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“Mathématique est l’art de donner le même nom à des choses différentes” 1 was

saying Henri Poincaré.

Many, at a first glance, unrelated mathematical phenomena can be understood

through the paradigm of branching problems in the realm of Representation The-

ory. Such intricate combinatorial results as the Littlewood–Richardson rules, the

Clebsch–Gordon coefficients, the Cauchy identities and other fine properties of the

Schur functions, number-theoretic issues summarized in the Gross–Prassad–Gan

conjectures, the theta correspondence or analytic problems of Plancherel type the-

orems for symmetric spaces can be formulated and addressed using this framework.

More precisely, branching problems ask how a given irreducible representation π

of a group G behaves when restricted to a given subgroup G′ ⊂ G. The decom-

position of the tensor product of two irreducible representations (fusion rule) is a

special case of this problem, where (G,G′) is of the form (G1×G1,∆(G1)) for some

G1. In the setting where (G,G′) are pairs of reductive groups and π is an infinite

dimensional representation of G, branching problems usually have a ’wild’ behavior

in the sense that such decompositions may run over continuous set of parame-

ters (continuous spectrum) and irreducible summands therein may occur infinitely

many times (infinite multiplicities). Therefore, the use of analytic methods becomes

necessary and the choice of appropriate geometric models for such representations

turns out to be important. Once such a model being fixed the analysis of explicit

operators from HomG′(π|G′ , τ) for a given irreducible representation τ of G′ be-

comes possible and particularly meaningful when the dimension of the latter space

equals one. Such (continuous) operators are referred to as Symmetry Breaking Op-

erators (SBO for short) and have been intensively studied in the last decade (see

[5, 6]). This study is much more involved than the analysis of branching laws, as

the latter treats only the decomposition of representations, whereas the former con-

siders the decomposition of vectors. For instance, the branching law for a unitary

principal series representation of the Lie group SL(2,R) to its maximal compact

subgroup SO(2) amounts to the classical theorem on the decomposition of periodic

square integrable functions into Fourier series whereas the single SBO between the

restricted representation and a given irreducible representation of the commutative

1 数学とは、異なるものを同しものとみなす芸術・技術です。
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group SO(2), that is a character, boil down in this case to the individual Fourier

coefficient of a given function.

When both representations are infinite dimensional interesting phenomena occur.

For instance, the branching law for the tensor product of two holomorphic discrete

series representations πλ1
and πλ2

of SL(2,R) is well known [9, 11]. It is given

by the following multiplicity free direct Hilbert sum of holomorphic discrete series

representations:

(0.1) πλ1
⊗ πλ2

≃
∑
a∈N

⊕
πλ1+λ2+2a.

What is even more surprising is the fact that in the case where the representations

πλ are realized in weighted Bergman spaces on the Poincaré upper half-plane, the

explicit intertwining operator from πλ1
⊗πλ2

to the irreducible summand πλ1+λ2+2a

with a fixed parameter a is given by the celebrated bidifferential operator, referred

to as the Rankin–Cohen bracket of degree a and defined by

(0.2)

RCλ3

λ1,λ2
(f1, f2)(z) :=

a∑
ℓ=0

(−1)ℓ
(

λ1 + a− 1

ℓ

)(
λ2 + a− 1

a− ℓ

)
f
(a−ℓ)
1 (z)f

(ℓ)
2 (z),

where λ3 = λ1 + λ2 + 2a and f (n)(z) = dnf
dzn (z).

The detailed account on the analysis and explicit exhaustive description of such

symmetry breaking operators as well as the method of constructing them in six

different parabolic geometries can be found in [5, 6].

It turns out that the whole family of such operators
{
RCλ1+λ2+2a

λ1,λ2

}
a∈N

has a

rich internal structure (e.g. [12]). Combination of these ideas led the notion of

the Rankin–Cohen Transform and its inversion through holographic operators [7].

Going even further in this direction brought to light a new line of investigation on

“generating operators” for a family of differential operators between two manifolds

[8] which we present here.

1 General Framework

To any sequence {aℓ}ℓ∈N one may associate a formal power series such as
∞∑
ℓ=0

aℓt
ℓ

or
∞∑
ℓ=0

aℓ
tℓ

ℓ! . The resulting generating functions are fascinating objects providing

powerful tools for studying various combinatorial problems when aℓ are integers or,

more generally, polynomials. One may quantize this construction by considering

differential operators as non-commutative analogues of polynomials and may study

the resulting “generating operators”. Dealing with the sequence of differential op-

erators given by iterated powers of some remarkable operator yields the notion of

an operator semigroup which is nowadays a classical tool for the spectral theory of
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unbounded operators (e.g. the Hille–Yosida theory). Inspired by the ideas of de-

formation quantization we explore yet another direction by introducing a sequence

of differential operators with a different algebraic structure which is not defined by

one single operator anymore.

Let us start with our general setting. Suppose that Γ(X) and Γ(Y ) are the

spaces of functions on X and Y , respectively. Given a family of linear operators

Rℓ : Γ(X)→ Γ(Y ), we consider a formal power series

(1.1) T ≡ T ({Rℓ}; t) :=
∞∑
ℓ=0

Rℓ

ℓ!
tℓ ∈ Hom(Γ(X),Γ(Y ))⊗ C[[t]].

When X = {point}, Rℓ is identified with an element of Γ(Y ), and such a formal

power series is called a generating function, which has been particularly prominent

in the classical study of orthogonal polynomials for Γ(Y ) = C[y].
When X = Y , Hom(Γ(X),Γ(Y )) ≃ End(Γ(X)) has a ring structure and one may

take Rℓ to be the ℓ-th power of a single operator R on X. In this case, the operator

T in (1.1) may be written as etR if the summation converges. We note that even if

R is a differential operator on a manifold X, the resulting operator T = etR is not

a differential operator any more in general. For example, if R = d
dz acting on O(C),

then T = et
d
dz is the shift operator f(z) 7→ f(z + t). For a self-adjoint operator

R with bounded eigenvalues from the above, the operator T has been intensively

studied as the semigroup etR generated by R for Re t > 0: typical examples include

• the heat kernel for R = ∆,

• the Hermite semigroup for R = 1
4 (∆− |x|

2) on L2(Rn),

• the Laguerre semigroup for R = |x|(∆4 − 1) on L2(Rn, 1
|x|dx).

Let us consider a more general setting where we allow X ̸= {point} and X ̸= Y .

In this generality, we refer to T in (1.1) as the generating operator for a family of

operators Rℓ : Γ(X)→ Γ(Y ).

In this work we initiate a new line of investigation of “generating operators” in

the setting that (X,Y ) = (C2,C) and that {Rℓ} are the Rankin–Cohen brackets

(0.2). We present a closed formula of the generating operator T as an integral

operator, through which we explore its basic properties and various aspects.

2 Basic properties of the integral operator T

Let D be an open set in C. For a holomorphic function f(ζ1, ζ2) in D ×D, we

introduce an integral transform by

(2.1) (Tf)(z, t) :=
1

(2π
√
−1)2

∮
C1

∮
C2

f(ζ1, ζ2)

(ζ1 − z)(ζ2 − z) + t(ζ1 − ζ2)
dζ1dζ2,

where Cj are contours in D around the point z (j = 1, 2). The denominator will

be denoted by

(2.2) Q ≡ Q(ζ1, ζ2; z, t) := (ζ1 − z)(ζ2 − z) + t(ζ1 − ζ2).
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We note that the denominator is an irreducible polynomial of ζ1 and ζ2 when

t ̸= 0. We shall give closed formulas of Tf(z, t) in Example 3.5 for certain specific

family of meromorphic functions f(ζ1, ζ2).

We begin with general properties of the operator T .

Theorem 2.1.

(1) There exists an open neighbourhood U of D × {0} in C2 such that T : O(D ×
D)→ O(U) is well-defined.

(2) Tf(z, 0) = f(z, z) for any z ∈ D.

(3) For any neighbourhood U of D × {0} in C2, T is injective.

Example 2.2.

(1) UD = C× C if D = C.
(2) UD = {(z, t) ∈ C2 : 2|t| < Im z} if D is the upper half plane Π := {ζ ∈ C :

Im ζ > 0}.

We show that T is a “generating operator” for the family of the Rankin–Cohen

brackets. For ℓ ∈ N we define Rℓ : O(D ×D)→ O(D), f(ζ1, ζ2) 7→ (Rℓf)(z) by

(2.3) Rℓf(z) :=

ℓ∑
j=0

(−1)j
(
ℓ

j

)2
∂ℓf(ζ1, ζ2)

∂ζℓ−j
1 ∂ζj2

∣∣∣∣∣
ζ1=ζ2=z

.

Theorem 2.3 (generating operator of Rankin–Cohen brackets). The integral op-

erator T in (2.1) is expressed as

Tf(z, t) =

∞∑
ℓ=0

tℓ

ℓ!
Rℓf(z) for any f ∈ O(D ×D).

Remark 2.4. For f(ζ1, ζ2) = f1(ζ1)f2(ζ2) with some f1, f2 ∈ O(D), (Rℓf)(z) takes

the form
∑ℓ

j=0(−1)j
(

ℓ
j

)2
∂ℓ−jf1(z)

∂zℓ−j

∂jf2(z)
∂zj , which is the Rankin–Cohen bidifferential

operator Rλ′′′

λ′,λ′′(f1, f2) at (λ
′, λ′′, λ′′′) = (1, 1, 2 + 2ℓ), see (0.2).

3 Differential operator P and the generating operator

The following differential operator on C2 plays a key role in the analysis of the

generating operator T .

(3.1) P := (ζ1 − ζ2)
2 ∂2

∂ζ1∂ζ2
− (ζ1 − ζ2)(

∂

∂ζ1
− ∂

∂ζ2
).

The following result holds.

Theorem 3.1. Let D be an open set in C. For any f ∈ O(D ×D),

T (Pf)(z, t) = −(t ∂
∂t

)(t
∂

∂t
+ 1)Tf(z, t).

One derives from Theorem 3.1 that the set of eigenvalues of P is discrete:
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Corollary 3.2 (Eigenvalues of P ). Let D be a connected open set in C. If there is

a non-zero function f ∈ O(D ×D) satisfying Pf = λf for some λ ∈ C, then λ is

of the form −ℓ(ℓ+ 1) for some ℓ ∈ N.

For ℓ ∈ N, we consider the space of all eigenfunctions:

(3.2) Sol (D ×D)ℓ := {f ∈ O(D ×D) : Pf = −ℓ(ℓ+ 1)f}.

We shall see in Corollary 4.2 that Sol (D × D)ℓ is infinite-dimensional for any

ℓ ∈ N and any non-empty open subset D.

Remark 3.3. In Theorem 5.1, we shall prove that P defines a self-adjoint operator

on the tensor product of two Hardy spaces.

Corollary 3.4. Let ℓ ∈ N. Then the following two conditions on f ∈ O(D × D)

are equivalent:

(i) f ∈ Sol (D ×D)ℓ,

(ii) Tf(z, t) is of the form tℓφ(z) for some φ ∈ O(D).

We end this section with an example of closed formulæ for Tf(z, t) for a specific

family of functions f ∈ O(D ×D):

Example 3.5. For ℓ ∈ N, we set

(3.3) fℓ(ζ1, ζ2) := (ζ1 − ζ2)
ℓ(ζ1 +

√
−1)−ℓ−1(ζ2 +

√
−1)−ℓ−1.

Then one has the following:

(1) Pfℓ = −ℓ(ℓ+ 1)fℓ.

(2) (Tfℓ)(z, t) =
(

2ℓ
ℓ

)
tℓ(z +

√
−1)−2ℓ−2.

4 Generating operators and holographic operators

Throughout this section, we assume that D is a convex domain in C. Then any

two elements ζ1, ζ2 ∈ D can be joined by a line segment contained in D. For ℓ ∈ N,
we consider a weighted average of g ∈ O(D) along the line segment between ζ1 and

ζ2 given by

(Ψℓg)(ζ1, ζ2) := (ζ1 − ζ2)
ℓ

∫ 1

−1

g

(
(ζ2 − ζ1)v + (ζ1 + ζ2)

2

)
(1− v2)ℓdv.

We investigate the “generating operator” T in connection with Ψℓ. Recall from

Corollary 3.4 that if f ∈ Sol (D×D)ℓ, namely, if Pf = −ℓ(ℓ+1)f , then t−ℓ(Tf)(z, t)

is independent of t, which we shall simply denote by (t−ℓTf)(z).

Theorem 4.1. Let ℓ ∈ N.
(1) t−ℓT : Sol (D ×D)ℓ

∼→ O(D) is a bijection.

(2) The inverse of t−ℓT is given by the integral operator Ψℓ, namely, Ψℓ : O(D)
∼→

Sol (D ×D)ℓ is a bijection and t−ℓT ◦Ψℓ =
22ℓ+1

2ℓ+1 id .

As an immediate consequence of Theorem 4.1 (2), one has the following:
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Corollary 4.2. For any ℓ ∈ N, Sol (C× C)ℓ is infinite-dimensional.

Remark 4.3. When D is the upper half plane Π, the integral operator Ψℓ appeared

in the study of the holographic transforms for the branching problem of infinite-

dimensional representations of SL(2,R). In this case, the bijectivity of Ψℓ was

shown in [7] by a different approach based on the representation theory (see Section

6).

5 The generating operator T and the Hardy space

Let Π be the upper half plane. As we have seen in Example 2.2, the “generating

operator” T : O(Π × Π) → O(UΠ) is well-defined where UΠ = {(z, t) ∈ C2 : 2|t| <
Im z}. This section discusses how the generating operator T acts on the tensor

product of two Hardy spaces.

We recall that the Hardy space on Π is a Hilbert space defined by

H(Π) = {h ∈ O(Π) : ∥h∥2H(Π) := sup
y>0

∫ ∞

−∞
|h(x+

√
−1y)|2dx <∞}.

Let H(Π×Π) be the Hilbert completion H(Π)⊗̂H(Π) of the tensor product of two

Hardy spaces H(Π). Any holomorphic differential operator P acting on O(Π×Π)

induces a continuous operator on H(Π×Π). In turn, the eigenspace H(Π×Π)ℓ :=

Sol (Π×Π)ℓ ∩H(Π×Π) is a Hilbert subspace for every ℓ ∈ N.

Theorem 5.1. Let P be the differential operator given in (3.1).

(1) The differential operator P defines a self-adjoint operator on the Hilbert space

H(Π×Π).

(2) (Eigenspace decomposition) H(Π×Π) decomposes into the discrete Hilbert sum

of eigenspaces H(Π×Π)ℓ of P where ℓ runs over N.
(3) The generating operator T induces a family of linear operators

t−ℓT : H(Π×Π)ℓ
∼→ O(Π) ∩ L2(Π, y2ℓdxdy)

which are unitary up to rescaling:

(5.1) ∥t−ℓTf∥2L2(Π,y2ℓ+2dxdy) = bℓ∥f∥2H(Π×Π) for any f ∈ H(Π×Π)ℓ

where we set

(5.2) bℓ :=
(2ℓ)!

22ℓ+2π(2ℓ+ 1)(ℓ!)2
=

(2ℓ− 1)!!

4π(2ℓ+ 1)(2ℓ)!!
.

The proof of Theorem 5.1 uses the double Fourier–Laplace transform F defined

by

F (x, y) 7→ (FF )(ζ1, ζ2) :=

∫ ∞

0

∫ ∞

0

F (x, y)e
√
−1(xζ1+yζ2)dxdy.

According to the Payley–Wiener theorem, the Fourier–Laplace transform F estab-

lishes a bijection from L2(R+ × R+) onto H(Π× Π), and satisfies ∥FF∥2H(Π×Π) =
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(2π)2∥F∥2L2(R+×R+) for all F ∈ L2(R+ × R+). The inverse F−1 : H(Π × Π) →
L2(R+ × R+) is given by

(F−1f)(x, y) = lim
η1↓0

lim
η2↓0

1

(2π)2

∫
R2

f(ζ1, ζ2)e
−
√
−1(ζ1x+ζ2y)dξ1dξ2,

where we write ζj = ξj +
√
−1ηj .

The change of variables (x, y) = ( s2 (1−v),
s
2 (1+v)) yields a unitary map L2(R+×

(−1, 1), sdsdv) ∼−→ L2(R+ × R+, 2dxdy). We denote its composition with F by

F̃ : L2(R+ × (−1, 1), sdsdv)→ H(Π×Π).

The inverse is given by (F̃−1f)(s, v) = (F−1f)( s2 (1− v), s
2 (1− v)).

Proposition 5.2. (1) F̃ : L2(R+ × (−1, 1), sdsdv) ∼→ H(Π× Π) is a unitary map

up to a scalar multiplication, namely,

∥f∥2H2(Π×Π) = 2π2∥(F̃−1f)(s, v)∥2L2(R+×(−1,1),sdsdv) for f ∈ H(Π×Π).

(2) The operator P̃ := F̃−1 ◦ P ◦ F takes the following form:

(5.3) P̃ = (1− v2)∂2
v − 2v∂v.

Proof of (1) and (2) in Theorem 5.1. (1) By Proposition 5.2, the differential op-

erator P is equivalent via F̃ to the Legendre differential operator P̃ which does

not involve the variable s. Since P̃ defines a self-adjoint operator on L2(R+ ×
(−1, 1), sdsdv), so does P on H(Π×Π) via F̃ .
(2) By (5.3), Pf = λf if and only if P̃ (F̃−1f) = λ(F̃−1f). Hence F̃ induces an

isomorphism L2(R+, sds)⊗CPℓ(v)
∼→ H(Π×Π)ℓ for every ℓ ∈ N, where Pℓ(v) is the

ℓ-th Legendre polynomial. Therefore the proof of the second statement is reduced to

the classical theorem that {Pℓ}ℓ∈N forms an orthogonal basis in L2((−1, 1), dv). □

To prove the third statement of Theorem 5.1, we apply the “generating operator”

T to the diagram below:

O(Π×Π) ⊃ H(Π×Π)
∼←̃
F

L2(R+, sds)⊗̂L2(−1, 1)

∪ ∪ ∪(5.4)

Sol (Π×Π)ℓ ⊃ H(Π×Π)ℓ
∼←̃
F

L2(R+, sds)⊗ CPℓ(v).

We recall that the weighted Bergman space is defined by

H2(Π)λ := O(Π) ∩ L2(Π, yλ−2dxdy)

for λ > 1. We also recall some basic properties of the Fourier–Laplace transform

of one variable φ(ξ) 7→ (FRφ)(z) :=
∫∞
0

φ(ξ)e
√
−1zξdξ. By the Plancherel formula,

one has ∫
R
|FRφ(x+

√
−1y)|2dx = 2π

∫ ∞

0

|φ(ξ)|2e−2yξdξ.
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Integrating the both-hand sides against the measure yλ−2dy, one obtains

(5.5) ∥FRφ∥2H2(Π)λ
= 22−λπΓ(λ− 1)∥φ∥2L2(R+,ξ1−λdξ).

Thus FR gives a bijection from L2(R+, ξ
1−λdξ) onto H2(Π)λ.

Proposition 5.3. Let cℓ :=
(−1)

3
2
ℓ

(2ℓ+1)ℓ! and

TF (h(z)Pℓ(v)) := cℓ h(ξ) ξ
ℓ+1 tℓ.

Then the following diagram commutes.

H(Π×Π)ℓ
∼←̃
F

L2(R+, sds)⊗ CPℓ(v)

T

∼→ ∼→
TF

H2(Π)2+2ℓ ⊗ Ctℓ ∼←
FR⊗id

L2(R+, ξ
−1−2ℓdξ)⊗ Ctℓ

Proof of (3) in Theorem 5.1. In light of the isomorphism

F̃ : L2(R+, sds)⊗ CPℓ(v)
∼−→ H(Π×Π)ℓ,

we take h ∈ L2(R+, sds) and set f := F̃(hPℓ) ∈ H(Π × Π)ℓ. By Proposition 5.2,

one has

(5.6) ∥f∥2H(Π×Π) = 2π2∥h∥2L2(R+,sds)∥Pℓ∥2L2(−1,1) =
4π2

2ℓ+ 1
∥h∥2L2(R+,sds).

Applying (5.5) to φ := t−ℓTF (hPℓ) with λ = 2ℓ+ 2, one has from Proposition 5.3

that

∥t−ℓTf∥2H2(Π)2+2ℓ
=2−2ℓπ(2ℓ)!∥t−ℓTF (hPℓ)∥2L2(R+,ξ−1−2ℓdξ)

=
π(2ℓ)!

22ℓ(2ℓ+ 1)2(ℓ!)2
∥h∥2L2(R+,sds).(5.7)

It follows from (5.2), (5.6) and (5.7) that

∥t−ℓTf∥2H2(Π)2+2ℓ
=

(2ℓ− 1)!!

4π(2ℓ+ 1)(2ℓ)!!
∥f∥2H(Π×Π) = bℓ∥f∥2H(Π×Π).

Hence the third statement of Theorem 5.1 is proved. □

6 Representation theory and the generating operator T

If D is simply connected, then the group Aut(D) of biholomorphic diffeomor-

phisms acts transitively on D. This section discusses different perspectives of our

generating operator T from the viewpoint of the automorphism group of the do-

main, in particular, from the (infinite-dimensional) representation theory of real

reductive groups. Lie theory reveals structures of the generating operator T that

are not otherwise evident.
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6.1. Normal derivatives and the generating operator T .

Let π be an irreducible representation of a group G, and G′ a subgroup. The G-

module π may be seen as a G′-module by restriction, for which we write π|G′ . For an

irreducible representation ρ of the subgroup G′, a symmetry breaking operator (SBO

for short) is an intertwining operator from π|G′ to ρ, whereas a holographic operator

is an intertwining operator from ρ to π|G′ . Suppose that the representations π and

ρ are geometrically defined, e.g., they are realized in the spaces Γ(X) and Γ(Y )

of functions on a G-manifold X and its G′-submanifold Y , respectively, or more

generally, in the spaces of sections for some equivariant vector bundles.

When the restriction π|G′ is discretely decomposable [3], one may expect that

taking “normal derivatives” with respect to the submanifold Y ↪→ X would yield

SBOs. However, this is not the case even for the irreducible decomposition (fusion

rule) of the tensor product of two representations of SL(2,R). See [6, Thm. 5.3]

for more general cases. The underlying geometry for the fusion rule of the Hardy

spaces H(Π) is given by a diagonal embedding of Y = Π into X := Y ×Y . Instead

of using X = Π × Π, we consider X̃ := UΠ as in Example 2.2. In this case the

“normal derivative” of ℓ-th order with respect to Y ↪→ X̃ is given simply by

Nℓ := Restt=0 ◦(
∂

∂t
)ℓ.

A distinguishing feature of the generating operator T is that all the normal deriva-

tives Nℓ give rise to symmetry breaking operators after the transformation by T ,

symbolically written in the following diagram (see (6.2) for the notation πλ):

O(X)
T
↪→ O(X̃)

SBO↘ ⟳ ↙ ℓ-th normal derivative Nℓ

(π2+2ℓ,O(Y ))

6.2. Modular forms and the generating operator T . The Rankin–Cohen

brackets were introduced in [2, 10] to construct holomorphic modular forms of

higher weight from those of lower weight. This section highlights the relationship

of our generating operator T in (2.1) and modular forms.

By Theorem 2.3, one has

(6.1) Nℓ ◦ T = Rℓ,

where Rℓ are the Rankin–Cohen brackets (2.3). Then by a direct computation, one

sees the following covariance property:

Proposition 6.1. For all ℓ ∈ N, for any g =

(
a b

c d

)
∈ SL(2,R) and for any

f ∈ O(Π×Π), one has

Nℓ ◦ (Tfg)(z) = (cz + d)−2ℓ−2((Nℓ ◦ T )f)(
az + b

cz + d
)
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where fg(ζ1, ζ2) := (cζ1 + d)−1(cζ2 + d)−1f(aζ1+b
cζ1+d ,

aζ2+b
cζ2+d ).

To clarify its representation-theoretic meaning, we write πλ (λ ∈ Z) for a repre-

sentation of SL(2,R) on O(Π) given by

(6.2) πλ(g)h(z) = (cz + d)−λh(
az + b

cz + d
) for g−1 =

(
a b

c d

)
.

Then Proposition 6.1 tells us that

(6.3) (Nℓ ◦ T ) ◦ (π1(g)⊠ π1(g)) = π2ℓ+2(g) ◦ (Nℓ ◦ T )

for any g ∈ SL(2,R). Therefore, for a subgroup Γ, N ◦T (f) is Γ-invariant whenever
f is (Γ× Γ)-invariant.

Suppose that Γ is a congruence subgroup of SL(2,Z). For any modular form h

of level Γ and weight 1, we set

H(z, t) :=
1

(2π
√
−1)2

∮
C1

∮
C2

h(ζ1)h(ζ2)

(ζ1 − z)(ζ2 − z) + t(ζ1 − ζ2)
dζ1dζ2.

It follows from (6.1) that (NℓH)(z) = ( ∂
∂t )

ℓ
∣∣
t=0

H(z, t) = Rℓ(h(ζ1)h(ζ2))(z) is a

modular form of level Γ and weight 2ℓ+ 2 for all ℓ ∈ N.

6.3. Unitary representations and the generating operator T . Viewed as

a representation of the universal covering group SL(2,R)̃ , the representation πλ

is well-defined for all λ ∈ C. For λ > 1, πλ leaves the weighted Bergman space

H2(Π)λ = O(Π) ∩ L2(Π, yλ−2dxdy) invariant, and SL(2,R)̃ acts as an irreducible

unitary representation on the Hilbert space H2(Π)λ. These unitary representations

(πλ,H
2(Π)λ) are referred to as (relative) holomorphic discrete series representations

of SL(2,R)̃ . In particular, the set of holomorphic discrete series representations of

the group PSL(2,R) = SL(2,R)/{±I2} ≃ Aut(Π) is given by {πλ : λ = 2, 4, 6, . . . }.
If λ = 1 then H2(Π)λ = {0}, however, the Hardy space H(Π) is an invariant

subspace of (πλ,O(Π)) with λ = 1, and SL(2,R) acts on H(Π) as an irreducible

unitary representation, too.

With these notations, one may interpret Theorem 5.1 as a decomposition of the

tensor product of two copies of the unitary representation (π1,H(Π)) on the Hardy

space into a multiplicity-free discrete sum of irreducible unitary representations:

H(Π)⊗̂H(Π) ≃
∞∑
ℓ=0

⊕
H2(Π)2+2ℓ (Hilbert direct sum).

The right-hand side may be seen as a “model” of holomorphic discrete series rep-

resentations of PSL(2,R) in the sense that all such representations occur exactly

once.

Moreover, the Hardy norm ∥·∥H(Π) may be regarded as the residue of the analytic

continuation of the norm of the weighted Bergman space H2(Π)λ which is originally
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defined for real λ > 1:

∥ · ∥2H(Π) = lim
λ↓1

(λ− 1)∥ · ∥2H2(Π)λ
.

Then the exact formula (5.1) in Theorem 5.1 may be thought of as the limit

of [7, Thm. 2.7] which dealt with the weighted Bergman spaces, namely, our bℓ in

Theorem 5.1 may be rediscovered by the following limit procedure with the notation

as in [7, (2.3) and (2.4)]:

1

(ℓ!)2
lim
λ′↓1

lim
λ′′↓1

cℓ(λ
′, λ′′)rℓ(λ

′, λ′′)

(λ′ − 1)(λ′′ − 1)

=
1

(ℓ!)2
lim
λ′↓1

lim
λ′′↓1

Γ(λ′ + ℓ)Γ(λ′′ + ℓ)

(λ′ + λ′′ + 2ℓ− 1)Γ(λ′ + λ′′ + ℓ− 1)ℓ!
· Γ(λ

′ + λ′′ + 2ℓ− 1)

22ℓ+2πΓ(λ′)Γ(λ′′)

=
(2ℓ)!

(2ℓ+ 1)π(ℓ!)222ℓ+2
=

(2ℓ− 1)!!

4π(2ℓ+ 1)(2ℓ)!!
= bℓ.

6.4. From discrete to continuous - some further developments. It is

known that covariant differential operators are often obtained as residues of a mero-

morphic family of integral transformations. For instance, the iterated powers of the

Dirac operator are the residues of the meromorphic family of the Knapp–Stein in-

tertwining operators, see e.g., a recent paper [1].

The inverse direction is more involved. In fact, some covariant differential oper-

ators cannot be obtained as residues, which are referred to as sporadic operators.

One of the important applications of the generating operator introduced in this

article provides us a method to go in the inverse direction, namely, to construct

a meromorphic family of non-local symmetry breaking operators out of discrete

data. In the subsequent paper [4], we give a toy model which constructs various

fundamental operators such as invariant trilinear forms on infinite-dimensional rep-

resentations, the Fourier and the Poisson transforms on the anti-de Sitter space,

and non-local symmetry breaking operators for the fusion rules among others, out

of just countable data of the Rankin–Cohen brackets, for which the key of the proof

is the explicit formula (2.1) of the generating operator proved in this article.
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