
Bounded multiplicity branching
for symmetric pairs

Dedicated to Dr. Karl H. Hofmann with admiration and heartfelt gratitude

for his contributions to mathematics and his devotion to the community

Toshiyuki KOBAYASHI ∗

Abstract

We prove that any simply connected non-compact semisimple Lie
group G admits an infinite-dimensional irreducible representation Π
with bounded multiplicity property of the restriction Π|G′ for all sym-
metric pairs (G,G′). We also discuss which irreducible representations
Π satisfy the bounded multiplicity property.
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1 Introduction

We initiated in [18, 19] the general study of multiplicities in the branching
problem of reductive groups, and this article is a continuation of the work
[27, 29, 31, 32, 33, 38]. The goal is to prove the following theorem.

Theorem 1.1. Any simply connected non-compact semisimple Lie group G
admits an infinite-dimensional irreducible representation Π with the bounded
multiplicity property of the restriction Π|G′ for all symmetric pairs (G,G′):

sup
π∈Irr(G′)

[Π|G′ : π] < ∞. (1.1)

∗Graduate School of Mathematical Sciences, The University of Tokyo, Japan.
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Let us explain some terminologies. We denote by Irr(G) the set of irre-
ducible objects in the category M(G) of smooth admissible representations
of a real reductive Lie group G of finite length with moderate growth, which
are defined on Fréchet topological vector spaces [51, Chap. 11].

Suppose that G′ is a reductive subgroup of G. For Π ∈ M(G), the
multiplicity of π ∈ Irr(G′) in the restriction Π|G′ is defined by

[Π|G′ : π] := dimC HomG′(Π|G′ , π) ∈ N ∪ {∞}, (1.2)

where HomG′(Π|G′ , π) denotes the space of symmetry breaking operators, i.e.,
continuous G′-homomorphisms between the Fréchet representations.

By a symmetric pair (G,G′), we mean that G′ is an open subgroup of
the fixed point group Gσ of an involutive automorphism σ of G. The Rie-
mannian symmetric pair (G,K) with σ being a Cartan involution θ and
the group manifold case (‵G × ‵G, diag ‵G) are typical examples. The pair
(SL(n,R), SO(p, q)) with p + q = n is another example of symmetric pairs.
The infinitesimal classification of irreducible symmetric pairs was accom-
plished by Berger [2].

Theorem 1.1 may look quite surprising, in view of the theorem [27] re-
vealing that for “many” symmetric pairs (G,G′) with G′ non-compact

[Π|G′ : π] = ∞ for some Π ∈ Irr(G) and π ∈ Irr(G′). (1.3)

See [34] for the classification of such symmetric pairs (G,G′).
We refer to [28] and [33, Sect. 2] for some motivation and perspectives of

the general branching problems and the role of bounded multiplicity property.
The tensor product of two representations is a special case of the restric-

tion with respect to a symmetric pair (G×G, diagG). We also prove:

Theorem 1.2. For any simply connected, non-compact semisimple Lie group
G, there exist infinite-dimensional representations Π1,Π2 ∈ Irr(G) such that
the tensor product representation has the bounded multiplicity property:

sup
Π∈Irr(G)

[Π1 ⊗ Π2 : Π] < ∞. (1.4)

When Π is a unitary representation of G, the restriction Π|G′ decomposes
into the direct integral of irreducible unitary representations of the subgroup
G′:

Π|G′ '
∫ ⊕

Ĝ′
mΠ(π)πdµ(π), (1.5)
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where Ĝ′ denotes the set of equivalence classes of irreducible unitary rep-
resentations (unitary dual) of G′ equipped with Fell topology, µ is a Borel

measure on Ĝ′, and mΠ : Ĝ′ → N ∪ {∞} is a measurable function. The irre-
ducible decomposition (1.5) is called the branching law of the restriction Π|G′ .
By the theory of nuclear spaces, the multiplicity in the category of admissi-
ble representations of moderate growth dominates the one in the category of
unitary representations, namely, one has the inequality

mΠ(π) ≤ [Π∞|G′ : π∞] a.e. π ∈ Ĝ′ with respect to µ, (1.6)

where Π∞ ∈ Irr(G) and π∞ ∈ Irr(G′) denote the Fréchet representations

of smooth vectors of Π ∈ Ĝ and π ∈ Ĝ′, respectively. Since we can take
unitarizable representations in Theorems 1.1 and 1.2 as the proof in Sections
3–6 below shows, one has the following:

Corollary 1.3. (1) Any simply connected non-compact semisimple Lie group
G admits an infinite-dimensional irreducible unitary representation Π such
that the branching law (1.5) of the restriction Π|G′ satisfies the bounded mul-
tiplicity property for all symmetric pairs (G,G′): there exists C > 0 such
that

mΠ(π) ≤ C a.e. π ∈ Ĝ′ with respect to µ.

(2) For any simple connected, non-compact semisimple Lie group G, there
exist infinite-dimensional irreducible unitary representations Π1 and Π2 such
that the tensor product representation decomposes into the direct integral

Π1 ⊗ Π2 '
∫ ⊕

Ĝ

mΠ1,Π2(Π)dµ(Π),

with the bounded multiplicity property: there exists C > 0 such that

mΠ1,Π2(Π) ≤ C a.e. Π ∈ Ĝ with respect to µ.

These results concern with the restriction. On the other hand, the mul-
tiplicity occurring in the induction IndG

G′(1) ' C∞(G/G′) is finite for any
reductive symmetric pair (G,G′), where 1 denotes the one-dimensional triv-
ial representation of G′, see van den Ban [1]:

dimC HomG(Π, C
∞(G/G′)) < ∞ for every Π ∈ Irr(G). (1.7)
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More generally, it was proved in [38, Thm. A] that the finite multiplicity
property (1.7) is characterized by the real sphericity (see Section 2.4 for the
definition). We note that any reductive symmetric space is real spherical.
When G/G′ is a symmetric space, one has a stronger estimate than (1.7),
namely, the following bounded multiplicity property holds:

sup
Π∈Irr(G)

dimC HomG(Π, C
∞(G/G′)) < ∞. (1.8)

More broadly, it was proved in [38, Thm. B] that the bounded multiplic-
ity property (1.8) is characterized by the sphericity of the complexification
GC/G

′
C. We note that GC/G

′
C is spherical when G/G′ is a symmetric space.

By Frobenius reciprocity HomG(Π, C
∞(G/G′)) ' HomG′(Π|G′ ,1), the es-

timate (1.8) is equivalent to

sup
Π∈Irr(G)

[Π|G′ : 1] < ∞,

which may be compared with (1.1) and (1.3).
We prove Theorems 1.1 and 1.2 as well as Corollary 1.3 not merely as the

existence theorem but also by exhibiting explicitly which Π ∈ Irr(G) satisfies
the bounded multiplicity property (1.1) for (G,G′) in scope of further detailed
analysis (e.g., “Stages B and C” in the branching program [28], see Section
2.1).

The proof of Theorems 1.1 and 1.2 is reduced to the case where g is
simple. We explore in more details in the setting that G satisfies one of the
following:

• automorphism groups of Hermitian symmetric spaces (Section 3);
• automorphism groups of para-Hermitian symmetric spaces (Section 4);
• the complex minimal nilpotent orbit has real points (Section 5);
• the complex minimal nilpotent orbit has no real point (Section 6).
Correspondingly, we shall see the bounded multiplicity property holds for

the restriction Π|G′ when Π is a “geometric quantization” of certain elliptic,
hyperbolic, or (real) minimal nilpotent coadjoint orbits, see Theorem 3.2,
Corollary 4.5, and Theorems 5.5 and 6.1, respectively.

The paper is organized as follows. Section 2 explains some basic notions
and known results as preliminaries, and Sections 3–6 provide a family of irre-
ducible representations Π of G that satisfy the bounded multiplicity property
(1.1) of the restriction of Π. Theorems 1.1 and 1.2 will be proved in Section
5 except for g = sp(p, q) or f4(−20), which will be treated in Section 6.
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2 Preliminaries

In this section, we explain some background, basic notions, and known the-
orems in proving our main results.

2.1 Branching problems

By branching problems in representation theory, we mean the broad problem
of understanding how irreducible representations of a group behave when
restricted to a subgroup. As viewed in [28], we may divide the branching
problems into the following three stages:
Stage A. Abstract features of the restriction;
Stage B. Branching law;
Stage C. Construction of symmetry breaking operators.

The role of Stage A is to develop a theory on the restriction of repre-
sentations as generally as possible. In turn, we may expect a detailed study
of the restriction in Stages B (decomposition of representations) and C (de-
composition of vectors) in the “promising” settings that are suggested by the
general theory in Stage A.

Theorems 1.1 and 1.2 answer a question in Stage A of branching problems.
In turn, we may expect a detailed analysis on the restriction Π|G′ in Stages B
and C. See [7, 29, 35, 36, 41, 42] e.g., for some recent developments in Stage
C in the setting where the bounded multiplicity (1.1) holds.

2.2 Harish-Chandra’s admissibility theorem

Harish-Chandra’s admissibility theorem plays a fundamental role in the al-
gebraic study of representations of real reductive linear Lie groups G, which
guarantees a finiteness property of multiplicities for the restriction G ↓ G′ if
G′ is a maximal compact subgroup K of G. That is, one has the following:

Fact 2.1 ([51, Thm. 3.4.10]). Let G′ = K. For any irreducible unitary
representation Π of G, one has

[Π|G′ : π] < ∞ for all π ∈ Irr(G′). (2.1)

We explain two directions for generalizations of Fact 2.1.
One is to highlight G′-admissible restriction (Definition 2.2), namely, dis-

crete decomposability as well as finite multiplicity property, see Fact 2.3 below.
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The other direction is to focus on the finiteness property of the multiplicity,
as we shall treat in Fact 2.6 (1).

2.3 Discretely decomposable restrictions

The notion and the results of this section will be used in Sections 3.3 and
6.4 for the proof of the bounded multiplicity results.

Definition 2.2 ([18, Sect. 1]). A unitary representation Π of G is G′-
admissible if the restriction Π|G′ splits into a direct sum of irreducible unitary
representations of G′:

Π|G′ '
∑
π∈Ĝ′

⊕
mΠ(π)π, (2.2)

with multiplicity mΠ(π) < ∞ for all π ∈ Ĝ′.

Fact 2.1 tells us that any Π ∈ Ĝ is K-admissible. We begin with the case
where G′ is compact but is not necessarily a maximal compact subgroup K.
In this case, discrete decomposability is obvious because G′ is compact, and
the finiteness of mΠ(π) is non-trivial. We review a necessary and sufficient
condition for (2.1) when G′ is compact. In the following statement, we use
the letter K ′ instead of G′ to emphasize that K ′ is compact.

Fact 2.3 ([20, 30]). Suppose that K ′ is a subgroup of K. Let Π ∈ M(G).
Then the following two conditions on the triple (G,K ′,Π) are equivalent:
(i) The finite multiplicity property (2.1) holds.
(ii) ASK(Π) ∩ CK(K

′) = {0}.

Here ASK(Π) is the asymptotic K-support of Π. There are only finitely
many possibilities of asymptotic K-supports ASK(Π) for Π ∈ M(G). The
closed cone CK(K

′) is the momentum set for the Hamiltonian action on the
cotangent bundle T ∗(K/K ′). There are two proofs for the implication (ii) ⇒
(i): by using the singularity spectrum (or the wave front set) of the character
[20] and by using symplectic geometry [30]. The proof for the implication (i)
⇒ (ii) is given in [30].

Fact 2.3 plays a crucial role in the study of discretely decomposable re-
striction with respect to non-compact reductive subgroups G′ [18, 20, 21, 30].
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Proposition 2.4 ([28, Thm. 4.5]). Let G ⊃ G′ be a pair of real reductive Lie
groups, and K ⊃ K ′ maximal compact subgroups modulo centers. For an irre-
ducible unitary representation Π of G, we denote by Π∞ ∈ Irr(G) the Fréchet
representation of smooth vectors, and by ΠK the underlying (g, K)-module.
If one of the equivalent conditions in Fact 2.3 holds, then the restriction Π|G′

is G′-admissible.
Moreover, the multiplicity mΠ(π) = dimC HomG′(π,Π|G′) of the discrete

spectrum is finite, and satisfies the following equalities.

mΠ(π) = [Π∞|G′ : π∞] = dimC Homg′,K′(ΠK , πK′). (2.3)

Remark 2.5. (1) The bounded multiplicity property (1.1) does not hold in
general even for the case G′ = K. We shall see in Theorem 6.1 that (1.1)
holds if Π ∈ Irr(G) is “small” in the sense that the Gelfand–Kirillov dimen-
sion of Π equals half the dimension of a real minimal coadjoint orbit.
(2) The first equality in (2.3) is not true in general when there is continuous
spectrum in the restriction Π|G′ .
(3) ([25, Ex. 6.3]) The multiplicity mΠ(π) of discrete spectrum may be in-
finite even for reductive symmetric pairs (G,G′) if one of the equivalent
conditions in Fact 2.3 fails.

See [10, 39, 40] for a classification theory of the triple (G,G′,Π) satisfying
the equivalent conditions in Fact 2.3.

2.4 Spherical spaces and real spherical spaces

In [27] and [38, Thms. C and D] we proved the following geometric criteria
that concern all Π ∈ Irr(G) and all π ∈ Irr(G′):

Fact 2.6. Let G ⊃ G′ be a pair of real reductive algebraic Lie groups.
(1) Finite multiplicity for a pair (G,G′):

[Π|G′ : π] < ∞, ∀Π ∈ Irr(G), ∀π ∈ Irr(G′)

if and only if (G×G′)/ diagG′ is real spherical.
(2) Bounded multiplicity for a pair (G,G′):

sup
Π∈Irr(G)

sup
π∈Irr(G′)

[Π|G′ : π] < ∞ (2.4)

if and only if (GC ×G′
C)/ diagG

′
C is spherical.
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Here a complex GC-manifold X is called spherical if a Borel subgroup of
GC has an open orbit in X, and that a G-manifold Y is called real spherical
([19]) if a minimal parabolic subgroup of G has an open orbit in Y .

A remarkable discovery in [38] includes that the bounded multiplicity
property (2.4) is determined only by the complexified Lie algebras gC and
g′C. In particular, the classification of such pairs (G,G′) is quite simple,
because it is reduced to a classical result when G is compact [43]: the pair
(gC, g

′
C) is the direct sum of the following ones up to abelian ideals:

(sln, gln−1), (son, son−1), or (so8, spin7). (2.5)

On the other hand, the finite multiplicity property in Fact 2.6 (1) de-
pends on real forms G and G′. For instance, it is fulfilled for any Rieman-
nian symmetric pair (G,K) because the Iwasawa decomposition tells us that
(G × G′)/ diagG′ is real spherical if G′ = K, whereas the finiteness of the
K-multiplicity traces back to Harish-Chandra’s admissibility theorem (Fact
2.1). (Actually, [38] in this specific case gives a proof that a quasi-simple
irreducible representation of G is K-admissible by using the boundary value
problem of a system of partial differential equations.)

2.5 Visible actions on complex manifolds

Suppose a (real) Lie group G acts holomorphically on a connected complex
manifold D.

Definition 2.7 ([23, Def. 3.3.1]). The action is called strongly visible if there
exist a non-emptyG-invariant open subsetD′ ofD, a totally real submanifold
S, and an anti-holomorphic diffeomorphism σ of D′ such that

D′ = G · S, σ|S = id, and σ preserves each G-orbit in D′.

Loosely speaking, the significance of this definition is that, for any G-
equivariant holomorphic vector bundle V → D on which G acts strongly
visibly onD, the multiplicity-free property propagates from fibers to sections,
see [23, Thm. 4] for a rigorous formulation.

We shall utilize the following results in Sections 3 and 4.

Fact 2.8 ([24, Thm. 1.5]). Let G/K be a Hermitian symmetric space, either
of compact type or of non-compact type. Then the G′-action on G/K is
strongly visible for any symmetric pair (G,G′).
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2.6 Coisotropic action on coadjoint orbits

Let V be a vector space equipped with a symplectic form ω. A subspace W
is called coisotropic if {v ∈ V : ω(v, ·) vanishes on W} is contained in W .

The concept of coisotropic actions is defined infinitesimally as follows.

Definition 2.9 (Huckleberry–Wurzbacher [13]). Let H be a connected Lie
group, and X a Hamiltonian H-manifold. The H-action is called coisotropic
if there is an H-stable open dense subset U of X such that Tx(H · x) is a
coisotropic subspace in the tangent space TxX for all x ∈ U .

Suppose that O is a coadjoint orbit of a connected Lie group G through
λ ∈ g∗. Denote by Gλ the stabilizer subgroup of λ in G, and by Zg(λ) its Lie
algebra. The Kirillov–Kostant–Souriau symplectic form ω on O ' G/Gλ is
given at the tangent space TλO ' g/Zg(λ) by

ω : g/Zg(λ)× g/Zg(λ) → R, (X,Y ) 7→ λ([X,Y ]).

Suppose G is semisimple. Then the Killing form induces an isomorphism
g∗

∼→ g, λ 7→ Xλ. The following result is useful in later argument.

Lemma 2.10 ([33, Lem. 2]). Let H be a connected subgroup with Lie algebra
h. The H-action on a coadjoint orbit O is coisotropic if there exists a subset
S (slice) in O with the following two properties:

Ad∗(H)S is open dense in O,

(h+ Zg(λ))
⊥ ⊂ [Xλ, h] for any λ ∈ S. (2.6)

Here ⊥ stands for the orthogonal subspace with respect to the Killing form.

The original proof of Fact 2.6 in [38] utilized hyperfunction boundary
maps for the “if” part (i.e., the sufficiency of the finite multiplicity property)
and a generalized Poisson transform [27] for the “only if” part. An alternative
approach in [32, 50] for the proof of the ‘if’ part of Fact 2.6 (2) used a theory
of holonomic D-modules, which is also the method of Theorems 4.1 and 4.2
below. Our proof in this article still uses a theory of D-modules, and more
precisely, the following:

Theorem 2.11 ([17]). Let AnnΠ be the annihilator of Π ∈ M(G) in the
universal enveloping algebra U(gC). Assume that the G′

C-action on the as-
sociated variety V(AnnΠ) is coisotropic. Then the restriction Π|G′ has the
bounded multiplicity property (1.1).
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The associated variety V(AnnΠ) is the closure of a single nilpotent coad-
joint orbit if Π ∈ Irr(G) [4, 15]. We note that the assumption in Theorem
2.11 depends only on the pair (gC, g

′
C) of the complexified Lie algebras as in

Fact 2.6 (2).

3 Restriction of highest weight modules

In this section we discuss the bounded multiplicity property (1.1) for a sym-
metric pair (G,G′) when Π is a highest weight module of G. We shall see
Theorem 3.2 implies Theorems 1.1 and 1.2 when G is the automorphism
group of a Hermitian symmetric space, see (3.1) below for the list of such
simple Lie algebras g.

3.1 Preliminaries for highest weight modules

Let G be a non-compact simple Lie group, θ a Cartan involution of G, and
K := {g ∈ G : θg = g}. We write g = k + p for the corresponding Cartan
decomposition of the Lie algebra g of G.

We assume that G is of Hermitian type, that is, the Riemannian sym-
metric space G/K carries the structure of a Hermitian symmetric space, or
equivalently, the center c(k) of k is non-trivial. The classification of simple
Lie algebras g of Hermitian type is given as follows:

su(p, q) , sp(n,R) , so∗(2m) , so(m, 2) (m 6= 2) , e6(−14) , e7(−25) . (3.1)

In this case, there exists a characteristic element Z ∈ c(k) such that

gC := g⊗ C = kC ⊕ p+ ⊕ p− (3.2)

is the eigenspace decomposition of ad(Z) with eigenvalues 0,
√
−1 and−

√
−1,

respectively, and that c(k) = RZ.
Suppose V is an irreducible (gC, K)-module. We set

V p+ := {v ∈ V : Y v = 0 for any Y ∈ p+} . (3.3)

Since K normalizes p+, V
p+ is a K-submodule. Further, V p+ is either zero or

an irreducible finite-dimensional representation of K. We say V is a highest
weight module if V p+ 6= {0}, and of scalar type if dimC V

p+ = 1. For any
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non-compact simple Lie group G of Hermitian type, there exist infinitely
many irreducible unitary highest weight representations of scalar type.

For any symmetric pair (G,G′), theG′-action on the Hermitian symmetric
space G/K is strongly visible (Fact 2.8). Correspondingly, we proved in [25,
Thms. A and C] the following multiplicity-free theorems.

Fact 3.1 (multiplicity-free theorem). Let G be a non-compact simple Lie
group of Hermitian type, and Π, Π1, Π2 irreducible unitary highest weight
representations of scalar type.
(1) The restriction Π|G′ is multiplicity-free for any symmetric pair (G,G′).
(2) The tensor product Π1 ⊗ Π2 is multiplicity-free.

The following theorem asserts that the multiplicities are still uniformly
bounded even if we drop the assumption that π is of scalar type.

Theorem 3.2 (uniformly bounded multiplicities). Let Π, Π1, Π2 be the
smooth representations of irreducible unitary highest weight representations
of G.
(1) The restriction Π|G′ satisfies bounded multiplicity property (1.1) for any
symmetric pair (G,G′).
(2) The tensor product Π1 ⊗ Π2 satisfies the bounded multiplicity property
(1.4).

3.2 Involutions on Hermitian symmetric spaces

The branching law in Fact 3.1 formulated in the category of unitary rep-
resentations may and may not contain discrete spectra. To clarify this, we
observe that there are two types of involutions σ of a non-compact simple
Lie group G of Hermitian type. Without loss of generality, we may assume
that σ commutes with the Cartan involution θ. We use the same letter σ to
denote its differential. Then σ stabilizes k and also c(k). Because σ2 = id
and c(k) = RZ, there are two possibilities:

σZ = Z , (3.4)

σZ = −Z . (3.5)

Geometrically, the condition (3.4) implies:
1-a) σ acts holomorphically on the Hermitian symmetric space G/K,
1-b) Gσ/Kσ ↪→ G/K defines a complex submanifold,
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whereas the condition (3.5) implies:
2-a) σ acts anti-holomorphically on G/K,
2-b) Gσ/Kσ ↪→ G/K defines a totally real submanifold.

Definition 3.3. We say the involutive automorphism σ is of holomorphic
type if (3.4) is satisfied, and is of anti-holomorphic type if (3.5) is satisfied.
The same terminology will be applied also to the symmetric pair (G,G′) (or
its Lie algebras (g, g′)) corresponding to the involution σ.

The restriction Π|G′ is discretely decomposable if (G,G′) is of holomorphic
type for any unitary highest weight representation Π of G ([20] or [22, Thm.
7.4]).

3.3 Proof of Theorem 3.2

The bounded multiplicity property for symmetric pairs (g, g′) of holomorphic
type was established in [25, Thm. B] in the category of unitary representa-
tions. Since Theorem 3.2 is formulated in the category of smooth admissible
representations, we need some additional argument.

Proof of Theorem 3.2. First, suppose that the symmetric pair (G,G′) is of
holomorphic type. In this case, any irreducible highest weight module of G is
K ′-admissible, hence G′-admissible (Definition 2.2), see [20] or [22, Thm. 7.4].
In turn, the bounded multiplicity theorem ([25, Thm. B]) in the category of
unitary representations implies the one in the category of smooth admissible
representations by Proposition 2.4.

Next suppose that (G,G′) is of anti-holomorphic type. Via the iden-
tification g∗ ' g, the associated variety is the closure of an adjoint orbit
Ad(GC)X for some X ∈ p+. Then Theorem 3.2 reduces to the following
geometric results owing to Theorem 2.11.

Theorem 3.4. Let G be a non-compact simple Lie group of Hermitian type.
Retain the notation as in (3.2).
(1) If σ is of anti-holomorphic type, then the Gσ

C-action on Ad(GC)X is
coisotropic for any X ∈ p+.
(2) The diagonal GC-action on Ad(GC)X ×Ad(GC)Y is coisotropic for any
X ∈ p+ and Y ∈ p−.

Proof. (1) For any non-zero X ∈ p+, one can take Y ∈ p− and H ∈ kC
such that {X,H, Y } forms an sl2-triple. We write slX2 for the corresponding
complex subalgebra in gC.
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Since σZ = −Z, one has σp+ = p−. Moreover, one has ZgC(X) ⊃ p+
because p+ is abelian. Hence the decomposition (3.2) yields

gC =σp+ + kC + p+

=σ(ZgC(X)) + kC + ZgC(X)

=gσC + kC + ZgC(X). (3.6)

We set S := Ad(KC)X. The equality (3.6) implies that Ad(Gσ
C)S is open in

Ad(GC)X. By Lemma 2.10, it suffices to show

(gσC + ZgC(W ))⊥ ⊂ [W, gσC] for all W ∈ S.

Without loss of generality, we may replace W = Ad(k)X (∈ p+) with X.
We claim the following equality

[X, p−] = ZkC(X)⊥ in kC, (3.7)

where the right-hand side stands for the orthogonal complement of ZkC(X)
in kC with respect to the Killing form B of gC. The inclusion [X, p−] ⊂
ZkC(X)⊥ is direct because B([X, p−],W ) = B([X,W ], p−) = {0} for any
W ∈ ZkC(X). On the other hand, since dimAd(GC)X = 2dimAd(KC)X,
one has dim[X, pC] = dim kC−dimZkC(X). As X is an element of the abelian
subalgebra p+, one has [X, p−] = [X, pC], and thus the equality (3.7) is
proved.

Since p− = σ(p+) and p+ ⊂ ZpC(X), one has

pC = p− ⊕ p+ = pσC + ZpC(X),

hence gσC + ZgC(X) = pC + kσC + ZkC(X). Therefore

(gσC + ZgC(X))⊥ =(kσC + ZkC(X))⊥ in kC

=[X, p−]
−σ. (3.8)

Since [X, p−] = {[X,W + σW ] : W ∈ p−} = [X, pσC], we have shown the
desired inclusive relation (gσC + ZgC(X))⊥ ⊂ [X, gσC].
(2) We apply the same argument as in (1) and obtain

gC ⊕ gC =diag gC + (kC ⊕ kC) + (ZgC(X)⊕ ZgC(Y ))

=diag gC + [diag gC, (X,Y )] + (ZgC(X)⊕ ZgC(Y )).

Thus, by setting a submanifold S := Ad(KC × KC)(X,Y ), one sees that
Ad(diagGC)S is open in Ad(GC ×GC)(X,Y ) and that

(diag gC + (ZgC(X
′)⊕ ZgC(Y

′))⊥ ⊂ [(X ′, Y ′), diag gC]

for any (X ′, Y ′) ∈ S. Now the second assertion follows from Lemma 2.10.
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4 Degenerate principal series representations

In this section we discuss which degenerate principal series representation Π
of G satisfies the bounded multiplicity property (1.1) for a symmetric pair
(G,G′). In particular, we shall see that Theorems 1.1 and 1.2 hold if G is
the automorphism group of a para-Hermitian symmetric space, see Table 4.1
below for the list of such simple Lie algebras g.

4.1 Bounded multiplicity theorems for the restriction
of degenerate principal series representations

For a reductive Lie group G, we write GU for the compact real form of the
complex Lie group GC with Lie algebra gC = Lie(G)⊗R C.

For a Lie group P , we write Char(P ) for the set of the equivalence
classes of one-dimensional representations of P , and Irr(P )f for that of finite-
dimensional irreducible representations of P .

The following theorems are special cases of the general results [32, Thm.
1.4].

Theorem 4.1 ([32, Ex. 4.5]). Let G ⊃ G′ be a pair of real reductive algebraic
Lie groups, and P a parabolic subgroup of G. Then one has the equivalence
on the triple (G,G′;P ) :
(i) One has

sup
χ∈Char(P )

sup
π∈Irr(G′)

[IndG
P (χ)|G′ : π] < ∞.

(ii) There exists C > 0 such that

sup
π∈Irr(G′)

[IndG
P (ξ)|G′ : π] < C dim ξ

for any ξ ∈ Irr(P )f .
(iii) GC/PC is strongly G′

U -visible (Definition 2.7).
(iv) GC/PC is G′

C-spherical.

Theorem 4.2 ([32, Cor. 4.10]). Let G be a real reductive algebraic Lie group,
and Pj (j = 1, 2) parabolic subgroups. Then the following four conditions on
the triple (G,P1, P2) are equivalent:
(i) One has

sup
χ1∈Char(P1)

sup
χ2∈Char(P2)

sup
Π∈Irr(G)

[IndG
P1
(χ1)⊗ IndG

P2
(χ2) : Π] < ∞. (4.1)
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(ii) There exists C > 0 such that

sup
Π∈Irr(G)

[IndG
P1
(ξ1)⊗ IndG

P2
(ξ2) : Π] ≤ C dim ξ1 dim ξ2

for any ξ1, ξ2 ∈ Irr(P )f .
(iii) (GC ×GC)/(P1C × P2C) is diag(GU)-strongly visible.
(iv) (GC ×GC)/(P1C × P2C) is diag(GC)-spherical.

Remark 4.3. (1) A distinguished feature in Theorem 4.1 is that the nec-
essary and sufficient condition of the bounded multiplicity property is given
only by the triple (gC, g

′
C, pC) of complexified Lie algebras, which traces back

to [19, 38].
(2) For each complex symmetric pair (GC, G

′
C), parabolic subgroups PC sat-

isfying the sphericity condition (iv) were classified in [12]. See also [23, 49]
for some classification of strongly visible actions.
(3) Littelmann [44] classified the pairs of parabolic subgroups (P1C, P2C) sat-
isfying (iv) in Theorem 4.2 under the assumption that P1C and P2C are maxi-
mal, whereas all the pairs (P1C, P2C) satisfying the strong visibility condition
(iii) in Theorem 4.2 were classified in [23] for type A and in Tanaka [49] for
the other cases.

By Theorem 4.1, we are interested in the following question in connection
with Theorem 1.1.

Question 4.4. For which simple Lie group G, does there exist a parabolic
subgroup P such that GC/PC is G′

U -strongly visible (or equivalently, G′
C-

spherical) for all symmetric pairs (G,G′)?

We give an affirmative answer to this question if G is the automorphism
group of a para-Hermitian symmetric space.

Let P = LN be a Levi decomposition of a parabolic subgroup P . Without
loss of generality, we may and do assume that both G′ and L are stable under
the Cartan involution θ of G. We write GU , G

′
U , and LU for the connected

subgroups of GC with Lie algebra gU = k+
√
−1p, g′U := g′C ∩ gU , and lU :=

lC ∩ gU . We note that LU = PC ∩GU . If the unipotent radical N is abelian,
or equivalently, if (G,L) is a para-Hermitian symmetric pair, then GU/LU

is a compact Hermitian symmetric space and the strong visibility condition
(ii) in Theorem 4.1 for GU/LU ' GC/PC is satisfied for all symmetric pairs
(GU , G

′
U) by Fact 2.8. Similarly the strong visibility condition (ii) in Theorem
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4.2 for the tensor product case is satisfied if the unipotent radicals of P1 and
P2 are abelian [24, Thm. 1.7].

Thus we have proved the following in answer to Question 4.4:

Corollary 4.5. Let G be a non-compact simple Lie group, and G/L a para-
Hermitian symmetric space. Then Theorem 1.1 holds for any symmetric pair
(G,G′) by taking Π to be IndG

P (ξ) for ξ ∈ Irr(P )f . Likewise, Theorem 1.2
holds by taking Π1 and Π2 to be IndG

P (ξ1) and IndG
P (ξ2) for ξ1, ξ2 ∈ Irr(P )f .

4.2 Para-Hermitian symmetric spaces

Kaneyuki–Kozai [16] gave a classification of para-Hermitian symmetric pairs
(g, l) for simple Lie algebras g as in Table 4.1 below.

g l
sl(p+ q,R) sl(p,R) + sl(q,R) + R
su∗(2p+ 2q) su∗(2p) + su∗(2q) + R
sl(p+ q,C) sl(p,C) + sl(q,C) + C
su(n, n) sl(n,C) + R
so(n, n) sl(n,R) + R
so∗(4n) su∗(2n) + R
so(2n,C) sl(n,C) + C

so(p+ 1, q + 1) so(p, q) + R
so(n+ 2,C) so(n,C) + C
sp(n,R) sl(n,R) + R
sp(n, n) su∗(2n) + R
sp(n,C) sl(n,C) + C
e6(6) so(5, 5) + R
e6(−26) so(1, 9) + R
e6,C so(10,C) + C
e7(7) e6(6) + R
e7(−25) e6(−26) + R
e7,C e6,C + C

Table 4.1: List of para-Hermitian symmetric pairs with g simple

In particular, Theorem 1.1 holds if g is in Table 4.1. Similarly, Theorem
1.2 for the tensor product representations hold if g is in Table 4.1 (see [32,
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Cor. 4.11]).

5 Restriction of “smallest” representations

This section provides a bounded multiplicity theorem for the restriction Π|G′

when the associated variety V(AnnΠ) of Π ∈ Irr(G) is the closure of the
complex minimal nilpotent orbits. The main result of this section is Theorem
5.5 which was proved in [33] under the assumption that g is absolutely simple.
We shall see that the same line of argument works when g is a complex simple
Lie algebra. At the end of this section, we give a proof of Theorems 1.1 and
1.2 for simple Lie algebras g except for sp(p, q) and f4(−20).

5.1 Complex minimal nilpotent orbits Omin,C

Let gC be a complex simple Lie algebra. There exists a unique non-zero
minimal nilpotent (Int gC)-orbit in g∗C, which we denote by Omin,C. We write
n(gC) for half the (complex) dimension of Omin,C. Here is the formula of
n(gC), see [9] for example.

gC An Bn (n ≥ 2) Cn Dn gC2 fC4 eC6 eC7 eC8
n(gC) n 2n− 2 n 2n− 3 3 8 11 17 29

Let G be a non-compact connected simple Lie group with Lie algebra
g. We set gC := g ⊗R C. We note that gC is simple if g does not have
a complex structure. For a complex simple Lie algebra g, we set n(gC) :=
2n(g). To see its meaning, we write J for the complex structure on g, and
decompose gC = g⊗R C into the direct sum of the eigenspaces ghol and ganti

of J with eigenvalues
√
−1 and −

√
−1, respectively. Then one has a direct

sum decomposition:

g⊕ g
∼→ ghol ⊕ ganti = gC, (X,Y ) 7→ 1

2
(X −

√
−1JX, Y +

√
−1JY ).

Accordingly, the complexification GC of the complex Lie group G is given by
the totally real embedding

diag : G ↪→ G×G =: GC, (5.1)
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where the second factor is equipped with the reverse complex structure. In
this case, we set Omin,C := Omin ×Omin where Omin is the minimal nilpotent
orbit for g.

5.2 Real minimal nilpotent orbits

Let G be a connected non-compact simple Lie group. Denote by N the
nilpotent cone in g, and N /G the set of nilpotent orbits, which may be
identified with nilpotent coadjoint orbits in g∗ via the Killing form. The
finite set N /G is a poset with respect to the closure ordering, and there
are at most two minimal elements in (N \ {0})/G, which we refer to as real
minimal nilpotent (coadjoint) orbits. See [5, 9, 40, 45] and references therein.
The relationship with the complex minimal nilpotent orbits Omin,C in gC is
summarized as below.

Fact 5.1 (see e.g., [45]). Let g = k+p be a Cartan decomposition of a simple
Lie algebra g. Then exactly one of the following cases occurs.
(1) (g, k) is not of Hermitian type, and Omin,C ∩ g = ∅.
(2) (g, k) is not of Hermitian type, and Omin,C ∩ g is a single orbit of G.
(3) (g, k) is of Hermitian type, and Omin,C ∩ g consists of two orbits of G.

Correspondingly, we write Omin,C ∩ g = {Omin,R} in Case (2) of Fact
5.1, Omin,C ∩ g = {O+

min,R,O
−
min,R} in Case (3). Then they exhaust all real

minimal nilpotent orbits in Cases (2) and (3). Real minimal nilpotent orbits
are unique in Case (1), to be denoted by Omin,R. We set

m(g) :=

{
1
2
dimOmin,R in Cases (1) and (2),

1
2
dimO+

min,R = 1
2
dimO−

min,R in Case (3).
(5.2)

OC
min,R :=

{
Ad(GC)Omin,R in Cases (1) and (2),

Ad(GC)O+
min,R = Ad(GC)O−

min,R in Case (3).

Then m(g) = n(gC) in Cases (2) and (3), and m(g) > n(gC) in Case (1). The
formula of m(g) in Case (1) is given in [45] as follows.

g su∗(2n) so(n− 1, 1) sp(m,n) f4(−20) e6(−26)

m(g) 4n− 4 n− 2 2(m+ n)− 1 11 16
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Here is a summary about when m(g) > n(gC).

Fact 5.2 ([5], [40, Cor. 5.9], [45, Prop. 4.1]). Suppose that g is absolutely
simple. Then the following six conditions on g are equivalent:

(i) Omin ∩ g = ∅.

(ii) Omin,C 6= OC
min,R.

(iii) θβ 6= −β.

(iv) m(g) > n(gC).

(v) g is compact or is isomorphic to su∗(2n), so(n−1, 1) (n ≥ 5), sp(m,n),
f4(−20), or e6(−26).

(vi) gC = kC or the pair (gC, kC) is isomorphic to (sl(2n,C), sp(n,C)),
(so(n,C), so(n − 1,C)) (n ≥ 5), (sp(m + n,C), sp(m,C) ⊕ sp(n,C)),
(fC4 , so(9,C)), or (eC6 , fC4 ).

Remark 5.3. The equivalence (i) ⇐⇒ (v) was stated in [5, Prop. 4.1]
without proof. One may find a proof in [45].

5.3 Gelfand–Kirillov dimension

The Gelfand–Kirillov dimension serves as a coarse measure of the “size” of
representations. LetG be a real reductive Lie group. We recall from Section 2
that for Π ∈ M(G), we denote by AnnΠ the annihilator of Π in the universal
enveloping algebra U(gC) of the complexified Lie algebra gC. The associated
variety V(AnnΠ) is the closure of a single nilpotent coadjoint orbit in g∗C
if Π ∈ Irr(G). The Gelfand–Kirillov dimension DIM(Π) of Π is defined to
be half the dimension of V(AnnΠ). The same notation will be applied for
Harish-Chandra modules of finite length.

By definition, the Gelfand–Kirillov dimension has the following property:

DIM(Π) = 0 ⇐⇒ Π is finite-dimensional.

For any infinite-dimensional Π ∈ Irr(G), one has

(n(gC) ≤) m(g) ≤ DIM(Π). (5.3)
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5.4 Coisotropic action on Omin,C

As we saw in Section 2.6, any coadjoint orbit of a Lie group G is a Hamil-
tonian G-manifold with the Kirillov–Kostant–Souriau symplectic form. We
consider the holomorphic setting, and have proved in [33, Thm. 23] the fol-
lowing:

Fact 5.4. Let Omin,C be the minimal nilpotent coadjoint orbit of a connected
complex simple Lie group GC.

(1) For any symmetric pair (GC, KC), theKC-action onOmin,C is coisotropic.

(2) The diagonal action of GC on Omin,C ×Omin,C is coisotropic.

In Section 6, we give a generalization of this statement, see Theorems 6.7
and 6.8.

5.5 Bounded multiplicity theorems

In view of the inequality (5.3), one may think of Π ∈ Irr(G) satisfying
DIM(Π) = n(gC) as the “smallest” amongst infinite-dimensional irreducible
representations of G. Minimal representations [11, 14, 48] are unitarizable
and have this property. For G = SL(n,R), SL(n,C), or SU(p, q) (p, q > 0),
the Joseph ideal is not defined, but there exist infinitely many irreducible
unitary representations Π with DIM(Π) = n(gC). In general, the coherent
continuation of such representations obtained by the tensor product with
finite-dimensional representations also satisfy DIM(Π) = n(gC).

The restriction of such Π to arbitrary symmetric pairs (G,G′) has a
bounded multiplicity property as follows.

Theorem 5.5. Let G be a connected simple Lie group, and Π, Π1, Π2 ∈
Irr(G).

(1) If DIM(Π) = n(gC), then for any symmetric pair (G,G′), one has

sup
π∈Irr(G′)

[Π|G′ : π] < ∞.

(2) If DIM(Π1) = DIM(Π2) = n(gC), then one has

sup
Π∈Irr(G)

[Π1 ⊗ Π2 : Π] < ∞.
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Remark 5.6. (1) When (G,G′) is a Riemannian symmetric pair, namely,
G′ = K, Theorem 5.5 (1) for minimal representations Π is known by Kostant
in a stronger from that the supremum is one, see [11, Prop. 4.10].
(2) Theorem 5.5 was proved in [33, Thms. 7 and 8] by using Fact 5.4 when
g is absolutely simple.

Remark 5.7. We shall see in Theorem 6.1 and Remark 6.3 that Theorem
5.5 still holds by replacing n(gC) with m(g).

Proof of Theorem 5.5. As we saw in Remark 5.6, it suffices to consider when
G is a complex Lie group. In this case there are two types of involutions σ
of G:

(1) (σ is holomorphic) Gσ is a complex subgroup of G,
(2) (σ is anti-holomorphic) Gσ is a real form of G.
For simplicity, suppose that G′ is the identity component of Gσ. Then

via the identification GC ' G×G in (5.1), one has

G′
C 'G′ ×G′ for (1),

G′
C ' diagσ(G) := {(g, σg) : g ∈ G} for (2).

Then G′
C acts on Omin,C × Omin,C coisotropically in both cases (1) and

(2) by Fact 5.4 (1) and (2), respectively. This implies the first statement
of Theorem 5.5 by Theorem 2.11. On the other hand, GC × GC acts on
(Omin,C ×Omin,C)× (Omin,C ×Omin,C) coisotropically by Fact 5.4 (2), whence
the second statement of Theorem 5.5 follows.

5.6 Proof of Theorems 1.1–1.2 except sp(p, q) and f4(−20)

In order to apply Theorem 5.5, we need the existence of Π ∈ Irr(G) satisfying
DIM(Π) = n(gC). However, we know from the inequality (5.3) that there is
no such Π if m(g) > n(gC), namely, if g is in the list of Fact 5.2 (v). The
converse is not true, but “almost” holds as follows.

Lemma 5.8. Let G be a simply-connected non-compact simple Lie group.
Then there exist an infinite-dimensional irreducible and unitarizable repre-
sentation Π of G such that DIM(Π) = n(gC), if g is not isomorphic to the
following:

so(n, 1) (n ≥ 6), so(p, q) (p, q ≥ 4, p+ q odd),

su∗(2n), sp(p, q) (p, q ≥ 1), e6(−26), f4(−20).
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Proof. When g is of type A, one may take Π to be a degenerate principal
series representation induced from a mirabolic subgroup for g = sl(n,F)
(F = R,C), and a highest weight module of the smallest Gelfand–Kirillov
dimension for g = su(p, q). When g is not of type A, one may take Π to be
a minimal representation [48].

Proof of Theorems 1.1 and 1.2 except for g = sp(p, q) and f4(−20). If g is not
in the list of Lemma 5.8, there exists Π ∈ Irr(G) such that DIM(Π) = n(gC).
Hence Theorem 5.5 applies. For g = su∗(2n), so(p, q) or e6(−26), one sees from
Table 4.1 that G is the transformation group of a para-Hermitian symmetric
space, hence Corollary 4.5 applies.

6 Restriction of “small” representations

This section completes the proof of Theorems 1.1 and 1.2. As we have seen,
the remaining cases are when g = sp(p, q) and f4(−20), for which there is
no Π ∈ Irr(G) with DIM(Π) = n(gC) and for which G does not admit a
Hermitian or para-Hermitian symmetric space, hence none of Theorem 3.2,
Corollary 4.5, or Theorem 5.5 applies. By the classification of irreducible
symmetric pairs (Berger [2]), we need to treat the following symmetric pairs
(g, g′):

g g′

sp(p, q) u(p, q), sp(p1, q1) + sp(p− p1, q − q1)
f4(−20) so(9), so(8, 1), sp(2, 1) + sp(1)

Table 6.1: Remaining symmetric pairs

The main results of this section is Theorem 6.1, which guarantees the
bounded multiplicity property for the restriction Π|G′ for any Π ∈ Irr(G)
satisfies DIM(Π) = m(g) (> n(gC)), and we complete the proof of Theorems
1.1 and 1.2 in the end.

6.1 Bounded multiplicity theorems

Suppose that (G,G′) is a symmetric pair defined by an involution σ of G.
We use the same letter σ to denote its holomorphic extension to a simply
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connected complexification GC, and also its differential. We set g−σ := {Y ∈
g : σY = −Y }. We take a Cartan involution θ commuting with σ, and
write g = k + p for the Cartan decomposition. We take a maximal split
abelian subspace a to be σ-split, namely, a−σ := a∩g−σ is a maximal abelian
subspace in p ∩ g−σ, and Σ+(g, a) to be compatible with a positive system
Σ+(g, a−σ). Let µ be the highest element in Σ+(g, a). We prove:

Theorem 6.1. Suppose Π ∈ Irr(G) satisfies DIM(Π) = m(g). If σµ = −µ,
then the restriction Π|G′ has the bounded multiplicity property (1.1).

This theorem extends [33, Thm. 34], which treated σ = θ (Cartan invo-
lution) or its conjugation by Int(gC).

Example 6.2. (1) The assumption σµ = −µ in Theorem 6.1 is automati-
cally satisfied if a−σ = a, namely, if rankR G/G′ = rankR G. This is the case
(g, g′) = (sp(p, q), u(p, q)) or g = f4(−20).
(2) A direct computation shows σµ = −µ for (g, g′) = (sp(p, q), sp(p1, q1) +
sp(p− p1, q − q1)).

Remark 6.3. (1) If m(g) = n(gC), the conclusion of Theorem 6.1 holds
without the assumption σµ = −µ, see Theorem 5.5.
(2) Okuda [46] verified that the assumption σµ = −µ is satisfied for all
symmetric pairs (g, g′) if g is one of the five simple Lie algebras in Fact 5.2
(v), namely, if m(g) > n(gC).

Remark 6.4. When m(g) = n(gC), it may happen that σµ 6= −µ. Here are
examples of such symmetric pairs.
(1) (sl(2n,R), sp(n,R))
(2) (su(2p, 2q), sp(p, q)), (su(n, n), sp(n,R))
(3) (sp(p+ q,R), sp(p,R)⊕ sp(q,R)), (sp(2n,R), sp(n,C)),
(4) (so(p, q), so(p− 1, q)) or (so(p, q), so(p, q − 1)) for “p ≥ q ≥ 4 and p ≡ q
mod 2”, “p ≥ 5 and q = 2”, or “p ≥ 4 and q = 3”.
(5) (f4(4), so(5, 4)),
(6) (e6(6), f4(4)), (e6(2), f4(4)), or (e6(−14), f4(−20)),
(7) complex symmetric pairs in Fact 5.2 (vi).

The condition σµ 6= −µ yields an interesting phenomenon that the re-
striction Π|G′ stays almost irreducible ([33, Thm. 10]) for any Π ∈ Irr(G) such
that DIM(Π) = n(gC). (Such Π exists in the above cases (1)–(7).) This gives
a uniform explanation of the phenomena that have been observed in various
literatures, for instance, as a well-known property of the Segal–Shale–Weil
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representation of the metaplectic group for the pair (3), the branching law
of the minimal representation of O(p, q) in [35, Thm. A] for (4), that of a
degenerate principal series representation from a mirabolic in [37, Thm. 7.3]
for (1) (see also [6] for the complex case), that of a cohomological parabolic
induction Aq(λ) in [26, Thm. 3.5] for (2), and that of a minimal highest
weight module in Binegar–Zierau [3] for (e6(−14), f4(−20)) of (6), etc.

6.2 Structural results on real minimal nilpotent orbits

Retain the notation as in Section 5.2. The assumption DIM(Π) = m(g)
means that the associated variety V(AnnΠ) of Π is the closure of OC

min,R. In
this section, we recall some basic facts on real minimal nilpotent orbits.

Let g = k + p be a Cartan decomposition of a simple Lie algebra g. We
take a maximal abelian subspace a of p, and fix a positive system Σ+(g, a) of
the restricted root system Σ(g, a). Let m be the centralizer of a in k. Denote
by µ the highest element in Σ+(g, a), and Aµ ∈ a the coroot of µ. Any (real)
minimal nilpotent coadjoint orbit O is of the form O = Ad(G)X for some
non-zero element

X ∈ g(a;µ) := {X ∈ g : [H,X] = µ(H)X for all H ∈ a}

via the identification g∗ ' g, and vice versa (e.g., [45]). Let GX be the
stabilizer subgroup of X in G, and Zg(X) its Lie algebra. We take Y ∈
g(a;−µ) such that {X,Aµ, Y } forms an sl2-triple. We write slX2 for the
corresponding subalgebra in g. Since µ is the highest root in Σ+(g, a), the
representation theory of sl2(R) tells us that possible eigenvalues of ad(Aµ)
are 0, ±1, or ±2. Hence one has the eigenspace decomposition of ad(Aµ) as

g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2, (6.1)

where gj := Ker(ad(Aµ)−j). We note that g±2 = g(a;±µ). Let a := dimR g1
and b := dimR g2. We denote by Zg(sl

X
2 ) the centralizers of slX2 in g.

Example 6.5. (1) For g = sp(p, q), a = 4(p + q − 2), b = 3, Zg(sl
X
2 ) '

sp(p− 1, q − 1)⊕ R, and g0 ' sp(p− 1, q − 1)⊕ sp(1)⊕ R.

(2) For g = f4(−20), one has a = 8, b = 7, Zg(sl
X
2 ) ' spin(6), and g0 '

spin(7)⊕ R.

24



Lemma 6.6. (1) The Lie algebra g decomposes as an slX2 -module:

g ' Zg(sl
X
2 )⊕ aR2 ⊕ bR3, (6.2)

where R2 and R3 stand for the natural representation and the adjoint
representation of sl2(R), respectively.

(2) One has a direct sum decomposition as a vector space:

Zg(X) = Zg(sl
X
2 )⊕ g1 ⊕ g2. (6.3)

(3) The dimension of the adjoint orbit Ad(G)X is equal to a+ 2b.

(4) g0 = Zg(sl
X
2 ) + (m⊕ RAµ).

Proof. The first two assertions are immediate consequences of the repre-
sentation theory of sl2(R), whence the dimension formula of g/Zg(X). For
the last assertion, the inclusion g0 ⊃ Zg(sl

X
2 ) + (m ⊕ RAµ) is obvious. By

the irreducible decomposition (6.2) of g as an slX2 -module, one sees that
g0 = Zg(sl

X
2 ) ⊕ [X, g(a;−µ)]. Since [g(a;µ), g(a;−µ)] ⊂ m + a and since

a ⊂ RAµ + Zg(sl
X
2 ), the opposite inclusion follows.

6.3 Coisotropic actions of Gσ
C on OC

min,R.

The proof of Theorem 6.1 is reduced to the following geometric properties
by Theorem 2.11.

Theorem 6.7. Assume σ satisfies σµ = −µ as in Theorem 6.1. Then the
Gσ

C-action on OC
min,R is coisotropic.

Theorem 6.8. The diagonal action of GC on OC
min,R ×OC

min,R is coisotropic.

Remark 6.9. (1) Theorem 6.7 generalizes [33, Thm. 29] which treats the
case σ = θ (Cartan involution).
(2) Theorem 6.8 generalizes Fact 5.4 (2) which treats the case m(g) = n(gC).

We take X ∈ g(a;µ) such that Omin,R = Ad(G)X, hence OC
min,R =

Ad(GC)X via the isomorphism g∗C ' gC.
For the proof of Theorem 6.7, we begin with the following:

Lemma 6.10. If σµ = −µ then

g = gσ + (m+ RAµ) + Zg(X) = gσ + Zg(X) + [X, g−2].
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Proof. Since σ(Aµ) = −Aµ, one has σ(gj) = g−j (j = 0, 1, 2). We set
Y := σX ∈ g−2 = g(a;−µ). Then [X,Y ] ∈ g(a; 0) ∩ g−σ = a−σ. Hence,
after an appropriate normalization, {X, σX, [X, σX]} forms an sl2-triple. In
particular, [X, g−2] = [Y, g2] is σ-stable. Since Zg(X) ⊃ g1 ⊕ g2 by Lemma
6.6 (2), the decomposition (6.1) yields

g =σ(Zg(X)) + g0 + Zg(X)

=gσ + g0 + Zg(X).

By Lemma 6.6 (4), the first equality of Lemma 6.10 follows because Zg(X) ⊃
Zg(sl

X
2 ). Since g0+Zg(X) = [X, g−2]+Zg(X) by the irreducible decomposition

(6.2), the second equality holds.

We now give a proof of Theorems 6.7 and 6.8. For a complex simple Lie
algebra g, the statement is reduced to Fact 5.4 as we have seen in the proof
of Theorem 5.5. So it suffices to treat the case where g is absolutely simple.

Proof of Theorem 6.7. We set L := M exp(RAµ), and

S := Ad(L)X ⊂ Omin,R = Ad(G)X.

Then Ad(Gσ)S is open inOmin,R by Lemma 6.10. We now verify the condition
of Lemma 2.10:

(gσ + Zg(W ))⊥ ⊂ [W, gσ] for all W ∈ S. (6.4)

Since S ⊂ g(a;µ), it suffices to show (6.4) for W = X. By the second
equality in Lemma 6.10, one has (gσ+Zg(X))⊥ ⊂ [X, g−2]. Since σ(g−2) = g2
is abelian, one has

[X, g−2] = {[X,V + σ(V )] : V ∈ g−2} ⊂ [X, gσ].

Thus (6.4) is shown.

Proof of Theorem 6.8. The coadjoint orbit OC
min,R is of the form OC

min,R =
Ad(GC)X ' GC/(GC)X for any non-zero X ∈ g(a;µ) via the identification
g∗C ' gC. We take Y ∈ g(a;−µ) such that {X,Aµ, Y } forms an sl2-triple as
before. Since OC

min,R contains Y , one can also write as OC
min,R = Ad(GC)Y '

GC/(GC)Y . Then Lemma 6.6 implies that

g = Zg(Y ) + (m+ RAµ) + Zg(X). (6.5)
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We take any nonzero Y ′ ∈ g(a;−µ). We claim

(diag g+ Zg⊕g(X,Y ′))⊥ ⊂ [(X,Y ′), diag g]. (6.6)

In fact, by using the decomposition (6.1) via the sl2-triple {X,Aµ, Y }, one
has Zg(Y

′) ⊃ g−1 ⊕ g−2, hence

(Zg(X) + Zg(Y
′))⊥ ⊂ (Zg(X)⊕ g−1 ⊕ g−2)

⊥ = [X, g−2] = [X, g(a;−µ)]

by the representation theory of slX2 . Switching the role of X and Y ′, one sees

(Zg(X) + Zg(Y
′))⊥ ⊂ [Y ′, g(a;µ)].

Hence the left-hand side of (6.6) is contained in

{(Z,−Z) : Z ∈ [X, g(a;−µ)] ∩ [Y ′, g(a;µ)]},

which is a subspace of [(X,Y ′), diag g] because both g(a;µ) and g(a;−µ) are
abelian. Hence (6.6) is shown.

We set LC := MC exp(CAµ) and S := {(Ad(`)X,Ad(`−1)Y ) : ` ∈ LC}.
By (6.5), diag(GC)S is open dense in OC

min,R ×OC
min,R in light of the identifi-

cation diag(GC)\(GC ×GC) ' GC, (x, y) 7→ x−1y.
Similarly to (6.6), one obtains the following inclusion:

(diag(gC) + ZgC⊕gC(Ad(`)X,Ad(`−1)Y ))⊥ ⊂ [(Ad(`)X,Ad(`−1)Y ), diag(gC)]

for any ` ∈ LC. Thus Theorem 6.8 follows from Lemma 2.10.

6.4 Singular representations of Sp(p, q) and F4(−20)

In this section, we verify the existence of Π ∈ Irr(G) satisfying DIM(Π) =
m(g) for g = sp(p, q) or f4(−20). Actually, one can take Π to be the globaliza-
tion of Zuckerman’s module Aq(λ), a cohomological parabolic induction for
some θ-stable parabolic subalgebra q in gC.

In what follows, we write q = lC + u for the Levi decomposition of a θ-
stable parabolic subalgebra q of gC = kC+pC, where lC is the complexified Lie
algebra of L = NG(q), the normalizer of q in G. Then the Gelfand–Kirillov
dimension of Aq(λ) is the complex dimension of Ad(KC)(u ∩ pC), see e.g.,
[21].
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Lemma 6.11. Let G = Sp(p, q), and q be a θ-stable parabolic subalgebra with
L ' T× Sp(p− 1, q) or Sp(p, q − 1)× T. Then DIM(Aq(λ)) = 2(p+ q)− 1.

Proof. We identify pC ' M(2p, 2q;C). Then Ad(KC)(u∩ pC) is contained in
the variety of rank one matrices for the above parabolic subalgebra q, which
is of complex dimension 2(p + q) − 1. Hence DIM(Aq(λ)) ≤ 2(p + q) − 1.
Since DIM(Aq(λ)) ≥ m(g) = 2(p+ q)−1, we obtain the desired equality.

Lemma 6.12. Let G = F4(−20), and q be one of θ-stable parabolic subalgebras
of gC in [39, Table C.4]. Then DIM(Aq(λ)) = 11.

Proof. For g = f4(−20), there are three real nilpotent coadjoint orbits, and
their dimensions are 0, 22, 30. This implies that DIM(Π) ∈ {0, 11, 15} for
any Π ∈ Irr(G).

The asymptotic K-support (Section 2.3) of Aq(λ) has the following upper
estimate ASK(Aq(λ)) ⊂ R+〈u∩pC〉, see [20, Ex. 3.2] and the notation therein.

As we saw in [39], the asymptoticK-support ASK(Aq(λ)) for the parabolic
subalgebra q under consideration is strictly smaller than that of a principal
series representation of G. In turn, by [30, Prop. 2.6], we conclude that
DIM(Aq(λ)) < m(g) = 15. Hence DIM(Aq(λ)) = 11.

Remark 6.13. The Gelfand–Kirillov dimensions of irreducible representa-
tions are known for the group of real rank one. In particular, one may observe
from [8, Fig. 8.16] that DIM: Irr(F4(−20)) → {0, 11, 15} is surjective.

Proof of Theorems 1.1 and 1.2. We have shown at the end of Section 5 that
the remaining cases are g = sp(p, q) or f4(−20). For these Lie algebras, the
assumption σµ = −µ in Theorem 6.1 is satisfied (see Example 6.2). On
the other hand, we also have verified that there exists Π ∈ Irr(G) with
DIM(Π) = m(g) for these Lie algebras g. Hence Theorem 6.1 covers the
remaining cases, and completes the proof of Theorems 1.1 and 1.2.
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