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brackets in full generality.
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1. Introduction

Given a family of linear maps R(ℓ) : Γ(X) → Γ(Y ) (` ∈ N) between
the spaces of functions on two manifolds X and Y , the generating

operator T is an operator-valued formal power series in t defined by

(1) T =
∞∑
ℓ=0

aℓR
(ℓ)tℓ ∈ HomC(Γ(X),Γ(Y ))⊗ C[[t]],

where aℓ ∈ C are normalizing constants. This concept was introduced

in [13] when aℓ =
1
ℓ!
.

Special cases of the generating operators include the classical notion

of generating functions for orthogonal polynomials which are defined

in the setting where X = {point}, Y = C, and aℓ ≡ 1, see e.g., [1],

whereas the semigroups generated by self-adjoint operators D as one

may recall the Hille–Yosida theory, correspond to the setting where

X = Y , R(ℓ) = the `-th power of D, and aℓ =
1
ℓ!
. In [9, 13] we initiated



a new line of investigation in the general setting where X ̸= {point}
and X ̸= Y by taking (X,Y ) to be (C2,C) as the first test case.

The idea of the generating operator is to capture all the information

of a countable family of operators just by a single operator. Its ap-

plications, symbolically stated in [9] as “from discrete to continuous”,

include

• a construction of non-local symmetry breaking operators with con-

tinuous parameters out of a countable family of differential operators;

• a realization of an embedding of discrete series representations for

the two-dimensional de Sitter space into principal series representations

of SL(2,R).
In this article, we find a closed formula for the generating operator of

the Rankin–Cohen brackets {RC(ℓ)
λ1,λ2

}ℓ∈N for arbitrary λ1, λ2 ∈ N+ by

choosing appropriate normalizing constants {aℓ}ℓ∈N, and the resulting

formula generalizes the λ1 = λ2 = 1 case proven in [13].

We also give a new method how to find the Rankin–Cohen brackets

by introducing their integral expression. The covariance property (7)

of the Rankin–Cohen brackets is immediate from this viewpoint. The

whole idea is inspired by the method of finding “generating operators”.

Convention. N = {0, 1, 2, · · · }, N+ = {1, 2, · · · }.

2. A short proof for Rankin–Cohen brackets

This section introduces a complex integral transform (4), which yields

a new way to construct the Rankin–Cohen bidifferential operator RC
(ℓ)
λ1,λ2

and a simple proof of its covariance property, see Corollary 1.

The Rankin–Cohen bracket RC
(ℓ)
λ1,λ2

: O(C × C) → O(C) was origi-

nally introduced in [3, 18] as a tool for constructing holomorphic mod-

ular forms of higher weights from those of lower weights. It is a bi-

differential operator defined by

(2) RC
(ℓ)
λ1,λ2

:= Rest ◦
ℓ∑

j=0

(−1)j

(
λ1 + `− 1

j

)(
λ2 + `− 1

`− j

)
∂ℓ−j
1 ∂j

2,

where λ1, λ2 ∈ N+ and ` ∈ N, ∂j = ∂
∂ζj

(j = 1, 2), and Rest denotes

the restriction of a function in ζ1 and ζ2 with respect to the diagonal

embedding C ↪→ C× C.
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We introduce a multivariable complex integral in (4), with the covari-

ance property (Proposition 1), from which we obtain the Rankin–Cohen

brackets in Theorem 1.

Let λ1, λ2 ∈ N+ and ` ∈ N. We consider a holomorphic function in

{(ζ1, ζ2, z) ∈ C3 : ζ1 ̸= z ̸= ζ2} defined by

(3) A
(ℓ)
λ1,λ2

(ζ1, ζ2; z) :=
(ζ1 − ζ2)

λ1+λ2+ℓ−2

(ζ1 − z)λ2+ℓ(ζ2 − z)λ1+ℓ
.

Let D be an open set in C, f(ζ1, ζ2) a holomorphic function in D×D,

and z ∈ D. Then the integral

(4) (T
(ℓ)
λ1,λ2

f)(z) :=
1

(2π
√
−1)2

∮
C1

∮
C2

A
(ℓ)
λ1,λ2

(ζ1, ζ2; z)f(ζ1, ζ2)dζ1dζ2

is well-defined, independently of the choice of contours Cj (j = 1, 2) in

D around the point z. Hence one has a linear map

T
(ℓ)
λ1,λ2

: O(D ×D) → O(D).

The proof of the following integral expression of the Rankin–Cohen

bracket actually reconstructs the explicit formula of the equivariant

bi-differential operator RC
(ℓ)
λ1,λ2

in (2) up to scalar multiplication.

Theorem 1. For any λ1, λ2 ≥ 1 and ` ∈ N, one has

T
(ℓ)
λ1,λ2

=
(−1)λ1+ℓ−1(λ1 + λ2 + `− 2)!

(λ1 + `− 1)! (λ2 + `− 1)!
RC

(ℓ)
λ1,λ2

.

Proof of Theorem 1. We iterate the residue computation for the vari-

ables ζ1 and ζ2. We begin with the integration over the first variable

ζ1 ∈ C1.

1

2π
√
−1

∮
C1

A
(ℓ)
λ1,λ2

(ζ1, ζ2; z)f(ζ1, ζ2)dζ1

=
∂λ2+ℓ−1
1 |ζ1=z((ζ1 − ζ2)

λ1+λ2+ℓ−2f(ζ1, ζ2))

(λ2 + `− 1)! (ζ2 − z)λ1+ℓ

=

λ2+ℓ−1∑
j=0

(−1)λ1+λ2+ℓ+j(λ1 + λ2 + `− 2)! ∂λ2+ℓ−j−1
1 f(z, ζ2)

j!(λ2 + `− j − 1)! (λ1 + λ2 + `− j − 2)! (ζ2 − z)j−λ2+2
.
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In turn, the residue computation for the second variable ζ2 ∈ C2

shows

1

2π
√
−1

∮
C2

∂λ2+ℓ−j−1
1 f(z, ζ2)

(ζ2 − z)j−λ2+2
dζ2

=

 1
(j−λ2+1)!

(∂λ2+ℓ−j−1
1 ∂j−λ2+1

2 )f(z, z) if j ≥ λ2 − 1,

0 if j < λ2 − 1.

We set r := j−λ2+1. Since λ2 ≥ 1, the conditions 0 ≤ j ≤ λ1+λ2−2

and j ≥ λ2−1 are reduced to the inequality 0 ≤ r ≤ `. Combining the

above formulas, one sees from (4) that (−1)λ1+ℓ−1(T
(ℓ)
λ1,λ2

f)(z) equals

(λ1 + λ2 + `− 2)!
ℓ∑

r=0

(−1)r(∂ℓ−r
1 ∂r

2f)(z, z)

(λ2 + r − 1)! (`− r)! (λ1 + `− r − 1)! r!

=
(λ1 + λ2 + `− 2)!

(λ1 + `− 1)! (λ2 + `− 1)!
RC

(ℓ)
λ1,λ2

f(z).

Hence Theorem 1 is proved. □

Next, we examine the covariance property of the kernel function

A
(ℓ)
λ1,λ2

(ζ1, ζ2; z). For g =

(
a b

c d

)
∈ SL(2,C), we write g · z := az+b

cz+d
.

Then one has

(5) g · ζ − g · z =
ζ − z

(cζ + d)(cz + d)
,

hence the following lemma.

Lemma 1. For g =

(
a b

c d

)
∈ SL(2,C), the function A

(ℓ)
λ1,λ2

in (3)

satisfies the following covariance property:

A
(ℓ)
λ1,λ2

(g · ζ1, g · ζ2; g · z)
A

(ℓ)
λ1,λ2

(ζ1, ζ2; z)
=

(cz + d)λ1+λ2+2ℓ

(cζ1 + d)λ1−2(cζ2 + d)λ1−2
.

For g ∈ SL(2,C) such that g · D ⊂ D, one defines a linear map

$λ(g
−1) : O(D) → O(g ·D) by

(6) ($λ(g
−1)f)(z) := (cz + d)−λf(

az + b

cz + d
).

Then Lemma 1 yields the following:
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Proposition 1. For any h ∈ SL(2,C) such that D ⊂ h ·D, one has

($λ1+λ2+2ℓ(h)T
(ℓ)
λ1,λ2

f)(z) = T
(ℓ)
λ1,λ2

(($λ1(h)⊠$λ2(h))f)(z).

Proof. We set g := h−1 =

(
a b

c d

)
. We note d(g ·ζ) = (cζ+d)−2dζ. By

definition (6) and by Lemma 1, T
(ℓ)
λ1,λ2

(($λ1(h)⊠$λ2(h))f)(z) is equal

to

1

(2π
√
−1)2

∮
C1

∮
C2

A
(ℓ)
λ1,λ2

(ζ1, ζ2; z)f(g · ζ1, g · ζ2)
(cζ1 + d)λ1(cζ2 + d)λ2

dζ1dζ2

=
1

(2π
√
−1)2

∮
C1

∮
C2

A
(ℓ)
λ1,λ2

(g · ζ1, g · ζ2; g · z)f(g · ζ1, g · ζ2)
(cz + d)λ1+λ2+2ℓ

d(g · ζ1)d(g · ζ2)

=
(cz + d)−λ1−λ2−2ℓ

(2π
√
−1)2

∮
g·C1

∮
g·C2

A
(ℓ)
λ1,λ2

(ξ1, ξ2; g · z)f(ξ1, ξ2)dξ1dξ2

=($λ1+λ1+2ℓ(h)T
(ℓ)
λ1,λ2

f)(z).

Thus the proposition is proved. □

Since T
(ℓ)
λ1,λ2

is a non-zero multiple of the Rankin–Cohen bracket

RC
(ℓ)
λ1,λ2

by Theorem 1, Proposition 1 implies the covariance property

of the bi-differential operator RC
(ℓ)
λ1,λ2

:

Corollary 1. For any g ∈ SL(2,C), one has

(7) $λ1+λ2+2ℓ(g) ◦ RC(ℓ)
λ1,λ2

= RC
(ℓ)
λ1,λ2

◦($λ1(g)⊠$λ2(g)),

or in other words,

d$λ1+λ2+2ℓ(Z) ◦ RC(ℓ)
λ1,λ2

= RC
(ℓ)
λ1,λ2

◦(d$λ1(Z)⊠ id+ id⊠d$λ2(Z))

for any Z =

(
p q

r −p

)
∈ sl(2,C), where

d$λ(Z) = −λ(p− rz)− (2pz + q − rz2)
d

dz
.

Remark 1. The complete classification of the operators satisfying the

covariance property (7) has been recently accomplished in [11, Thm.

9.1] by using the F-method, which is based on an ‘algebraic Fourier

transform’ of Verma modules. One sees from the classification that such

an operator is proportional to the Rankin–Cohen bracket for ‘generic’
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λ1 and λ2, however, there exist some other bi-differential operators

satisfying the same property (7) for ‘very singular’ pairs (λ1, λ2).

Remark 2. Various approaches have been known for the proof of the

covariance property (7) for the Rankin–Cohen brackets since the orig-

inal proof by H. Cohen [3] and N.V. Kuznecov [14] based on the idea

of Jacobi-like forms.

D. Zagier [20] proposed an insightful proof involving theta series.

P. Olver et al. [15, 16] made an observation that the Rankin–Cohen

brackets can be interpreted as the projectivization of the Transvectants

(Überschienbung) from the classical invariant theory given by iterated

powers of Cayley’s Ω-process, see Gordan and Gundelfinger [4, 5].

Other approaches include a recursion relation (e.g., [17]) to find sin-

gular vectors (highest weight vectors) of the tensor produce of two

sl2-modules, and a residue formula of a meromorphic continuation of

the integral symmetry breaking operators (e.g., [8]).

A recent approach, referred to as the F-method ([11, Sect. 7]), clari-

fies an intrinsic reason why the coefficients of the Rankin–Cohen brack-

ets coincide with those of the Jacobi polynomials, see (12) below. J.-L.

Clerc has proposed yet another proof in [2] using the Bernstein–Sato

identity for the power of the determinant function and the intertwining

property of the Knapp–Stein operator.

3. Generating operators for the Rankin–Cohen Brackets

This section provides a closed formula of the generating operator

for the Rankin–Cohen brackets {RC(ℓ)
λ1,λ2

}ℓ∈N. The main result of this

section is Theorem 2, which generalizes [13, Thm. 2.3] proven in the

λ1 = λ2 = 1 case.

For λ1, λ2 ∈ N+, we set

(8) Aλ1,λ2(ζ1, ζ2; z, t) :=
(ζ1 − ζ2)

λ1+λ2−2(ζ1 − z)1−λ2(z − ζ2)
1−λ1

(ζ1 − z)(ζ2 − z) + t(ζ1 − ζ2)
.

Lemma 2. If |t(ζ1 − ζ2)| < |ζ1 − z| |ζ2 − z|, then Aλ1,λ2(ζ1, ζ2; z, t) is

a holomorphic function of four variables ζ1, ζ2, z and t, and has a
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convergent power series expansion:

Aλ1,λ2(ζ1, ζ2; z, t) =
∞∑
ℓ=0

(−1)λ1+ℓ−1A
(ℓ)
λ1,λ2

(ζ1, ζ2; z)t
ℓ.

Proof. In light of the Taylor series expansion of

1

(ζ1 − z)(ζ2 − z) + t(ζ1 − ζ2)
=

∞∑
ℓ=0

(−1)ℓ(ζ1 − ζ2)
ℓtℓ

(ζ1 − z)ℓ+1(ζ2 − z)ℓ+1
,

the assertion follows from the definition (8). □

For a domain D in C, we set

(9) UD := {(z, t) ∈ D × C : 2|t| < d(z, ∂D)},

where d(z) ≡ d(z, ∂D) is the distance from z ∈ D to the boundary ∂D.

We put d(z) := ∞ if D = C. If D is the Poincaré upper half plane

Π := {ζ ∈ C : Im ζ > 0}, then ∂D = R and d(z, ∂D) = Im z.

Example 1. (1) UD = C× C if D = C.
(2) UD = {(z, t) ∈ C2 : 2|t| < Im z} if D = Π.

As in (4), the integral transform

(10)

(Tλ1,λ2f)(z, t) :=
1

(2π
√
−1)2

∮
C1

∮
C2

Aλ1,λ2(ζ1, ζ2; z, t)f(ζ1, ζ2)dζ1dζ2

defines a linear map

Tλ1,λ2 : O(D ×D) → O(UD).

The integral (10) yields a generating operator for the Rankin–Cohen

brackets {RC(ℓ)
λ1,λ2

}ℓ∈N as below.

Theorem 2. The integral operator Tλ1,λ2 in (10) is expressed as

(11) (Tλ1,λ2f)(z, t) =
∞∑
ℓ=0

(λ1 + λ2 + `− 2)! tℓ

(λ1 + `− 1)! (λ2 + `− 1)!
(RC

(ℓ)
λ1,λ2

f)(z).

The following corollary is derived from Theorem 2 as in [13].

Corollary 2. Tλ1,λ2 : O(D ×D) → O(D) is injective for any positive

integers λ1, λ2.
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Proof of Theorem 2. Accordingly to Lemma 2, we expand Tλ1,λ2f(z, t)

into the Taylor series of t:

Tλ1,λ2f(z, t) =
∞∑
ℓ=0

(−1)λ1+ℓ−1tℓ(T
(ℓ)
λ1,λ2

f)(z)

with coefficients T
(ℓ)
λ1,λ2

f(z) ∈ O(D). Now the assertion follows from

Theorem 1. □

Example 2. The formula (11) generalizes [13, Thm. 2.3] which treated

the case λ1 = λ2 = 1. In this case, T1,1 is an integral operator against

the kernel

A1,1(ζ1, ζ2; z, t) =
1

(ζ1 − z)(ζ2 − z) + t(ζ1 − ζ2)
,

and Theorem 2 reduces to

(T1,1f)(z, t) =
∞∑
ℓ=0

tℓ

`!
(R

(ℓ)
1,1f)(z).

Remark 3. We remind a remarkable relationship between the Rankin–

Cohen brackets and the Jacobi polynomials. The classical Jacobi poly-

nomial P
(α,β)
ℓ (x) is a polynomial of degree ` given by

P
(α,β)
ℓ (x) =

ℓ∑
j=0

(α + j + 1)ℓ−j(α + β + `+ 1)j
j!(`− j)!

(
x− 1

2

)j

.

Here the Pochhammer symbol (x)n is defined as the rising factorial

x(x+1) · · · (x+n− 1). We inflate the Jacobi polynomial into a homo-

geneous polynomial in two variables x and y of degree ` by

P̃
(α,β)
ℓ (x, y) := yℓP

(α,β)
ℓ (1 +

2x

y
).

Then the F-method [11, Lem. 9.4] establishes the correspondence:

(12) RC
(ℓ)
λ1,λ2

= Rest ◦P̃ (λ1−1,1−λ1−λ2−2ℓ)
ℓ (

∂

∂ζ1
,
∂

∂ζ2
)

by showing that the ‘symbol’ of RC
(ℓ)
λ1,λ2

satisfies the Jacobi differential

equation

((1− x2)
d2

dx2
+ (β − α− (α+ β + 2)x)

d

dx
+ `(`+ α+ β + 1))f(x) = 0

where α = λ1 − 1 and β = 1− λ1 − λ2 − 2`.
8



On the other hand, the generating function for the Jacobi polyno-

mials P
(α,β)
ℓ (x) is given by

(13)
∞∑
ℓ=0

P
(α,β)
ℓ (x)tℓ =

2α+β

R(1− t+R)α(1 + t+R)β

where R = (1−2xt+ t2)
1
2 , see e.g., [1, Thm. 6.4.2]. For α = β = 0, the

Jacobi polynomial reduces to the Legendre polynomial Pℓ(x), of which

the generating function is given by R−1 = (1− 2xt+ t2)−
1
2 .

However, the generating function (13) with the normalizing constants

aℓ ≡ 1, see (1), is not directly related to the generating operator Tλ1,λ2

defined in (11) with aℓ decreasing rapidly as ` → ∞, see (23).

4. Generating operators for symmetry breaking

This section explains our results from the viewpoint of the represen-

tation theory.

In general, the generating operator T is a single operator that should

contain all the information of a countable family operators R(ℓ) (` ∈ N).
In our setting, the family {RC(ℓ)

λ1,λ2
}ℓ∈N of the Rankin–Cohen brackets

arises as symmetry breaking operators of the fusion rule of two irre-

ducible unitary representations of SL(2,R). We formulate this prop-

erty in terms of a generating operator with appropriate normalizing

constants {aℓ}ℓ∈N in (1). The main result of this section is Theorem 3.

To be precise, we define the following Hilbert spaces:

H2(Π) :={F ∈ O(Π) : ∥F∥Hardy < ∞} (Hardy space),

H2(Π)λ :={F ∈ O(Π) : ∥F∥λ < ∞} (weighted Bergman spaces),

where the norms are given by

∥F∥2Hardy := sup
y>0

∫ ∞

−∞
|F (x+

√
−1y)|2dx,

∥F∥2λ :=

∫ ∞

−∞

∫ ∞

−∞
|F (x+

√
−1y)|2yλ−2dxdy.

Then H2(Π) and H2(Π)λ are invariant subspaces of the representations

($λ,O(Π)) of SL(2,R), see (6), for λ = 1 and λ ≥ 2, respectively,

yielding irreducible unitary representations. By an abuse of notation,

we shall use the same letter $λ to denote these unitary representations.
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Then the fusion rule (abstract irreducible decomposition) of the tensor

product representation $λ1⊗̂$λ2 is known by Repka [19] as follows.

(14) $λ1⊗̂$λ2 ≃
∞∑
ℓ=0

⊕
$λ1+λ2+2ℓ (Hilbert direct sum),

where ⊗̂ and
∑⊕

stand for the Hilbert space completion of an algebraic

tensor product and that of an algebraic direct sum. A remarkable

feature in the fusion rule (14) is that it has no continuous spectrum,

see [6] for the general theory of discrete decomposability and [7] for

that of multiplicity-free decompositions.

The Rankin–Cohen bracket RC
(ℓ)
λ1,λ2

: O(Π × Π) → O(Π) induces a

projection map

H2(Π)λ1 ⊗H2(Π)λ2 → H2(Π)λ1+λ2+2ℓ

for all λ1, λ2 ∈ N+ and ` ∈ N.
We now collect these data for {RC(ℓ)

λ1,λ2
}ℓ∈N in a single operator,

namely, the generating operator. Let
∞∑
ℓ=0

⊕
H2(Π)λ1+λ2+2ℓ ⊗ Ctℓ denote

the Hilbert completion of the algebraic direct sum

∞⊕
ℓ=0

H2(Π)λ1+λ2+2ℓ ⊗ Ctℓ

equipped with the pre-Hilbert structure given by

(u⊗ tℓ, v ⊗ tℓ
′
) := δℓℓ′(u, v)λ1+λ2+2ℓ.

For λ1, λ2 > 1, we set

(15) aℓ(λ1, λ2) := (cℓ(λ1, λ2)rℓ(λ1, λ2))
− 1

2 ,

where we follow [12, (2.8) and (2.9)] for the notations of positive con-

stants cℓ(λ1, λ2) and rℓ(λ1, λ2) as below.

cℓ(λ1, λ2) :=
Γ(λ1 + `)Γ(λ2 + `)

(λ1 + λ2 + 2`− 1)Γ(λ1 + λ2 + `− 1)`!
,

rℓ(λ1, λ2) :=
Γ(λ1 + λ2 + 2`− 1)

22ℓ+2πΓ(λ1 − 1)Γ(λ2 − 1)
.
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We also set

aℓ(1, 1) := lim
λ1↓1

lim
λ2↓1

(λ1 − 1)
1
2 (λ2 − 1)

1
2aℓ(λ1, λ2)(16)

=

(
`!(2`− 1)!!

2ℓ+2π(2`+ 1)

)− 1
2

.

Theorem 3. (1) If λ1, λ2 > 1, then the generating operator

(17) T =
∞∑
ℓ=0

aℓ(λ1, λ2) RC
(ℓ)
λ1,λ2

tℓ

is a unitary map that yields the decomposition

(18) H2(Π)λ1⊗̂H2(Π)λ2

∼−→
∞∑
ℓ=0

⊕
H2(Π)λ1+λ2+2ℓ ⊗ Ctℓ.

(2) Similarly, the generating operator (17) with λ1 = λ2 = 1 gives

a unitary map

H2(Π)⊗̂H2(Π)
∼−→

∞∑
ℓ=0

⊕
H2(Π)2ℓ+2 ⊗ Ctℓ.

Remark 4. The normalizing constants {aℓ(λ1, λ2)}ℓ∈N defined in (15)

are different from those in (11). However, they have the same asymp-

totic behavior as ` tends to infinity, that is,

(19) lim
ℓ→∞

(aℓ(λ1, λ2)`!)
1
ℓ = 1.

As we will see in Theorem 4 below, the formal power series (17) con-

verges owing to (19).

Proof. Theorem 3 is derived from the formula of the operator norm of

the Rankin–Cohen brackets proven in [12, Thm. 2.7] for λ1, λ2 > 1 and

in [13, Thm. 5.1] for λ1 = λ2 = 1. □

5. Freedom of normalizing constants

The definition of the generating operator in (1) allows us the freedom

to choose normalizing constants {aℓ}ℓ∈N. In fact, the closed formula in

Theorem 2 is obtained by taking aℓ to be (λ1+λ2+ℓ−2)!
(λ1+ℓ−1)! (λ2+ℓ−1)!

rather than

aℓ = 1
ℓ!

or aℓ ≡ 1. This section explores how the choice of {aℓ}ℓ∈N
11



affects the generating operator in terms of its kernel function by (20)

and (22).

Let h(s) be a holomorphic function of one variable s near the origin,

and set

ϕ(ζ1, ζ2; z) :=
ζ1 − ζ2

(ζ1 − z)(ζ2 − z)
,

(20) A(h)(ζ1, ζ2; z, t) :=
(ζ1 − ζ2)

λ1+λ2−2

(ζ1 − z)λ2(ζ2 − z)λ1
h(tϕ(ζ1, ζ2; z)).

If h(s) = (−1)λ1−1(1 + s)−1, then A(h)(ζ1, ζ2; z, t) in (20) coincides

with Aλ1,λ2(ζ1, ζ2; z, t), see (8).

In the generality of (20), an analogous covariance property to Lemma

1 still holds:

Proposition 2. For any holomorphic function h(s) near the origin

and for any g =

(
a b

c d

)
∈ SL(2,C), one has

A(h)(g · ζ1, g · ζ2; g · z,
t

(cz + d)2
)

=
(cz + d)λ1+λ2

(cζ1 + d)λ1−2(cζ2 + d)λ2−2
A(h)(ζ1, ζ2; z, t),

whenever the formula makes sense.

Proof. In view of the formula (5), one has

ϕ(g · ζ1, g · ζ2; g · z) = (cz + d)2ϕ(ζ1, ζ2; z),

the proof goes in parallel to that of Lemma 1. □

Suppose that we are given a sequence {aℓ}ℓ∈N of complex numbers.

In order to apply the above framework, we define h(s) by {aℓ}ℓ∈N as

follows. We set for fixed λ1, λ2 ∈ N+

(21) hℓ :=
(λ1 + `− 1)!(λ2 + `− 1)!

(λ1 + λ2 + `− 2)!
aℓ for ` ∈ N,

and define h(s) by

(22) h(s) :=
∞∑
ℓ=0

hℓs
ℓ.
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The power series (22) converges, if lim sup
ℓ→∞

|hℓ|
1
ℓ < ∞, or equivalently,

if

(23)
1

ρ
:= lim sup

ℓ→∞
(|aℓ|`!)

1
ℓ < ∞.

Then h(s) is a holomorphic function in {s ∈ C : |s| < ρ}.
The integral transform

(24) (T (h)f) :=
1

(2π
√
−1)2

∮
C1

∮
C2

A(h)(ζ1, ζ2; z, t)f(ζ1, ζ2)dζ1dζ2

is a generating operator of the Rankin–Cohen brackets {RC(ℓ)
λ1,λ2

}ℓ∈N
with normalizing constants {aℓ}ℓ∈N.

Theorem 4 (Generating operator of the Rankin–Cohen brackets). Let

h(s) be defined by {aℓ}ℓ∈N as in (21) and (22). The integral operator

T (h) in (24) is expressed as

(25) (T (h)f)(z, t) =
∞∑
ℓ=0

aℓ(RC
(ℓ)
λ1,λ2

f)(z)tℓ.

In particular, the operator-valued formal series

∞∑
ℓ=0

aℓ RC
(ℓ)
λ1,λ2

tℓ

converges for |t| ≪ 1 if {aℓ}ℓ∈N satisfies (23).

Theorem 2 corresponds to the case h(s) = (−1)λ1−1(1 + s)−1.

Remark 5. The radius of convergence of the power series (25) is zero if

we take aℓ ≡ 1.
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[5] S. Gundelfinger, Zur der binären Formen, J. Reine Angew. Math.,

100 (1886), pp. 413–424.

[6] T. Kobayashi, Discrete decomposability of the restriction of Aq(λ) with

respect to reductive subgroups II—micro-local analysis and asymptotic K-

support , Ann. of Math. (2), 147 (1998), 709–729.

[7] T. Kobayashi, Multiplicity-free representations and visible actions on

complex manifolds, Publ. Res. Inst. Math. Sci. 41 (2005), pp. 497–549,

special issue commemorating the fortieth anniversary of the founding of

RIMS.

[8] T. Kobayashi, Residue formula for regular symmetry breaking operators,

Contemporary Mathematics, 714, (2018), 175–197, Amer. Math. Soc.

[9] T. Kobayashi, Generating operators of symmetry breaking – from

discrete to continuous, To appear in Indag. Math. Available also at

ArXiv:2307.16587.

[10] T. Kobayashi, M. Pevzner, Differential symmetry breaking operators.

I. General theory and F-method, Selecta Math. (N.S.) 22 (2016), 801–845.

[11] T. Kobayashi, M. Pevzner, Differential symmetry breaking operators.

II. Rankin–Cohen operators for symmetric pairs, Selecta Math. (N.S.) 22

(2016), 847–911.

[12] T. Kobayashi, M. Pevzner, Inversion of Rankin–Cohen operators via

holographic transform, Ann. Inst. Fourier 70 (2020), 2131–2190.

[13] T. Kobayashi, M. Pevzner, A generating operator for Rankin–Cohen

brackets, arXiv: 2306.16800.

[14] N. V. Kuznecov, A new class of identities for the Fourier coefficients

of modular forms. (Russian), Acta Arith. 27 (1975), pp.505–519.

[15] P. J. Olver, Classical Invariant Theory, London Math. Society Student

Texts 44, Cambridge University Press, 1999.

[16] P. J. Olver, J.A. Sanders, Transvectants, modular forms, and the

Heisenberg algebra, Adv. in Appl. Math., 25 (2000), 252–283.

[17] M. Pevzner, Rankin–Cohen brackets and representations of conformal

Lie groups. Annales Math. B. Pascal, 19 (2012) 455-484.

[18] R. A. Rankin, The construction of automorphic forms from the deriva-

tives of a given form, J. Indian Math. Soc. 20 (1956), 103–116.

14



[19] J. Repka, Tensor products of unitary representations of SL2(R), Amer.

J. Math. 100 (1978), 747–774.

[20] D. Zagier, Modular forms and differential operators, K. G. Ramanathan

memorial issue, Proc. Indian Acad. Sci. Math. Sci., Indian Academy of

Sciences. Proceedings. Mathematical Sciences, 104, (1994), 57–75.

Toshiyuki KOBAYASHI

Graduate School of Mathematical Sciences,

The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8914, Japan.

&

French-Japanese Laboratory in Mathematics and its Interactions,

FJ-LMI CNRS IRL2025, Tokyo, Japan

E-mail: toshi@ms.u-tokyo.ac.jp

Michael PEVZNER
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