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of the classification of (local and nonlocal) symmetry breaking opera-
tors by an example of conformal representations on differential forms on
the model space (X,Y ) = (Sn, Sn−1), which generalizes the scalar case
(Kobayashi–Speh [Mem. Amer. Math. Soc. 2015]) and the case of local
operators (Kobayashi–Kubo–Pevzner [Lect. Notes Math. 2016]). Some
applications to automorphic form theory, motivations from conformal
geometry, and the methods of proofs are also discussed.

Mathematics Subject Classification (2010). Primary 22E46; Secondary
11F70, 53A30.

Keywords. branching rule, conformal geometry, reductive group, sym-
metry breaking.

1. Branching problems—Stages A to C

Suppose Π is an irreducible representation of a group G. We may regard Π
as a representation of its subgroup G′ by restriction, which we denote by Π|G′ .
The restriction Π|G′ is not irreducible in general. In case it can be given as
the direct sum of irreducible G′-modules, the decomposition is called the
branching law of the restriction Π|G′ .

Example 1 (fusion rule). Let π1 and π2 be representations of a group H.
The outer tensor product Π := π1 ⊠ π2 is a representation of the product
group G := H ×H, and its restriction Π|G′ to the subgroup G′ := diag(H)
is nothing but the tensor product representation π1 ⊗ π2. In this case, the
branching law is called the fusion rule.

For real reductive Lie groups such as G = GL(n,R) or O(p, q), irre-
ducible representations Π are usually infinite-dimensional and do not always
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possess highest weight vectors, consequently, the restriction Π|G′ to subgroups
G′ may involve various (sometimes “wild”) aspects:

Example 2. The fusion rule of two irreducible unitary principal series rep-
resentations of GL(n,R) (n ≥ 3) involve continuous spectrum and infinite
multiplicities in the direct integral of irreducible unitary representations.

By the branching problem (in a wider sense than the usual), we mean
the problem of understanding how the restriction Π|G′ behaves as a rep-
resentation of the subgroup G′. We treat non-unitary representations Π as
well. In this case, instead of considering the irreducible decomposition of the
restriction Π|G′ , we may investigate continuous G′-homomorphisms

T : Π|G′ → π

to irreducible representations π of the subgroup G′. We call T a symmetry
breaking operator (SBO, for short). The dimension of the space of symmetry
breaking operators

m(Π, π) := dimC HomG′(Π|G′ , π)

may be thought of as a variant of the “multiplicity”. Finding a formula of
m(Π, π) is a substitute of the branching law Π|G′ when Π is not a unitary
representation.

The author proposed in [19] a program for branching problems in the
following three stages:

Stage A. Abstract feature of the restriction Π|G′ .
Stage B. Branching laws.
Stage C. Construction of symmetry breaking operators.

Loosely speaking, Stage B concerns a decomposition of representations,
whereas Stage C asks for a decomposition of vectors.

For “abstract features” of the restriction in Stage A, we may think of
the following aspects:
A.1. Spectrum of the restriction Π|G′ :

• (discretely decomposable case, [12,14,15]) branching problems could be
studied purely algebraic and combinatorial approaches;

• (continuous spectrum) branching problems may be of analytic feature
(e.g., Example 2).

A.2. Estimate of multiplicities for the restriction Π|G′ :

• multiplicities may be infinite (see Example 2);
• multiplicities may be at most one in special settings (e.g., theta corre-

spondence [7], Gross–Prasad conjecture [6], real forms of strong Gelfand
pairs [35], visible actions [17], etc.).

The goal of Stage A in branching problems is to analyze aspects such as
A.1 and A.2 in complete generality. If multiplicities of the restriction Π|G′

are known a priori to be bounded in Stage A, one might be tempted to
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find irreducible decompositions (Stage B), and moreover to construct explicit
symmetry breaking operators (Stage C). Thus, results in Stage A might also
serve as a foundation for further detailed study of the restriction Π|G′ (Stages
B and C).

This article is divided into three parts. First, we discuss Stage A in
Section 3 with focus on multiplicities in both regular representations on ho-
mogeneous spaces and branching problems based on a joint work [26] with
T. Oshima, and give some perspectives of the subject through the classifi-
cation theory [23] joint with T. Matsuki about the pairs (G,G′) for which
multiplicities in branching laws are always finite.

Second, we take (G,G′) to be (O(n + 1, 1), O(n, 1)) as an example of
such pairs, and explain the first test case for the classification problem of
symmetry breaking operators (Stages B and C). The choice of our setting
is motivated by conformal geometry, and is also related to the local Gross–
Prasad conjecture [6, 31]. We survey the classification theory of conformally
covariant SBO for differential forms on the model space (X,Y ) = (Sn, Sn−1):
for local operators based on a recent book [21] with T. Kubo and M. Pevzner
in Section 5 and for nonlocal operators based on a recent monograph [29]
with B. Speh and its generalization [30] in Section 6.

In Section 7, we discuss an ongoing work with Speh on some applica-
tions of these results to a question from automorphic form theory, in par-
ticular, about the periods of irreducible representations with nonzero (g,K)-
cohomologies. The resulting condition to admit periods is compared with a
recent L2-theory [1] joint with Y. Benoist.

Detailed proofs of the new results in Sections 6 and 7 will be given in
separate papers [20,30].

Notation. N = {0, 1, 2, · · · }.

2. Preliminaries: smooth representations

We would like to treat non-unitary representations as well for the study of
branching problems. For this we recall some standard concepts of continuous
representations of Lie groups.

Suppose Π is a continuous representation of G on a Banach space V . A
vector v ∈ V is said to be smooth if the map G → V , g 7→ Π(g)v is of C∞-
class. Let V ∞ denote the space of smooth vectors of the representation (Π, V ).
Then V ∞ is a G-invariant dense subspace of V , and V ∞ carries a Fréchet
topology with a family of semi-norms ∥v∥i1···ik := ∥dΠ(Xi1) · · · dΠ(Xik)v∥,
where {X1, . . . , Xn} is a basis of the Lie algebra g0 of G. Thus we obtain a
continuous Fréchet representation (Π∞, V ∞) of G.

Suppose now that G is a real reductive linear Lie group, K a maximal
compact subgroup of G, and g the complexification of the Lie algebra g0 of G.
Let HC denote the category of Harish-Chandra modules whose objects and
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morphisms are (g,K)-modules of finite length and (g,K)-homomorphisms,
respectively. Let Π be a continuous representation of G on a complete locally
convex topological vector space V . Assume that the G-module Π is of finite
length. We say Π is admissible if

dimC HomK(τ,Π|K) < ∞

for all irreducible finite-dimensional representations τ of K. We denote by VK

the space of K-finite vectors. Then VK ⊂ V ∞ and the Lie algebra g leaves
VK invariant. The resulting (g,K)-module on VK is called the underlying
(g,K)-module of Π, and will be denoted by ΠK .

For any admissible representation Π on a Banach space V , the smooth
representation (Π∞, V ∞) depends only on the underlying (g,K)-module. We
say (Π∞, V ∞) is an admissible smooth representation. By the Casselman–
Wallach globalization theory, (Π∞, V ∞) has moderate growth, and there is
a canonical equivalence of categories between the category HC of Harish-
Chandra modules and the category of admissible smooth representations of
G ( [37, Chap. 11]). In particular, the Fréchet representation Π∞ is uniquely
determined by its underlying (g,K)-module. We say Π∞ is the smooth glob-
alization of ΠK ∈ HC.

For simplicity, by an irreducible smooth representation, we shall mean

an irreducible admissible smooth representation of G. We denote by Ĝsmooth

the set of equivalence classes of irreducible smooth representations of G. Via

the underlying (g,K)-modules, we may regard the unitary dual Ĝ as a subset

of Ĝsmooth.

3. Multiplicities in symmetry breaking

Let G ⊃ G′ be a pair of real reductive groups. For Π ∈ Ĝsmooth and

π ∈ Ĝ′
smooth, we denote by HomG′(Π|G′ , π) the space of symmetry breaking

operators, and define the multiplicity (for smooth representations) by

m(Π, π) := dimC HomG′(Π|G′ , π) ∈ N ∪ {∞}. (1)

Note that m(Π, π) is well-defined without the unitarity assumption on Π and
π.

We established a geometric criterion for multiplicities to be finite (more
strongly, to be bounded) as follows:

Theorem 3 ( [26], see also [13, 18]). Let G ⊃ G′ be a pair of real reductive
algebraic Lie groups.

(1) The following two conditions on the pair (G,G′) are equivalent:

(FM) (finite multiplicities) m(Π, π) < ∞ for all Π ∈ Ĝsmooth and π ∈
Ĝ′

smooth;
(PP) (geometry) (G×G′)/diag(G′) is real spherical.

(2) The following two conditions on the pair (G,G′) are equivalent:
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(BM) (bounded multiplicities) There exists C > 0 such that

m(Π, π) ≤ C for all Π ∈ Ĝsmooth and π ∈ Ĝ′
smooth;

(BB) (complex geometry) (GC ×G′
C)/diag(G

′
C) is spherical.

Here we recall that a connected complex manifold XC with holomorphic
action of a complex reductive group GC is called spherical if a Borel subgroup
of GC has an open orbit in XC. There has been an extensive study of spherical
varieties in algebraic geometry and finite-dimensional representation theory.
In contrast, concerning the real setting, in search of a good framework for
global analysis on homogeneous spaces which are broader than the usual (e.g.,
reductive symmetric spaces), the author proposed:

Definition 4 ( [13]). Let G be a real reductive Lie group. We say a connected
smooth manifold X with smooth G-action is real spherical if a minimal par-
abolic subgroup P of G has an open orbit in X.

We discovered in [13,26] that these geometric properties (spherical/real
spherical) are exactly the conditions that a reductive group G has a “strong
grip” of the space of functions onX in the context of multiplicities of (infinite-
dimensional) irreducible representations occurring in the regular representa-
tion of G on C∞(X):

Theorem 5 ( [26, Thms. A and C]). Suppose G is a real reductive linear Lie
group, H is an algebraic reductive subgroup, and X = G/H.

(1) The homogeneous space X is real spherical if and only if

dimC HomG(π,C
∞(X)) < ∞ for all π ∈ Ĝsmooth.

(2) The complexification XC is spherical if and only if

sup
π∈Ĝsmooth

dimC HomG(π,C
∞(X)) < ∞.

Methods of proof. In [26], we obtained not only the equivalences in Theo-
rem 5 but also quantitative estimates of the dimension. The proof for the
upper estimate in [26] uses the theory of regular singularities of a system of
partial differential equations by taking an appropriate compactification with
normal crossing boundaries, whereas the proof for the lower estimate uses
the construction of a “generalized Poisson transform”. Furthermore, these
estimates hold for the representations of G on the space of smooth sections
for equivariant vector bundles over X = G/H without assuming that H is
reductive. For instance, this applies also to the case where H is a maximal
unipotent subgroup of G, giving a Kostant–Lynch estimate to the dimension
of the space of Whittaker vectors ( [26, Ex. 1.4 (3)]).

Back to Theorem 3 on branching problems, the geometric estimates of
multiplicities is proved by applying Theorem 5 to the pair (G×G′, diag(G′))
together with some careful arguments on topological vector spaces ( [18,
Thm. 4.1]).
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Classification theory. Theorem 3 serves Stage A in branching problems, and
singles out nice settings in which we could expect to go further on Stages B
and C of the detailed study of symmetry breaking.

So it would be useful to develop a classification theory of pairs (G,G′)
for which the geometric criteria (PP) or (BB) in Theorem 3 are satisfied.

• The geometric criterion (BB) in Theorem 3 appeared in the context
of finite-dimensional representations already in 1970s, and such pairs
(GC, G

′
C) were classified infinitesimally, see [32]. The classification of real

forms (G,G′) satisfying the condition (BB) follows readily from that of
complex pairs (GC, G

′
C), see [23]. Sun–Zhu [35] proved that the constant

C in Theorem 3 can be taken to be one (multiplicity-free theorem) in
many of real forms (G,G′), see [31, Rem. 2.2] for multiplicity-two results
for some other real forms.

• The pairs (‵G× ‵G, diag(‵G)) for real reductive groups ‵G satisfying the
geometric criterion (PP) in Theorem 3 were classified in [13].

• More generally, symmetric pairs (G,G′) satisfying the geometric crite-
rion (PP) in Theorem 3 was classified by the author and Matsuki [23].
The methods are a linearization technique and invariants of quivers.

In turn, these classification results give an a priori estimate of multiplicities
in branching problems by Theorem 3.

Example 6 (finite multiplicities for the fusion rule, [13, Ex. 2.8.6], see also [18,
Cor. 4.2]). SupposeG is a simple Lie group. Then the following two conditions
are equivalent:

(i) dimC HomG(π1 ⊗ π2, π3) < ∞ for all π1, π2, π3 ∈ Ĝsmooth;
(ii) G is either compact or locally isomorphic to SO(n, 1).

Example 7. Let (G,G′) = (O(p+ r, q), O(r)×O(p, q)).

(1) m(Π, π) < ∞ for all Π ∈ Ĝsmooth and π ∈ Ĝ′
smooth.

(2) m(Π, π) ≤ 1 for all Π ∈ Ĝsmooth and π ∈ Ĝ′
smooth if and only if p+q+r ≤

4 or r = 1.

See [18] for the further classification theory of symmetric pairs (G,G′)
that guarantee finite multiplicity properties for symmetry breaking.

4. Conformally covariant SBOs

This section discusses a question on symmetry breaking with respect to a
pair of conformal manifolds X ⊃ Y .

Let (X, g) be a Riemannian manifold. Suppose that a Lie group G acts
conformally on X. This means that there exists a positive-valued function
Ω ∈ C∞(G×X) (conformal factor) such that

L∗
hgh·x = Ω(h, x)2gx for all h ∈ G, x ∈ X,
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where we write Lh : X → X,x 7→ h · x for the action of G on X. When X is
oriented, we define a locally constant function

or : G×X −→ {±1}

by or (h)(x) = 1 if (Lh)∗x : TxX −→ TLhxX is orientation-preserving, and
= −1 if it is orientation-reversing.

Since both the conformal factor Ω and the orientation map or satisfy

cocycle conditions, we can form a family of representations ϖ
(i)
λ,δ of G with

parameters λ ∈ C and δ ∈ Z/2Z on the space E i(X) of differential i-forms
on X (0 ≤ i ≤ dimX) defined by

ϖ
(i)
λ,δ(h)α := or (h)δΩ(h−1, ·)λL∗

h−1α, (h ∈ G). (2)

The representation ϖ
(i)
λ,δ of the conformal group G on E i(X) will be sim-

ply denoted by E i(X)λ,δ, and referred to as the conformal representation on
differential i-forms.

Suppose that Y is an orientable submanifold. Then Y is endowed with
a Riemannian structure g|Y by restriction, and we can define in a similar way
a family of representations Ej(Y )ν,ε (ν ∈ C, ε ∈ Z/2Z, 0 ≤ j ≤ dimY ) of the
conformal group of (Y, g|Y ).

We consider the full group of conformal diffeomorphisms and its sub-
group defined as

Conf(X) := {conformal diffeomorphisms of (X, g)},
Conf(X;Y ) := {φ ∈ Conf(X) : φ(Y ) = Y }. (3)

Then there is a natural group homomorphism

Conf(X;Y ) → Conf(Y ), φ 7→ φ|Y . (4)

Definition 8. A linear map T : E i(X)λ,δ → Ej(Y )ν,ε is a conformally covari-
ant symmetry breaking operator (conformally covariant SBO, for short) if T
intertwines the actions of the group Conf(X;Y ).

We shall write

H

(
i

λ, δ

∣∣∣∣ j
ν, ε

)
:= HomConf(X;Y )(E i(X)λ,δ|Conf(X;Y ), Ej(Y )ν,ε) (5)

∪

D

(
i

λ, δ

∣∣∣∣ j
ν, ε

)
:= DiffConf(X;Y )(E i(X)λ,δ|Conf(X;Y ), Ej(Y )ν,ε) (6)

for the space of continuous conformally covariant SBOs and its subspace of
differential SBOs, namely, those operators T satisfying the local property:
Supp(Tα) ⊂ Supp(α) for all α ∈ E i(X)λ,δ. This support condition is a gen-
eralization of Peetre’s characterization [34] of differential operators in the
X = Y case ( [27, Def. 2.1], for instance).

We address a general problem motivated by conformal geometry:
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Problem 9 (conformally covariant symmetry breaking operators). Let X ⊃ Y
are orientable Riemannian manifolds.

(1) Determine when H

(
i

λ, δ

∣∣∣∣ j
ν, ε

)
̸= {0}.

(2) Determine when D

(
i

λ, δ

∣∣∣∣ j
ν, ε

)
̸= {0}.

(3) Construct an explicit basis of H

(
i

λ, δ

∣∣∣∣ j
ν, ε

)
and D

(
i

λ, δ

∣∣∣∣ j
ν, ε

)
.

Problem 9 (1) and (2) may be thought of as Stage B of branching
problems in Section 1, while Problem 9 (3) as Stage C.

In the case where X = Y and i = j = 0, a classical prototype of such
operators is a second order differential operator called the Yamabe operator

∆ +
n− 2

4(n− 1)
κ ∈ DiffConf(X)(E0(X)n

2 −1,δ, E0(X)n
2 +1,δ),

where n is the dimension of the manifold X, ∆ is the Laplacian, and κ is
the scalar curvature, see [24, Thm. A], for instance. Conformally covariant
differential operators of higher order are also known: the Paneitz operator
(fourth order) [33], or more generally, the so-called GJMS operators [5] are
such operators. Turning to operators acting on differential forms, we observe
that the exterior derivative d, the codifferential d∗, and the Hodge ∗ operator
are also examples of conformally covariant operators on differential forms,
namely, j = i + 1, i − 1, and n − i, respectively, with an appropriate choice
of the parameter (λ, ν, δ, ε). As is well-known, Maxwell’s equations in four-
dimension can be expressed in terms of conformally covariant operators on
differential forms.

Let us consider the general case where X ̸= Y . From the viewpoint of
conformal geometry, we are interested in “natural operators” T that persist
for all pairs of Riemannian manifoldsX ⊃ Y of fixed dimension. We note that
Problem 9 is trivial for individual pairs X ⊃ Y such that Conf(X;Y ) = {e},
because any linear operator becomes automatically an SBO. In contrast,
the larger Conf(X;Y ) is, the more constraints on T will be imposed. Thus
we highlight the case of large conformal groups as the first step to attack
Problem 9.

In general, the conformal group cannot be so large. We recall from [10,
Thms. 6.1 and 6.2] the upper estimate of the dimension of the conformal
group:

Fact 10. Let X be a compact Riemannian manifold of dimension n ≥ 3. Then
dimConf(X) ≤ 1

2 (n+1)(n+2). The equality holds if and only if (Conf(X), X)
is locally isomorphic to (O(n+ 1, 1), Sn).

Concerning a pair (X,Y ) of Riemannian manifolds, we obtain the fol-
lowing.
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Proposition 11. Let X ⊃ Y be Riemannian manifolds of dimension n and m,
respectively. Then dimConf(X;Y ) ≤ 1

2 (m+ 1)(m+ 2). The equality holds if
X = Sn and Y is a totally geodesic submanifold which is isomorphic to Sm.

Proof. The first inequality follows from Fact 10 via the group homomor-
phism (4). If (X,Y ) = (Sn, Sm), then Conf(X) and Conf(X;Y ) are locally
isomorphic to O(n + 1, 1) and O(m + 1, 1), respectively, whence the second
assertion. □

From now on, we shall consider the pair

(X,Y ) = (Sn, Sn−1), (7)

as a model case with largest symmetries, where Y = Sn−1 is embedded as a
totally geodesic submanifold of X = Sn. As mentioned, the pair
(Conf(X),Conf(X;Y )) is locally isomorphic to the pair

(G,G′) = (O(n+ 1, 1), O(n, 1)). (8)

We remind that this pair appeared in Section 3 on branching problems, see
the case where r = 1 in Example 7. As an a priori estimate in Stage A, see
Theorem 3 (2), Example 7, [21, Thm. 2.6], and [35], we have

dimC H

(
i

λ, δ

∣∣∣∣ j
ν, ε

)
≤ 4 for any (i, j, λ, ν, δ, ε). (9)

In turn, the estimate (9) gives an upper bound for the dimension of the space
of “natural” conformal covariant SBOs, E i(X)λ,δ → Ej(Y )ν,ε that persist for
all pairs X ⊃ Y of codimension one. In the next two sections, we explain
briefly a solution to Problem 9 (Stages B and C) in the model case (7).

5. Classification theory of conformally covariant differential
SBOs

In the case where symmetry breaking operators are given as differential op-
erators, Problem 9 in the model space (7) was solved in a joint work [21] with
Kubo and Pevzner. In this section, we introduce its flavors briefly. First of all,
the solution to Problem 9 (2), a question in Stage B of branching problems,
may be stated as follows.

Theorem 12. Suppose n ≥ 3, 0 ≤ i ≤ n, 0 ≤ j ≤ n − 1, λ, ν ∈ C, and
δ, ε ∈ {±}. Then the following three conditions on 6-tuple (i, j, λ, ν, δ, ε) are
equivalent:

(i) D

(
i

λ, δ

∣∣∣∣ j
ν, ε

)
̸= {0}.

(ii) dimC D

(
i

λ, δ

∣∣∣∣ j
ν, ε

)
= 1.
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(iii) The parameter (i, j, λ, ν, δ, ε) satisfies

{j, n− j − 1} ∩ {i− 2, i− 2, i, i+ 1} ̸= ∅, (10)

ν − λ ∈ N,
a certain condition Q ≡ Qi,j on (λ, ν, δ, ε). (11)

The first condition (10) concerns the degrees i and j of differential forms.
Loosely speaking, conformally covariant differential SBOs exist only if the
degrees i and j are close to each other or the sum i + j is close to n. The
last “additional” condition Qi,j depends on (i, j). We give the condition Qi,j

explicitly in the following two cases:

• Case j = i. Qi,i amounts to ν ∈ C and δ ≡ ε ≡ ν − λ mod 2.
• Case j = i + 1. For 1 ≤ i ≤ n − 2, Qi,i+1 amounts to (λ, ν) = (0, 0)

and δ ≡ ε ≡ 0 mod 2; for i = 0, Q0,1 amounts to λ ∈ −N, ν = 0, and
δ ≡ ε ≡ λ mod 2.

See [21, Thm. 1.1] for the precise conditions in the other remaining six cases.
Second, we go on with Problem 9 (3) (Stage C) about the construction

of symmetry breaking operators. For this we work with the pair (Rn,Rn−1) of
the flat Riemannian manifolds which are conformal to (Sn\{pt}, Sn−1\{pt})
via the stereographic projection.

We begin with a scalar-valued operator (Juhl’s operator, [8]). Suppose
that our hyperplane Y = Rn−1 of X = Rn is defined by xn = 0 in the
coordinates (x1, · · · , xn). For µ ∈ C and k ∈ N, we define a homogeneous
differential operator of order k by

Dµ
k :=

∑
0≤i≤[ k2 ]

ai(µ)(−∆Rn−1)i
∂k−2i

∂xk−2i
n

: C∞(Rn) → C∞(Rn),

where {ai(µ)} are the coefficients of the Gegenbauer polynomial:

Cµ
k (t) =

∑
0≤i≤[ k2 ]

ai(µ)t
k−2i.

Building on the scalar-valued operators, we introduced in [21] matrix-valued
differential symmetry breaking operators

Di→j
λ,k : E i(Rn) → Ej(Rn−1)

for each pair (i, j) satisfying (10). We illustrate a concrete formula when
j = i. We set

Di→i
λ,k := Restxn=0 ◦ (Dµ+1

k−2dd
∗ + aDµ

k−1dι ∂
∂xn

+ bDµ
k ),

where d∗ is the codifferential, ι ∂
∂xn

: E i(Rn) → Ej(Rn−1) is the inner multi-

plication of the vector field ∂
∂xn

, and

a :=

{
1 (k: odd)

λ+ i− n
2 + k (k: even)

, b :=
λ+ k

2
, µ := λ+ i− n− 1

2
.
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Thus the operator Di→i
λ,k is obtained as the composition of a

HomC(
∧

i(Cn),
∧

i(Cn−1))-valued homogeneous differential operator on Rn

of order k with the restriction map to the hyperplane Rn−1.
The matrix-valued differential operators Di→j

λ,k : E i(Rn) → Ej(Rn−1)

were defined in [21, Chap. 1] also for the other seven cases when the con-
dition (iii) in Theorem 12 is fulfilled.

Methods of proof in finding the formulæ for Di→j
λ,k . The approach in [21]

is based on the F-method [16], which reduces a problem of finding the oper-

ators Di→j
λ,k to another problem of finding polynomial solutions to a system

of ordinary differential equations (F-system). An alternative approach for
j = i − 1, i is given in [20] by taking the residues of the regular symmetry
breaking operators (see also Section 6 below).

With the aforementioned operators Di→j
λ,k , Problem 9 (3) for differential

operators were solved in [21, Thms. 1.4–1.8], which may be thought of as an
answer to Stage C of branching problems. We illustrate the results with the
following two theorems in the case where j = i and i+ 1.

Theorem 13 (j = i case). Suppose ν ∈ C, k := ν − λ ∈ N, and δ ≡ ε ≡ k
mod 2.

(1) The linear map Di→i
λ,k extends to a conformally covariant symmetry

breaking operator from E i(Sn)λ,δ to E i(Sn−1)ν,ε.
(2) Conversely, any conformally covariant differential symmetry breaking

operator from E i(Sn)λ,δ to E i(Sn−1)ν,ε is proportional to Di→i
λ,k , or its

renormalization ( [21, (1.10)]).

Theorem 14 (j = i+ 1 case). (1) Suppose 1 ≤ i ≤ n − 2, (λ, ν) = (n −
2i, n− 2i+ 3), and δ ≡ ε ≡ 1 mod 2. Then the linear map

Rest ◦ d : E i(Sn)λ,δ → E i+1(Sn−1)ν,ε

is a conformally covariant SBO. Conversely, a nonzero conformally co-
variant differential SBO from E i(Sn)λ,δ to E i+1(Sn−1)ν,ε exists only for
the above parameters, and such an operator is proportional to Rest ◦ d.

(2) Suppose i = 0, λ ∈ {0,−1,−2, · · · }, ν = 0, and δ ≡ ε ≡ λ mod 2. Then
the linear map

Restxn=0 ◦ D
λ−n−1

2

−λ ◦ d : E0(Rn) → E1(Rn−1)

extends to a conformally covariant SBO from E0(Sn)λ,δ to E1(Sn−1)0,ε.
Conversely, a nonzero conformally covariant differential SBO from
E0(Sn)λ,δ to E1(Sn−1)ν,ε exists only for the above parameters, and such
an operator is proportional to the above operator.

Remark 15.

(1) By using the Hodge ∗ operator on X or its submanifold Y , the other
six cases can be reduced to either the j = i case (Theorem 13) or the
j = i + 1 case (Theorem 14). The construction and classification of
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differential symmetry breaking operators in the model space (7) is thus
completed. Its generalization to the pseudo-Riemannian case is proved
in [22].

(2) Special cases of Theorem 13 were known earlier. The case j = i = 0
(scalar-valued case) was discovered by A. Juhl [8]. Different approaches
have been proposed by Fefferman–Graham [4], Kobayashi–Ørsted–Sou-
ček–Somberg [25], and Clerc [3] among others. Our approach uses an
algebraic Fourier transform of Verma modules (F-method), see [16,27].

(3) The case n = 2 is closely related to the celebrated Rankin–Cohen bidif-
ferential operator via holomorphic continuation [28].

6. Classification theory: nonlocal conformally covariant SBOs

In this section we consider nonlocal operators such as integral operators as
well, and thus complete the classification problem (Problem 9) for the model
space (X,Y ) = (Sn, Sn−1).

Building on the classification results on D

(
i

λ, δ

∣∣∣∣ j
ν, ε

)
in Section 5, we

want to

• find dimC H

(
i

λ, δ

∣∣∣∣ j
ν, ε

)
/D

(
i

λ, δ

∣∣∣∣ j
ν, ε

)
;

• find a basis in H

(
i

λ, δ

∣∣∣∣ j
ν, ε

)
modulo D

(
i

λ, δ

∣∣∣∣ j
ν, ε

)
.

This idea fits well with the general strategy to understand the whole space
of symmetry breaking operators between principal series representations of
a reductive group and its subgroup G′ by using the filtration given by the
support of distribution kernels [29, Chap. 11, Sec. 2]. Thus we start with the
general setting where (G,G′) is a pair of real reductive Lie groups. Let P =
MAN and P ′ = M ′A′N ′ be Langlands decompositions of minimal parabolic
subgroups of G and G′, respectively. For an irreducible representation (σ, V )
of M and a one-dimensional representation Cλ of A, we define a principal
series representation of G by unnormalized parabolic induction

I(σ, λ) := IndGP (σ ⊗ Cλ ⊗ 1).

Similarly, we define that of the subgroup G′, to be denoted by

J(τ, ν) := IndG
′

P ′(τ ⊗ Cν ⊗ 1)

for an irreducible representation (τ,W ) of M ′ and a one-dimensional repre-
sentation Cν of A′.

By abuse of notation, we identify a representation with its representa-
tions space, and set Vλ := V ⊗Cλ and Wν := W⊗Cν . Let V∗

λ be the dualizing
bundle of theG-homogeneous bundleG×PVλ over the real flag manifoldG/P .
Then there is a natural linear bijection between the space of symmetry break-
ing operators and the space of invariant distributions (see [29, Prop. 3.2]):

HomG′(Iδ(σ, λ)|G′ , Jε(τ, ν))
∼→ (D′(G/P,V∗

λ)⊗Wν)
∆(P ′), T 7→ KT , (12)
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Suppose now that the condition (PP) in Theorem 3 is fulfilled. Then
this implies that #(P ′\G/P ) < ∞, see [26, Rem. 2.5 (4)]. We denote by
{Zα} the totality of P ′-orbits on G/P . We define a partial order α ≺ β by
Zα ⊂ Zβ , the closure of Zβ in G/P . Then there is the unique minimal index
αmin corresponding to the closed P ′-orbit in G/P , and maximal ones β1, · · · ,
βN corresponding to open P ′-orbits in G/P .

We observe that the support Supp(KT ) of the distribution kernel KT is
a closed P ′-invariant subset of G/P , and accordingly, define

H(α) ≡ Hσ,λ
τ,ν (α) := {T ∈ HomG′(I(σ, λ)|G′ , J(τ, ν)) : Supp(KT ) ⊂ Zα}

via the isomorphism (12). Clearly, H(α) ⊂ H(β) if α ≺ β. It follows from [27,
Lem. 2.3] that

H(αmin) = DiffG′(I(σ, λ)|G′ , J(τ, ν)).

In contrast to the smallest support Zαmin , a symmetry breaking operator T is
called regular ( [29, Def. 3.3]) if Supp(KT ) contains Zβj

for some 1 ≤ j ≤ N .
We now return to the special setting (8). Then the Levi subgroup MA

of the minimal parabolic subgroup P = MAN of G = O(n + 1, 1) is given
by (O(n) × O(1)) × R. For 0 ≤ i ≤ n, δ ∈ {±}, and λ ∈ C, we consider the
outer tensor product representation

∧
i(Cn) ⊠ δ ⊠ Cλ of MA, and extend it

to P by letting N act trivially. The resulting P -module is denoted simply by∧
i(Cn)⊗ δ ⊗ Cλ. We define an unnormalized principal series representation

of G = O(n+ 1, 1) by

Iδ(i, λ) ≡ I(
∧i(Cn)⊠ δ, λ) := IndGP (

∧i(Cn)⊗ δ ⊗ Cλ).

Lemma 16. Let 0 ≤ i ≤ n, δ ∈ {±}, λ ∈ C.
(1) The G-module Iδ(i, λ) is irreducible if λ ̸∈ Z.
(2) There is a natural isomorphism E i(Sn)λ,δ ≃ I(−1)iδ(i, λ + i) as G-

modules.

For the proof of Lemma 16 (2), see [21, Prop. 2.3].
Lemma 16 (2) suggests that we can reformulate Problem 9 about dif-

ferential forms on the pair of conformal manifolds (7) into a question of
symmetry breaking operators between principal series representations for

the pair (8) of reductive groups. We write D̃ and H̃ if we use Iδ(i, λ) and

Jε(j, ν) = IndG
′

P ′(
∧

j(Cn−1) ⊗ ε ⊗ Cν) instead of D and H in (6) and (5),
respectively. By Lemma 16 (2), we have

H

(
i

λ, δ

∣∣∣∣ j
ν, ε

)
= H̃

(
i

λ+ i, (−1)iδ

∣∣∣∣ j
ν + j, (−1)jε

)
and similarly for D and D̃. Thus we want to

• find dimC H̃

(
i

λ, δ

∣∣∣∣ j
ν, ε

)
/D̃

(
i

λ, δ

∣∣∣∣ j
ν, ε

)
;

• find a basis in H̃

(
i

λ, δ

∣∣∣∣ j
ν, ε

)
modulo D̃

(
i

λ, δ

∣∣∣∣ j
ν, ε

)
.

First, we obtain:
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Theorem 17 (localness theorem). If j ̸= i− 1 or i, then

H̃

(
i

λ, δ

∣∣∣∣ j
ν, ε

)
= D̃

(
i

λ, δ

∣∣∣∣ j
ν, ε

)
.

In the setting (8), there exists a unique open P ′-orbit in G/P , and
accordingly, there exists at most one family of (generically) regular symmetry
breaking operators from the G-modules Iδ(i, λ) to the G′-modules Jε(j, ν).
We prove that such a family exists if and only if j = i − 1 or i, and it
plays a crucial role in the classification problem of SBOs modulo the space

D̃

(
i

λ, δ

∣∣∣∣ j
ν, ε

)
of differential SBOs as follows. We introduce the set of “special

parameters” by

Ψsp :=
{
(λ, ν, δ, ε) ∈ C2 × {±}2 : ν − λ ∈ 2N when δε = 1

or ν − λ ∈ 2N+ 1 when δε = −1} . (13)

Theorem 18. Suppose j = i − 1 or i, and δ, ε ∈ {±}. Then there exists a
family of continuous G′-homomorphism

Ãi,j
λ,ν,δε : Iδ(i, λ) → Jε(j, ν)

such that Ãi,j
λ,ν,δε depends holomorphically on (λ, ν) ∈ C2 and that the set of

the zeros of Ãi,j
λ,ν,δε is discrete in (λ, ν) ∈ C2.

(1) If (λ, ν, δ, ε) ̸∈ Ψsp then Ãi,j
λ,ν,δε ̸= 0 and

H̃

(
i

λ, δ

∣∣∣∣ j
ν, ε

)
= CÃi,j

λ,ν,δε ⫌ D̃

(
i

λ, δ

∣∣∣∣ j
ν, ε

)
= {0}.

(2) If (λ, ν, δ, ε) ∈ Ψsp and Ãi,j
λ,ν,δε ̸= 0, then

H̃

(
i

λ, δ

∣∣∣∣ j
ν, ε

)
= D̃

(
i

λ, δ

∣∣∣∣ j
ν, ε

)
.

(3) If (λ, ν, δ, ε) ∈ Ψsp and Ãi,j
λ,ν,δε = 0, then

dimC H̃

(
i

λ, δ

∣∣∣∣ j
ν, ε

)
= dimC D̃

(
i

λ, δ

∣∣∣∣ j
ν, ε

)
+ 1.

The discrete set {(i, j, λ, ν, δ, ε) : Ãi,j
λ,ν,δε = 0} has been determined

in [20], and thus the classification of conformally covariant symmetry breaking
operators

E i(X)λ,δ → Ej(Y )ν,ε

for the model space (X,Y ) = (Sn, Sn−1) is accomplished. A detailed proof
for the classification together with some important properties of symmetry
breaking operators (Stage C) such as

• (K,K ′)-spectrum (a generalized eigenvalue),
• functional equations,
• residue formulæ,
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will be given in separate papers (see [20] for the residue formulæ, and [30] for
the classification).

7. Application to periods and automorphic form theory

Let G be a reductive group, and H a reductive subgroup.

Definition 19. An irreducible admissible smooth representation Π of G is
H-distinguished if HomH(Π|H ,C) ̸= {0}. In this case, it is also said that
Π has an H-period. By the Frobenius reciprocity theorem, the condition is
equivalent to HomG(Π, C∞(G/H)) ̸= {0}.

In this section, we discuss an application of symmetry breaking opera-
tors to find periods (Definition 19) of irreducible unitary representations. We
highlight the case when Π has nonzero (g,K)-cohomologies. The motivation
comes from automorphic form theory, of which we now recall a prototype.

Fact 20 (Matsushima–Murakami, [2]). Let Γ be a cocompact discrete subgroup
of G. Then we have

H∗(Γ\G/K;C) ≃
⊕
Π∈Ĝ

HomG(Π, L2(Γ\G))⊗H∗(g,K; ΠK).

The left-hand side gives topological invariants of the locally symmetric
space M = Γ\G/K, whereas the right-hand side is described in terms of the
representation theory. We note that HomG(Π, L

2(Γ\G)) is finite-dimensional

for all Π ∈ Ĝ by a theorem of Gelfand–Piateski-Shapiro, and the sum is taken
over the following finite set

Ĝcohom := {Π ∈ Ĝ : H∗(g,K; ΠK) ̸= {0}},
which was classified by Vogan and Zuckerman [36].

In the case where G = O(n+1, 1), there are 2(n+1) elements in Ĝcohom.
Following the notation in [21, Thm. 2.6], we label them as

{Πℓ,δ : 0 ≤ ℓ ≤ n+ 1, δ ∈ {±}},
and we define

Index ≡ IndexG : Ĝcohom → {0, 1, · · · , n+ 1}, Πℓ,δ 7→ ℓ,

sgn ≡ sgnG : Ĝcohom → {±}, Πℓ,δ 7→ δ.

We illustrate the labeling by two examples:

Example 21 (one-dimensional representations). There are four one-dimensio-
nal representations of G, which are given as

{Π0,+ ≃ 1,Π0,−,Πn+1,+,Πn+1,− ≃ det}.

Example 22 (tempered representations). For n odd Π is the smooth represen-
tation of a discrete series representation of G iff Index(Π) = 1

2 (n+1), whereas
for n even Π is that of tempered representation of G iff Index(Π) ∈ {n

2 ,
n
2 +1}.
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We give a necessary and sufficient condition for the existence of sym-
metry breaking operators between irreducible representations of G and those
of the subgroup G′ with nonzero (g,K)-cohomologies:

Theorem 23 ( [30]). Let (G,G′) = (O(n+1, 1), O(n, 1)), and (Π, π) ∈ Ĝcohom×
Ĝ′

cohom. Then the following three conditions on (Π, π) are equivalent.

(i) HomG′(Π∞|G′ , π∞) ̸= {0}.
(ii) The outer tensor product representation Π∞ ⊠ π∞ is diag(G′)-distin-

guished.
(iii) IndexG(Π)− 1 ≤ IndexG′(π) ≤ IndexG(Π) and sgn(Π) = sgn(π).

The proof uses the symmetry breaking operators that are discussed in

Section 6 and the relationship between Ĝcohom and conformal representations
on differential forms on the sphere Sn summarized as below.

Lemma 24 ( [21, Thm. 2.6]). If Π ∈ Ĝcohom, then Π∞ can be realized as a
subrepresentation of E i(Sn)0,δ with i = IndexG(Π) and δ = (−1)isgnG(Π) if
IndexG(Π) ̸= n+1, and also as a quotient of E i(Sn)0,δ with i = IndexG(Π)−1
and δ = (−1)isgnG(Π) if IndexG(Π) ̸= 0.

To end this section, we consider a tower of subgroups of a reductive
group G:

{e} = G(0) ⊂ G(1) ⊂ · · · ⊂ G(n) ⊂ G(n+1) = G.

Accordingly, there is a family of homogeneous spaces with G-equivariant
quotient maps:

G = G/G(0) → G/G(1) → · · · → G/G(n+1) = {pt}.

In turn, we have natural inclusions of G-modules:

C∞(G) = C∞(G/G(0)) ⊃ C∞(G/G(1)) ⊃ · · · ⊃ C∞(G/G(n+1)) = C.

A general question is:

Problem 25. Let Π ∈ Ĝsmooth. Find k as large as possible such that Π is
G(k)-distinguished, or equivalently, such that the smooth representation Π∞

can be realized in C∞(G/G(k)).

Any irreducible admissible smooth representation of G can be realized in
the regular representation on C∞(G/G(0)) ≃ C∞(G) via matrix coefficients,
whereas irreducible representations that can be realized in C∞(G/G(0)) = C
is the trivial one-dimensional representation 1.

Suppose that G = O(n+ 1, 1), and consider a chain of subgroups of G
by

G(k) := O(k, 1) (0 ≤ k ≤ n+ 1).

Then G(n+1) = G, however, G(0) is not exactly {e} but G(0) = O(1) is a finite

group of order two. Accordingly, we consider Π ∈ Ĝcohom with sgn(Π) = +
below.
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Theorem 26. Suppose Π ∈ Ĝcohom with sgn(Π) = +. Then

HomG(Π
∞, C∞(G/G(k))) ̸= {0} for all k ≤ n+ 1− IndexG(Π).

Example 27 (one-dimensional representations). Suppose Π ∈ Ĝcohom with
sgnG(Π) = +. We consider two opposite extremal cases, i.e., IndexG(Π) = 0
and = n + 1. If IndexG(Π) = 0, then Π is isomorphic to the trivial one-
dimensional representation 1, and can be realized in C∞(G/G(k)) for all
0 ≤ k ≤ n + 1 as in Theorem 26. On the other hand, if IndexG(Π) = n + 1,
then Π is another one-dimensional representation of G (Πn+1,+ ≃ χ−+ with

the notation [21, (2.9)]). In this case, Π can be realized in C∞(G/G(k)) iff
k = 0, namely, iff G(k) = O(1).

Remark 28. The size of an (infinite-dimensional) representation could be mea-
sured by its Gelfand–Kirillov dimension, or more precisely, by its associated
variety or by the partial flag variety for which its localization can be realized
as a D-module. Then one might expect the following assertion:

the larger the isotropy subgroup G(k) is (i.e., the larger k is),

the “smaller” irreducible subrepresentations of C∞(G/G(k)) become. (14)

This is reflected partially in Theorem 26, however, Theorem 26 asserts
even sharper results. To see this, we set

r := min(IndexG(Π), n+ 1− IndexG(Π)).

Then the underlying (g,K)-module ΠK can be expressed as a cohomological
parabolic induction from a θ-stable parabolic subalgebra qr with Levi sub-
groupNG(qr) ≃ SO(2)r×O(n+1−2r, 1) ( [9], see also [11, Thm. 3]). Theorem
26 tells that if n + 1 ≤ 2k, then the larger k is, the smaller r = IndexG(Π)
becomes, namely, the smaller the (g,K)-modules that are cohomologically
parabolic induced modules from qr become. This matches (14). On the other
hand, if 2k ≤ n+ 1, then the constraints in Theorem 26 provide an interest-
ing phenomenon which is opposite to (14) because r = n + 1 − IndexG(Π),
and thus suggest sharper estimates than (14). For instance, the representa-
tion Πn+1,+(≃ χ−+) is “small” because it is one-dimensional, but it can be

realized in C∞(G/G(k)) only for k = 0 as we saw in Example 27.

Remark 29 (comparison with L2-theory). Theorem 26 implies that the smooth
representation Π∞ of a tempered representation Π with nonzero (g,K)-
cohomologies (see Example 22) occurs in C∞(G/G(k)) if k ≤ n

2 + 1. On
the other hand, for a reductive homogeneous space G/H, a general crite-
rion for the unitary representation L2(G/H) to be tempered was proved in
a joint work [1] with Y. Benoist by a geometric method. In particular, the
unitary representation L2(G/G(k)) is tempered if and only if k ≤ n

2 + 1,
see [1, Ex. 5.10].
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