let Irr(G)H denote the subset of Irr(G)

consisting of H-distinguished irreducible admissible representations.

4.2. Bounded multiplicity triple for H ↗ G ↘ G′.

Definition 4.3. A triple H ⊂ G ⊃ G′ of real reductive Lie groups is

said to be a bounded multiplicity triple if (4.1) holds for Ω = Irr(G)H .

This means that for every representation Π ∈ Irr(G) that can be re-

alized in C∞(G/H), the multiplicity of the restriction Π|G′ is uniformly

bounded:

sup
Π ∈ Irr(G)H

sup
π ∈ Irr(G′)

[Π|G′ : π] < ∞.
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We shall discuss an aspect of the classification theory of bounded

multiplicity triples established in [Ko22a] below.

We begin with some näıve considerations for Definition 4.3 including:

(1) If the subgroup H is “large” in G, then we may expect that the

representation Π ∈ Irr(G)H will be “small”.

(2) If the subgroup G′ is “large” in G and if the representation Π is

“small”, then we may expect that the subgroup G′ will have a strong

degree of the control, in the sense that the restriction Π|G′ will have a

bounded multiplicity property.

The “largeness” of the subgroups depends on the properties we are

examining. The conditions for H are formulated in Theorem 4.9, while

those for G′ and H are presented in Theorem 4.6 (ii) below.

4.3. Relative Borel subalgebra bG/H and relative parabolic

subgroup PG/H.

In non-commutative harmonic analysis of real reductive Lie groups G,

the notion of minimal parabolic subgroups of G and Borel subalgebras

in the complexified Lie algebras gC plays a fundamental role. We con-

sider the generalization of this notion to reductive symmetric spaces

G/H associated to an involutive automorphism σ of G.

We take a maximal compact subgroup GU ⊂ GC such that GU ∩ G

and GU ∩H are also maximal compact subgroups of G and H, respec-

tively. We fix an Ad(G)-invariant non-degenerate symmetric bilinear

form on g which is also non-degenerate on the subalgebra h. We write

g = h + h⊥ for the direct sum decomposition and gC = hC + h⊥C for

its complexification. Recall that to a given hyperbolic element Y in

g, one associates a parabolic subalgebra of g, defined as the sum of

eigenspaces of ad(Y ) with non-negative eigenvalues.

Definition 4.4. (Relative Borel subalgebra bG/H and parabolic subal-

gebra pG/H [Ko22a]). Let (G,H) be a reductive symmetric pair.

(1) A Borel subalgebra bG/H for G/H is a parabolic subalgebra of gC.

It is defined by a generic element of h⊥C ∩
√
−1gU or its conjugate by

an inner automorphism of GC.

(2) A minimal parabolic subalgebra pG/H for G/H is a real parabolic
18



subalgebra of g. It is defined by a generic element of h⊥ ∩
√
−1gU or

its conjugate by an inner automorphism of G.

According to the definition, bG/H is determined solely from the com-

plexified symmetric pair (gC, hC).

Remark 4.5. In contrast to the usual definition of a Borel subalgebra,

the relative Borel subalgebra bG/H is not necessarily solvable.

4.4. Bounded multiplicity theorem for H ↗ G ↘ G′.

In Theorems 4.6 and 4.8 below, we set the following conditions:

(G,H) : a reductive symmetric pair,

G′ : a reductive subgroup of G.

We do not need to assume that (G,G′) is a symmetric pair.

Theorem 4.6 (Bounded Multiplicity Criterion, [Ko22a, Thm. 1.2]).

The following two conditions (i) and (ii) on a triple H ⊂ G ⊃ G′ are

equivalent.

(i) (Representation Theory) H ⊂ G ⊃ G′ is a bounded multiplicity

triple; that is,

sup
Π∈Irr(G)H

sup
π∈Irr(G′)

[Π|G′ : π] < ∞.

(ii) (Complex Geometry) The generalized flag variety GC/BG/H is G′
C-

spherical.

Example 4.7 (diagG ↗ G × G ↘ G′ × G′). In view of the natural

bijection,

(4.2) IrrG ≃ Irr(G×G)diagG, π ↔ π ⊠ π∨,

where π∨ is the contragredient representation, Theorem 4.6 in this

special case implies the bounded multiplicity theorem [KOt13, Thm.

D], as stated in the equivalence (i) ⇔ (ii) in Theorem 3.12.

The following theorem, when applied to the triple diagG ⊂ G×G ⊃
G′×G′, recovers the implication (ii)⇒ (i) in Theorem 3.10 (cf. [KOt13,

Thm. C]).
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Theorem 4.8 (Finite Multiplicity Triple H ↗ G ↘ G′ [Ko22a]). Re-

tain the setting for G′ ⊂ G ⊃ H. Then the following implications (i)

⇒ (ii) ⇒ (iii) hold:

(i) (Complex geometry) ♯(P ′
C\GC/(PG/H)C) < ∞, where P ′ is a mini-

mal parabolic subgroup of G′.

(ii) (Representation Theory) The multiplicity [Π|G′ : π] < ∞ for every

Π ∈ Irr(G)H and for every π ∈ Irr(G′).

(iii) (Real Geometry) The generalized real flag variety G/PG/H is G′-

real spherical, that is, P ′ has an open orbit in G/PG/H (Definitions 3.5

and 4.4).

For the proof of Theorems 4.6 and 4.8, we prove a “QP estimate”

[Ko22a, Thm. 3.1] for the uniform bounded multiplicity of the restric-

tion along the same line in [KOt13, Tu22] and use a uniform upper es-

timate of the “largeness” for all H-distinguished representations. The

latter can be formulated via the following generalization of Harish-

Chandra’s subquotient theorem as outlined below.

4.5. Generalizing Harish-Chandra’s subquotient theorem.

Harish-Chandra’s subquotient theorem [HC54b] has been strength-

ened as the subrepresentation theorem by Casselman [CM82] among

others: it asserts that any π ∈ Irr(G) can be realized as a subrepresen-

tation (also as a quotient) of some principal series representation.

We present a theorem that sharpen the subrepresentation theorem

for π ∈ Irr(G)H , by replacing principal series representations with in-

duced representations from finite-dimensional representations of the

parabolic subgroup PG/H .

In the special case of (G × G, diagG), Theorem 4.9 recovers the

subrepresentation theorem through the isomorphism (4.2).

Theorem 4.9 (Subrepresentation Theorem for G/H). Let (G,H) be

a reductive symmetric pair. For any Π ∈ Irr(G)H , there exists a finite-

dimensional irreducible representation V of PG/H such that

HomG(Ind
G
PG/H

(V ),Π) ̸= {0}.
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Moreover, the representation V in Theorem 4.9 has specific con-

straints that can be formulated using the relative Borel subalgebra

bG/H : see [Ko22a, Thm. 1.8] for details. The proof of the uniform

boundedness property in Theorem 4.6 makes use of these constraints.

4.6. Classification: Bounded multiplicity triples.

A complete classification of bounded multiplicity triples H ⊂ G ⊃ G′

has been achieved in [Ko21a, Ko22a]; this classification is based on the

criterion in Theorem 4.6. It has an unexpected relationship with the

new spectral theory of locally symmetric spaces beyond the classical

Riemannian setting, which will be discussed in the next section.

To conclude this section, we provide examples of such bounded mul-

tiplicity triples.

Example 4.10 (H ↗ G ↘ G′). For any p1, q1, p2, q2 with p1+p2 = p,

q1 + q2 = q, the triple

(G,G′, H) = (O(p, q), O(p1, q1)×O(p2, q2), O(p− 1, q))

is a bounded multiplicity triple, that is,

sup
Π ∈ Irr(G)H

sup
π ∈ Irr(G′)

[Π|G′ : π] < ∞.

5 Application of Branching Problem G ↓ G′ in Geometry

In this section, we discuss a seemingly unrelated topic, specifically

the spectral analysis of pseudo-Riemannian locally symmetric spaces

Γ\G/H, beyond the classical Riemannian setting.

We shall see that the general theory of the restriction G ↓ G′, as

discussed in Sections 2 to 4, provides a new tool for the study of

L2(Γ\G/H), where H is a non-compact subgroup.

We begin with the general setup. Let G be a Lie group, H be a closed

subgroup, and Γ be a discontinuous group for X = G/H. This means

that Γ is a discrete subgroup of G acting properly discontinuously and

freely on G/H. Consequently, the double coset space Γ\G/H, with the

quotient topology, is Hausdorff and admits the unique C∞ manifold

structure for which the covering map pΓ : G/H → Γ\G/H is a local
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diffeomorphism.

G

↙ ↘
Γ\G G/H

↘ ↙ pΓ

Γ\G/H

Via the covering map pΓ, any G-invariant local geometric object can

be pushed forward to the quotient manifold XΓ := Γ\G/H.

Let DG(X) denote the algebra of G-invariant differential operators

on X = G/H. Then any D ∈ DG(X) induces a differential operator

DΓ on the quotient XΓ via the covering map X → XΓ. We consider

the set

D(XΓ) := {DΓ : D ∈ D(G/H)}

as the algebra of intrinsic differential operators on the locally homoge-

neous space XΓ.

Example 5.1. If G ⊃ H is a pair of real reductive Lie groups, then

XΓ inherits a pseudo-Riemannian structure from a G-invariant pseudo-

Riemannian structure on X = G/H. The Laplacian ∆XΓ
is an element

of D(XΓ).

We remark that for non-compact H, the pseudo-Riemannian struc-

ture is not necessarily positive definite; consequently, the Laplacian

is generally not an elliptic differential operator. For instance, if the

quotient space G/H is Lorentzian, the following equation on the space

XΓ:

(5.1) ∆XΓ
f = λf

is a hyperbolic equation.

Suppose now that X = G/H is a reductive symmetric space. Then

the algebra D(XΓ) ≃ DG(X) is a commutative ring. Hence, it is nat-

ural to consider joint eigenfunctions of D(XΓ) on C∞(XΓ) rather than

focusing on the single equation (5.1).

For any C-algebra homomorphism λ : D(XΓ) → C, we denote by

C∞(XΓ,Mλ) the space of smooth functions defined on XΓ that satisfy
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the system of equations

(Mλ) DΓf = λ(D)f for any D ∈ DG(X).

Let DG(X)∧ be the set of all C-algebra homomorphisms λ : D(XΓ) →
C, which can be identified with the quotient j∨C/W of the dual j∨C of a

Cartan subspace j for (G,H) by the Weyl group W for the root system

∆(gC, jC), as shown in the Harish-Chandra isomorphism [HC58].

Not much attention has been paid to the spectral theory on XΓ =

Γ\G/H in the general setting where H is non-compact and Γ is an

infinite discontinuous group. For instance, the following questions re-

garding the spectral theory remain open in this generality.

Problem 5.2.

(1) The expansion of arbitrary functions defined on XΓ in terms of joint

eigenfunctions of the algebra D(XΓ) of intrinsic differential operators.

(2) Understanding the distributions of L2-eigenvalues.

5.1. Spectral analysis on Γ\G/H in the classical case.

These problems for spectral analysis on XΓ = Γ\G/H are formulated

from a broader perspective, building on the rich and deep body of

classical results that have been extensively studied. Special (classical)

cases that have been particularly fruitful include:

(1) Let H = K. When H is a maximal compact subgroup K of

G, XΓ becomes a Riemannian locally symmetric space. A vast

theory has been developed over several decades. Problem 5.2

is particularly enriched in connection with the local theory of

automorphic forms when Γ is an arithmetic subgroup.

(2) Let Γ = {e}. When Γ = {e}, XΓ reduces to the homoge-

neous space G/H. Problem 5.2 (1) has been extensively stud-

ied in the case where G/H is a reductive symmetric space and

Γ = {e}, with significant contributions from Gelfand, Harish-

Chandra [HC76] for group manifolds (G×G)/ diagG; Helgason,

Flensted-Jensen, T.Oshima, Delorme, and others for symmetric

spaces G/H.

(3) Let G = Rp,q, Γ = Zp+q, and H = {0}. In this case, Specd(XΓ)

consists of values of indefinite quadratic forms of signature (p, q)
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at the dual lattice Γ∨. See [Ko16] for a discussion on Problem

5.2 (2), which highlights a relation to the Oppenheim conjecture

(see e.g., Margulis [Mg00] and references therein) in Diophan-

tine approximation.

5.2. Spectral analysis on Γ\G/H beyond the classical Rie-

mannian setting.

The situation changes drastically beyond the classical setting, that is,

when H is no longer compact and Γ ̸= {e}. New difficulties arise,

including:

(1) (Representation theory) The space L2(XΓ) is no longer a sub-

space of L2(Γ\G), where the group G acts as a unitary represen-

tation. Moreover, we cannot expect the regular representation

of G on L2(Γ\G) to have finite multiplicities, contrary to the

classical theorem of Gelfand–Piatetski–Shapiro.

(2) (Analysis) In contrast to the Riemannian case, where H = K,

the pseudo-Riemannian Laplacian ∆XΓ
is no longer an elliptic

differential operator. Moreover, it is unclear whether ∆XΓ
is

essentially self-adjoint, due to the absence of a general theory.

(3) (Geometry) If H is not compact, then not all homogeneous

spaces G/H can admit discontinuous groups of infinite order

(e.g., the Calabi Markus phenomenon [CM62, Ko89]).

5.3. Standard locally homogeneous spaces Γ\G/H.

The geometric issue (3) in Section 5.2 raises a “local to global” problem

beyond the Riemannian setting, which can be formulated by group-

theoretic terms as the following fundamental question.

Question 5.3. How can we find a discrete subgroup Γ that acts prop-

erly discontinuously on G/H?

Here are some elementary observations regarding two extreme cases.

Observation 5.4. (1) Any discrete subgroup Γ suffices if H is com-

pact.

(2) However, any lattice Γ of the whole group G does not suffice if H

is non-compact, because Γ\G/H cannot be Hausdorff in this case.
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A straightforward method to find discrete subgroups Γ that answer

Question 5.3 is to utilize “standard quotients”: we recall that G′ acts

properly if the map G′ × X → X × X, given by (g, x) 7→ (x, gx), is

proper.

Definition 5.5. Let G′ be a reductive subgroup, which acts properly

on X, and let Γ be a torsion-free discrete subgroup of G′. Then Γ

acts properly discontinuously on X, and we say the quotient manifold

XΓ = Γ\G/H is a standard quotient of X.

By using standard quotients, it turns out that there exist several

families of reductive symmetric spaces G/H that admit “large” dis-

continuous groups Γ, e.g., such that XΓ = Γ\G/H is compact or has

finite volume [Ku81, Ko89].

5.4. Spectral theory of standard locally symmetric space Γ\G/H.

For the study of spectral analysis of pseudo-Riemannian locally sym-

metric spaces, we focus on standard quotients XΓ (Definition 5.5) of a

reductive symmetric space X = G/H, where Γ is a discrete subgroup

of a reductive subgroup G′ that acts properly on X.

Theorem 5.6 (Expansion into Joint Eigenfunctions, [KK20, KK24]).

Assume that G′
C acts spherically on XC (Definition 3.3). Then any

f ∈ C∞
c (Γ\X) can be expanded into joint eigenfunctions of D(XΓ) on

Γ\X. More precisely, there exist a measure µ on DG(X)∧(≃ j∨C/W )

and a family of maps

Fλ : C
∞
c (XΓ) → C∞(XΓ;Mλ)

such that

f =

∫
DG(X)∧

Fλf dµ(λ),

∥f∥2L2(XΓ)
=

∫
DG(X)∧

∥Fλf∥2L2(XΓ)
dµ(λ)

for any f ∈ C∞
c (XΓ).

Remark 5.7. In Theorem 5.6, we do not assume that vol(Γ\G′) < ∞.

In particular, Theorem 5.6 holds even when Γ = {e}.
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The following corollary answers an analytic issue (2) in Section 5.2

in the setting of Theorem 5.6.

Corollary 5.8. In the setting of Theorem 5.6, the pseudo-Riemannian

Laplacian ∆XΓ
is essentially self-adjoint on L2(XΓ).

5.5. Examples.

The properness criterion for the triple (G′, G,H) was established in

[Ko89], and is both explicit and computable. Below are some examples

to which Theorem 5.6 is applied.

Example 5.9 (Riemannian locally symmetric space). Let G/K be a

Riemannian symmetric space. Set G′ := G. Then the triple (G′, G,K)

clearly satisfies the assumption of Theorem 5.6. Consequently, the

conclusion of Theorem 5.6 holds for any Riemannian locally symmetric

space Γ\G/K, including the case of infinite volume.

Example 5.10 (standard anti-de Sitter manifolds). Let X be an odd-

dimensional anti-de Sitter space, that is,X = G/H = SO(2n, 2)/SO(2n, 1).

The subgroupG′ := U(n, 1) acts properly onX, andG′
C = GL(n+1,C)

acts spherically on XC = SO(2n + 2,C)/SO(2n + 1,C). Therefore,

Theorem 5.6 holds for any standard anti-de Sitter manifold XΓ with

Γ ⊂ U(n, 1).

Example 5.11 (indefinite Kähler manifolds). The homogeneous space

X = G/H = SO(2n, 2)/U(n, 1) has a natural indefinite-Kähler struc-

ture, and the subgroup G′ = SO(2n, 1) acts properly. Moreover, G′
C =

SO(2n + 1,C) acts spherically on XC = SO(2n + 2,C)/GL(n + 1,C).
Thus, Theorem 5.6 holds for any standard indefinite-Kähler manifold

XΓ with Γ ⊂ SO(2n, 1).

Example 5.12 (15-dimensional space form of signature (8, 7)). Let

X = G/H = SO(8, 8)/SO(8, 7). Then X is a pseudo-Riemannian

manifold of signature (8, 7) with constant negative sectional curvature.

The subgroup G′ = Spin(7, 1) of G acts properly on X, and G′
C =

Spin(8,C) acts spherically on XC. Thus, Theorem 5.6 holds for any

standard 15-dimensional space from XΓ of signature (8,7) with Γ ⊂
Spin(7, 1).
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A classification of the triples G′ ⊂ G ⊃ H that satisfy the assump-

tions in Theorem 5.13—specifically, the subgroup G′ acts properly on

X = G/H and XC is G′
C-spherical– can be found in [KK20, KK24].

As will be observed in Section 5.7, such triples are bounded multiplicity

triples (Definition 4.3) discussed in the previous section.

5.6. Key step: Admissible restriction H ↗ G ↘ G′ ⊃ Γ.

The new approach for proving the spectral theory presented in The-

orem 5.6 involves utilizing the global analysis of G′
C-spherical spaces

and the restriction of irreducible representations Π of G to the sub-

group G′ that acts properly on X. Specifically, we demonstrate that

this restriction Π|G′ is always discretely decomposable with uniformly

bounded multiplicities.

The following theorem bridges the spectral analysis on XΓ = Γ\G/H

and recent progress of branching problems that we outlined in Sections

2 to 4.

Theorem 5.13. Let X = G/H be a reductive symmetric space. Sup-

pose that a reductive subgroup G′ of G acts properly on X and that

the complexification G′
C acts spherically on XC. Then the restriction

Π|G′ is G′-admissible (Definition 2.1) for any H-distinguished Π ∈ Ĝ

(Definition 4.2). Moreover, the multiplicities are uniformly bounded:

sup
Π∈Irr(G)H

sup
π∈Irr(G′)

[Π|G′ : π] < ∞.

5.7. H ⊂ G ⊃ G′ ⇝ H ind↗ G ↘rest G′.

The conclusion of Theorem 5.13 follows from two key aspects of branch-

ing problems: G′-admissibility, as discussed in Section 2 and the uni-

formly bounded multiplicities outlined in Sections 3 and 4.
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The following diagram summarizes the related results:

G′
C ↷

spherical
GC/BGC/HC

Theorem 4.6⇐⇒ sup
Π∈Irr(G)H

sup
π∈Irr(G′)

[Π|G′ : π] < ∞

=⇒ =⇒
G′

C ↷
spherical

GC/HC

G′ ↷
proper

G/H
=⇒

Theorem 5.13

Π|G′ is discretely decomposable

with uniformly bounded multiplicities

for all Π ∈ Irr(G)H .

The proof of Theorem 5.13 ([Ko17], cf. [KK20, KK24]) does not rely

on the G′-admissibility criterion (Theorem 2.3), which is formulated

purely in terms of representation theory. It would be interesting to

explore a direct connection between the geometric assumption in The-

orem 5.13 and the transversality condition of the two cones (condition

(ii) in Theorem 2.3).

5.8. Strategy of the proof for Theorem 5.6.

The proof of Theorem 5.6 in [KK20, KK24] is quite comprehensive.

Here, we outline the key ingredients. Recall that we consider the stan-

dard quotient:

Γ ⊂ G′ ⊂ G↷X ⇝ XΓ = Γ\X

1. (Hidden symmetry) If the action of G′
C on XC is spherical

(see Theorem 3.9), it can be shown that the algebra DG′(X)

leaves the space C∞(X;Mλ) invariant, see [Ko17, KK19]. In

other words, DG′(X) acts as a hidden symmetry of the joint

eigenspace C∞(X;Mλ):

DG(X) ⊂ DG′(X)↷C∞(X;Mλ).

2. (Branching law G ↓ G′) If the G′-action on X is also proper,

then any π ∈ Irr(G) realized in D′(X) is G′-admissible (The-

orem 5.13). This property is particularly clear in the special

case where H = K and G′ = G, as it corresponds to Harish-

Chandra’s admissibility.
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