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Abstract

We prove a geometric criterion for the bounded multiplicity prop-
erty of “small” infinite-dimensional representations of real reductive
Lie groups in both induction and restrictions.

Applying the criterion to symmetric pairs, we give a full descrip-
tion of the triples H ⊂ G ⊃ G′ such that any irreducible admissible
representations of G with H-distinguished vectors have the bounded
multiplicity property when restricted to the subgroup G′. This arti-
cle also completes the proof of the general results announced in the
previous paper [Adv. Math. 2021, Section 7].

MSC 2020: Primary 22E46; Secondary 22E45, 53D50, 58J42, 53C50.

1 Introduction

In [K95, KO13] we initiated a new line of investigation on the finiteness or
the boundedness of multiplicities in induction and restriction, and proposed
a new avenue of research by clarifying a “nice framework” for both global
analysis and branching problems with “firm grip” of group representations.
This article gives its refinement by focusing on a family of “small” infinite-
dimensional representations such as irreducible representations of G having
H-distinguished vectors for reductive symmetric pairs (G,H).

Let G be a real reductive algebraic Lie group with Lie algebra g. We
assume G is contained in a connected complex Lie group GC with Lie alge-
bra gC = g ⊗R C, though this assumption is easily relaxed. Let M(G) be
the category of finitely generated, smooth admissible representations of G of
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moderate growth, sometimes referred to as the Casselman–Wallach global-
ization [Wal92, Chap. 11]. Denote by Irr(G) the set of irreducible objects in
M(G), and by Irr(G)f that of irreducible finite-dimensional ones.

We shall use the uppercase letter Π for representations of the group G,
and the lowercase letter π for those of a subgroup.

Suppose G′ is a reductive subgroup of G. For Π ∈ Irr(G) and π ∈ Irr(G′),
we define the multiplicity of the restriction Π|G′ in the categoryM by

[Π|G′ : π] := dimC HomG′(Π|G′ , π) ∈ N ∪ {∞}, (1.1)

where HomG′( , ) denotes the space of continuous G′-homomorphisms be-
tween the Fréchet representations.

In [KO13, Thms. C and D] we established the following geometric criteria:
Bounded multiplicity for a pair (G,G′):

sup
Π∈Irr(G)

sup
π∈Irr(G′)

[Π|G′ : π] <∞ (1.2)

if and only if (GC ×G′
C)/ diagG

′
C is spherical.

Finite multiplicity for a pair (G,G′):

[Π|G′ : π] <∞ for all Π ∈ Irr(G) and π ∈ Irr(G′) (1.3)

if and only if (G×G′)/ diagG′ is real spherical.
Here we recall that a complex GC-manifold X is called spherical if a Borel

subgroup of GC has an open orbit in X, and that a G-manifold Y is called
real spherical if a minimal parabolic subgroup of G has an open orbit in Y .

A remarkable feature of the above criterion is that the bounded multi-
plicity property (1.2) is determined only by the pair of the complexified Lie
algebras (gC, g

′
C), hence the classification of the pairs (G,G′) satisfying (1.2)

is reduced to a classical one [Kr76]: the pair (g, g′) is any real form in the
direct sum of the following pairs up to abelian ideals:

(gC, g
′
C) = (sln, gln−1), (son, son−1), or (so8, spin7). (1.4)

When (1.4) holds, the supremum in (1.2) equals one for many of the real
forms such as (SO(p, q), SO(p− 1, q)) or (SU(p, q), U(p− 1, q)) [SZ12].

On the other hand, the finite multiplicity property (1.3) depends on real
forms. It is fulfilled for a Riemannian symmetric pair by Harish-Chandra’s
admissibility theorem, whereas it is not the case for some reductive symmetric
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pairs such as (G,G′) = (SL(p + q,R), SO(p, q)). A complete classification
of the irreducible symmetric pairs (G,G′) satisfying the finite multiplicity
property (1.3) was accomplished in [KM14] based on the above geometric
criterion.

To go beyond these cases, we observe that even when the pair (G,G′)
does not satisfy the bounded multiplicity property (1.2) or more broadly, the
finiteness property (1.3), there may still exist a specific Π ∈ Irr(G) for which
a detailed study of the restriction Π|G′ will be reasonable. Such Π should
be a “small” representation relative to the subgroup G′ in some sense. This
observation suggests to look at the triple (Π, G,G′) rather than a pair (G,G′)
of groups. This formulation has been successful in the study of G′-admissible
restriction of Π, namely, the restriction Π|G′ of Π ∈ Irr(G) being discretely
decomposable with finite multiplicity, see [K94, K98a, K98b, K19b] for the
general theory, and [KO12, KO15] for some classification theory of the triples
(Π, G,G′).

In this article, we allow the case where the restriction Π|G′ is not “dis-
cretely decomposable”, and highlight the bounded multiplicity property. For
this purpose, we consider for Π ∈ Irr(G) the following quantity:

m(Π|G′) := sup
π∈Irr(G′)

[Π|G′ : π] ∈ N ∪ {∞}. (1.5)

We address the following:

Problem 1.1. Given a pair (G,G′), find a subset Ω ≡ Ω(G′) of Irr(G) (or
ofM(G)) such that sup

Π∈Ω
m(Π|G′) <∞.

We note that Problem 1.1 is nontrivial even when G is a compact Lie
group where m(Π|G′) is individually finite, see Example 9.5 for the case
(G,G′) = (SU(3), SO(3)). We begin with an observation of two opposite
extremal choices of Ω: a singleton vs the whole set Irr(G). When Ω is a
singleton, Problem 1.1 concerns the triple (Π, G,G′) for which Π ∈ Irr(G)
satisfies the bounded multiplicity property m(Π|G′) <∞, see [K15, Probl. 6.2
(2)]. When Ω = Irr(G), Problem 1.1 is nothing but the bounded multiplic-
ity property (1.2) for the pair (G,G′), and the aforementioned geometric
criterion was proved in [KO13, Thm. D]. We are particularly interested in
the intermediate case Ω = Irr(G)H , the infinite set of H-distinguished irre-
ducible representations of G. We also discuss Problem 1.1 when Ω is a subset
of degenerate principal series representations, see Theorem 1.6 below.
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Let us fix some notation. For Π ∈ Irr(G), we denote by Π−∞ the repre-
sentation on the space of distribution vectors, that is, the topological dual of
Π. For a closed subgroup H of G, we set

Irr(G)H := {Π ∈ Irr(G) : (Π−∞)H 6= {0}}. (1.6)

Let Π∨ be the contragredient representation in the categoryM(G). Then,
one has Π ∈ Irr(G)H if and only if HomG(Π

∨, C∞(G/H)) 6= {0} by the Frobe-
nius reciprocity. Elements Π in Irr(G)H (or Π∨) are sometimes referred to as
H-distinguished, or having nonzero H-periods. As a concrete setting of Prob-
lem 1.1, we study the following problem when (G,H) is a reductive symmetric
pair. In this case, all elements in Irr(G)H are quite “small” representations
in general, see e.g., Proposition 5.5 for an estimate of the Gelfand–Kirillov
dimension.

Problem 1.2. Find a criterion for the triple H ⊂ G ⊃ G′ with bounded
multiplicity property for the restriction:

sup
Π∈Irr(G)H

m(Π|G′) <∞. (1.7)

In [K21, Thm. 7.6] we have given a geometric answer to Problem 1.2, see
Theorem 1.4 below, together with some motivations, examples, and perspec-
tives, but have postponed the detailed proof until this article. We also prove a
full classification of the triples (G,H,G′) satisfying the bounded multiplicity
property (1.7) in the setting where (G,G′) is a symmetric pair.

We recall that (G,H) is a symmetric pair defined by an involution σ of
G, if H is an open subgroup of Gσ = {g ∈ G : σg = g}. The same letter σ
will be used to denote its differential. We take a maximal semisimple abelian
subspace j in g−σ = {X ∈ g : σX = −X}. The dimension of j is independent
of the choice of such a subspace, and is called the rank of the symmetric
space G/H. We introduce the following terminology:

Definition 1.3 (Borel subalgebra for G/H). A Borel subalgebra for the sym-
metric space G/H is the complex parabolic subalgebra q of gC associated to
a positive system Σ+(gC, jC). We say the corresponding complex parabolic
subgroup Q (⊂ GC) is a Borel subgroup for the symmetric space G/H.

Borel subalgebras for the symmetric space G/H are unique up to inner
automorphisms of gC. We sometimes write bG/H for q, and BG/H for Q.
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We note that a Borel subalgebra bG/H for G/H is determined only by the
complexification (gC, hC), and that it is not necessarily solvable. If bG/H

is solvable then the regular representation on L2(G/H) is tempered [BK21,
Thm. 1.1].

We prove the following.

Theorem 1.4. Let BG/H be a Borel subgroup for a reductive symmetric
space G/H. Suppose G′ is an algebraic reductive subgroup of G, and G′

U is
a compact real form of G′

C. Then the following three conditions on the triple
(G,H,G′) are equivalent:

(i) sup
Π∈Irr(G)H

m(Π|G′) <∞.

(ii) GC/BG/H is G′
C-spherical.

(iii) GC/BG/H is G′
U -strongly visible ([K05, Def. 3.3.1]).

A special case of Theorem 1.4 includes the tensor product case. For
Π1,Π2 ∈ Irr(G), we set

m(Π1 ⊗ Π2) := sup
Π∈Irr(G)

dimC HomG(Π1 ⊗ Π2,Π) ∈ N ∪ {∞}. (1.8)

Theorem 1.5 (Tensor product). Suppose that (G,Hj) are reductive symmet-
ric pairs, and that BG/Hj

are Borel subgroups for G/Hj for j = 1, 2. Then
the following three conditions on the triple (G,H1, H2) are equivalent:

(i)
sup

Π1∈Irr(G)H1

sup
Π2∈Irr(G)H2

m(Π1 ⊗ Π2) <∞. (1.9)

(ii) (GC ×GC)/(BG/H1 × BG/H2) is GC-spherical via the diagonal action.

(iii) (GC × GC)/(BG/H1 × BG/H2) is GU -strongly visible via the diagonal
action.

The classification theory for spherical varieties e.g., [HNOO13], or alter-
natively that for strongly visible actions e.g., [Tn12] leads us to the classifi-
cation of the triples (G,H,G′) for Theorem 1.4 and the triples (G,H1, H2)
for Theorem 1.5. See Theorems 7.2, 7.6, 7.8, and 7.9 for a full description.

Although “smallness” of the representation Π ∈ Irr(G) should be nec-
essary in some sense for the boundedness property m(Π|G′) < ∞ of the
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restriction Π|G′ , invariants such as the associated variety are not informative
enough for Problem 1.2, as one may notice that a delicate example already
shows up in the compact setting, see Example 9.5. To overcome this diffi-
culty, a key idea of our proof is to use “QP estimates” which implement a
pair of parabolic subalgebras q ⊂ pC dealing with the induction from P to
G, where q is not necessarily defined over R. For a finite-dimensional irre-
ducible P -module η, we define dq(η) to be the minimum of the dimensions of
non-zero q-submodules in η, and denote by Irr(P ; q)f the subset of Irr(P )f
with dq(η) = 1.

We deduce Theorem 1.4 from the following two results: Theorem 1.6 be-
low gives “QP estimates for restriction” and Theorem 1.8 is a generalization
of Harish-Chandra’s subquotient theorem and Casselman’s subrepresentation
theorem for H-distinguished representations of G.

Let ΩP := {IndG
P (ξ) : ξ is a character of P}. We set

(ΩP ⊂) ΩP,q := {IndG
P (ξ) : ξ ∈ Irr(P ; q)f} (⊂M(G)). (1.10)

Theorem 1.6 (see Thereom 4.2). Let G ⊃ G′ be a pair of real reductive
algebraic Lie groups, P a parabolic subgroup of G, and Q a complex subgroup
of GC such that q ⊂ pC. Then one has the equivalence:

GC/Q is G′
C-spherical ⇐⇒ sup

Π∈ΩP,q

m(Π|G′) <∞. (1.11)

A special case of Theorem 1.6 with Q = PC shows:

Example 1.7 (see Example 4.5). One has the equivalence from (1.11):

GC/PC is G′
C-spherical ⇐⇒ sup

Π∈ΩP

m(Π|G′) <∞. (1.12)

Let PG/H be a “minimal parabolic subgroup” for the symmetric space
G/H (Definition 5.1), and bG/H a Borel subalgebra for G/H with bG/H ⊂
(pG/H)C.

Theorem 1.8 (see Theorem 5.4). Any Π ∈ Irr(G)H is obtained as the quo-
tient of the induced representation IndG

PG/H
(ξ) for some ξ ∈ Irr(PG/H ; bG/H).

Along the same line as in [KO13, K14], the “QP estimate” for restriction
(e.g., the implication (ii)⇒ (i) in Theorem 1.4) is derived from the following
“QP estimates for induction” applied to (G×G′)/ diagG′. Theorem 1.9 is a
generalization of some results in [KO13] relying on the theory of “boundary
valued maps” and in Tauchi [Tu19] relying on the theory of holonomic D-
modules [Ka83, KK81].
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Theorem 1.9 (see Theorem 3.1 (1)). Let P be a parabolic subgroup of a real
reductive algebraic Lie group G, and H an algebraic subgroup. Suppose that
Q is a parabolic subgroup of PC such that #(Q\GC/HC) <∞. Then one has

sup
η∈Irr(P )f

sup
τ∈Irr(H)f

1

dq(η) dim τ
dimC HomG(Ind

G
P (η), Ind

G
H(τ)) <∞.

Individual finite multiplicity results for induction and restriction can be
read from the “QP estimates” for induction and restriction, respectively, by
putting Q := PC, see Remark 3.3 and Example 4.6 for instance.

Organization of the paper
In Section 2 we introduce the set Irr(P ; q)f and discuss some basic prop-
erties of finite-dimensional representations. Bounded multiplicity theorems
for induction and restriction of degenerate principal series representations
with “QP estimates” are given in Sections 3 and 4, respectively. Section
5 is devoted to a refinement of Casselman’s subrepresentation theorem for
H-distinguished representations (Theorem 1.8). With these preparations,
our main results (Theorems 1.4 and 1.5) will be proved in Section 6. The
classification of the triples (G,H,G′) with the bounded multiplicity property
(1.7) is given in Section 7, and is proved in Section 8 based on the geometric
criteria in Theorems 1.4 and 1.5.

2 Preliminaries on Irr(P ; q)f

We prepare some finer properties of finite-dimensional representations that
we shall need in the “QP estimate”, the uniform estimate of multiplicities
for a family of representations in induction and restriction.

2.1 Definition of Irr(P ; q)f

In this subsection we examine finite-dimensional irreducible representations
of a Lie group P with respect to a parabolic subalgebra q.

Let P be a real algebraic group or its open subgroup in the classical
topology. We write P = LN for its Levi decomposition, and p = l + n for
the corresponding decomposition of the Lie algebras. We denote by Irr(P )f
the set of equivalence classes of irreducible finite-dimensional representations
of P , and by Irr(p)f that of the Lie algebra p. If P is connected, one may
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regard Irr(P )f as a subset of Irr(p)f . Since the unipotent subgroup N acts
trivially on any irreducible finite-dimensional representation of P , one has a
natural bijection Irr(P )f ' Ind(L)f via the quotient map P → L ' P/N .

Definition 2.1. Let pC = lC + nC be the complexified Lie algebra of p =
l + n, and q a parabolic subalgebra in pC, namely, q is the full inverse of
a parabolic subalgebra of lC via the quotient map $ : pC → pC/nC ' lC.
For (ξ, V ) ∈ Irr(P )f , we define dq(ξ) to be the minimal dimension of an
irreducible q-submodule in V . We set

Irr(P ; q)f :={ξ ∈ Irr(P )f : dq(ξ) = 1}, (2.1)

Irr(p; q)f :={ξ ∈ Irr(p)f : dq(ξ) = 1}. (2.2)

We say v is a relatively q-invariant vector, if there is a complex linear
form λ on q such that ξ(X)v = λ(X)v for all X ∈ q. By definition dq(ξ) = 1
if and only if there is a non-zero relatively q-invariant vector. Let u be the
nilpotent radical of q. If (ξ, V ) ∈ Irr(p), then

V u := {v ∈ V : ξ(X)v = 0 ∀X ∈ u}

is the unique irreducible q-submodule of V , and dq(ξ) = dim V u.
Unlike the notation pC = p⊗RC, we do not use the letter qC in Definition

2.1 to denote the (complex) parabolic subalgebra q, because the subalgebra
q is not necessarily defined over R.

We shall formulate Theorems 3.1 and 4.1 (“QP estimate”) and Theorem
5.4 (quotient representation theorem for H-distinguished representations) by
using the pair P and q, which is a key in proving Theorem 1.4 through a
unified treatment both for the real polarization (the usual parabolic induc-
tion) when p ∩ q is a real form of q and for the complex polarization (the
Borel–Weil type induction) when (p ∩ q)/n is reductive.

We collect some basic properties on Irr(P ; q)f . The proof is straightfor-
ward from the definition.

Lemma 2.2. Let q and q′ be parabolic subalgebras of pC. One has

Irr(p; pC)f = {characters of p},
Irr(P ; q)f ⊂ Irr(p; q)f if P is connected;

Irr(P ; q)f ' Irr(L; q ∩ lC)f , (2.3)

Irr(P ; q)f = Irr(P ; Ad(g)q)f for any g ∈ PC; (2.4)

Irr(P ; q)f ⊃ Irr(P ; q′)f if q ⊂ q′;

Irr(P ; b)f = Irr(P )f if b is a Borel subalgebra of pC.
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It is convenient to prepare notation for (finite-dimensional) holomorphic
representations of a complex Lie group.

Definition 2.3. For a connected complex Lie group PC, we denote by Irr(PC)hol
the set of equivalence classes of finite-dimensional irreducible holomorphic
representations of PC. If P is a real form of PC, we have a natural inclu-
sion Irr(PC)hol ↪→ Irr(P )f by restriction. Accordingly, we set Irr(PC; q)hol :=
Irr(P ; q)f ∩ Irr(PC)hol.

The concept of opposite parabolic subalgebras in reductive Lie algebras
is naturally extended to the non-reductive case:

Definition 2.4. Let $ : pC → pC/nC ' lC be the projection as before, and q
a parabolic subalgebra of pC. We say qopp is the opposite parabolic subalgebra
of q in pC if qopp is the full inverse of the opposite parabolic subalgebra of
$(q) in lC (with respect to a fixed Cartan subalgebra).

We denote by ξ∨ the contragredient representation of ξ. Then one has
the following.

Lemma 2.5. (1) ξ ∈ Irr(P ; q)f if and only if ξ∨ ∈ Irr(P ; qopp)f .

(2) ξ ∈ Irr(p; q)f if and only if ξ∨ ∈ Irr(p; qopp)f .

By (2.3), it suffices to prove Lemma 2.5 in the reductive case, which is
shown in Lemma 2.6 (2) below.

2.2 Description of Irr(P ; q)f

As we saw in (2.3), the description of Irr(P ; q)f reduces to the case where
P is a reductive group, for which we use the letter G in this subsection for
later purpose. Let j̃ be a Cartan subalgebra of g, W the Weyl group of
the root system ∆(gC, j̃C), and w0 the longest element in W . We fix a W -

invariant non-degenerate symmetric bilinear form 〈 , 〉 on the dual space j̃C
∗
.

We take a positive system ∆+(gC, j̃C), denote by Ψ the set of simple roots,

and write Λ+ ≡ Λ+(gC) for the set of dominant integral weights of j̃C. Then
the Cartan–Weyl highest weight theory establishes the bijection:

Irr(g)f ' Λ+, Πλ ↔ λ. (2.5)
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If Πλ lifts to a holomorphic representation of a connected complex reduc-
tive Lie group GC with Lie algebra gC, we use the same letter Πλ to denote
the lift.

Given a subset Θ in Ψ, we write gC = nΘ− ⊕ lΘC ⊕ nΘ+ for the Gelfand–

Naimark decomposition, where lΘC is a reductive subalgebra containing j̃C
with ∆(lΘC , j̃C) = ∆(gC, j̃C) ∩ Z-spanΘ, pΘ ≡ pΘ+ := lΘC ⊕ nΘ+ is a parabolic

subalgebra with ∆(nΘ+, j̃C) ⊂ ∆+(g, j̃C) and pΘ− := lΘC ⊕ nΘ− is the opposite
parabolic subalgebra.

Lemma 2.6. Suppose Θ is a subset of Ψ.

(1) The map (2.5) of taking highest weights induces the following bijection:

Irr(g; pΘ)f ' {λ ∈ Λ+ : 〈λ, α〉 = 0 ∀α ∈ Θ}. (2.6)

(2) ξ ∈ Irr(g; pΘ)f if and only if ξ∨ ∈ Irr(g; pΘ−)f .

Proof. (1) We set j̃ΘC := [lΘC , l
Θ
C ] ∩ j̃C, which is a Cartan subalgebra of the

semisimple part [lΘC , l
Θ
C ] of l

Θ
C . Then the right-hand side of (2.6) equals {λ ∈

Λ+ : λ vanishes on j̃ΘC}.
Suppose v is a relatively pΘ-invariant vector of ξ ∈ Irr(g; pΘ)f , namely, v

satisfies ξ(X)v = λ(X)v (∀X ∈ pΘ) for some linear form λ on pΘ. Then λ
vanishes on [pΘ, pΘ], hence, λ|̃jC is the highest weight of ξ and λ vanishes on

j̃ΘC . Conversely, if λ ∈ Λ+ vanishes on j̃ΘC , then λ extends to a character of pΘ

via the quotient map pΘ → pΘ/[pΘ, pΘ] ' j̃C/̃j
Θ
C , and the highest vector v of

Πλ satisfies ξ(X)v = λ(X)v ∀X ∈ pΘ. Hence λ ∈ Irr(g; pΘ)f .
(2) Since −w0λ is the highest weight of the contragredient representation ξ∨,
one has ξ∨ ∈ Irr(g; p−w0Θ)f if ξ ∈ Irr(g; pΘ)f , and vice versa. Since p−w0Θ is
conjugate to pΘ− by an inner automorphism of gC, one has Irr(g; p−w0Θ)f =
Irr(g; pΘ−)f , whence the assertion follows.

2.3 Geometric realization for Irr(P ; q)f

Suppose we are in the setting of Definition 2.1. In this subsection, we provide
a geometric interpretation of Irr(P ; q)f .

We let the Lie algebra p of P act on C∞(P ) as left invariant vector fields
by (dR(X)f)(g) := d

dt
|t=0f(g exp tX), and the same letter dR is used to

denote its complex linear extension to pC. For a q-module (τ,W ), we let
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q act on C∞(P ) ⊗W by dR ⊗ id+ id⊗τ , which may be written simply as
dR⊗ τ .

Lemma 2.7. Suppose that (τ,W ) is a quotient of (ξ, V ) ∈ Irr(P )f as a q-
module. Then the left translation of P leaves (C∞(P )⊗W )q invariant, and

there is a natural injective P -homomorphism T̃ : V → (C∞(P )⊗W )q.

Proof. Denote by (ξ∨, V ∨) the contragredient representation of ξ, and con-
sider a bilinear map

T : V × V ∨ → C∞(P ), (v, u) 7→ (g 7→ 〈ξ(g−1)v, u〉).

Taking the dual of the quotient map V → W , one has an injective q-
homomorphism W∨ ↪→ V ∨, hence the restriction T |V×W∨ induces a P -

homomorphism T̃ : V → HomC(W
∨, C∞(P )) ' C∞(P ) ⊗W by T̃ (v)(g) :=

T (v, · )(g) for v ∈ V and g ∈ P . Then T̃ (v) ∈ Homq(W
∨, C∞(P )) '

(C∞(P ) ⊗W )q because dR(X)T (v, u) = T (v, dξ∨(X)u) = T (v, τ∨(X)u) for

any u ∈ W∨ and any X ∈ pC. The resulting P -homomorphism T̃ : V →
(C∞(P )⊗W )q is injective because (ξ, V ) is irreducible.

Remark 2.8. In general, the P -homomorphism T̃ : V → (C∞(P ) ⊗W )q is

not surjective. We note that T̃ is bijective if P is a connected compact Lie
group by the Borel–Weil theorem.

Suppose PC is a connected complex Lie group, and Q a parabolic subgroup
of PC with Lie algebra q. For a holomorphic character Cλ of Q, we denote
by Lλ the PC-equivariant holomorphic line bundle PC ×Q Cλ over the flag
variety PC/Q, and by O(PC/Q,Lλ) the space of holomorphic sections for Lλ.

Lemma 2.9 (Geometric realization for Irr(PC; q)hol). (1) The regular repre-
sentation of PC on O(PC/Q,Lλ) belongs to Irr(PC; qopp)hol if it is non-zero,
and its contragredient representation belongs to Irr(PC; q)hol.
(2) Assume that (ξ, V ) is an irreducible holomorphic representation of PC
such that its contragredient representation ξ∨ belongs to Irr(PC; q)hol. Then
there exists a holomorphic character λ of Q such that ξ is isomorphic to the
regular representation of PC on O(PC/Q,Lλ).

We shall apply the above lemma also to real forms P of PC, where we do
not assume P to be connected.
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Proof. Let LC be a Levi subgroup of PC. We note that LC is connected.
(1) By (2.3), it suffices to prove the assertion when PC = LC. We take

a Cartan subalgebra j̃C of lC, and fix a positive system ∆+(lC, j̃C) such that

∆+(lC, j̃C) ⊂ ∆(q, j̃C). We use the same letter λ to denote the differential, and

also its restriction to the Cartan subalgebra j̃C. Then the Borel–Weil theorem
for the connected complex reductive Lie group LC tells that O(PC/Q,Lλ) is

non-zero if and only if −λ is dominant with respect to ∆+(lC, j̃C). In this
case, its contragredient representation contains Cλ as a q-submodule, namely,
has the highest weight λ, as seen in Lemma 2.6.
(2) Retain the notation as in the proof of Lemma 2.7. Then the matrix
coefficient T (v, u) is a holomorphic function on PC, because ξ is a holo-
morphic representation of PC. Since (ξ∨, V ∨) ∈ Irr(PC; q)hol, there exists a
one-dimensional q-submodule Cu in V ∨, on which the connected group Q
acts as a holomorphic character, to be denoted by λ. Then T (·, u) induces
a PC-homomorphism from V to (O(PC) ⊗ Cλ)

q ' O(PC/Q,Lλ), which is
bijective by the irreducibility. Thus the lemma is shown.

2.4 Multiplicities in finite-dimensional representations

For finite-dimensional representations, the boundedness of multiplicity is
equivalent to multiplicity-freeness in many settings. In this subsection we
prepare two lemmas in a way that we need later. For the sake of complete-
ness, we give a proof of the first one.

Let GC be a connected complex reductive Lie group. We take a Cartan
subalgebra j̃C of gC and fix a positive system ∆+(gC, j̃C). We denote by b
the corresponding Borel subalgebra of gC, by Λ+ the set of dominant integral
weights, and by Πλ the irreducible holomorphic representation of GC if λ ∈
Λ+ lifts to a character of the Cartan subgroup as before.

Suppose that q is a parabolic subalgebra of gC. Without loss of gener-
ality, we may assume that q contains b. As in Lemma 2.6 (1), we regard
Irr(GC; q)hol as a subset of Λ+ via the bijection (2.5).

First, suppose that G′
C is a connected complex reductive subgroup. For

Π ∈ Irr(GC)hol, we set

m(Π|G′
C
) := max

π∈Irr(G′
C)hol

[Π|G′
C
: π], (2.7)

as an analog of m(Π|G′) in (1.5).
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Lemma 2.10. If GC/Q is not G′
C-spherical, then there exists λ ∈ Λ+ satis-

fying ΠNλ ∈ Irr(GC; q)hol and m(ΠNλ|G′
C
) ≥ N + 1 for all N ∈ N.

Proof. Suppose GC/Q is not G′
C-spherical. By a result of Vinberg–Kimelfeld

[VK78, Cor. 1], there exists a GC-homogeneous holomorphic line bundle L
over GC/Q such that the irreducible GC-module O(GC/Q,L) contains an
irreducible representation of G′

C with multiplicity. This means that there
exist linearly independent sections f1, f2 ∈ O(GC/Q,L) and a dominant
character µ of a Borel subgroup B′ of G′

C satisfying fj(b
−1g) = µ(b)fj(g)

(j = 1, 2) for any b ∈ B′, g ∈ GC.
We claim that the holomorphic sections f i

1f
N−i
2 ∈ O(GC/Q,L⊗N) (0 ≤

i ≤ N) are linearly independent. Indeed, if a0f
N
1 +a1f

N−1
1 f2+· · ·+aNf

N
2 = 0

were a linear dependence, then one would have f1− tf2 = 0 where t is a zero
of the equation a0t

N + a1t
N−1 + · · ·+ aN = 0 because the ring O(GC) has no

divisor. This means dimC HomG′
C
(πNµ,O(GC/Q,L⊗N)|G′

C
) ≥ N + 1 because

B′ acts on f i
1f

N−i
2 as the character CNµ. Let λ be the character of Q acting on

the fiber of L−1 at the origin o = eQ ∈ GC/Q. Then ΠNλ is the contragredi-
ent representation on O(GC/Q,L⊗N) and belongs to Irr(GC; q)hol by Lemma
2.9 (the Borel–Weil theorem). Hence dimC HomG′

C
(ΠNλ|G′

C
, π∨

Nµ) ≥ N + 1,
showing the lemma.

Second, we drop the reductive assumption of a subgroup. By a similar
argument as in Lemma 2.10, one obtains the following:

Lemma 2.11. Let HC be a complex algebraic subgroup of GC (not necessarily
reductive). If HC does not have an open orbit in GC/Q, then there exist a
holomorphic character χ of HC and λ ∈ Λ+ satisfying ΠNλ ∈ Irr(GC; q)hol
and dimC HomHC(ΠNλ|HC , χ

N) ≥ N + 1 for all N ∈ N.

2.5 Complex symmetric pair and the Satake diagram

This subsection and the next one will not be used until Section 6.
LetG be a connected semisimple Lie group, σ an involutive automorphism

of G, and H an open subgroup of the fixed point group Gσ. We use the same
letter σ to denote the complex linear extension of its differential on gC. Then
the Lie algebra g of G has a decomposition g = gσ⊕g−σ into the eigenspaces
of σ with eigenvalues 1 and −1. We note that the Lie algebra h ofH equals gσ.
We take a maximal semisimple abelian subspace j in g−σ, and fix Σ+(gC, jC)

as in Definition 1.3. We extend j to a Cartan subalgebra j̃ of g. We refer to
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j̃ as a σ-split Cartan subalgebra. Via the direct sum decomposition j̃ = t⊕ j
with t := j̃∩h, we may regard j∗C as a subspace of j̃∗C. We choose a compatible

positive system ∆+(gC, j̃C) such that the restriction map α 7→ α|jC sends

∆+(gC, j̃C) to Σ+(gC, jC) ∪ {0}, and denote by Ψ the set of simple roots in

∆+(gC, j̃C) as in Section 2.2. We set

Θ := {α ∈ Ψ : α|jC ≡ 0}. (2.8)

By Definition 1.3, one has the following:

Lemma 2.12. The parabolic subalgebra pΘ of gC is a Borel subalgebra q for
the symmetric space G/H.

One can read Θ from the Satake diagram (e.g., [He78, p. 531]) of another
real form gR of the complex Lie algebra gC, which we explain below. We take
a Cartan involution θ of gC commuting with σ. Since σ is complex linear
and θ is antilinear on gC, σθ is a complex conjugation of gC, and gR := gσθC
is a real form of gC. This yields a one-to-one correspondence:

a real form gR of gC ←→ a complex symmetric pair (gC, hC). (2.9)

We set kR := hC∩ gR. Note that σ leaves gR invariant, and the restriction
σ|gR is a Cartan involution of gR. In particular, j̃C ∩ gR is a maximally split
Cartan subalgebra of gR. Since a Borel subgroup for the symmetric space
G/H is determined only by the complexified Lie algebras gC and hC, and
since (gC, hC) ' ((gR)C, (kR)C), one obtains from Lemma 2.12 the following:

Lemma 2.13. The complexification of a minimal parabolic subalgebra of gR
is a Borel subalgebra for the symmetric space G/H. In particular, if we take
Θ to be the set of black circles in the Satake diagram, then pΘ is a Borel
subalgebra of G/H.

We shall use Lemma 2.13 in Section 8 in the proof of the classification
results in Section 7.

2.6 The Cartan–Helgason theorem vs Irr(g; pΘ)f

In this subsection, we examine Irr(G)H,f for a symmetric space G/H and
compare it with Irr(g; pΘ)f , see (2.2), where p

Θ is the Borel subalgebra of the
symmetric space G/H.

14



We retain the notation as in Section 2.5, and set

Λ+(gC; hC) := {λ ∈ j∗C :
〈λ, β〉
〈β, β〉

∈ N for all β ∈ Σ+(gC, jC)}. (2.10)

We regard Λ+(gC; hC) (⊂ j∗C) as a subset of Λ+ (⊂ j̃C
∗
) via the decomposition

j̃ = t ⊕ j. Since 〈λ, α〉 = 0 for any λ ∈ j∗C and any α ∈ Θ, Lemma 2.6 (1)
implies the following:

Lemma 2.14. Via the Cartan–Weyl bijection (2.5), one has

Λ+(gC; hC) ⊂ Irr(g; pΘ)f . (2.11)

Remark 2.15. Both Λ+(gC; hC) and Irr(g; pΘ)f are free semigroups, but
the former may be much smaller than the latter. For example, if (G,H) =
(‵G× ‵G, diag ‵G), then the rank of the semigroup Irr(g; pΘ)f is twice the rank
of the semigroup Λ+(gC; hC).

For the simplicity of the proof, we adopt the definition of Irr(G)H,f as the
set {Π ∈ Irr(G)f : ΠH 6= {0}} rather than {Π ∈ Irr(G)f : (Π∨)H 6= {0}} in
the next lemma by an abuse of notation, however, this definition coincides
with the previous one as we shall prove in Lemma 2.17 below.

Lemma 2.16 (Cartan–Helgason theorem). Let (G,H) be a symmetric pair
defined by an involution σ of a connected semisimple Lie group G. We regard
both Irr(G)f and Λ+(gC, hC) as a subset of Λ+.

(1) Λ+(gC; hC) = Irr(G)H,f if σ is a Cartan involution of G.

(2) If G is a real form of the simply connected complex Lie group GC with
Lie algebra gC, then Λ+(gC; hC) = Irr(G)H,f .

(3) For a general semisimple symmetric pair (G,H), there exists a positive
integer k such that

kΛ+(gC; hC) ⊂ Irr(G)H,f ⊂ Λ+(gC; hC). (2.12)

Proof of Lemma 2.16. (1) This is the (usual) Cartan–Helgason theorem. See
[War72, Thm. 3.3.1.1] or [He94, p. 139] for example.
(2) The involution σ of G lifts to a holomorphic involution of the simply
connected complex group GC, for which we shall use the same letter σ. We
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take a Cartan involution θ of GC commuting with σ. Then σθ is an anti-
holomorphic involution of GC. We set HC := Gσ

C, GR := Gθσ
C . Since GC is

simply connected, both HC and GR are connected by a result of Borel [Bo61],
and KR := HC ∩ GR is a maximal compact subgroup of GR. Therefore,
one has a natural bijection Irr(GR)f ' Irr(G)f ' Λ+ via the holomorphic
continuation because GC is simply connected. Since both H and KR are
real forms of the connected complex Lie group HC, there is a one-to-one
correspondence between Irr(GR)KR,f and Irr(G)H,f , and the former identifies
with Λ+(gC; hC) by (1).
(3) We now consider the general case where G is not necessarily a subgroup

of the simply connected group GC, and use the letter G̃ to denote the analytic
subgroup of GC with Lie algebra g. (Note that G in the proof of (2) played

the role of G̃ here.) The holomorphic involution σ of GC leaves G̃ invariant.

We set H̃ := G̃σ. Then Irr(G̃)H̃,f ' Λ+(gC; hC) by (2).
For any (Π, V ) ∈ Irr(G)f , the simply connected group GC acts holomor-

phically on V , and thus one has a natural quotient map G̃ → G/KerΠ. In

turn, one has an injection Irr(G)f ↪→ Irr(G̃)f ' Λ+, which induces

Irr(G)H,f ⊂ Irr(G)H0,f ↪→ Irr(G̃)H̃,f = Λ+(gC; hC),

where H0 denotes the identity component of H. For the middle inclusion, we
have used that H̃ = G̃σ is contained in the connected subgroup Gσ

C. Hence
we have shown the right inclusion in (2.12).

To see the left inclusion in (2.12), we set b := [H : H0], the number
of connected components in H. We claim that Πbλ ∈ Irr(G)H,f for any
(Πλ, V ) ∈ Irr(G)H0,f . In fact, we take a generator v in the space V H0 of
H0-fixed vectors in V , which is one-dimensional. Then the quotient group
H/H0 leaves V

H0 = Cv invariant. On the other hand, the b-th tensor product
representation V ⊗· · ·⊗V contains uniquely an irreducible subrepresentation
Πbλ. Let S : V ⊗ · · · ⊗ V → Πbλ be the projection. Then the H0-fixed
indecomposable vector v ⊗ · · · ⊗ v ∈ V ⊗ · · · ⊗ V has a non-zero image, say
vb, in Πbλ. Moreover, since H/H0 acts on Cv as a scalar, its diagonal action
on Cv ⊗ · · · ⊗ v is trivial because b is the order of the finite group H/H0.
Thus Πbλ ∈ Irr(G)H,f .

We take a positive integer a such that aΛ+ = a Irr(G̃)f ⊂ Irr(G)f . Then

one has aΛ+(gC; hC) = a Irr(G̃)H̃,f ⊂ Irr(G)H0,f . Hence we have shown

abΛ+(gC; hC) ⊂ b Irr(G)H0,f ⊂ Irr(G)H,f .
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This proves the left inclusion of (2.12) with k = ab.

Lemma 2.17. We consider two involutions of Irr(G)f given by

Π 7→ Πσ := Π ◦ σ,
Π 7→ Π∨ (contragredient representation).

Then Πσ ' Π∨ for all Π ∈ Irr(G)H,f . In particular, Π∨ ∈ Irr(G)H,f if and
only if Π ∈ Irr(G)H,f .

Proof. Suppose λ is the highest weight of Π. Then Π∨ has an extremal weight
−λ, whereas Πσ has an extremal weight σλ which equals −λ by Lemma 2.16.
Hence Πσ ' Π∨.

Suppose Π ∈ Irr(G)H,f . Then obviously Πσ ∈ Irr(G)H,f , hence Π∨ ∈
Irr(G)H,f .

3 Bounded multiplicity results for induction

In the classical harmonic analysis on the Riemannian symmetric space G/K,
building blocks of representations in C∞(G/K) are constructed by the twisted
Poisson transform, an integral G-intertwining operator from the spherical
principal series representation to C∞(G/K), see [He94] for instance. More
generally, for a closed subgroupH inG, we consider the space HomG(Ind

G
P (ξ), Ind

G
H(τ))

of generalized Poisson transforms, where P is a parabolic subgroup of G,
ξ ∈ Irr(P )f , and τ ∈ Irr(H)f . In this section, we give an estimate of
dimC HomG(Ind

G
P (ξ), Ind

G
H(τ)) as a refinement of the bounded multiplicity

theorems proved in [KO13, Thm. B] in terms of a pair of parabolic sub-
groups Q ⊂ PC. The main result of this section is Theorem 3.1, of which
the first statement provides a uniform bound of the multiplicities (“QP es-
timate”) under a geometric condition #(Q\GC/HC) < ∞, strengthening a
formulation of Tauchi [Tu19]. In turn, this leads us to “QP estimates” for
restriction in Section 4.

3.1 Geometric condition for bounded multiplicity

Let H be a closed subgroup of a Lie group G. For a finite-dimensional
representation (η, V ) of H, we write IndG

H(η) for the (unnormalized) induced
representation of G on the Fréchet space C∞(G/H,V) of smooth sections
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for the homogeneous G-vector bundle V := G ×H V over G/H. If H is a
parabolic subgroup P of G, then IndG

P (η) is of moderate growth.

Theorem 3.1 (“QP estimate” for induction). Let G be a real reductive
algebraic Lie group, H an algebraic subgroup, P a parabolic subgroup of G,
and GC ⊃ HC, PC their complexifications. Suppose that Q is a (complex)
parabolic subgroup of GC with Lie algebra q such that Q ⊂ PC.

(1) If #(Q\GC/HC) <∞, then there exists C > 0 such that

dimC HomG(Ind
G
P (η), Ind

G
H(τ)) ≤ Cdq(η) dim τ (3.1)

for any η ∈ Irr(P )f and any τ ∈ Irr(H)f . In particular, one has

dimC HomG(Ind
G
P (η), Ind

G
H(τ)) ≤ C dim τ (3.2)

for any η ∈ Irr(P ; q)f and any τ ∈ Irr(H)f .

(2) Conversely, if there exists C > 0 such that (3.2) holds for any η ∈
Irr(P ; q)f and any τ ∈ Irr(H)f , then Q has an open orbit in GC/HC.

See Definition 2.1 for the definition of dq(η) (≤ dim η), and (2.1) for the
definition of Irr(P ; q)f . The point of Theorem 3.1 is that Q is not necessarily
defined over R, which we shall see useful in the proof of Theorem 1.4 in
Section 6. We also present a number of bounded multiplicity results for
restriction in Section 4.

Remark 3.2. As the proof shows, one can relax the assumption of the second
statement by the following condition: there exists C > 0 such that

dimC HomG(Ind
G
P (η), Ind

G
H(τ)) ≤ C

for any η ∈ Irr(P ; q)f and any character τ of H.

Remark 3.3. (1) If Q is a Borel subgroup of GC, then dq(η) = 1. In this
case, the first statement of Theorem 3.1 was proved in [KO13, Thm. B].
(2) If Q = PC, then dq(η) = dim η. In this case, the first statement of
Theorem 3.1 was proved in Tauchi [Tu19, Thm. 1.13].
(3) If #(PC\GC/HC) <∞, then Theorem 3.1 (1) implies a finite multiplicity
theorem of the induction

dimC HomG(Ind
G
P (η), Ind

G
H(τ)) <∞ ∀η ∈ Irr(P )f ,

∀τ ∈ Irr(H)f . (3.3)
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However, the converse statement is not true. For example, if P is a minimal
parabolic subgroup, as one sees from [KO13, Thm. A] that

(3.3) ⇐⇒ G/H is real spherical ×=⇒⇐= #(PC\GC/HC) <∞,

hence #(PC\GC/HC) < ∞ is not a necessary condition for the finite mul-
tiplicity property (3.3). For a general parabolic subgroup P , the following
geometric necessary condition was proved in [K14, Cor. 6.8]:

(3.3) =⇒ P has an open orbit in G/H.

The second statement in Theorem 3.1 is a refinement of this statement for
“QP estimate”.

3.2 Proof of Theorem 3.1 (1)

In this subsection we give a proof of the first statement of Theorem 3.1. For
a real analytic manifold M , we denote by B the sheaf of hyperfunctions à
la Sato [S59]. We shall regard distributions as generalized functions à la
Gelfand [GS64] rather than continuous linear forms on C∞

c (M) so that one
has a natural inclusion C∞(M) ⊂ D′(M) ⊂ B(M).

For M = G (group manifold), we consider two actions L and R of G on
C∞(G), D′(G), and B(G) by L(g1)R(g2)f := f(g−1

1 · g2) for g1, g2 ∈ G on the
same spaces, which induce the actions of the complexified Lie algebra gC, to
be denoted by dL and dR, respectively.

For a parabolic subgroup P of G, we denote by C2ρ the one-dimensional
representation of P defined by

P → R>0, p 7→ det |Ad(p) : g/p→ g/p|−1. (3.4)

Then L2ρ := G ×P C2ρ is the volume bundle over G/P , and the integration
yields a G-invariant linear form C∞(G/P,Lλ)→ C.

Let (η, V ) be a finite-dimensional representation of P and V := G ×P V
the G-homogeneous vector bundle over G/P associated to (η, V ). We set
η∗ := η∨ ⊗ C2ρ, where η∨ is the contragredient representation of η. The
dualizing bundle V∗ of V = G ×P V is given as the G-homogeneous vector
bundle over G/P associated to η∗. Then one has a canonical G-invariant
perfect pairing between IndG

P (η) and IndG
P (η

∗) by the composition of the two
maps:

C∞(G/P,V)× C∞(G/P,V∗)→ C∞(G/P,L2ρ)→ C.
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Suppose that (τ,W ) is a finite-dimensional representation of a closed
subgroup H. By the Schwartz kernel theorem, any continuous linear operator
T from IndG

P (η) to IndG
H(τ) can be obtained by a bundle-valued distribution

kernel on G/P × G/H. This distribution is G-invariant under the diagonal
action on G/P × G/H if T intertwines G-actions. Moreover, since G/P is
compact, it follows from [KS15, Prop. 3.2] that one has a natural bijection:

HomG(Ind
G
P (η), Ind

G
H(τ)) ' (D′(G)⊗ η∗ ⊗ τ)P×H , (3.5)

where we let P act on D′(G)⊗ V ∨⊗W by R⊗ η∗⊗ id, and H by L⊗ id⊗τ .
Let L be a Levi part of P , and LC its complexification. Since PC/Q '

LC/(LC ∩ Q) is a (generalized) flag variety of the complex reductive group
LC, one has #(P\PC/Q) <∞ because #(L\LC/(LC ∩Q)) <∞ by a result
of Wolf [Wo69]. In particular, one finds x ∈ PC such that PxQ/Q is closed in
PC/Q. Obviously, the assumption of Theorem 3.1 is unchanged if we replace
Q by Ad(x)Q, and so is the conclusion of Theorem 3.1 by (2.4). Thus we
may and do assume that P/(P ∩Q) is closed in PC/Q from now on.

Suppose η ∈ Irr(P )f . One observes dq(η) = dq(η ⊗ C−2ρ). Take an
irreducible q-submodule λ∨ of the pC-module (η∗)∨ ' η ⊗ C−2ρ such that
dimλ∨ = dq(η). We write λ (' λ∨∨) for the contragredient representation
of λ∨. Clearly, dim λ = dq(η). By Lemma 2.7, there is an injective P -
homomorphism η∗ ↪→ (C∞(P )⊗ λ)q. Hence, one has

(D′(G)⊗ η∗)P ↪→ (D′(G)⊗ C∞(P )⊗ λ)P×q ' (D′(G)⊗ λ)q.

By (3.5), the first statement of Theorem 3.1 is reduced to the following:

Proposition 3.4. Assume #(Q\GC/HC) < ∞. Then there exists C > 0
such that for any q-module λ and for any τ ∈ Irr(H)f

dimC(D′(G)⊗ λ⊗ τ)q⊕hC ≤ C dimλ dim τ, (3.6)

where q acts on the first and second factors by dR ⊗ λ, and hC on the first
and third by dL⊗ τ .

For the proof, we use the following result by Tauchi, which is based on the
theory of (regular) holonomic D-modules (see [Ka83, KK81] for instance).

Proposition 3.5 ([Tu19, Thm. 1.14]). Suppose a complex Lie group B acts
holomorphically on a complex manifold XC with finite number of orbits. Let
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XR be a real form of XC, and U a relatively compact semi-analytic open
subset of XR. Then there exists a constant C > 0 such that dimC(B(U) ⊗
µ)b ≤ C dimµ for any finite-dimensional representation µ of the Lie algebra
b of B. Here (B(U) ⊗ µ)b denotes the space of b-invariant vector-valued
hyperfunctions on U via the diagonal action.

Proof of Proposition 3.4. Let K be a maximal compact subgroup of G. We
recall that we have chosen P such that P/(P ∩Q) is closed in the flag variety
PC/Q. In particular, the algebraic subgroup P ∩Q is cocompact in P , hence
one has G = K(P ∩Q).

As in [KS15, Thm. 3.16], we capture all invariant distributions (or hyper-
functions) on G by those on a sufficiently large open subset U . For this, we fix
a relatively compact semi-analytic open neighbourhood of o = Ke ∈ K\G,
and define U to be its full inverse via the quotient map G → K\G. Then
U is a left K-invariant, relatively compact, semi-analytic open subset in G.
Moreover the restriction map (B(G)⊗µ)q → (B(U)⊗µ)q is injective because
(GC ⊃) UQ ⊃ K(P ∩Q) = G. Hence one has natural inclusions:

(D′(G)⊗ λ⊗ τ)q⊕hC ⊂ (B(G)⊗ λ⊗ τ)q⊕hC ⊂ (B(U)⊗ λ⊗ τ)q⊕hC .

We take XR := (G × G)/ diagG (' G) and apply Proposition 3.5 to the
setting (B,XC, µ) := (Q×HC, GC, λ⊗ τ). Then dimC(BG(U)⊗λ⊗ τ)q⊕hC ≤
C dimλ dim τ , whence the inequality (3.6) follows.

3.3 Proof of Theorem 3.1 (2)

We recall our setting where G is a real form of GC. We take a positive system
∆+(gC, j̃C) such that the corresponding Borel subgroup B is contained in the
complex parabolic subgroup Q (⊂ PC).

Lemma 3.6. Let Πλ be an irreducible holomorphic representation of GC
with highest weight λ ∈ Λ+. Let η be the regular representation of PC on
O(PC/B,L−λ), and define a representation of P by ξ := η∨|P ⊗ C2ρ.

(1) There is a surjective G-homomorphism IndG
P (ξ)→ Πλ.

(2) If Πλ ∈ Irr(G; q)f then ξ ∈ Irr(P ; q)f .

Proof. By the Borel–Weil theorem, the contragredient representation Π∨
λ is

realized as the regular representation on O(GC/B,L−λ). We denote by Vη
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the GC-equivariant vector bundle over GC/PC associated to the PC-module
η. Induction by stages for B ⊂ PC ⊂ GC shows a natural isomorphism as
GC-modules:

(Π∨
λ ') O(GC/B,L−λ) ' O(GC/PC,Vη),

which yields an injective G-homomorphism Π∨
λ ↪→ IndG

P (η|P ). Taking the
dual, we see that Πλ occurs as the quotient G-module of the induced repre-
sentation IndG

P (ξ).
(2) Using induction by stages for B ⊂ Q ⊂ PC this time, one has η '
O(PC/Q,V−λ), where V−λ stands for the PC-equivariant holomorphic vector
bundle over PC/Q associated to the Q-module O(Q/B,L−λ). By Lemma
2.6 (1), λ is orthogonal to all the roots in the Levi subalgebra of q, hence
O(Q/B,L−λ) is one-dimensional. In turn, one has η∨ ∈ Irr(PC; q)hol by
Lemma 2.9 (2), and thus ξ ∈ Irr(P ; q)f because η∨|P = ξ ⊗ C−2ρ.

Proof of Theorem 3.1 (2). Suppose that Q does not have an open orbit in
GC/HC. By Lemma 2.11, there exist λ ∈ Λ+ and a character χ of H such
that dimC HomH(ΠNλ|H , χN) ≥ N + 1 for all N ∈ N. In turn, it follows
from Lemma 3.6 that there exists ξN ∈ Irr(P ; q)f for every N ∈ N such that
the irreducible G-module ΠNλ is a quotient of the degenerate principal series
representation IndG

P (ξN), hence one has dimC HomH(Ind
G
P (ξN)|H , χN) ≥ N +

1. The Frobenius reciprocity shows dimC HomG(Ind
G
P (ξN), Ind

G
H(χ

N)) ≥ N+
1, whence the second statement of Theorem 3.1.

4 Bounded multiplicity results for restriction

In this section, we derive bounded multiplicity results (“QP estimates”) for
restriction from those for induction in Theorem 3.1 along the same line of
the argument as in [K14, KO13]. The results here will be used in Section 6
for the proof of Theorem 1.4 by a specific choice of the parabolic subgroups
Q ⊂ PC. Throughout this section, we suppose that GC ⊃ G′

C are connected
reductive Lie groups and that G ⊃ G′ are their real forms.

4.1 Bounded multiplicity theorems for restriction

We begin with a “QP estimates” of the space of “symmetry breaking opera-
tors” between (degenerate) principal series representations of a group G and
those of a subgroup G′. The results might be of their own interest because
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they indicate a nice broader framework for detailed study of such operators.
See e.g., [KS15, KS18] for the construction and the classification of symme-
try breaking operators for principal series of two conformal groups, see also
Examples 9.2, 9.3, and 9.4 by [CKØP11, KØP11, NØ18] for some of the most
degenerate cases.

Theorem 4.1 (“QP estimate” for restriction). Let G ⊃ G′ be a pair of real
reductive algebraic Lie groups, and P and P ′ are parabolic subgroups of G and
G′, respectively. Suppose that Q and Q′ are (complex) parabolic subgroups of
GC and G′

C, respectively, such that q ⊂ pC, q
′ ⊂ p′C, and #(Q′

opp\GC/Q) <
∞. Then there exists C > 0 such that

dimC HomG′(IndG
P (ξ)|G′ , IndG′

P ′(η)) ≤ Cdq(ξ)dq′(η) (4.1)

for any ξ ∈ Irr(P )f and any η ∈ Irr(P ′)f . In particular, one has

sup
ξ∈Irr(P ;q)f

sup
η∈Irr(P ′;q′)f

dimC HomG′(IndG
P (ξ)|G′ , IndG′

P ′(η)) <∞. (4.2)

Here we recall from Definition 2.1 for the quantity dq(ξ), and from Defi-
nition 2.4 that Q′

opp is the opposite parabolic subgroup of Q′ in P ′
C.

Proof of Theorem 4.1. For η ∈ Irr(P ′)f , we set η
∗ := η∨⊗C2ρ′ where C2ρ′ is a

character of P ′ defined as in (3.4). Then the induced representation IndG′

P ′(η∗)
is the contragredient representation of IndG′

P ′(η) in the categoryM(G′), and
one has the following natural isomorphisms:

HomG′(IndG
P (ξ)|G′ , IndG′

P ′(η))
∼→HomG′(IndG

P (ξ)|G′ ⊗ IndG′

P ′(η∗),C)
'HomG′(IndG×G′

P×P ′(ξ ⊠ η∗)|diagG′ ,C)
∼←HomG×G′(IndG×G′

P×P ′(ξ ⊠ η∗), IndG×G′

diagG′(1)).

Here the injectivity of the first isomorphism is easy, and for the proof of
the surjectivity, see [KS18, Thm. 5.4] for instance. The last isomorphism is
the Frobenius reciprocity.

Then the first assertion of Theorem 4.1 follows from Theorem 3.1 applied
to the direct product group G×G′ because

(Q×Q′
opp)\(GC ×G′

C)/ diagG
′
C ' Q′

opp\GC/Q (4.3)
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is a finite set. Moreover, if η ∈ Irr(P ′; q′)f , then the contragredient represen-
tation η∨ belongs to Irr(P ; q′opp)f by Lemma 2.5, hence so does η∗. Thus the
second assertion also holds because the outer tensor product representation
ξ⊠η∗ belongs to Irr(P×P ′; q⊕q′opp)f if ξ ∈ Irr(P ; q)f and η ∈ Irr(P ′; q′)f .

When Q′ is a Borel subgroup of G′
C in Theorem 4.1, one obtains the con-

verse statement as follows. We recall from (1.10) that ΩP,q = {IndG
P (ξ) : ξ ∈

Irr(P ; q)f} (⊂M(G)), and from (1.5) thatm(Π|G′) = sup
π∈Irr(G′)

dimC HomG′(Π|G′ , π).

Theorem 4.2. Let G ⊃ G′ be a pair of real reductive algebraic Lie groups,
and P a (real) parabolic subgroup of G. Suppose that Q is a parabolic subgroup
of GC such that q ⊂ pC. Then the following four conditions are equivalent:

(i) There exists C > 0 such that

dimC HomG′(IndG
P (ξ)|G′ , π) ≤ Cdq(ξ) (4.4)

for any ξ ∈ Irr(P )f and any π ∈ Irr(G′).

(ii) sup
Π∈ΩP,q

m(Π|G′) <∞.

(iii) GC/Q is G′
C-spherical.

(iv) GC/Q is G′
U -strongly visible ([K05, Def. 3.3.1]).

Remark 4.3. (1) A distinguished feature of Theorem 4.2 is that the nec-
essary and sufficient condition of the bounded multiplicity property
is given only by the complexification (GC, G

′
C), which traces back to

[K95, KO13].

(2) When (GC, G
′
C) is a symmetric pair, the parabolic subgroups Q satisfy-

ing the sphericity condition (iii) were classified in [HNOO13]. See also
[K05, Tn12] for some classification of strongly visible actions.

We present two extreme choices of the parabolic subgroup Q, namely, the
smallest one Q = B (Borel subgroup) in Example 4.4 and the largest one
Q = PC in Example 4.5 below. An intermediate choice of Q in Theorem 4.2
will be crucial in Section 6 for the proof of Theorem 1.4.

Example 4.4. When Q is a Borel subgroup B of GC, one has Irr(P ; b)f =
Irr(P )f by Lemma 2.2, hence the equivalence (ii) ⇐⇒ (iii) in Theorem 4.2
gives an alternative proof of [KO13, Thm. D].
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Example 4.5. When Q = PC, Theorem 4.2 implies the equivalence of the
following three conditions on the triple (G,P,G′):

(i) [IndG
P (ξ)|G′ : π] ≤ C dim ξ for all ξ ∈ Irr(P )f and all π ∈ Irr(G′);

(ii) sup
χ∈Hom(P,C×)

m(IndG
P (χ)|G′) <∞;

(iii) GC/PC is G′
C-spherical.

See Example 9.2 for some concrete cases where the branching laws of the uni-
tary representation L2 -IndG

P (χ)|G′ are explicitly obtained in this framework.

Example 4.6. When Q = PC and Q′ is the complexification of a minimal
parabolic subgroup P ′

min of G′ in Theorem 4.1, one has the following as in
the proof of Theorem 4.2 below: if P is a parabolic subgroup of G satisfying
#(P ′

min\GC/PC) <∞ then one has

dimC HomG′(IndG
P (ξ)|G′ , π) <∞ for any ξ ∈ Irr(P )f and π ∈ Irr(G′).

(4.5)

Proof of Theorem 4.2. (iii) ⇒ (i). Let P ′ be a minimal parabolic subgroup
of G′, and B′ a Borel subgroup of G′

C such that b′ ⊂ p′C. By Cassel-
man’s subrepresentation theorem (Example 5.8), for any π ∈ Irr(G′) there
exists η ∈ Irr(P ′)f such that HomG′(π, IndG′

P ′(η)) 6= {0}. Then one has

an injection HomG′(IndG
P (ξ)|G′ , π) ↪→ HomG′(IndG

P (ξ)|G′ , IndG′

P ′(η)). Thus the
implication (iii) ⇒ (i) follows as a special case of Theorem 4.1 because
Irr(P ′)f = Irr(P ′; b′)f and the number of B′-orbits in the G′

C-spherical vari-
ety GC/Q is finite by a result of Brion [B86] and Vinberg [V86].
(i) ⇒ (ii). Obvious because dq(ξ) = 1 if ξ ∈ Irr(P ; q)f by definition.
(ii) ⇒ (iii). This follows from Lemmas 2.10 and 3.6 as in the proof of Theo-
rem 3.1 (2).
(iii) ⇐⇒ (iv). The equivalence (iii) ⇐⇒ (iv) is proved in [Tn21].

4.2 Bounded multiplicity for tensor product

The tensor product of two representations is regarded as the restriction of the
outer tensor product representation of the direct product group G×G with
respect to its subgroup diagG. Thus the following theorem follows readily
as a special case of Theorem 4.1.
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Theorem 4.7 (“QP estimate” for tensor product). Let G be a real reductive
algebraic Lie group, and Pj (j = 1, 2, 3) (real) parabolic subgroups of G.
Suppose that Qj (j = 1, 2, 3) are parabolic subgroups of GC such that Qj ⊂
(Pj)C (1 ≤ j ≤ 3) and #((Q1 × Q2)\(GC × GC)/ diag(Q3)opp) < ∞. Then
there exists C > 0 such that

dimC HomG(Ind
G
P1
(ξ1)⊗ IndG

P2
(ξ2), Ind

G
P3
(ξ3)) ≤ Cdq1(ξ1)dq2(ξ2)dq3(ξ3)

for any ξj ∈ Irr(Pj)f (j = 1, 2, 3). In particular, one has

dimC HomG(Ind
G
P1
(ξ1)⊗ IndG

P2
(ξ2), Ind

G
P3
(ξ3)) ≤ C (4.6)

for any ξj ∈ Irr(Pj; qj)f (1 ≤ j ≤ 3).

As in [K14] for instance, one may reformulate Theorem 4.7 as a bounded
multiplicity theorem for invariant trilinear forms.

Theorem 4.8 (Invariant trilinear forms). Let G be a real reductive algebraic
Lie group, and Pj (j = 1, 2, 3) (real) parabolic subgroups of G. Suppose
that Qj (j = 1, 2, 3) are parabolic subgroups of GC such that Qj ⊂ (Pj)C
(1 ≤ j ≤ 3) and #((Q1 ×Q2)\(GC ×GC)/ diagQ3) <∞. Then there exists
C > 0 such that

dimC HomG(Ind
G
P1
(ξ1)⊗ IndG

P2
(ξ2)⊗ IndG

P3
(ξ3),C) ≤ Cdq1(ξ1)dq2(ξ2)dq3(ξ3)

for any ξj ∈ Irr(Pj)f (j = 1, 2, 3). In particular, one has

dimC HomG(Ind
G
P1
(ξ1)⊗ IndG

P2
(ξ2)⊗ IndG

P3
(ξ3),C) ≤ C, (4.7)

for any ξj ∈ Irr(Pj; qj)f (j = 1, 2, 3).

See e.g., [MWZ99, Mt15] for classification results of the triples (Q1, Q2, Q3)
satisfying #((Q1×Q2)\(GC×GC)/ diagQ3) <∞ for some classical complex
simple Lie groups GC. See also Example 9.4 for some recent works on inte-
gral trilinear forms by Clerc et al. [CKØP11, C15] which fits well into the
framework of Theorem 4.8.

It also deserves to discuss Theorem 4.7 in the special setting where one
of Q1, Q2 or Q3 is a Borel subgroup of GC:

Theorem 4.9. Let G be a real reductive algebraic Lie group, Q1, Q2 be
parabolic subgroups of GC, and GU a maximal compact subgroup of GC. Sup-
pose that P1 and P2 are real parabolic subgroups of G such that Qj ⊂ (Pj)C
(j = 1, 2). Then the following four conditions are equivalent:
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(i) There exists C > 0 such that

dimC HomG(Ind
G
P1
(ξ1)⊗ IndG

P2
(ξ2), π) ≤ Cdq1(ξ1)dq2(ξ2) (4.8)

for any ξj ∈ Irr(Pj)f (j = 1, 2) and any π ∈ Irr(G).

(ii) There exists C > 0 such that

dimC HomG(Ind
G
P1
(ξ1)⊗ IndG

P2
(ξ2), π) ≤ C (4.9)

for any ξj ∈ Irr(Pj; qj)f (j = 1, 2) and any π ∈ Irr(G).

(iii) GC/Q1 ×GC/Q2 is GC-spherical via the diagonal action.

(iv) GC/Q1 ×GC/Q2 is GU -strongly visible via the diagonal action.

A special case with Qj = (Pj)C (j = 1, 2) implies the following:

Corollary 4.10. Let G be a real reductive algebraic Lie group, and Pj (j =
1, 2) parabolic subgroups. Then the following five conditions on the triple
(G,P1, P2) are equivalent:
(i) There exists C > 0 such that

m(IndG
P1
(ξ1)⊗ IndG

P2
(ξ2)) ≤ C dim ξ1 dim ξ2,

∀ξj ∈ Irr(Pj)f (j = 1, 2).

(ii) There exists C > 0 such that

m(IndG
P1
(ξ1)⊗ IndG

P2
(ξ2)) ≤ C (4.10)

for all characters ξj of Pj (j = 1, 2).
(iii) O(GC/P1C,L1) ⊗ O(GC/P2C,L2) is a multiplicity free GC-module for
any GC-equivariant holomorphic line bundles Lj on GC/PjC (j = 1, 2).
(iv) GC/P1C ×GC/P2C is diag(GU)-strongly visible.
(v) GC/P1C ×GC/P2C is diag(GC)-spherical.

Proof. The equivalence (i) ⇐⇒ (ii) ⇐⇒ (iv) ⇐⇒ (v) is a special case
of Theorem 4.9. The equivalence (iii) ⇐⇒ (v) for the finite-dimensional
representation theory follows from [VK78] and Lemma 2.10.

Littelmann [Li94] classified the pairs of parabolic subgroups (P1C, P2C)
such that GC/P1C × GC/P2C are GC-spherical under the assumption that
P1C and P2C are maximal, whereas Tanaka [Tn12] classified all the pairs
(P1C, P2C) such that GC/P1C ×GC/P2C is GU -strongly visible.

For later applications it would deserve to mention a further special case:
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Corollary 4.11. Let G be a real reductive algebraic Lie group, and P1, P2

parabolic subgroups with abelian unipotent radical. Then the uniform bounded
estimate (4.10) holds for any characters ξj of Pj (j = 1, 2).

Proof. If the unipotent radicals of P1 and P2 are abelian, then GC/P1C ×
GC/P2C is strongly visible via the diagonal GU -action [K07a, Thm. 1.7].

Example 4.12. Let G = GLn(R) and P1, P2 any two maximal parabolic
subgroups of G. Then Corollary 4.11 applies.

Example 4.13. Let G = SO(n, 1) and P be a minimal parabolic subgroup
of G. Then Corollary 4.11 applies to P1 = P2 = P . We note that the uniform
bounded estimate (4.10) fails if we allow ξj ∈ Irr(Pj)f when n ≥ 4 by [K14].

5 Oshima’s embedding theorem — revisited

In this section, we analyze irreducible H-distinguished representations of G
for reductive symmetric spaces G/H.

The classical Casselman’s subrepresentation theorem asserts that any ir-
reducible representation Π ∈ Irr(G) can be realized as a subrepresentation
of a principal series representation, or equivalently, as a quotient of another
principal series representation. If Π is H-distinguished, there should be some
constraints on the parameter of the principal series representations depend-
ing on H. The main result of this section is Theorem 5.4, which asserts that
Π is a quotient of some degenerate principal series IndG

PG/H
(ξ) where PG/H

is a “minimal parabolic subgroup” for G/H (Definition 5.1). We discover
a useful description of the constraints of ξ by using the notion “Irr(P ; q)f”
introduced in Definition 2.1 with q being a Borel subalgebra for G/H (Def-
inition 1.3). The results of this section will be used to deduce Theorem 1.4
from Theorem 3.1.

Throughout this section, we retain our setting that G is contained in a
connected complexification GC. We also assume G is connected.

5.1 Quotient theorem for Irr(G)H

Suppose that G/H is a symmetric space given by an involutive automorphism
σ of a connected real reductive Lie group G. We take a Cartan involution θ
of G which commutes with σ, and write K for the corresponding maximal
compact subgroup of G.
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Definition 5.1 (Minimal parabolic subgroup for G/H). Let a be a maximal
abelian subspace in g−σ,−θ := {X ∈ g : σ(X) = θ(X) = −X}, and Lσ the
centralizer of a in G. We fix a positive system Σ+(g, a), and write PG/H

or Pσ for the corresponding (real) parabolic subgroup of G. We say PG/H

is a minimal parabolic subgroup for G/H. We write PG/H = LσNσ and
pG/H = lσ + nσ for the Levi decomposition with lσ ⊃ a.

Remark 5.2. (1) We note that a may be strictly smaller than the split
abelian subspace of lσ.
(2) It seems that the terminologies “Borel subalgebras for reductive sym-
metric spaces G/H” (Definition 1.3) and “minimal parabolic subgroups for
G/H” (Definition 5.1) are not commonly used, cf. [K19b, Ex. 4.4]. As The-
orem 5.4 below suggests, we believe that these terminologies are natural
generalizations of the classical ones for the group manifold.

As we see in Section 5.2 below, the following statement holds:

Lemma 5.3. One can take a Borel subalgebra bG/H for G/H (Definition
1.3) such that bG/H ⊂ (pG/H)C.

The goal of this section is to prove the following reformulation of Oshima’s
embedding theorem [O88, Thm. 4.15].

Theorem 5.4 (Quotient representation theorem for H-distinguished rep-
resentations). Let G/H be a reductive symmetric space, and PG/H a min-
imal parabolic subgroup for G/H. For any Π ∈ Irr(G)H , there exists ξ ∈
Irr(PG/H ; bG/H)f such that Π is a quotient of the (degenerate) principal se-
ries representation IndG

PG/H
(ξ) of G, where bG/H is a Borel subalgebra for

G/H with bG/H ⊂ (pG/H)C.

It should be noted that the argument of this section gives a “coarse esti-
mate of the size” of Π ∈ Irr(G)H as follows:

Proposition 5.5. For any irreducible subquotient Π in C∞(G/H), the Gelfand–
Kirillov dimension, to be denoted by DIM(Π), satisfies DIM(Π) ≤ dimG/PG/H .
In particular, DIM(Π) ≤ dimG/PG/H for any Π ∈ Irr(G)H .

The proof of Theorem 5.4 and Proposition 5.5 will be given in Section
5.3.

29



5.2 Oshima’s embedding theorem

In order to state Oshima’s embedding theorem, we need to prepare some
notations and structure theorems of reductive symmetric spaces G/H, which
we recall now from [OS84].

Retain the setting as in Section 5.1. We extend a (⊂ g−σ ∩ g−θ) to two
maximal abelian subspaces j in g−σ and ap in g−θ. Then one has [j, ap] = {0},
hence there exists a σ-split and θ-split Cartan subalgebra j̃ of g containing
both j and ap. As in Section 2.6, one has a direct sum decomposition j̃ =

t ⊕ j with t := j̃ ∩ h. Moreover one can take positive systems ∆+(gC, j̃C),
Σ+(g, ap) and Σ+(gC, jC) such that they are compatible with a fixed positive
system Σ+(g, a) in the sense that the restriction maps induce the following
commutative diagram.

Σ+(gC, jC) ∪ {0}
↗ ↘

∆+(gC, j̃C) Σ+(g, a) ∪ {0}
↘ ↗

Σ+(g, ap) ∪ {0}

We define a Borel subalgebra bG/H for the symmetric space G/H by using
the positive system Σ+(gC, jC). Then one has bG/H ⊂ (pG/H)C.

We denote by g(ap;λ) the weight space for a linear form λ on ap, and
set m := g(ap; 0) ∩ k. Since GC is connected, it follows from a result of
Satake [Sa60] (also [He78, p. 435]) that the centralizer M of ap in K equals
M0K(ap), where M0 is the identity component of M and K(ap) is the finite
group defined by K ∩ exp(

√
−1ap).

We fix a G-invariant non-degenerate symmetric bilinear form 〈·, ·〉 on the
Lie algebra such that 〈·, ·〉 is negative definite on k ≡ gθ, positive definite on
g−θ and gθ ⊥ g−θ. Then 〈·, ·〉 is non-degenerate on any θ-stable subspace of
g, in particular, on the centralizer lσ of a in g. Let z(lσ) be the center of the
Lie algebra lσ. Obviously a ⊂ z(lσ), but we need a more detailed description
of lσ. We set

aσ := z(lσ)
−θ ≡ {Y ∈ z(lσ) : θY = −Y },

g(σ) : the semisimple ideal of lσ generated by g(ap;λ) with λ|a 6≡ 0.

m(σ) : the orthogonal complement of g(σ)⊕ aσ in lσ.
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Then one has g(σ) ⊂ h, m(σ) ⊂ m, and a ⊂ aσ ⊂ ap. The Levi subalgebra lσ
is decomposed into the direct sum of σ-stable ideals:

lσ = m(σ)⊕ g(σ)⊕ aσ. (5.1)

Let G(σ), M(σ)0, Aσ, and Nσ be the analytic subgroups of G with Lie al-
gebra g(σ), m(σ), aσ, and nσ, respectively. We setM(σ) := M(σ)0K(ap). Ac-
cordingly to the direct decomposition (5.1), one has PG/H = M(σ)G(σ)AσNσ

by [OS84, Lem. 8.12], see also [O88, Lem. 1.5]. We introduce a subset of
Irr(PG/H)f as follows.

Definition 5.6. Let Ξ be the collection of ζ ∈ Irr(PG/H)f of the form

ζ(mxeY n) = η(m)eµ(Y ) for m ∈M(σ), x ∈ G(σ), Y ∈ a, n ∈ Nσ, (5.2)

for some η ∈ Irr(M(σ))f and µ ∈ a∗C such that η has a non-zero (m(σ) ∩ h)-
fixed vector.

We are ready to state Oshima’s embedding theorem in a slightly different
formulation from the original:

Proposition 5.7 (T. Oshima). If Π ∈ Irr(G) occurs as a subquotient in
C∞(G/H), then there exists ζ ∈ Ξ such that HomG(Π, Ind

G
PG/H

(ζ)) 6= {0}.

Proof. By taking the “hyperfunction boundary-valued maps” [O88, Thm. 4.15],
see also [KO13], one sees that there exists ζ ∈ Irr(PG/H)f such that Π is a sub-
representation of the (degenerate) principal series representation IndG

PG/H
(ζ)

with ζ satisfying certain additional constraints, which imply ζ ∈ Ξ by Propo-
sition 4.1 and (4.5), loc. cit.

Proposition 5.7 generalizes Harish-Chandra’s subquotient theorem and
Casselman’s subrepresentation theorem:

Example 5.8 (Casselman’s subrepresentation theorem). The group mani-
fold (G×G)/ diagG is an example of a symmetric space. For any Π ∈ Irr(G),
one has a natural embedding of the outer tensor product representation
Π⊠ Π∨ into C∞(G) ' C∞((G×G)/ diagG) by taking matrix coefficients.

Let P+ be a minimal parabolic subgroup of the group G, and P− the op-
posite parabolic subgroup. Then P+×P− is a minimal parabolic subgroup for
the symmetric space (G×G)/ diagG in the sense of Definition 5.1. Therefore
Proposition 5.7 tells that Π ⊠ Π∨ is realized as a subrepresentation of some
principal series representation of the direct product group G × G, hence so
is Π for G.
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5.3 Proof of Theorem 5.4 and Proposition 5.5

A key lemma to derive Theorem 5.4 from Proposition 5.7 is the following.
We recall that the Levi subgroup Lσ of PG/H is not necessarily connected.

Lemma 5.9. Let ζ = ζ1 ⊕ · · · ⊕ ζr be the irreducible decomposition of ζ ∈ Ξ
when restricted to the identity component (Lσ)0 of the Levi subgroup Lσ.

Let λi (∈ j̃∗C) be the highest weight of ζi with respect to the positive system

∆+(lσC, j̃C) := ∆+(gC, j̃C)∩∆(lσC, j̃C). Then for any i (1 ≤ i ≤ λ), λi vanishes

on the subspace t = j̃ ∩ h.

Proof of Lemma 5.9. Accordingly to the ideal decomposition (5.1), t is given
as a direct sum:

t = (t ∩m(σ))⊕ (t ∩ g(σ))⊕ (aσ ∩ h).

One sees readily from (5.2) that λ1, · · · , λr vanish on (t ∩ g(σ)) ⊕ (aσ ∩ h).
Let us prove that they also vanish on t ∩m(σ). We denote by ηi (1 ≤ i ≤ r)
the restriction of the differential representation of ζi to m(σ), which is still
irreducible. Since ζ ∈ Ξ, at least one of ηj ∈ Irr(m(σ))f has an (m(σ) ∩ h)-
fixed vector. Since m(σ) is σ-stable, (m(σ),m(σ)∩h) forms a symmetric pair,

and j̃∩m(σ) = (t∩m(σ))⊕ (j∩m(σ)) is a σ-split Cartan subalgebra of m(σ)
such that j ∩ m(σ) is a maximal abelian subspace in m(σ)−σ. Applying the
Cartan–Helgason theorem (Lemma 2.16) to the semisimple symmetric pair
(m(σ),m(σ) ∩ h), one obtains λj|t∩m(σ) = 0. Hence one has λj|t ≡ 0.

Since PG/H = (PG/H)0K(ap) and since the finite group K(ap) = K ∩
exp(
√
−1ap) acts trivially on j̃, one has λ1 = · · · = λr. Thus Lemma 5.9 is

proved.

We recall that bG/H is the parabolic subalgebra of gC associated to
∑+(gC, jC).

Lemma 5.10. For any ζ ∈ Ξ, both ζ and ζ∨ belongs to Irr(PG/H ; bG/H)f .

Proof. We observe that the σ-split Cartan subalgebra j̃ = t + j of g is also
that of lσ, and that bG/H ∩ lσC is a minimal parabolic subalgebra for the
smaller symmetric pair (lσ, lσ ∩ h), as bG/H ∩ lσC is the parabolic subalgebra

of lσC associated to
∑+(lσC, jC).

Suppose ζ ∈ Ξ. With the notation as in Lemma 5.9, one has λi|tC ≡ 0
for all i (1 ≤ i ≤ r). In turn, it follows from Lemma 2.6 that ζi belongs
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to Irr(lσ; bG/H ∩ lσC)f , which is naturally identified with Irr(pG/H ; bG/H)f by
(2.3), hence ζ ∈ Irr(PG/H ; bG/H)f .

By Lemma 2.17, if ζj has an (m(σ) ∩ h)-fixed vector for some j, then
so does the contragredient representation ζ∨j ∈ Irr(lσ)f . Thus the same ar-
gument as in Lemma 5.9 works, and one concludes ζ∨ ∈ Irr(PG/H ; bG/H)f ,
too.

Proof of Theorem 5.4. Suppose Π ∈ Irr(G)H . Then the contragredient rep-
resentation Π∨ in the categoryM(G) can be realized as a subrepresentation
of C∞(G/H) by the Frobenius reciprocity. By Oshima’s embedding theorem
(Proposition 5.7), one finds ζ ∈ Ξ such that HomG(Π

∨, IndG
PG/H

(ζ)) 6= {0}.
Taking the dual in the category M(G), one has HomG(Ind

G
PG/H

(ζ∗),Π) 6=
{0} where we set ζ∗ := ζ∨ ⊗ C2ρ ∈ Irr(PG/H)f as in (3.4). Since ζ∨ ∈
Irr(PG/H ; bG/H)f by Lemma 5.10, so does ζ∗. Thus Theorem 5.4 is proved.

Proof of Proposition 5.5. Since any irreducible subquotient Π ∈ C∞(G/H)
occurs in IndG

PG/H
(ζ) for some ζ ∈ Irr(PG/H)f by Proposition 5.7, the conclu-

sion follows from [K14, Lem. 6.7].

6 Proof of Theorems 1.4 and 1.5

In this section we complete the proof of Theorems 1.4 and 1.5. We retain
the assumption that GC ⊃ G′

C are connected complex Lie groups and that G
and G′ are real forms of GC and G′

C, respectively. Since the equivalence be-
tween the sphericity (ii) and the strong visibility (iii) is known in this setting
by [Tn21], we shall prove the equivalence between the bounded multiplicity
property (i) and the sphericity (ii).

6.1 Proof of (ii) ⇒ (i) in Theorem 1.4

Suppose we are in the setting of Theorem 1.4. Let BG/H (⊂ GC) be a Borel
subgroup for the symmetric space G/H (Definition 1.3).

Assume that GC/BG/H is G′
C-spherical. We take a minimal parabolic

subgroup PG/H for the symmetric space G/H (Definition 5.1) such that
bG/H ⊂ (pG/H)C as in Lemma 5.3.
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Suppose Π ∈ Irr(G)H and π ∈ Irr(G′). By Theorem 5.4, one finds ξ ∈
Irr(PG/H ; bG/H)f such that HomG(Ind

G
PG/H

(ξ),Π) 6= {0}, which induces an

inclusion:

HomG′(Π|G′ , π) ↪→HomG′(IndG
PG/H

(ξ)|G′ , π).

Thus the implication (ii) ⇒ (i) in Theorem 1.4 is deduced from the im-
plication (iii) ⇒ (ii) in Theorem 4.2.

6.2 Proof of (i) ⇒ (ii) in Theorem 1.4

In this section, we give a proof for the implication (i) ⇒ (ii) in Theorem 1.4
by reducing it to the finite-dimensional case as formulated in Theorem 6.1
below.

Theorem 6.1. Let (G,H) be a reductive symmetric pair, and BG/H a Borel
subgroup for G/H (Definition 1.3). Suppose G′ is an algebraic reductive
subgroup of G. If GC/BG/H is not G′

C-spherical, then one has

sup
Π∈Irr(G)H,f

m(Π|G′) =∞.

We should remark that under the same assumption one has

sup
Π∈Irr(G;bG/H)f

m(Π|G′) =∞,

as was seen in Lemma 2.10. However, the set Irr(G)H,f may be much smaller
than Irr(G; bG/H)f , see Remark 2.15 and Lemma 2.16. Thus, the proof of
Theorem 6.1 needs some further argument.

We recall from (2.5) that Πλ denotes an irreducible finite-dimensional
holomorphic representation of GC having highest weight λ with respect to
∆+(gC, j̃C). The same letter Πλ is used to denote the restriction to the real
form G. We begin with an elementary but useful observation:

Lemma 6.2. Let GC ⊃ G′
C be a pair of connected complex reductive Lie

groups. Suppose Πλ ∈ Irr(GC)hol. Then one has

m(Πλ+ν |G′
C
) ≥ m(Πλ|G′

C
) (6.1)

for any Πν ∈ Irr(GC)hol. Here we recall (2.7) for the definition of m(Πλ|G′
C
).
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Proof. Without loss of generality, we may assume that GC is simply con-
nected. Let B be the Borel subgroup of GC corresponding to the positive
system ∆+(gC, j̃C).

We lift λ ∈ Λ+ to a holomorphic character of the Cartan subgroup of
GC, extend it to the opposite Borel subgroup B− by letting the unipotent
radical act trivially, and then form a GC-equivariant holomorphic line bundle
Lλ = GC ×B− Cλ over the flag variety GC/B− so that the Borel–Weil theo-
rem gives a realization of Πλ on O(GC/B−,Lλ). Likewise, we realize Πν on
O(GC/B−,Lν).

For the subgroup G′
C, we take a Cartan subalgebra of g′C, fix a positive

system, write the Cartan–Weyl bijection (2.5) as Irr(g′)f ' Λ′
+, πµ ↔ µ, and

denote by B′ the Borel subgroup of G′
C. We take πµ ∈ Irr(G′)f such that the

multiplicity [Πλ|G′
C
: πµ] attains its maximum k := m(Πλ|G′

C
). We also take

πτ ∈ Irr(G′)f such that [Πν |G′
C
: πτ ] 6= 0. Via the Borel–Weil realization, one

finds holomorphic functions hj (1 ≤ j ≤ k) and h ∈ O(GC) corresponding to
highest weight vectors for the subgroup G′ satisfying

hj(b
−1gq) =µ(b)λ−1(q)hj(g), 1 ≤ j ≤ k,

h(b−1gq) =τ(b)ν−1(q)h(g)

for all b ∈ B′, g ∈ GC and q ∈ B−, where we use the same letters µ and τ to
denote the holomorphic characters of B′. This shows that hjh (1 ≤ j ≤ k)
belong toO(GC/B−,Lλ+ν) on which GC acts as the irreducible representation
Πλ+ν , and they are highest weight vectors for the subgroup G′

C with the some
highest weight µ + τ . Since hjh (1 ≤ j ≤ k) are linearly independent, one
concludes [Πλ+ν |G′

C
: πµ+τ ] ≥ k (= m(Πλ|G′

C
)). Thus the lemma is proved.

Proof of Theorem 6.1. Since neither of the assumption nor the conclusion
changes if we replace G by the identity component of the derived subgroup
[G,G], we may and do assume G is a connected semisimple Lie group. More-
over, we can assume G′ is connected. We take compatible positive systems
∆+(gC, j̃C) and Σ+(gC, jC) as in Section 2.5, and define a parabolic subalgebra
q associated to Σ+(gC, jC) as in Definition 1.3. Then q is a Borel subalgebra
for the symmetric space G/H. We denote by l the centralizer of j in g.

We begin with the case where G is contained in a simply connected com-
plexification GC. Let Q be the parabolic subgroup of GC with Lie algebra q,
which is a Borel subgroup for G/H.

Suppose GC/Q is not G′
C-spherical. By Lemma 2.10, one finds λ ∈ Λ+

such that ΠNλ ∈ Irr(GC; q)hol and m(ΠNλ|G′
C
) ≥ N + 1 for all N ∈ N. We
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recall j̃ = j̃σ⊕ j̃−σ = t+ j is a σ-split Cartan subalgebra and that the positive
system ∆+(gC, j̃C) is compatible with Σ+(gC, jC). We also recall that any
element ν ∈ Λ+(gC; hC) satisfies σν = −ν by the definition (2.10). We take
ν ∈ Λ+(gC; hC) which is regular enough, namely, 2〈ν, α〉 ≥ 〈σλ, α〉 for all

α ∈ ∆+(gC, j̃C) such that α|j 6= 0. On the other hand, for α ∈ ∆+(gC, j̃C)
with α|j = 0, one has 〈σλ, α〉 = 〈λ, α〉 = 0 because such α is regarded as

an element of ∆(lC, j̃C) whereas λ vanishes on [lC, lC] as the differential of a

character of Q. Thus 〈2ν − σλ, α〉 ≥ 0 for all α ∈ ∆+(gC, j̃C). We define a
dominant integral weight by

Λ := λ+ ν − σ(λ+ ν) = λ+ (2ν − σλ)

which vanishes on t (= j̃σ). Thus one has 2Λ ∈ Λ+(gC; hC). Moreover the
irreducible representation Π2NΛ of GC satisfies m(Π2NΛ|G′

C
) ≥ m(Π2Nλ|G′

C
) ≥

2N + 1 for any N ∈ N when restricted to the subgroup G′
C by Lemma 6.2.

When GC is not simply connected, we replace Λ by kΛ where k is a
positive integer given in Lemma 2.16. Then by the Cartan–Helgason theorem
(Lemma 2.16), Π2NΛ ∈ Irr(G)H . Thus Theorem 6.1 is shown.

6.3 Proof of Theorem 1.5

Suppose we are in the setting of Theorem 1.5. We observe that the direct
product group BG/H1×BG/H2 is a Borel subgroup for the reductive symmetric
space (G×G)/(H1 ×H2), see Definition 1.3.

We also observe that the restriction of the outer tensor product repre-
sentation Π1 ⊠ Π2 of G × G to its subgroup diagG (' G) is nothing but
the tensor product representation Π1 ⊗ Π2. Hence Theorem 1.5 follows as a
special case of Theorem 1.4 for the restriction (G×G) ↓ diagG.

7 Classification of the triples (G,H,G′)

Problem 1.2 asks a criterion for the triple H ⊂ G ⊃ G′ having the bounded
multiplicity property (1.7) of the restriction, namely,

sup
Π∈Irr(G)H

sup
π∈Irr(G′)

[Π|G′ : π] <∞, (7.1)

where we recall [Π|G′ : π] = dimC HomG′(Π|G′ , π) from (1.1).
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In this section we give a classification of the triples H ⊂ G ⊃ G′ in the
setting where (G,H) and (G,G′) are symmetric pairs. In order to state the
classification, let us consider what will be a natural equivalence relation on
triples (G,H,G′) for this problem. First we observe that the bounded multi-
plicity property (7.1) does not change by taking finite coverings or the identity
components of the groups. Second, it does not change also by replacing the
two subgroups H and G′ simultaneously with σH and σG′, respectively, by
an automorphism σ of the group G. Third, we observe a G-equivalence of the
regular representations on C∞(G/H) ' C∞(G/aHa−1) for any a ∈ G and a
G′-equivalence of the restriction Π|G′ ' Π|bG′b−1 via the inner automorphism
G′ ' bG′b−1 for any b ∈ G. Hence we shall adopt the following definition
of the infinitesimal equivalence in our classification of the triples (G,H,G′)
satisfying the bounded multiplicity property (7.1).

Definition 7.1 (equivalence of the triple (G,H,G′)). We say the triples

H ⊂ G ⊃ G′ and H̃ ⊂ G̃ ⊃ G̃′ are infinitesimally equivalent if there is
an isomorphism g ' g̃ between the Lie algebras of G and G̃, and if via
this identification, h is conjugate to h̃ by an inner automorphism and g′ is
conjugate to g̃′ by another inner automorphism.

The above definition says, in particular, that the triples H1 ⊂ G ⊃ G′
1

and H2 ⊂ G ⊃ G′
2 are infinitesimally equivalent if there exist a, b ∈ G and

σ ∈ Aut(g) such that h2 = σAd(a)h1 and g′2 = σAd(b)g′1. We note that σ
may be an outer automorphism.

In what follows, we shall assume that at least one of the symmetric spaces
G/H or G/G′ is irreducible. This means that we shall treat the following
cases:
Case I. G is simple,
Case II. G/H is a group manifold (‵G× ‵G)/ diag ‵G for simple ‵G,
Case III. G/G′ is a group manifold (‵G× ‵G)/ diag ‵G for simple ‵G.

Case II deals with the representation Π = τ ⊠ τ∨ of G = ‵G × ‵G for
some τ ∈ Irr(‵G), whereas the restriction of representations Π|G′ in Case III
is nothing but the tensor product of two irreducible representations Π1 and
Π2 of ‵G when Π ∈ Irr(G) is of the form Π1 ⊠ Π2. We note that there is an
overlap between Case II and Case III.

Finally, our criterion in Theorem 1.4 tells that it suffices to classify the
triples of the complexified Lie algebras (gC, hC, g

′
C). With these observations,

the classification of the triples (G,H,G′) will be given in Theorems 7.2 and
7.6 for Case I, in Theorem 7.8 for Case II, and in Theorem 7.9 for Case III.
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The proof of these theorems will be given in Section 8.

7.1 Classification of (G,H,G′) with G simple

In this subsection we deal with the case that G is a simple Lie group. The
classification of the triples (G,H,G′) having the bounded multiplicity prop-
erty is given in Theorem 7.2 when g is not a complex Lie algebra (equivalently,
the complexification gC is simple) and Theorem 7.6 when g is a complex sim-
ple Lie algebra up to the infinitesimal equivalence in Definition 7.1.

Theorem 7.2. Suppose that gC is simple and that (G,H) and (G,G′) are
symmetric pairs. Then the bounded multiplicity property (7.1) holds for the
triple (G,H,G′) if and only if the complexified Lie algebras (gC, hC, g

′
C) are

in Table 7.1. In the table, p, q are arbitrary subject to n = p+ q.

gC hC g′C
sln gln−1 slp ⊕ slq ⊕ C
sl2m gl2m−1 spm
sl6 sp3 sl4 ⊕ sl2 ⊕ C
son son−1 sop ⊕ soq
so2m so2m−1 glm
so2m so2m−2 ⊕ C glm
spn spn−1 ⊕ sp1 spp ⊕ spq
spn spn−2 ⊕ sp2 spn−1 ⊕ sp1
e6 f4 so10 ⊕ C
f4 so9 so9

gC hC g′C
sln son gln−1

sl2m spm gl2m−1

sln slp ⊕ slq ⊕ C gln−1

son sop ⊕ soq son−1

so2m glm so2m−1

Table 7.1: Triples (gC, hC, g
′
C) with gC simple in Theorem 1.4

Remark 7.3. Since the classification is given by the infinitesimal equivalence
given in Definition 7.1, we have omitted some cases such as

(gC, g
′
C) = (so8, spin7) ∼ (so8, so7),

(gC, hC, g
′
C) = (so8, gl4, so6 ⊕ so2) ∼ (so8, so6 ⊕ so2, gl4),

(gC, hC, g
′
C) = (sl4, sp2, sl2 ⊕ sl2 ⊕ C) ∼ (so6, so5, so4 ⊕ so2),

because the right-hand sides appear as special cases of the more general
family in Table 7.1.
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From the classification in Theorem 7.2, one obtain the following:

Corollary 7.4. Suppose G/H is a symmetric space of rank one, and gC
is simple. Then for any symmetric pair (G,G′) the bounded multiplicity
property (7.1) holds except for the following two cases:

(gC, hC, g
′
C) = (sln, gln−1, son), (spn, spn−1 ⊕ sp1, gln), or (f4, so9, sp3 ⊕ sl2).

We shall examine in Example 9.5 the failure of (7.1) in the simplest
exceptional case (sl3, gl2, so3) by an explicit computation of multiplicities.

Theorem 7.2 was announced in [K21, Cor. 7.8]. The right-hand side
of Table 7.1 collects the case (1.4) where a stronger bounded multiplicity
property (1.2) holds for the restriction G ↓ G′ independently of H, see [KO13,
Thm. D]. The left-hand side includes:

Example 7.5. Suppose p1 + p2 = p and q1 + q2 = q. We set G/H :=
O(p, q)/O(p, q − 1), G :′= O(p1, q1) × O(p2, q2). Then the triple (G,H,G′)
satisfies the bounded multiplicity property (1.7) as the triple (gC, hC, g

′
C) of

the complexified Lie algebras occurs in the fourth row of the left-hand column
in Table 7.1. The branching laws of the restriction Π|G′ of a discrete series
representation Π for G/H have been studied in [K93, K21, MO15, ØS19],
see Example 9.1 for some more details.

Next we consider the classification when G has a complex structure.

Theorem 7.6. Suppose that G is a complex simple Lie group, and that both
(G,H) and (G,G′) are symmetric pairs. Then the bounded multiplicity prop-
erty (7.1) holds if and only if one of the following conditions hold:

a. Both h and g′ are complex Lie subalgebras and the triple (g, h, g′) are
in Table 7.1.

b. (g, h) = (son(C), son−1(C)) and g′ is any real form of g.

c. (g, g′) is (sln(C), gln−1(C)) (n ≥ 2) or (son(C), son−1(C)) (n ≥ 5), and
h is any real form of g.

d. g = sl2(C), and both h and g′ are any real forms of g.

Remark 7.7. As in Remark 7.3, we omit some triples (G,H,G′) for which
the infinitesimally equivalent ones are in the list.
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7.2 Classification of (G,H,G′): group manifold case

In this subsection we give a classification of the triples (G,H,G′) having the
bounded multiplicity property (1.7) in the setting where G/H is a group
manifold, namely, G is the direct product group ‵G × ‵G for some simple
Lie group ‵G and H is of the form diag ‵G. We refer to this as the “group
manifold case”.

In what follows, we use the letter G to denote a simple Lie group instead
of ‵G. Our task now is to classify the symmetric pair (G×G,G′) such that
the following bounded multiplicity property holds:

sup
Π∈Irr(G×G)diagG

sup
π∈Irr(G′)

[Π|G′ : π] <∞, (7.2)

where we recall [Π|G′ : π] = dimC HomG′(Π|G′ , π). Here we note that Π ∈
Irr(G × G)diagG if and only if Π is of the form τ ⊠ τ∨ for some τ ∈ Irr(G)
where τ∨ is the contragredient representation of τ in the categoryM(G).

Up to the infinitesimal equivalence as in Definition 7.1, there are two
possibilities for the subgroup G′ in G×G:

Case II-1. G′ = G1 ×G2 where (G,Gj) (j = 1, 2) are symmetric pairs.
Case II-2. G′ = diagσ(G) where σ is an involutive automorphism ‵G.
We shall see that Case II-2 occurs in the classification below only when

either g or gC is isomorphic to sl2(C).

Theorem 7.8 (group manifold case). Let G be a simple Lie group.

(1) Suppose G′ = G1 × G2 where (G,Gj) (j = 1, 2) are symmetric pairs.
Then the bounded multiplicity property (7.2) holds if and only if (g, g1, g2)
or (gC, g1C, g2C) are isomorphic to (sln, gln−1, gln−1) or (son, son−1, son−1).

(2) Suppose G′ := diagσ(G) where σ is an involutive automorphism of
G. Then (7.2) holds if and only if g = sl2(C) or gC = sl2(C) (σ is
arbitrary).

Theorem 7.8 (1) includes the following assertion: when G is a complex
Lie group and G′ = G1 ×G2 with at least one of Gj being a real form of G,
then the bounded multiplicity property (7.2) holds if and only if g = sl2(C).
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7.3 Classification of (G,H,G′): tensor product case

In this subsection we give a classification of the triples (G,H,G′) having the
bounded multiplicity property (1.7) in Case III, that is, in the setting where
(G,G′) = (‵G × ‵G, diag ‵G) for some simple Lie group ‵G. In this case, the
restriction of an irreducible representation of G to the subgroup G′ is nothing
but the tensor product of two irreducible representations of ‵G. We refer to
this as the “tensor product case”.

In what follows, we use the letter G instead of ‵G. Our task now is
to classify the symmetric pairs (G × G,H) having the following bounded
multiplicity property: sup

(Π1,Π2)

m(Π1 ⊗ Π2) <∞, see (1.8), namely,

sup
(Π1,Π2)

sup
Π∈Irr(G)

dimC HomG(Π1 ⊗ Π2,Π) <∞ (7.3)

where the first supremum is taken over all the pairs (Π1,Π2) with Π1,Π2 ∈
Irr(G) subject to Π1 ⊠ Π2 ∈ Irr(G×G)H .

Up to the infinitesimal equivalence given as in Definition 7.1, there are
two possibilities of the subgroup H in G×G:

Case III-1. H = H1×H2 where (G,Hj) (j = 1, 2) are symmetric pairs,
Case III-2. H is of the form diagσ(G) where σ is an involution of G.
We note that there is an overlap between Case II-2 and Case III-2. We

shall see in Theorem 7.9 below that Case III-2 occurs in the classification
only when either g or gC is isomorphic to sl2(C).

Theorem 7.9 (Tensor product case). Suppose that G is a simple Lie group,
and (G×G,H) is a symmetric pair. Then the bounded multiplicity property
(7.3) holds if and only if one of the following conditions hold:

(1) Either g or gC is sl2(C). No condition on h.

(2) Suppose gC is simple and gC 6= sl2(C). Then the bounded multiplicity
property (7.3) holds if and only if H is of the form H = H1 ×H2 and
the triple (g, h1, h2) is in the following table.
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gC h1C h2C
son son−1 son−1

so8 so7 spin7
so8 so7 gl4
sl4 gl3 sp2

Table 7.2: Tensor product with bounded multiplicities

(3) Suppose g is a complex simple Lie algebra and g 6= sl2(C). Then the
bounded multiplicity property (7.3) holds if and only if h is a complex
subalgebra and H is of the form H = H1 ×H2 and the triple (g, h1, h2)
is in Table 7.2.

Remark 7.10. (1) The infinitesimal equivalence in Definition 7.1 includes
the switch of factors H1 and H2 because it is induced by an outer automor-
phism of the direct product group.
(2) Inside the Lie algebra so8, there are three subalgebras that are isomorphic
to so7 up to inner automorphisms, to which we may refer as so7, spin

+
7 , and

spin−7 , and these are conjugate to each other by an outer automorphism of so8.
By the equivalence in Definition 7.1, there are two equivalence classes of the
triples (gC, h1C, h2C) where gC = so8 and hjC are isomorphic to so7 (j = 1, 2),
according to whether h1C is conjugate to h2C by an inner automorphism
or not. In Table 7.2, we write them as (so8, so7, so7) and (so8, so7, spin7),
respectively.

8 Proof of classification results

By applying the geometric criteria in Theorems 1.4 and 1.5, we complete
the proof of Theorems 7.2, 7.6, and 7.8 about the classification of the triples
(G,H,G′) having the bounded multiplicity property (1.7) of the restriction
Π|G′ for all Π ∈ Irr(G)H and also the proof of Theorem 7.9 for the tensor
product case.

8.1 Preliminary lemmas

In this subsection we collect some lemmas that we shall use in the proof.
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Given two G-spaces Xj (j = 1, 2) and an automorphism σ of G, we let
g ∈ G act on the direct product space X1 ×X2 by (x, y) 7→ (gx, σ(g)y), and
call it the σ-twisted diagonal action of G.

Lemma 8.1. Let GC be a complex simple Lie group, and GU a maximal
compact subgroup of GC. Suppose that Q1, Q2 are parabolic subgroups of GC,
and we set X = GC/Q1 × GC/Q2. Let σ be an automorphism of GC. Then
the following four conditions are equivalent:

(i) X is GC-spherical via the diagonal action;

(i)′ X is strongly GU -visible via the diagonal action;

(ii) X is GC-spherical via the σ-twisted diagonal action;

(ii)′ X is strongly GU -visible via the σ-twisted diagonal action.

Proof. See [Tn21] for the equivalences (i) ⇐⇒ (i)′ and (ii) ⇐⇒ (ii)′.
The equivalences (i) ⇐⇒ (ii) and (i)′ ⇐⇒ (ii)′ are obvious when σ is
an inner automorphism, and follow from the classification of strongly visible
actions [Tn12] for (i)′ ⇐⇒ (ii)′, or alternatively that of spherical varieties
[HNOO13, Thm. 5.2] for (i) ⇐⇒ (ii) when σ is an outer automorphism.

Since our criteria in Theorems 1.4 and 1.5 are formulated by the com-
plexified Lie group GC, it is convenient to fix our convention when G itself
has a complex structure. Suppose G is a complex Lie group. We write J
for the complex structure on g, and decompose gC = g⊗R C into the direct
sum of the eigenspaces ghol and ganti of J with eigenvalues

√
−1 and −

√
−1,

respectively. Then one has a direct sum decomposition:

g⊕ g
∼→ ghol ⊕ ganti = gC, (X,Y ) 7→ 1

2
(X −

√
−1JX, Y +

√
−1JY ).

Accordingly, the complexification GC of the complex Lie group G is given by
the totally real embedding

diag : G ↪→ G×G =: GC, (8.1)

where the second factor equipped with the reverse complex structure.
For a connected complex simple Lie group G, there are two types for

symmetric pairs (G,H) defined by an involution σ of G:
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(1) (σ is holomorphic) H is a complex subgroup of G,

(2) (σ is anti-holomorphic) H is a real form of G.

For simplicity, suppose that the subgroup H is connected. Then via the
identification GC ' G×G in (8.1), one has

HC 'H ×H for (1),

HC ' diagσ(G) := {(g, σg) : g ∈ G} for (2).

Correspondingly, the Borel subgroup BG/H for the symmetric space G/H
(Definition 1.3) is given as follows.

Lemma 8.2. Suppose G is a complex simple Lie group, and G/H a sym-
metric space defined by an involutive automorphism σ of G. Let BG/H be a
Borel subgroup for G/H as a (real) symmetric space, which is regarded as a
subgroup of G×G via the identification GC ' G×G in (8.1).

(1) If σ is holomorphic, then G/H is a complex symmetric space. We write
Bc

G/H for the Borel subgroup for the complex symmetric space G/H, see
below. Then BG/H is isomorphic to Bc

G/H × Bc
G/H .

(2) If σ is anti-holomorphic, then H is a real form of G and BG/H is
isomorphic to B × B where B is a Borel subgroup of the complex Lie
group G.

Here, a Borel subgroup Bc
G/H for the complex symmetric space G/H is

defined as a parabolic subgroup of G, rather than that of the complexification
GC. That is, when G itself is a complex reductive Lie group and σ is a
holomorphic involution, we define Bc

G/H to be the parabolic subgroup of

G associated to Σ+(g, j) instead of that of GC associated to Σ+(gC, jC) in
Definition 1.3.

The case g or gC = sl2(C) is distinguished in the classification from other
cases, for which we formulate in the following two lemmas.

Lemma 8.3. Let G be a complex simple Lie group with Lie algebra g, and
B a Borel subgroup of G. Then the following three conditions are equivalent:

(i) (G×G)/(B × B) is G-spherical via the diagonal action.

(ii) (G×G×G)/ diag(G) is spherical as a (G×G×G)-space.
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(iii) g = sl2(C).

Proof. The first equivalence (i) ⇐⇒ (ii) is clear from the bijection:

diagB\(G×G)/(B × B) ' (B × B × B)\(G×G×G)/ diagG.

See [K95, Ex. 2.8.6] or [KM14, Prop. 4.3] e.g., for the equivalence (ii) ⇐⇒
(iii).

Lemma 8.4. Let G be a semisimple Lie group, GC a complexification of G,
and B a Borel subgroup of GC. Assume that gC is a direct sum of copies of
sl2(C). Then for any symmetric pair (G,G′), GC/B is G′

C-spherical.

Proof. It suffices to show when the symmetric pair (G,G′) is irreducible,
namely, either g is simple or (g, g′) = (‵g ⊕ ‵g, diag ‵g) for simple ‵g. The
assertion is straightforward in the first case where GC/B ' P1C, and follows
from the implication (iii)⇒ (i) and (ii) of Lemma 8.3 in the second case.

8.2 Proof of Theorem 7.2 (gC simple)

In this subsection, we give a proof of Theorem 7.2 which deals with the case
that G is a simple Lie group and G is not a complex Lie group, namely, the
complexified Lie algebra gC is simple.

Let G/H and G/G′ be symmetric spaces, and BG/H (⊂ GC) a Borel
subgroup for G/H. The proof of Theorem 7.2 is based on the criterion in
Theorem 1.4 for the bounded multiplicity property (1.7), which we observe
is determined only by the complexified Lie algebras gC, hC, and g′C. Then
our strategy to classify the triple (gC, hC, g

′
C) is to fix a complex symmetric

pair (gC, g
′
C) and to classify hC such that GC/BG/H is G′

C-spherical, which is
divided into two steps.
Step 1. Classify parabolic subgroups P of a complex simple Lie group GC
such that GC/P is G′

C-spherical or equivalently, is G
′
U -strongly visible.

Step 2. Classify the complex symmetric pairs (gC, hC) such that the Borel
subgroup BG/H appears in the list obtained in Step 1.

Step 1 is done in [HNOO13, Thm. 5.2]. See also [K05, Tn12] for some
classification results of strongly visible actions.

Proof of Theorem 7.2. By the above argument, it suffices is to carry out a
computation in Step 2 for each complex symmetric pairs (gC, g

′
C) with gC

simple. We illustrate this computation in the following setting:

(gC, g
′
C) = (sln, slp ⊕ slq ⊕ C) with n = p+ q. (8.2)
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Take a subset Θ of the set {α1, · · · , αn−1} of simple roots for ∆+(gC, j̃C)
labelled as in Bourbaki [Br02]. We write Θc for the complement of Θ, and
PΘ for the parabolic subgroup of GC corresponding to Θ. We recall our
convention that PΘ is a Borel subgroup of GC if Θ is empty. Then GC/P

Θ

is G′
C-spherical ([HNOO13, Thm. 5.2]), or equivalently, G′

U -strongly visible
([K07b, Thm. A], see also [K05, Thm. 16]) if and only if Θ satisfies one of
the following conditions:
Case 1. #Θc ≤ 1,

Case 2. Θc = {α1, αi}, {αi, αi+1}, {αi, αn−2} for some i,

Case 3. min(p, q) = 2 and #Θc = 2,

Case 4. min(p, q) = 1 and Θ is arbitrary.
As a second step, we now examine if the corresponding parabolic subal-

gebra pΘ is isomorphic to the Borel subalgebra of some symmetric pair (g, h).
Suppose (g, h) is a symmetric pair. Let gR be the real form of gC correspond-
ing to the pair (gC, hC) as in (2.9), and Θ the set of the black circles in the
Satake diagram of gR, see [He78, Ch. X, Table VI], for instance. By Lemma
2.13, the complex parabolic subalgebra pΘ is a Borel subalgebra bG/H for
the symmetric pair (g, h). Among real forms gR = sln(R), su(p, n − p), and
su∗(n) (n: even) of gC = sln(C), the number of the white circles (= #Θc)
in the Satake diagram is equal to 1 or 2 if and only if the real form gR is
isomorphic to one of the following:

sl(n,R) (n = 2, 3); su∗(2m) (m = 2, 3); or su(1, n− 1), (8.3)

and correspondingly, the set of the white circles is given by

{α1}, {α1, α2}; {α2}, {α2, α4}; {α1, αn−1},

respectively. Therefore GC/P
Θ is G′

C-spherical if and only if one of the fol-
lowing conditions holds:
Case 1. gR ' sl(2,R) or su∗(4),

Case 2. gR ' sl(3,R) or su(1, n− 1),

Case 3. min(p, q) = 2 and gR is one of (8.3),

Case 4. min(p, q) = 1 and g is arbitrary.

This exhausts the list in Table 7.1 with (gC, g
′
C) = (sln, slp ⊕ slq ⊕ C)

except for the triple (gC, hC, g
′
C) = (sl4, sp2, sl2 ⊕ sl2 ⊕ C), which we have
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omitted from the table because it is isomorphic to a special case of the triple
(soa+b, soa+b−1, soa ⊕ sob) with (a, b) = (2, 4).

For other symmetric pairs (gC, g
′
C), the proof of the classification hC is

similar (and often simpler).

8.3 Proof of Theorem 7.6 (g complex simple)

In this section, we give a proof of Theorem 7.6 which deals with the case
that G is a complex simple Lie group. Since the Lie algebra g has a complex
structure, there are four possibilities for the symmetric pairs (g, h) and (g, g′):

Case Ic-a. Both h and g′ are complex subalgebras.
Case Ic-b. h is a complex subalgebra and g′ is a real form of g.
Case Ic-c. h is a real form of g, and g′ is a complex subalgebra.
Case Ic-d. Both h and g′ are real forms of g.

Proof of Theorem 7.6. The classification in Case Ic-a goes similarly to the
aforementioned proof of Theorem 7.2. By Lemma 8.1, the classification in
Case Ic-b is equivalent to the special case of Theorem 7.9 (2) with h1 = h2,
which will be proved in Section 8.5. The classification in Case Ic-c is reduced
to the classification of the pairs (g, g′) such that (GC × GC)/(B × B) is
(G′

C×G′
C)-spherical, or equivalently, GC/B is G′

C-spherical. This is classified
as in (1.4) by Krämer [Kr76]. The pair (so8, spin7) is not listed in Theorem 7.6
because the classification is listed up to the equivalence in Definition 7.1. The
classification in Case Ic-d is equivalent to that of g such that (GC×GC)/(B×
B) is GC-spherical under the diagonal action of GC. Then gC ' sl2(C) by
Lemma 8.3.

8.4 Proof of Theorem 7.8 for group manifold case

LetG be a simple Lie group. In this section we complete the proof of Theorem
7.8 by classifying symmetric pairs (G×G,G′) having the bounded multiplicity
property (1.7). We need to treat the following cases.

Case II-1. g′ = g′1 ⊕ g′2 such that (g, g′j) (j = 1, 2) are symmetric pairs.
Case IIr-1. gC is simple.
Case IIc-1. g is a complex simple Lie algebra.

Case II-2. g′ = diagσ(g) for some involutive automorphism σ of g.
Case IIr-2. gC is simple.
Case IIc-2. g is a complex simple Lie algebra.
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We recall that for g a simple Lie algebra, g is a complex simple Lie algebra
if and only if gC is not simple.

Proof of Theorem 7.8. We note that the Borel subgroup for the symmetric
space (G × G)/ diagG is given by B × B−, where B is a Borel subgroup of
GC and B− its opposite Borel subgroup. Since B− is conjugate by B, we
shall simply use B × B instead of B × B−. Then the bounded multiplicity
property (7.2) holds if and only if (GC × GC)/(B × B) is G′

C-spherical by
Theorem 1.4.
(1) In Case II-1, it suffices to classify the triple (g, g1, g2) for which the
flag variety (GC × GC)/(B × B) is (G1C × G2C)-spherical. By a classical
result of Krämer [Kr76], this happens if and only if (g, gj) or (gC, gjC) are
in the list (1.4). By the equivalence relation for triples in Definition 7.1, the
classification in Case II-1 follows.
(2) In Case II-2, it suffices to classify (G, σ) for which (GC × GC)/(B × B)
is GC-spherical via the σ-twisted diagonal action. Then the classification
follows from Lemma 8.3 in Case IIr-2. Similarly for Case IIc-2.

8.5 Proof of Theorem 7.9 for tensor product case

Let G be a simple Lie group. In this section we complete the proof of The-
orem 7.9 by classifying the symmetric pairs (G×G,H) having the bounded
multiplicity property (7.3) for the tensor product representations by using
the criterion in Theorem 1.5. According to whether the simple Lie algebra g
has a complex structure or not, we treat separately in the following subcases:

Case III-1. h = h1⊕ h2 such that (g, hj) (j = 1, 2) are symmetric pairs.
Case IIIr-1. gC is simple.
Case IIIc-1. g is a complex simple Lie algebra.

Case III-2. h = diagσ(g) for some involutive automorphism σ of g.
Case IIIr-2. gC is simple.
Case IIIc-2. g is a complex simple Lie algebra.

We first prove the following proposition:

Proposition 8.5. Let BG/Hj
(⊂ GC) be the Borel subgroup for symmetric

spaces G/Hj (j = 1, 2). Suppose gC is simple. Then the following three
conditions are equivalent:

(i) (GC ×GC)/(BG/H1 × BG/H2) is GC-spherical.
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(ii) (GC ×GC)/(BG/H1 × BG/H2) is GU -strongly visible.

(iii) The triple (gC, h1C, h2C) is in Table 7.2.

In Case III-1, we recall from Theorem 1.5 that the bounded multiplicity
property (1.9) of the tensor product representation Π1 ⊗ Π2 is equivalent to
one of (therefore, any of) (i) and (ii) in Proposition 8.5.

Proof. The complete list of the pairs of parabolic subgroups (Q1, Q2) satis-
fying (ii) (or equivalently (i)) is given in [Tn12], see also [K07b] for type A,
and [Li94] for maximal parabolic subgroups. In order to prove (ii) ⇐⇒ (iii)
(or (i) ⇐⇒ (iii)), it suffices to determine when Qj (j = 1, 2) are isomorphic
to Borel subgroups for some symmetric pairs (G,Hj). We illustrate the proof
for (ii) ⇐⇒ (iii) with two cases: gC is of type A and of type D, in particular,
of D4. Other cases are similar.

Suppose gC is of type A. We first observe from [K07b] or [Tn12] that if
(ii) holds then #Θc

1 +#Θc
2 ≤ 3 when gC is of type A.

In view of the Satake diagram for real forms of gC of type A, #Θc
1 ≤ 2 if

and only if one of the following holds:

#Θc
1 = 1 (gC, h1C) = (sl4(C), sp2(C)),

#Θc
1 = 2 (gC, h1C) = (sln(C), gln−1(C)).

Hence #Θc
1 +#Θc

2 ≤ 3 only if (gC, h1C, h2C) is either (sl4(C), sp2(C), sp2(C))
or (sl4(C), sp2(C), gl3(C)) up to switch of factors. Conversely, the condition
(ii) holds in this case by [K07b].

Suppose g is of type D. Then (ii) holds only if #Θc
1 +#Θc

2 ≤ 3. Then a
similar argument to the type A case tells that the equality is not attained if
n ≥ 5 when Θc

j arise from symmetric pairs (g, hj) and that (ii) holds if and
only if (gC, h1C, h2C) = (so2n(C), so2n−1(C), so2n−1(C)) for the type D case if
n ≥ 5.

The remaining case is when gC is of type D4 and #Θc
1 + #Θc

2 = 3. By
[Tn12], the list of such pairs (Θc

1,Θ
c
2) satisfying (ii) is of three types

({αi}, {αj, αk}) {i, j, k} = {1, 3, 4} (3 cases),

({αi}, {αi, αj}) {i, j} ⊂ {1, 3, 4} (6 cases),

({αi}, {α2, αj}) {i, j} ⊂ {1, 3, 4} (6 cases),
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up to switch of factors. The first two types do not arise from symmetric
pairs, whereas the third types arises from

(gC, h1C, h2C) = (so8(C), so7(C), gl4(C)) (8.4)

up to outer automorphisms. (We recall that the group of outer automor-
phisms of D4 is of order 6.)

The cases when gC is not of type A or D, the proof is similar.

Proof of Theorem 7.9. Let Q (⊂ GC×GC) be a Borel subgroup for the sym-
metric space (G×G)/H. By Theorem 1.4, it suffices to determine when the
flag variety (GC ×GC)/Q is G′

C-spherical.
(1) For g or gC = sl2(C), the assertion follows from Lemma 8.4 for any h
(⊂ g⊕ g).
(2) Suppose that gC is simple. In Case IIIr-1, the classification is given by
Proposition 8.5.
In Case IIIr-2, Q is the direct product of Borel subgroup of GC, hence the
classification follows from Lemma 8.3.
(3) Suppose that g is a complex simple Lie algebra. In this case, the com-
plexification GC of G is given as G×G by (8.1).
In Case IIIc-1, the proof is the same with Case IIIr-1 if both h1 and h2 are
complex subalgebras of g.

If at least one of h1 or h2 is a real form of g in Case IIIc-1, then one has
Q = Q1×Q2 where Q1 or Q2 must be a Borel subgroup of GC by Lemma 8.2.
Therefore, if (GC × GC)/(Q1 × Q2) is GC-spherical by the diagonal action,
then gC must be sl2(C) from the implication (i) ⇒ (iii) in Lemma 8.3.

Similarly in Case IIIc-2, the Borel subgroup Q for the symmetric space
(G×G)/ diagσ(G) is the direct product of Borel subgroups of GC, hence the
bounded multiplicity criterion in Theorem 1.5 amounts to the sphericity of
(GC × GC)/(B × B) by the diagonal GC-action, which forces g to be sl2(C)
again by (i) ⇒ (iii) in Lemma 8.3.

9 Examples and some perspectives

By the branching problems we mean the broad problem of understanding how
irreducible representations of a group behave when restricted to a subgroup.
As viewed in [K15], we may divide the branching problems into the following
three stages:
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Stage A. Abstract features of the restriction;
Stage B. Branching law;
Stage C. Construction of symmetry breaking/holographic operators.

The role of Stage A is to develop an abstract theory on the restriction of
representations as generally as possible. In turn, we could expect a detailed
study of the restriction in Stages B (decomposition of representations) and C
(decomposition of vectors) in the specific settings that are a priori guaranteed
to be “nice” in Stage A.

Solving Problem 1.1 or Problem 1.2 on the bounded multiplicity property
may be considered as in Stage A. In this section, we discuss some promis-
ing examples in Stages B and C in the new settings that fit well into the
framework of the present article. We also mention some examples which are
“outside” this framework, to clarify the limitation as well.

When the pair (G,G′) satisfies the bounded multiplicity property (1.2),
or when the complexified pair (gC, g

′
C) is essentially (sln, gln−1) or (son, son−1)

up to outer automorphisms, see (1.4), there have been active and rich study
of the branching problems in Stages B and C in recent years, such as the
Gan–Gross–Prasad conjecture (Stage B) and the construction of symmetry
breaking operators (Stage C), see e.g., an exposition [K19a] and references
therein. Let us now focus on the new settings when the pair (G,G′) does
not satisfy (1.2), but the triple H ⊂ G ⊃ G′ satisfies the bounded multiplicity
property (1.7), the triple (Π, G,G′) with Π ∈ Irr(G) satisfies m(Π|G′) < ∞
(see (1.5)), or the triple (G,Π1,Π2) with Π1,Π2 ∈ Irr(G) satisfies m(Π1 ⊗
Π2) <∞ (see (1.8)). We shall see in Examples 9.1–9.4 below some previous
successful results on the analysis of the branching laws Π|G′ in Stages B and
C in these settings. One may observe that the existing results treated only
a small part of this new framework in comparison with the complete list in
Section 7. This observation indicates possible new avenues of the rich study
of the branching problems in Stages B and C.

Example 9.1 (Restriction of discrete series representations for G/H).
Suppose that (G,H,G′) = (O(p, q), O(p − 1, q), O(p1, q1) × O(p2, q2)) where
p1 + p2 = p and q1 + q2 = q. For simplicity, suppose p + q ≥ 5. In this case
the pair (G,G′) does not satisfy the bounded multiplicity property (1.2) if
p1 + q1 > 1 and p2 + q2 > 1, and not the finite multiplicity property (1.3) if
p > 1 and q > 1 in addition, see [KM14], however, the triple (G,H,G′) always
satisfies the finer bounded multiplicity property (1.7) as was seen in Example
7.5. The branching problem for the restriction Π|G′ of Π ∈ Irr(G)H relates
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harmonic analysis involving three groups G, H, and G′. Discrete series repre-
sentations Π were classified by Faraut [F79] and Strichartz [St83], which can
be expressed also in algebraic terms of Zuckerman derived functor modules
Aq(λ) [KØ02]. The branching laws Π|G′ to the subgroup G′ were determined
in the discretely decomposable case (p2 = 0) in [K93], and also in the case
containing continuous spectrum under the assumption that (q1, q2) = (1, 0)
by Frahm and Y. Oshima [MO15]. For general (p1, p2, q1, q2), full discrete
spectrum of the restriction Π|G′ occurs in a multiplicity-free fashion and is
constructed and classified in [K21]. See also a recent work of Ørsted and
Speh [ØS19] for another approach to capture a generic part of discrete spec-
trum in the branching law of Π|G′ . The triple (G,H,G′) in this example is
a real form of the complexified triple appearing in the fourth row of the left
column in Table 7.1.

Example 9.2 (Unitary branching laws for mirabolic). Let G = GLn(R) and
P a mirabolic, i.e., a maximal parabolic subgroup with Levi factor GL1(R)×
GLn−1(R). Then for any symmetric pair (G,G′), namely, G′ = O(p, n − p),
GLp(R)×GLn−p(R), Spm(R) or GLm(C) when n = 2m, the generalized flag
variety GC/PC is G′

C-spherical, hence the triple (G,P,G′) is an example that
fulfills the geometric assumption in Theorem 4.2 with Q = PC. In this case
the branching laws of the unitary representation Π|G′ is explicitly found in
[KØP11] for all the symmetric pairs (G,G′) when Π is a unitarily induced
representation of a unitary character of P . The multiplicity in the (unitary)
branching laws of the restriction Π|G′ is guaranteed to be uniformly bounded
by Theorem 4.2, even though the symmetric pairs (G,G′) do not satisfy the
general finite multiplicity condition (1.3) for most of the cases, see [KM14].

Example 9.3 (Symmetry breaking operators). For the symmetric pair (G,G′) =
(Spn(R), GLn(R)), the general finite multiplicity property (1.3) fails [KM14].
However, if we take P to be the Siegel parabolic subgroup of G, and P ′ to be
a maximal parabolic subgroup of G′, then one has #(P ′

C\GC/PC) <∞, and
therefore the geometric assumption in Theorem 4.1 is satisfied with Q = PC
and Q′ = P ′

C, and thus the bounded multiplicity property (4.1) holds for
the space of symmetry breaking operators. Nishiyama–Ørsted [NØ18] has
constructed explicitly (integral) symmetry breaking operators between the
corresponding degenerate principal series representations of G and G′ gener-
alizing [KS15].
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Example 9.4 (Invariant trilinear form). For a noncompact simple Lie group
G, the space of invariant trilinear forms HomG(Π1 ⊗ Π2 ⊗ Π3,C) is finite-
dimensional for all Π1, Π2, Π3 ∈ Irr(G), or equivalently, the pair (G ×
G, diagG) satisfies the finite multiplicity condition (1.3), if and only if g is
isomorphic to so(n, 1) ([K95], see also [K14, Cor. 4.2]). Beyond this case, one
may consider the setting where Π1, Π2, Π3 are “small representations” such
as degenerate principal series representations. For instance, if G = Spn(R)
and P is a Siegel parabolic subgroup, then GC/PC ×GC/PC is GC-spherical
via the diagonal action [Li94], or equivalently, it is GU -strongly visible via
the diagonal action [Tn12], and therefore one has the bounded property (4.7)
of the space of invariant trilinear forms by Theorem 4.8 and the one (4.10) of
the tensor product by Corollary 4.10. Construction of trilinear forms and ex-
plicit evaluations of spherical vectors by the generalized Bernstein–Reznikov
integrals in these cases have been studied in Clerc et. al. [CKØP11] and
Clare [C15], for instance.

Finally, we mention a couple of examples for which the bounded multi-
plicity property fails by explicit computations.

Example 9.5 (Compact symmetric pairs of rank one). Let us consider
the triple (G,H,G′) = (SU(3), U(2), SO(3)). Note that the triple of the
complexified Lie algebras (gC, hC, g

′
C) = (sl3, gl2, so3) is not in Table 7.1,

and thus the bounded multiplicity property (1.7) of the branching should
fail. In fact, let Πn be the irreducible representations of G = SU(3) with
highest weight (n, 0,−n) in the standard coordinates, and πn the (2n + 1)-
dimensional irreducible representation of G′ = SO(3). Then Πn ∈ Irr(G)H
and [Πn|G′ : πn] = [n

2
] + 1, hence sup

n∈N
m(Πn|G′) = ∞ showing the failure of

the bounded multiplicity property (1.7) for the triple (G,H,G′). We note
that this triple is one of the three exceptional cases when rankG/H = 1
indicated in Corollary 7.4.

The following example is a reformulation of [K08, Sect. 6.3].

Example 9.6 (Restriction of Harish-Chandra’s discrete series representa-
tions). Let (G,H,G′) = (SO(5,C), SO(3, 2), SO(3, 2)). If Π is a discrete
series representation Π for the symmetric space G/H, then there exists a
(Harish-Chandra) discrete series representation π of G′ such that π occurs
in the restriction Π|G′ as discrete spectrum of infinite multiplicity, and in
particular, [Π|G′ : π] = ∞. In fact, this triple (G,H,G′) does not appear in
the classification given in Theorem 7.6.
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[K14] T. Kobayashi, Shintani functions, real spherical manifolds, and sym-
metry breaking operators, Dev. Math., 37, (2014), 127–159. Springer.

[K15] T. Kobayashi, A program for branching problems in the representa-
tion theory of real reductive groups, In: Representations of Reductive
Groups—In Honor of the 60th Birthday of David A. Vogan, Jr., (eds.
M. Nevins and P. E. Trapa), Progr. Math., 312, Birkhäuser, 2015,
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