Symmetry breaking for representations of rank
one orthogonal groups II

Toshiyuki Kobayashi,
Graduate School of Mathematical Sciences, and Kavli IPMU,
the University of Tokyo, 3-8-1 Komaba, Tokyo, 153-8914 Japan,

Birgit Speh
Department of Mathematics, Cornell University,
Ithaca, 14853-4201, NY, USA

September 10, 2018



Contents

(1__Introduction| 12
[2  Review of principal series representations| 27
21 Notaffonl . . . . . . . . . . 27
[2.1.1  Subgroups of G =O(n+1,1) and G’ =0O(n, 1) . ... 27
[2.1.2  Isotropic cone =|. . . . . . ... ..o 29
2.1.3 Characters y.y+ of the component group G/Gq| . . . . . 30
2.1.4  The center 35(g) and the Harish-Chandra isomorphism| 31
[2.2  Representations of the orthogonal group O(N)[. . . . . . . .. 33
2.2.1 Notation for irreducible representations of O(N)| . . . . 34
2.2.2  Branching laws for O(N) | SO(N)| . . . ... ... .. 35
2.2.3 Branching laws O(N) JO(N = 1) . . . ... ... ... 37

[2.3  Principal series representations I5(V, \) of the orthogonal group|
G=0OMm+1,1). ... ... .. 37
2.3.1 C*-induced representations I5(V, M[. . . . . . . .. .. 38
2.3.2  Tensoring with characters y.+ of G| . . . . . . . . . .. 39
2.3.3 K-structure of the principal series representation I5(V, \)| 40
[2.4  Principal series representations Is(i, \)| . . . . . .. ... ... 41
.41 35(g)-infinitesimal character of I;(i,\)] . . . . . . . .. 41

[2.4.2  K-type tormula of the principal series representations

G - - oo 41

2.4.3 Basic K-types of Is(i,\)| . . . . . .. ... ... 42
2.4.4 Reducibility of I5(s,\)| . . . .. .. ... ... ... 43
2.4.5 Irreducible subquotients of [5(4,7) . . . . . .. ... .. 44
[3 Symmetry breaking operators for principal series representations—|
l[general theory| 48
B.1  Generalitied . . . . . . ..o oo 48
[3.2 Summary ofresults| . . . ... ..o 48
3.2.1 Symmetry breaking operators when [V : W[ #£0 . . . . 49
3.2.2  Differential symmetry breaking operators when [V
WIEO. . ... 50
[3.2.3  Sporadic symmetry breaking operators when [V : W| =
0l . . 51
[3.2.4  Existence condition for regular symmetry breaking op-|
ratord . . . . . ... 52



[3.2.5 Integral operators, analytic continuation, and normal|

hzation factors . . . . . . .. ... 53

[3.3  Classification scheme of symmetry breaking operators: gen-|
ralcasel . . . . . ... ... 54

[3.4  Summary: vanishing of regular symmetry breaking operators|
ALl 57

[3.5 The classification of symmetry breaking operators for difter|
nfialformd . . . . . . . .. 58

[3.5.1  Vanishing condition for the regular symmetry breaking]
operators Aijw ...................... 59
[3.5.2 ifferential symmetry breaking operators| . . . . . . . . 60

3.5.3 Formula of the dimension of Homg (Is(2, \)|qr, J-(7,v))] 63
3.5.4  Classification of symmetry breaking operators Is(i, \) —|

)l o 64

[3.6 Consequences of main theorems in Sections 3.3] and ... 066
[3.6.1 Tempered representations| . . . . . .. ... ... ... 66
[3.6.2  Complementary series representations|. . . . . . . . . . 67
[3.6.3 Singular complementary series representations| . . . . . 68

13.7 _Actions of (G/Gy)” x (G'/G)” on symmetry breaking operators| 70
[B.7.1  Generalities: The action of character group of G x (]

fon {Home (11|, 7)} in the general case| . . . . . . .. 70
[3.7.2  Actions of the character group of the component group|
fon {Home (Is(i, M|ar, J-(5, o)) - - o o o 0 oo 71

[3.7.3  Actions of characters of the component group on Home (1L 5|¢r, 7, )| 74

[4 Symmetry breaking for irreducible representations with in-|
[finitesimal character p.| 75
M1 Main Theoremd . . . . . . . . . .. .. 75
4.2  Graphic description of the multiplicity for irreducible repre|

[sentations with infinitesimal character g . . . . . . . . . ... 76

[> Regular symmetry breaking operators| 78

B.1  Generalitied . . . . . . ... 78
[>.1.1  Distribution kernels of symmetry breaking operators| . 78
[>.1.2  Invariant bilinear forms on admissible smooth repre-|

[sentations and symmetry breaking operators| . . . . . . 80

[>.2  Distribution kernels of symmetry breaking operators for G =|

OO +LO. ... 82




[>.2.1 Bruhat and Iwasawa decompositions for G = O(n+1,1)| 83
[5.2.2  Daistribution kernels for symmetry breaking operators| . 85
5.2.3  Distribution sections for dualizing bundle V; ; over G//H 86
b.2.4  Pair of distribution kernels for symmetry breaking op-|

eratord . . . . . . ..o 89
[>.3  Distribution kernels near infinity{. . . . . . . . ... ... ... 91
[>.4 Vanishing condition of differential symmetry breaking opera-|
tors: Proof of Theorem 3 12A(1) . . . . . . . .. ... .. ... 93
(5.5 Upper estimate of the multiplicities| . . . . . . . .. ... ... 95
.6 Proof of Theorem 3.10t Analytic continuation of symmetry
breaking operators AE\/ZV L e e e e 96
5.6.1 Normalized distributions (,Zl‘;x)oo at infinity] . . . . . 97
5.6.2  Preliminary results in the scalar-valued casel . . . . . . 98
[>.6.3 Step 1. Very regular case|. . . . . . .. ... ... ... 100
[>.6.4  Step 2. Reduction to the scalar-valued casef. . . . . . . 101
[>.6.5  Step 3. Proof of holomorphic continuationl . . . . . . . 104
6.6 Proof of Theorem 3101 . . . . . . ... ... ... ... 105
[>.7  Existence condition for regular symmetry breaking operators|
L Proofof Theorem 39 . . . . . . .. .............. 106
5.8  Zeros of AE\/’E; : Proof of Theorem 3.15/ . . . . . . . . .. ... 107
5.9  Generic multiplicity-one theorem: Proot of Theorem 3.3. . . . 108
H.10 Lower estimate of the multiplicities) . . . . . . . . ... . ... 108
5.11 Renormalization of symmetry breaking operators AE\/K ... 110
5.11.1 Expansion of AE\/ZVW along v = constant| . . . .. .. .. 110
5.11.2 Renormalized regular symmetry breaking operator AE\/K 111
[6  Differential symmetry breaking operators| 114
[6.1 Differential operators between two manifolds| . . . . . . . . .. 114
(6.2 Duality for differential symmetry breaking operators|. . . . . . 116
[6.3 Parabolic subgroup compatible with a reductive subgroup|. . . 117
[6.4 Character identity for branching in the parabolic BGG category(119
[6.5 Branching laws for generalized Verma modules| . . . . . . . .. 120
[6.6 Multiplicity-one theorem for differential symmetry breaking]
[operators: Proof of Theorem 6.1](2) . . . . . .. ... ... .. 122
[6.7  Existence of differential symmetry breaking operators: Exten-|
[sion to special parameters| . . . . . ... ... 122
6.8 Proof of Theorem 3131 (2-b) . . . . . ... ... ... ... .. 124




[7 Minor summation formula related to exterior tensor A\'(C")[127
(.1 Some notation on indexsetsf . . . . . ... ... ... ... .. 127
[7.1.1 Exterior tensors A“(C™)| . . . .. ... ... ... ... 127
[7.1.2  Signatures for index sets| . . . . . . .. ... ... ... 128
[7.2  Minor determinant for v : R — {0} - O(N)| . ... ... .. 129
(.3 Minor summation formulael . . . . . . . ... oL 131
[ The Knapp—Stein intertwining operators revisited: Renor-|
malization and K-spectrum| 135
8.1 Basic K-types in the compact picturel . . . . . . . . ... ... 135
(8.2  K-picture and N-picture of principal series representations| . . 137
[8.2.1  Explicit K-finite vectors in the N-picturel. . . . . . . . 137
[8.2.2  Basic K-types in the N-picturel . . . . . . .. .. ... 139
[8.3  Knapp—Stein intertwining operator| . . . . . . ... ... ... 141
[8.3.1  Knapp—Stein intertwining operatorf . . . . . . . . . .. 141
[8.3.2  K-spectrum of the Knapp—Stein intertwining operator| 143
[8.3.3  Vanishing of the Knapp—Stein operator{ . . . . . . . .. 144
[8.3.4 Integration formula for the (K, K)-spectrum| . . . . . . 144
[8.4  Renormalization of the Knapp—Stein intertwining operator| . . 147
[8.5 Kernel of the Knapp—Stein operator|. . . . . . . .. . ... .. 148
9 Regular symmetry breaking operators Af\],j s from I5(i, \) to
Je(J. )l 150
9.1 Regular symmetry breaking operators Af\’{/, [ 151
[9.1.1 Existence condition for regular symmetry breaking op-|
eraford . . . . . . o 151
9.1.2  Construction of Ay, forje{i— 1} ... ... ... 151
9.2 Zeros of Aijyi : Proof of Theorem 3.19( . . . . . . . ... ... 153
[0.2.1 Residue formula of the regular symmetry breaking op-|
erator Af\’jm P 153
0.2.2  Zeros of Af\’jui ....................... 154
9.3 (K, K')-spectrum for symmetry breaking operators| . . . . . . 155
[0.3.1  Generalities: (K, K')-spectrum of symmetry breaking]
[operators . . . . . . ... ... 156
9.4 Explicit formula of (K, K')-spectrum on basic K-types for reg-|
ular symmetry breaking operators Af\’{,’ ] 157
9.5 Proof of vanishing results on (K, K')-spectrum|. . . . . . . . . 159




0.6 Proof of Theorem 9.8 on (K, K')-spectrum

for the normalized symmetry breaking operator j&f\jy Lo Is(i, ) —

Js(4,1) « o 160
0.6.1 Integral expression of (K, K')-spectrum|. . . . . . . .. 161
9.6.2 Integral formula of the (K, K')-spectrum| . . . . . . .. 164
0.7 Proof of Theorem 9.8 on the (K, K')-spectrum for ‘&;JV_ :
(i N) = Jos(v) oo . 167
[9.8  Matrix-valued functional equations| . . . . . . . . .. ... .. 171
0.8.1 Main results : Functional equations of Ag:jys ...... 171
9.8.2 Proot of tunctional equations] . . . . .. B 172
9.9 Renormalized symmetry breaking operator AZA]V I 175
9.9.1 Functional equations for the renormalized operator Az)fz JL75
9.9.2  Functional equations at middle degree for n even[ . . . 176
0.9.3 Functional equations for the renormalized operator Af\:_ll 178
9.9.4 Functional equations at middle degree for n odd| . . . . 178
9.10 Restriction map I5(4,\) = Js(4, ). . . ... ... ... .. 179
9.11 Image of the differential symmetry breaking operator (Cf\’jy .. 180
0.11.1 Surjectivity condition of C&i} .............. 180
9.11.2 Functional equation for Cﬁ\j ............... 182
0.11.3 The case when Tin_l_y =0 . ... ... . 184
9.11.4 Proof of Theorems 9.33land@34 . . . ... ... ... 186

(L0 Symmetry breaking operators for irreducible representations|
(with infinitesimal character p : Proof of Theorems 4.1| and

4.2 187

[10.1 Proof of the vanishing result (Theorem 4.1) . . . . ... . .. 187

[10.2 Construction of symmetry breaking operators from Il; 5 to m; 5
Proof of Theorem 421 . . . . . . ... ... ... ... ... ... 189

[10.2.1 Generators of symmetry breaking operators between|
[principal series representations having the trivial in-

[finitesimal character g . . . . . . . . . . ... ... .. 189
[10.2.2 Multiplicity-free property of symmetry breakingl . . . . 191
[10.2.3 Multiplicity-one property: Proof of Theorem 4.2] . . . . 191
10.2.4 First construction I, —» ms (1 <i<n)|. .. ... .. 193
10.2.5 Second construction II;s » m5 (0<:<n—1) ... . 195
10.2.6 Third construction IL;s — s . . . . . . ... ... .. 196




[10.3 Splitting of I5(m,m) and its symmetry breaking for (G, G") =

(O2m +1,1),002m, D)) . . ... ... ... . ... ..., 197
10.3.1 HOIHG/([(;(’ITL, m) e Jg(m, m)) with de =+ . . . . . .. 197
10.3.2 Home/ (Is(m, m)|cr, Jo(m,m)) with de = —| . . . . . .. 200
[10.4 Splitting of J.(m,m) and symmetry breaking operators for
(G,GY=(002m+2,1),02m+1,1) ............. 200
10.4.1 Home/ (Is(m + 1, m)|¢, Js(m,m)) for n =2m + 1| . . . 201
10.4.2 Homg (I_c(m,m)|gr, Jo(m,m)) forn =2m +1}. . . . . 205
[10.5 Symmetry breaking operators from II; 5 to i1 « - - - - - 205

(11 Application I: Some conjectures by B. Gross and D. Prasad:|
Restrictions of tempered representations of SO(n + 1,1) to|

SO(n, 1)| 210

[11.1 Vogan packets of tempered induced representations| . . . . . . 210
[11.2 Vogan packets of discrete series representations with integrall
infinitesimal character of SO(2m, 1) . . . . . . ... ... ... 212
[[1.3 Embedding the group G’ = SO(n — 2p, 2p + 1) into the group|
G=SOn—2p+1,2p+ 1) .. .. .. . . . .. ... .. 212
(11.4 The Gross—Prasad conjecture I: Tempered principal series rep-|
Lesenfafions . . . . . . . . . . ... 214
(11.5 The Gross—Prasad conjecture II. Tempered representations|
[with trivial infinitesimal character . . . . . . . . . .. .. .. 217

(11.5.1 The (irossfPrasad conjecture II: Symmetry breaking]
ffrom II,, (—1)m+1 to the discrete series representation 7,,| 218

[11.5.2 The Gross—Prasad conjecture II: Symmetry breaking]
[from the discrete series representation m,, to @,,_1 1) 220

(12 Application II: Periods, distinguished representations and|

K )-cohomologies 223
(g, K) g

12.1 Periods and O(n, 1)-distinguished representations| . . . . . . . 223
02.1.1 Periodd. . . . . . . .. . 223
[12.1.2 Distinguished representations| . . . . . . . .. ... .. 225

[12.1.3 Symmetry breaking operators from II;5 to w5 (j €

[ 226

[2.2 Proofs of Theorems 12 landIZH . . . . . . ... .. ... .. 226
[12.3 Bilinear forms on (g, K )-cohomologies via symmetry breaking|
|General theory for nonvanishing| . . . . . . ... ... .. ... 228

[12.3.1 Pull-back of (g, K )-cohomologies via symmetry breakingl229




[12.3.2 Nonvanishing of pull-back of (g, K')-cohomologies of A,

[via symmetry breaking| . . . . .. ... 230

[12.4 Nonvanishing bilinear forms on (g, K')-cohomologies via sym-|
metry breaking for (G,G7) = (O(n+ 1,1),0(n,D))]. . . . . .. 233
12.4.1 Nonvanishing theorem for O(n +1,1) | O(n,1)] . . . . 233
[12.4.2 Special Cycles| . . . . . . .. ... ... ... ... ... 236

(13 A conjecture: Symmetry breaking for irreducible represen-|
tations with regular integral infinitesimal character| 239
[13.1 Hasse sequences and standard sequences of irreducible rep-|

[resentations with regular integral infinitesimal character and]

[their Langlands parameters] . . . . . . . ... ... ... ... 239
[13.1.1 Definition of Hasse sequence and standard sequence] . . 239
[13.1.2 Existence of Hasse sequence| . . . . . . . . . ... ... 241

[13.1.3 Langlands parameter of the representations in the Hasse|
BEQUETICE] . . .« .« o v v it 242
(13.2 The Conjecture] . . . . . . . .. . ... ... .. ... ... 248
[13.2.1 Conjecture: Version 1. . . . . . . .. ... .. ... .. 249
[13.2.2 Conjecture: Version 2/. . . . . . . ... ... ...... 250
[13.3 Supporting evidence] . . . . . . ... ... 252
1331 Evidence EIl . . . .. ... ... ... ... ... ... 253
(1332 PFvidence B2 . . . .. .. ..o 253
1333 Fwvidence B3 . . . .. ..o 254
13.34 Evidence E4 . . . .. ... ... ... .. ... ... 256

(14 Appendix I: Irreducible representations of G = O(n + 1, 1),

[/-stable parameters, and cohomological induction| 268
14.1 Finite-dimensional representations of O(N — 1, 1)[ . . . . . . . 268
14.2 Singular parameters for V€ O(n): S(V) and Sy(V)|. . . . . . 273
14.2.1 Infinitesimal character 7(V,A) of Is(V.A)| . . . . . . .. 275
14.2.2 Singular integral parameter: S(V) and Sy (V)| . . . . . 276
14.3 Irreducibility condition of Is(V,\)| . . . . . .. ... ... 278
14.4 Subquotients of Is(V, A . . . . ..o 279
14.4.1 Subquotients of Is(V,\) for V of type X| . . . . .. .. 279
14.4.2 Subrepresentations of I5(V, %) for V of type Y| . . . . . 280
14.4.3 Socle filtration of I5(V.A\)| . . . .. ... .. ... ... 281
[14.5 Definition of the height ¢(V,\)| . . . . . .. ... ... ... .. 281
[14.6 K-type formulee of irreducible G-modules] . . . . . ... ... 285




14.6.1 K-type formulaof I5(V, M. .. ... .. ... ... .. 285
14.6.2 K-types of subquotients I5(V, A\ and I;(V,\)] . . . . . 286
[14.7 (5, V. ) ~ (6T, VI X)) and (65, V¥ X[ ... ..o .o 288
[14.8 Classification of irreducible admissible representations of G =

Oln+ LTI . ... 291
14.8.1 Characterizations of the irreducible subquotients 115 (V, A)291
14.8.2 Classification of r(G)] . . . . . . . . . ... ... ... 293
[14.9 #-stable parameters and cohomological parabolic induction| . . 293
14.9.1 Cohomological parabolic induction Ag(A) = R (Cyypw))[293
14.9.2 f-stable parabolic subalgebra q; for G = O(n+ 1,1)] . . 295

14.9.3 Irreducible representations 1,5 and (Ag )| . . . . . . 299
14.9.4 Irreducible representations with nonzero (g, K )-cohomologies300
14.9.5 Description of subquotients in Is(V, A . . . . . . ... 301
446 . ... 303
[14.10Hasse sequence in terms ot f-stable parameters|. . . . . . . . . 304
(14.115ingular integral case| . . . . . . . ... ... L. 305
[15 Appendix II: Restriction to G = SO(n + 1,1)| 308
[15.1 Restriction of representations of G = O(n + 1,1) to G =|
SO+ 1, 1). . ... 308
[15.2 Restriction of principal series representation of G = O(n+1, 1)|
toG=SO(n LI ........ ... ... .. ....... 310
15.2.1 Restriction /5(V, \)|z when I5(V, \) is irreduciblel . . . 311
15.2.2 Restriction I5(V, \)[z when Visof type Y| . . . . . . . 312
M5.3 Proof of Theorem T4.15 Irreducibility criterion of I5(V,A) . . 315
15.4 Socle filtration of I5(V, \): Proof of Proposition 14.19| . . . . . 315
15.5 Restriction of I, 5 to SO(n+1,1)|. . . . ... ... ... ... 318
[15.6 Symmetry breaking for tempered principal series representations/320
[15.7 Symmetry breaking from [s(z,A\) to J.(7,v) . . ... ... .. 323
[15.8 Symmetry breaking between irreducible representations ot Gl
and G7 with trivial infinitesimal character g . . . . . . . . .. 326
(16 Appendix III: A translation functor for G = O(n + 1, 1)| 328
[16.1 Some features of translation functors for reductive groups thatf]
lare not of Harish-Chandraclass . . ... ... ..... ... 328
[16.2 Translation functor for G =0O(n+1,1)|. . . . ... ... ... 329
[16.2.1 Primary decomposition of admissible smooth represen-|
atfond . . . . . . .. .. ... ... 329



[16.2.2 Translation functor 47 for G = O(n +1,1)]. . . . . . 329
[16.2.3 The translation functor and the restriction G | G ... 330
[16.2.4 Some elementary properties of translation functor ¢/ 332
[16.3 Translation of principal series representation I5(V, )| . . . . . 332
[16.3.7 Main results: Translation of principal series represen-
Bafiond . . . . . . . . .. ... 332
[16.3.2 Strategy of the proof for Theorems 16.6] and 334
[16.3.3 Basic lemmas for the translation functod . . . . . . .. 335
61 Dol o el e 2]
representation F(V,\) of G=0(n+1,1) .. ... ... ... 337
16.4.1 Definition of ¢®(\) and o@| . . . . .. ... ... ... 337
16.4.2 Definition of a finite-dimensional representation F'(V, \)|
IG .. ... 339
16.4.3 Reformulation of Theorems 16.6landI6.8. . . . . . .. 340
[16.4.4 Translation of irreducible representations Il o . . . . . 341
[6.45 Proof of Theorems 162 andI623 . . . . . . . . . . . 342
[16.5 Proot of Proposition 16.9(. . . . . . . ... ... .. ... ... 343
[16.5.1 Irreducible summands for O(n+2) | O(n) x O(2) and]
[for tensor product representations| . . . . . . . . . . .. 344
[16.5.2 Irreducible summand for the restriction G | M A and|
[for tensor product representations| . . . . . . . . .. .. 347
[16.5.3 Proot of Proposition 16.9[. . . . . . . ... ... .. .. 349
(16.6 Proof of Theorem 16.61 . . . . . . . .. ... .. .. ... ... 349
16.6.1 Case: (V,A)€Red. . .. ... ... .. ... .. ... 350
16.6.2 Case: (V,\) € Redy| . . . . ... ... ... ... ... 350
[16.7 Proof of Theorem 168 . . . . . ... ... ... ... ..... 352
[List of Symbols| 361
Index] 365

10



Abstract

For a pair (G,G’) = (O(n + 1,1),0(n,1)) of reductive groups,
we investigate intertwining operators (symmetry breaking operators)
between principal series representations I5(V, ) of G, and J.(W,v)
of the subgroup G’. The representations are parametrized by finite-
dimensional representations V', W of O(n) respectively of O(n — 1),
characters ¢, € of O(1), and A, v € C. Denote by [V : W] the multi-
plicity of W occurring in the restriction V| ,_1), which is either 0 or
1. If [V : W] # 0 then we construct a holomorphic family of symmetry
breaking operators and prove that dimc Home (I5(V, N)|ar, Joe(W, v))
is nonzero for all the parameters A\, v and ¢, €, whereas if [V : W] =0
there may exist sporadic differential symmetry breaking operators.

We propose a classification scheme to find all matrix-valued sym-
metry breaking operators explicitly, and carry out this program com-
pletely in the case (V, W) = (A*(C*), A’(C™*1)). In conformal geome-
try, our results yield the complete classification of conformal covariant
operators from differential forms on a Riemannian manifold X to those
on a submanifold Y in the model space (X,Y) = (7, S"1).

We use this information to determine the space of symmetry break-
ing operators for any pair of irreducible representations of G and the
subgroup G’ with trivial infinitesimal character. Furthermore we prove
the multiplicity conjecture by B. Gross and D. Prasad for tempered
principal series representations of (SO(n+1,1),50(n,1)) and also for
3 tempered representations II, 7, w of SO(2m + 2,1), SO(2m + 1,1)
and SO(2m,1) with trivial infinitesimal character. In connection to
automorphic form theory, we apply our main results to find periods
of irreducible representations of the Lorentz group having nonzero
(g, K)-cohomologies.

This book is an extension of the recent work in the two research
monographs: Kobayashi-Speh [Memoirs Amer. Math. Soc., 2015] for
spherical principal series representations and Kobayashi—-Kubo—Pevzner
[Lecture Notes in Math., 2016] for conformally covariant differential
symmetry breaking operators.
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1 Introduction

A representation II of a group G defines a representation of a subgroup G’ by
restriction. In general irreducibility is not preserved by the restriction. If G is
compact then the restriction I|¢ is isomorphic to a direct sum of irreducible
finite-dimensional representations 7 of G’ with multiplicities m(II, 7). These
multiplicities are studied by using combinatorial techniques. We are inter-
ested in the case where G and G’ are (noncompact) real reductive Lie groups.
Then most irreducible representations II of G are infinite-dimensional, and
generically the restriction II|¢ is not a direct sum of irreducible representa-
tions [30]. So we have to consider another notion of multiplicity.

For a continuous representation II of G on a complete, locally convex
topological vector space H, the space H*> of C'*°-vectors of H is naturally
endowed with a Fréchet topology, and (II, H) induces a continuous represen-
tation I1* of G on H™>. If II is an admissible representation of finite length
on a Banach space H, then the Fréchet representation (I1°°, H>), which we
refer to as an admissible smooth representation, depends only on the under-
lying (g, K)-module Hy. In the context of asymptotic behaviour of matrix
coefficients, these representations are also referred to as an admissible rep-
resentations of moderate growth [66] Chap. 11]. We shall work with these
representations and write simply II for I[I1*°. We denote by Irr(G) the set of
equivalence classes of irreducible admissible smooth representations. We also
sometimes call these representations “irreducible admissible representations”
for simplicity.

Given another admissible smooth representation 7© of a reductive sub-
group G’, we consider the space of continuous G’-intertwining operators
(symmetry breaking operators)

HomG/(H|G/,7r).

If G = G’ then these operators include the Knapp—Stein operators [24] and
the differential intertwining operators studied by B. Kostant [0]. If G # G’
the dimension

m(II, 7) := dim¢ Homg (11| g, )

yields important information of the restriction of II to G’ and is called the
multiplicity of m occurring in the restriction Il|s. In general, m(Il, 7) may be
infinite. The finiteness criterion in (] asserts that the multiplicity m(1I, 7)
is finite for all I € Irr(G) and for all 7 € Irr(G’) if and only if a minimal
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parabolic subgroup P’ of G’ has an open orbit on the real flag variety G/ P,
and that the multiplicity is uniformly bounded with respect to II and 7 if
and only if a Borel subgroup of G has an open orbit on the complex flag
variety of G.

The latter condition depends only on the complexified pairs (gc, g¢), of
which the classification was already known in 1970s by Kramer (7 and
Kostant. In particular, the multiplicity m (I, ) is uniformly bounded if the
Lie algebras (g,¢') of (G,G’) are real forms of (sl(N + 1,C), gl(N,C)) or
(o(N +1,C),0(N,C)). On the other hand, the former condition depends on
real forms (g, g’), and the classification of such symmetric pairs was recently
accomplished in [B8]. For instance, let (G, G’") = (O(n+1,1),0(n+1—k,1)).
Then the classification theory [3§] and the finiteness criterion [ imply the
following upper and lower estimates of the multiplicity m(II, 7):

(1) For2<k<n+1,

m(Il, 7) < oo for every pair (II, 7) € Irr(G) x Irr(G');

sup  sup m(Il,7) = occ.
IIelrr(G) welrr(G’)

(2) For k =1, there exists C' > 0 such that

m(Il, ) < C for all IT € Irr(G) and for all 7 € Irr(G"). (1.1)

B. Sun and C.-B. Zhu [B9] showed that one can take C' to be one in (1),
namely, the multiplicity m(II,7) € {0,1} in this case. Thus one of the open
problems is to determine when m(1I, 7) # 0 for irreducible representations I1
and 7.

In the previous publication 4] we initiated a thorough study of symmetry
breaking operators between spherical principal series representations of

(G,G") = (O(n+1,1),0(n, 1)). (1.2)

In particular, we determined the multiplicities m(Il, 7) when both II and 7
are irreducible composition factors of the spherical principal series represen-
tations.

In this article we will determine the multiplicities m(Il, 7) for all irre-
ducible representations II and 7 with trivial infinitesimal character p of
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G = O(n+ 1,1) and G' = O(n,1), respectively, and also for irreducible
principal series representations.

More than just determining the dimension m(II, 7) of the space of sym-
metry breaking operators, we investigate these operators of their own for
general principal series representations of G and the subgroup G’, i.e., for
representations induced from irreducible finite-dimensional representations of
a parabolic subgroup. We construct a holomorphic family of symmetry break-
ing operators, and present a classification scheme of all symmetry breaking
operators T" in Theorem 313 through an analysis of their distribution kernels
Kr. In particular, we prove that any symmetry breaking operators in this
case is either a sporadic differential symmetry breaking operator (cf. [B1) or
the analytic continuation of integral symmetry breaking operators and their
renormalization in Theorem

The proof for the explicit formula of the multiplicity m(II, 7) is built on
the functional equations (Theorems and [@.20) satisfied by the regular
symmetry breaking operators.

A principal series representation I5(V,\) of G = O(n+1,1) is an (unnor-
malized) induced representation from an irreducible finite-dimensional rep-
resentation V ® d ® C, of a minimal parabolic subgroup P = M AN,. In our
setting, M ~ O(n) x Z/27 and A ~ R,. We assume that V is a representa-
tion of O(n+1), 6 € {£}, and A € C. In what follows, we identify the repre-
sentation space of I5(V, A) with the space of C'*°-sections of the G-equivariant
bundle G xp Vs — G/ P, so that I5(V, \)>* = I5(V, \) is the Fréchet global-
ization having moderate growth in the sense of Casselman—Wallach [66]. The
parametrization is chosen so that the representation /5(V, %) is a unitary tem-
pered representation. The representations I5(V, A) are either irreducible or
of composition series of length 2, see Corollary in Appendix I.

The group P’ = G' NP = M'AN’_is a minimal parabolic subgroup of
G’ = O(n,1). For an irreducible representation (7, W) of O(n—1), a character
e € {£} of O(1), and v € C we define the principal series representation
J-(W,v) of G'.

We set
[V : W] := dim¢ Homo -1y (W, V]om-1)) = dime Homop—1)(V|om-1y, W).

For principal series representations I5(V, \) of G and J.(W, v) of the subgroup
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G', we consider the cases [V : W] # 0 and [V : W] = 0 separately. In the
first case we obtain a lower bound for the multiplicity.

In what follows, it is convenient to introduce the set of “special parame-
ters”:

U i={(A\,1,0,e) e C* x {£}*: v — A €2N when de = +
or v—A€e2N+1 when de = — }.
(1.3)

Theorem 1.1 (see Theorem (2) and Theorem B.I5). Suppose (o,V) €
O(n) and (1,W) € O(n —1). Assume [V : W] # 0.

(1) (existence of symmetry breaking operators) We have

dime Home/ (I5(V, A) |7, Jo(W,v)) > 1 for all §,¢ € {£}, and \,v € C.

(2) (generic multiplicity-one)
dimc HOmG/(L;(V, )\)‘017 JE<W, V)) =1
for any (\,v,0,¢) € (C* x {£}?) — Vy,.

(3) Let £(o) be the “norm” of o defined by using its highest weight (see

@210)). Then we have
dim(c HOIIIG/(LS(‘/, >\)|G’7 J5<W, V)) >1
for any (\,v,0,¢) € Uy, such that v € Z with v < —{(0).

We prove Theorem [[I] by constructing (generically) regular symmetry
breaking operators ,&K’%E: they are nonlocal operators (e.g., integral oper-
ators) for generic parameters, whereas for some parameters they are local
operators (i.e., differential operators). See Theorem for the construc-

tion of the normalized operator J&KZV +; Theorem for “regularity” ([&4]
Def. 3.3]) of Af\/r/ 4 under a certain generic condition; Theorem .45 for a
renormalization of A}\/XV + when it vanishes; Fact for the residue formula

of AYZV . when it reduces to a differential operator.

In the case [V : W] = 0, symmetry breaking operators are “rare” but
there may exist sporadic symmetry breaking operators:
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Theorem 1.2. Assume [V : W] = 0.

(1) (vanishing for generic parameters, Corollary B.14)) If (A\,v,6,¢) € Wy,
then
HOI’IIG/(L;(‘/, )\>|G’7 Jg(VV, V)) = {0}

(2) (localness theorem, Theorem B0 Any nontrivial symmetry breaking
operator

C*(G/P,Vys) — C*(G'/P''W,.)
1s a differential operator.

Combining Theorem [[] (2) and Theorem (1) together with the ex-
istence condition of differential symmetry breaking operators (see Theorem
E2T), we determine the following multiplicity formulee for generic parame-
ters:

Theorem 1.3. Suppose that (A, v,0,¢) & Vs,. Then there are no differential
symmetry breaking operators and

ifIV W] #£0,

1
di H (1 V,)\ ’7J6 Wv - )
imeHome: (I;(V, A, Jo(W, v)) {0 if[V:W]=0

It deserves to be mentioned that the parameter set (C? x {£}?) — ¥y,
contains parameters (A, v) for which the G-module I5(V, A) or the G’-module
J-(W,v) is not irreducible.

In the major part of this monograph, we focus our attention on the special

(V. W) = (A'(C), N(C")).

The principal series representations of G and the subgroup G’ are written as
Is(i, \) for Is(A\"(C™),\) and J.(j,v) for J.(A?(C"1),v), respectively. The
representations I5(i, \) of G and J.(j,v) of G’ are of interest in geometry as
well as in automorphic forms and in the cohomology of arithmetic groups. In
geometry, given an arbitrary Riemannian manifold X, one forms a natural
family of representations of the conformal group G on the space £'(X) of
differential forms, to be denoted by £/(X)y s for 0 < i < dim X, N € C,
and ¢ € {£}. Then the representations I5(i, A) are identified with such
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conformal representations in the case where (G, X) = (O(n + 1,1),5™), see
e.g., B Chap. 2, Sect. 2| for precise statement. In representation theory,
all irreducible, unitarizable representations with nonzero (g, K')-cohomology
arise as subquotients of I5(i, \) with A = 4 for some 0 <7 <mn and § = (—1)’,
see Theorem (9).

Our main results of this article include a complete solution to the general
problem of constructing and classifying the elements of Homer (11|, 7) (see
B3 Prob. 7.3 (3) and (4)]) in the following special setting:

(G,G") = (0O(n+1,1),0(n,1)) with n > 3,
(IL, ) = (L3, A), J-(5,v)),

where 0 <i<n,0<j<n-—1,0¢¢€{x} and \,v € C. Thus our main
results include a complete solution to the following question in conformal
geometry:

Problem 1.4. (1) Find a necessary and sufficient condition on 6-tuples
(1,7, \, v, 6, €) for the existence of conformally covariant, symmetry break-
g operators
A E(X)as — E(X),e
in the model space (X,Y) = (8™, S"71).
(2) Construct those operators explicitly in the (flat) coordinates.

(3) Classify all such symmetry breaking operators.

Partial results were known earlier: when the operator A is given by a
differential operator, Juhl [23] solved Problem [ 4] in the case (i,7) = (0,0),
see also 0], which has been recently extended in Kobayashi-Kubo—Pevzner
BT for the general (i,j). Problem [[L4] was solved for all (possibly, nonlocal)
operators in our previous paper [44] in the case (i, 7) = (0,0). The complete
classification of (continuous) symmetry breaking operators for the general
(1, 7) is given in Theorem B2H (multiplicity) and Theorem B.28] (construction
of explicit generators), and we have thus settled Problem [[4] in this mono-
graph. For this introduction, we explain only the “multiplicity” (Theorem
B20). For this, using the same notation as in 4] Chap. 1], we define the
following two subsets on Z?2:

Leven :={(—%,—j):0<j<iandi=j mod 2},
Loga :={(—i,—j):0<j<iandi=j+1 mod 2}.
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Theorem 1.5 (multiplicity, Theorem B.2H). Suppose II = I5(i, \) and m =
J-(j,v) for0 <i<mn,0<j<n-—1,0d¢e¢€{£}, and \,v € C. Then we

have the following.
(1)

m(IL, 7) €{1, 2}
m(II, 7) €{0,1}
m(I, ) =0

ifj=1—1 ori,
ifj=1—2o0ri+1,

otherwise.

(2) Suppose j =i—1 ori. Then m(Il, ) = 1 generically, and = 2 when the
parameter belongs to the following exceptional countable set. Without

loss of generality, we take § to be +.

(a) Case 1 <i<n-—1.

€ Leven - {l/ = O} U {(Z7l)}

S Lodd — {V == 0}

€ Leyen —{v=0}U{(n —i,n—1)}.
< Lodd — {I/ = O}

if (A, v) € Loven-
Zf ()\, 7/) c Lodd-

if (A, 1) € Loyen-
Zf ()\, l/) < Lodd'

(3) Suppose j =i —2 ori+ 1. Then m(Il,7) = 1 if one of the following
conditions (d)—(g) is satisfied, and m(Il, ) = 0 otherwise.

(d) Casej=i—2,2<i<n-—1,(\,v)=(n—i,n—i+1), de = —1.
(e) Case (i,7) = (n,n—2), =N\ €N, v =1, de = (—1)M?!.
(f) Case j=i+1,1<i<n-—2,(\v)=(i,i+1), de =—1.
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(g) Case (i,7) = (0,1), =X\ €N, v =1, je = (=1)*1.

More than just an abstract formula of multiplicities, we also obtain ex-
plicit generators of Homer (I5(i, A)|ar, J=(j,v)) for j € {i — 1,4} in Theorem
The generators for j € {i — 2,7 + 1} are always differential operators
(localness theorem, see Theorem (2)), and they were constructed and
classified in [B7] (see Fact B23).

The principal series representations I5(i, ) and J.(7, ) in the above the-
orem are not necessarily irreducible. For the study of symmetry break-
ing of the irreducible subquotients, we utilize the concrete generators of
Homg (I5(, N)|cr, J:(j,v)) and determine explicit formulae about

e the (K, K')-spectrum of the normalized regular symmetry breaking op-
erators Ay’ . on basic “(K, K')-types” (Theorem [.8]);

e the functional equations among symmetry breaking operators &Z)\Jy n
(Theorems [0.24] and [@.25]).

Here, the (K, K')-spectrum is defined in Definition[@.7 It resembles eigenval-
ues of symmetry breaking operators, and serves as a clue to find the functional
equations.

We now highlight symmetry breaking of irreducible representations that
have the same infinitesimal character p with the trivial one-dimensional rep-
resentation 1. Denote by Irr(G), the (finite) set of equivalence classes of
irreducible admissible representations of G with trivial infinitesimal charac-
ter p = pg. The principal series representations I5(i,7) of G = O(n+1,1) are
reducible, and any element in Irr(G), is a subquotient of the representations
I5(i,4) for some 0 < ¢ < mn and 6 € {£}. To be more precise, we have the
following.

Theorem 1.6 (see Theorem Z20). Let G = O(n+1,1) (n > 1).

(1) For0 <{<mn andd € {x}, there are exact sequences of G-modules:

0— Hg,g — [5(& 6) — Hg.,.l’_(; — O,
0—= Iy 5 = Is(l,n—0) = 15 — 0.

These exact sequences split if and only if n = 2¢.
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(2) Irreducible admissible representations of G with trivial infinitesimal
character can be classified as

Irr(G), ={Ilis: 0<{<n+1,§ ==}
(3) BveryIl,s (0 <l <n+1,6==) is unitarizable.

There are four one-dimensional representations of G, and they are given
by

{Io+ =1, Tl =x4—, Inprr =Xt Hppr- = x——(=det)}.

(See ([ZI3) for the definition of y++.) The other representations I, 5 (1 <
¢ <n, 6 = =) are infinite-dimensional representations.

For the subgroup G' = O(n, 1), we use the letters m;. to denote the
irreducible representations in Irr(G’),, similar to 11, 5 in Irr(G),.

With these notations, we determine

m(HM, 7Tj,€) = diHl(C HOHI@(HL(;‘G/, 7Tj75)
for all II; 5 € Irr(G),, and 7;. € Irr(G’), as follows.

Theorem 1.7 (vanishing, see Theorem ETl). Suppose 0 < i < n+1, 0 <
j<n,dee{£}

(1) ]fj 7& i,i — 1 then HomG/(Hi,g‘G/,Wjjg) = {O}

(2) ]f 0e = -, then HOmg/(Hi75|G/,7Tj75) = {0}
Theorem 1.8 (multiplicity-one, see Theorem L.2). Suppose 0 < i < n + 1,
0<j<nanddecec{t}. Ifj=i—1 ori and if e =+, then

dim(c HomG/(Hi75|G/, 71']'75) =1.
We can represent these results graphically as follows. We suppress the
subscript, and write II; for II, ;, and m; for 7; . The first row are repre-

sentations of GG, the second row are representations of G'. The existence of
nonzero symmetry breaking operators is represented by arrows.
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Theorem 1.9 (see Theorem [A3]). Symmetry breaking for irreducible rep-
resentations with infinitesimal character p is represented graphically in the
following form.

Symmetry breaking for O(2m +1,1) | O(2m, 1)

I, 1, ... I, I,
Y Y Y A
o ™ Tm—1 Tm,

Symmetry breaking for O(2m +2,1) L O(2m + 1,1)

1_IO Hl o Hmfl Hm Hm+1
iy v 1 v 1V
o ™ ce Tm—1 Tm

We believe that we are seeing in Theorem only the “tip of the ice-
berg”, and we present a conjecture that a similar statement holds in more
generality, see Conjecture Suppose that F' and F’ are irreducible
finite-dimensional representations of G and the subgroup G’, respectively,
and that

HOIIIGI<FIGV, F/) 75 {0}

In Chapters [[3] and [[4] we describe sequences of irreducible representations
{Il; = II,(F)} and {m; = m;(F")} of G and G’ with the same infinitesimal
characters with F' and F”, respectively. We refer to these sequences as stan-
dard sequences that starting with I1o(F') = F and mo(F") = F’, see Definition
They generalize the standard sequence with trivial infinitesimal charac-
ter which we used in the formulation of Theorem They are an analogue
of a diagrammatic description of irreducible representations with regular in-
tegral infinitesimal characters for the connected group Gy = SOy(n + 1,1)
given in Collingwood [III p. 144, Fig. 6.3]. In this generality, we conjecture
that the results of symmetry breaking can be represented graphically exactly
as in Theorem for the representations with trivial infinitesimal character
p. Again in the first row are representations of GG, and in the second row
are representations of G'. Conjecture asserts that symmetry breaking
operators are represented by arrows.

Symmetry breaking for O(2m + 1,1) | O(2m, 1)
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Ho(F) TL(F) ... Huo(F) IL(F)

N A A
mo(F)  m™(F) ... wpa(F) m(F)

Symmetry breaking for O(2m +2,1) | O(2m + 1, 1)

W(F) IW(F) . Tpo(F)  To(F) T (F)
N N Y N R S
mo(F')  m(F) Tm-1(F") 7 (F")

We present some supporting evidence for this conjecture in Chapter

Applications of our formule include some results about periods of repre-
sentations. Suppose that H is a subgroup of GG. Following the terminology
used in automorphic forms and the relative trace formula, we say that a
smooth representation U of G is H-distinguished if there is a nontrivial lin-
ear H-invariant linear functional

FH .U > C.

If the G-module U is H-distinguished, we say that (F H) is a period (or
an H-period) of U.

Let (G, H) = (0O(n+1,1),0(m+1,1)) with m <n. For 0 <i<n+1
and 0 < 7 <m + 1, we denote by II; and 7; the irreducible representations
II; + of G and analogous ones of H with trivial infinitesimal character p.

Theorem 1.10 (see Theorems [[2.4] and [[2.6)).
(1) The irreducible representation 11; is H-distinguished if i < n —m.
(2) The outer tensor product representation
IL; X 7
has a nontrivial H-period if 0 <i— 75 <n—m.

The period is given by the composition of the normalized regular symme-
try breaking operators (see Chapter[l) with respect to the chain of subgroups:

G=0(n+11)>0(n,1)>D0n—-1,1)D>--->0(m+1,1) = H.

Using the above chain of subgroups we also define a vector v in the minimal
K-type of 1I;. We prove
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Theorem 1.11 (see Theorem [2.10). Suppose that G = O(n + 1,1) and
II; (0 < i < n) is the irreducible representation with trivial infinitesimal
character p defined as above. Then the value of the O(n+ 1 —i,1)-period on
v e ll; s

hi(2n—i-1) { 1 if 20 <n+1,

(n—21)!
— X
((n—a)l)i-t (—=1)"" (2 —n —1)! if 26 >n+ 1.

We also prove in Chapter [[2 a generalization of a theorem of Sun [55].

Theorem 1.12 (see Theorem [213). Let (G,G') = (O(n + 1,1),0(n, 1)),
0<i<n, and ) € {£}.

(1) The symmetry breaking operator T: 1l;5 — w5 in Proposition [[012
induces bilinear forms

BT: Hj<g7 K7 Hi,5) X Hnij(gla K/J 77n—i,(—1)"6> —C
for all j.
(2) The bilinear form Br is nonzero if and only if j =1 and § = (—1)".

Inspired by automorphic forms and number theory B. Gross and D. Prasad
published in 1992 conjectures about the multiplicities of irreducible tempered
representations (U, U’) of (SO(p,q),SO(p—1,¢q)) [IE. Over time these con-
jectures have been modified and proved in some cases for automorphic forms
and for p-adic orthogonal and unitary groups. See for example Astérisque
volumes [I3 B4 by W. T. Gan, B. Gross, D. Prasad, C. Meeglin and J.-L.
Waldspurger and the references therein as well as the work by R. Beuzart-
Plessis [§] for the unitary groups.

We prove the multiplicity conjecture by B. Gross and D. Prasad for tem-
pered principal series representations of (SO(n+1,1),S0(n, 1)) and also for
3 representations II, 7, w of SO(2m + 2,1), SO(2m + 1,1) and SO(2m, 1)
with infinitesimal character p. More precisely we show:

Theorem 1.13 (Theorem BI3)). Suppose that Il = Is(V,\), 7 = J.(W,v)
are (smooth) tempered principal series representations of G = O(n + 1,1)
and G' = O(n,1). Then

dimcHomg (|, m) =1 if and only if [V : W] # 0.
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Restricting the principal series representations to special orthogonal groups
implies the conjecture of B. Gross and D. Prasad about multiplicities for tem-
pered principal series representations (Theorem [[T.H).

In 2000 B. Gross and N. Wallach [I6] showed that the restriction of small
discrete series representations of G = SO(2p + 1,2q) to G' = SO(2p,2q)
satisfies the Gross—Prasad conjectures [[3]. In that case, both the groups G
and G’ admit discrete series representations. On the other hand, for the pair
(G,G") = (SO(n+1,1),50(n, 1)), only one of G or G’ admits discrete series
representations. Our results confirm the Gross—Prasad conjecture also for
tempered representations with trivial infinitesimal character p (Theorem

T3a).

The article is roughly divided in three parts and an appendix:

In the first part, Chapters 2Hdl we give an overview of the notation and
the results about symmetry breaking operators. Notations and properties
for principal series and irreducible representations of orthogonal groups are
introduced in Chapter Important concepts and properties of symmetry
breaking operators are discussed in Chapter B] in particular, a classification
scheme of all symmetry breaking operators is presented in Theorem B.13]
This includes a number of theorems about the dimension of the space of
symmetry operators for principal series representations which are stated and
discussed also in Chapter Bl The classification scheme is carried out in full
details for symmetry breaking from principal series representations I5(i, A) of
G to J.(j,v) of the subgroup G’, and is used to obtain results on symmetry
breaking of irreducible representations with trivial infinitesimal character p
in Chapter @l

The second part, ChaptersBHI, contains the proofs of the results discussed
in Part one. This is the technical heart of this monograph. In Chapter [ the
estimates and results about regular symmetry breaking operators in Theo-
rems [[L1] and are proved. Chapter [d is devoted to differential symmetry
breaking operators. In the remaining chapters of this part we concentrate on
the symmetry breaking I5(i, \) — J.(j,v). We collect some technical results
in Chapters [ and 8 The analytic continuation of the regular symmetry
breaking operators, their (K, K’)-spectrum, and the functional equation are
discussed in Chapter @ Many of the results and techniques developed here
are of independent interest, and would be applied to other problems.

In the third part, Chapters TIHI3l we use the results in Chapters Bl and @
to prove some of the conjectures of Gross and Prasad about symmetry break-

24



ing for tempered representations of orthogonal groups in Chapter 1l We dis-
cuss periods of representations and a bilinear form on the (g, K')-cohomology
using symmetry breaking in Chapter It also includes a conjecture about
symmetry breaking for a family of representations of irreducible representa-
tions with regular integral infinitesimal character in Chapter [3] which we
plan to attack in a sequel to this monograph. A major portion of Part 3 can
be read immediately after Part 1.

The appendix contains technical results used in the monograph. We
provide three characterizations of irreducible representations of the group
G = O(n + 1,1): Langlands quotients (or subrepresentations), cohomolog-
ical parabolic induction, and translation from Irr(G),. The first two are
discussed in Appendix I (Chapter [[4]) and the third one is in Appendix III
(Chapter [[6). For the second description, we recall the description of the
Harish-Chandra modules of the irreducible representations of O(n, 1) as the
cohomological induction from a #-stable Levi subgroup and introduce #-stable
coordinates for irreducible representations with regular integral infinitesimal
character. This notation is used in the formulation of the conjecture in Chap-
ter We discuss the restriction of representations of the orthogonal group
O(n, 1) to the special orthogonal group SO(n,1) in Appendix II (Chapter
[[3). The results are used in Chapter [Tl about the Gross-Prasad conjecture.
In Appendix III, we discuss translation functor of G = O(n + 1, 1) which is
not in the Harish-Chandra class when n is even.
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Notation:

A-B set theoretic complement of B in A

N {integers > 0}
N, {positive integers}
R, (teR:t>0}

Image (T)) image of the operator T'
Ker (T)  kernel of the operator T

E;; the matrix unit

a] the largest integer that does not exceed a

1 the trivial one-dimensional representation

7 the contragredient representation of

w1 X 7o the outer tensor product representation of a direct product group
T @ T the tensor product representation

p(= pg)  the infinitesimal character of the trivial representation 1
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2 Review of principal series representations

In this chapter we recall results about representations of the indefinite or-
thogonal group G = O(n + 1,1).

2.1 Notation

The object of our study is intertwining restriction operators (symmetry break-
ing operators) between representations of G = O(n + 1,1) and those of its
subgroup G’ = O(n,1). Most of main results are stated in a coordinate-
free fashion, whereas concrete description of symmetry breaking operators
depends on coordinates. For the latter purpose, we choose subgroups of GG
and G’ in a compatible fashion. The notations here are basically taken from

4.
2.1.1 Subgroups of G =0(n+1,1) and G' = O(n, 1)
We define G to be the indefinite orthogonal group O(n + 1,1) that preserves
the quadratic form
Qni1a(w) = a5+ + a5 — a5, (2.1)

of signature (n+1,1). Let G’ be the stabilizer of the vector e, := 0, ---,0,1,0).
Then G’ ~ O(n, 1).
We take maximal compact subgroups of G and G’ respectively, as

K:=0n+2)NnG ~0O(n+1)x0(1),
A
K =KnG = 1 :A€eO0(n), e==+13 ~0(n) x O(1).
£

Let g=0(n+1,1) and g’ = o(n, 1) be the Lie algebras of G = O(n+1,1)
and G’ = O(n, 1), respectively. We take a hyperbolic element

H = E07n+1 + En+170 S g/, (22)

and set
a:=RH.
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Then a is a maximally split abelian subspace of g’, as well as that of g. The
eigenvalues of ad(H) € End(g) are +1 and 0, and the eigenspaces give rise
to the following two maximal nilpotent subalgebras of g:

n, = Ker(ad(H Z RN, = Ker(ad(H Z RN/,

where N;” and N;~ (1 < j < n) are nilpotent elements of g defined by

+_
N =—Ey;+ Ejo— Ejnt1 — Entrj,

J

Ny =—FEo;+ Ejo+ Ejni1+ Eny1
For b ="*(by, -+ ,b,) € R", we define unipotent matrices in G by
n —3Q(0) b 5Q(b)
ne(b) ==exp(d _bNS) =L+ b 0o —b |, (2.4)
3=t —3Q(b) = 3Q(b)

—5Q(0) b —3Q(b)
_ —eXprN = lho+ b 0 b

where we set
= |bf* = Z bi. (2.6)

Then n, and n_ give coordinates of the nilpotent groups N, := exp(n, ) and
N_ :=exp(n_), respectively. Then N, stabilizes (1,0,--- ,0, 1), whereas N_
stabilizes /(1,0,--- ,0,—1).

Since H is contained in the Lie algebra ¢,

n—1
:nar‘lg’:ZRNj for e = &

J=1

are maximal nilpotent subalgebras of g’. We set N := N, NG’ = exp(n, )
and N’ := N_ NG =exp(n").
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We define a split abelian subgroup A and its centralizers M and M’ in
K and K, respectively, as follows:

A = exp(a),
£
M = B :Be€O(n),e =+l ~ O(n) x Z/2Z,
£
£
, B
M = ] :BeOn—1),e==41, ~0(n—-1)x7Z/27Z.

3

Then P = MAN, is a Langlands decomposition of a minimal parabolic
subgroup P of G. Likewise, P* = M'AN/_ is that of a minimal parabolic
subgroup P’ of G'. We note that A is a common maximally split abelian
subgroup in P’ and P because we have chosen H € g. The Langlands
decompositions of the Lie algebras of P and P’ are given in a compatible
way as

p=m+a+ng, p=m't+a+n,=mnNg)+(ang)+mNg).
We set
(2.7)

We note that m_ does not belong to the identity component of G’.

2.1.2 Isotropic cone =

The isotropic cone

E=ZR") = {(20, s xpp1) ER"™P i+ 2l — a2, =0} — {0}

n

is a homogeneous G-space with the following fibration:

G/O(n)Ny ~E gO(n)Ny — gpy
R* } R* 1 1
G/P ~ S gP  —[gp4]
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where
jo ::t(l,O,--- ,0,1) € Z. (2.8)

The action of the subgroup N, on the isotropic cone = is given in the
coordinates as

£ o- 0.0\ o g (Q)
n+(b) § = f + nT —2b s (29)
é.’rl-‘rl gn-i-l - (b7 5) Q(b)

where b € R", £ € R" and &y, &,41 € R.

The intersections of the isotropic cone = with the hyperplanes &y +&,411 =
2 or £,41 = 1 can be identified with R™ or S", respectively. We write down
the embeddings ¢y : R” < = and 1 : S < = in the coordinates as follows:

1= |z — a3

iy R — = Y, 2,) = n_(z,2,)py = gi , (2.10)
1+ |z]? + 22
tg: ST —=Z, n—(n,1). (2.11)
The composition of ¢y and the projection
ek~ om 1
= Z/R*—= 85" & (&0, ---5&n)
én—‘rl
yields the conformal compactification of R™:
R" < S" = (5,V1 — 2 w) (1_T2 2r ) (2.12)
rw = (s —sSPw)=|——,——w). )
’ g ’ 14721+ 12
Here w € S™ ! and the inverse map is given by r = };Jrz for s #£ —1.

2.1.3 Characters x1. of the component group G/G

There are four connected components of the group G = O(n + 1,1). Let
Gy denote the identity component of G. Then Gy ~ SOy(n + 1,1) and
the quotient group G /Gy (component group) is isomorphic to Z/27 x 7./27.
Accordingly, there are four one-dimensional representations of G,

Xab: G — {£1} (2.13)
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with a,b € {£} = {£1} such that

Xab (dlag(_lv ]-a ) 1)) = a, Xab (dla‘g(lv ) 17 _1)) = .

We note that xy__ is given by the determinant, det, of matrices in O(n+1, 1).
Then the restriction of x__ to the subgroup M ~ O(n) x O(1) is given by
the outer tensor product representation:

Y|y~ det X1, (2.14)

where det in the right-hand side stands for the determinant for n by n ma-
trices.

2.1.4 The center 3;(g) and the Harish-Chandra isomorphism

For a Lie algebra g over R, we denote by U(g) the universal enveloping
algebra of the complexified Lie algebra gc = g ®r C, and by 3(g) its center.
For a real reductive Lie group G' with Lie algebra g, we define a subalgebra
of 3(g) of finite index by

3c(g) = U(g)G ={z€U(g) : Ad(g)z = z for all g € G}.

Schur’s lemma implies that the algebra 3¢(g) acts on any irreducible ad-
missible smooth representation of GG by scalars, which we refer to as the
3¢(9)-infinitesimal character. If the reductive group G is of Harish-Chandra
class, then the adjoint group Ad(G) is contained in the inner automorphism
group Int(gc), and consequently, 3¢(g) = 3(g). However, special attention
is required when G is not of Harish-Chandra class, as we shall see below.

For the disconnected group G = O(n + 1,1), Ad(G) is not contained in
Int(gc) and 3¢(g) is of index two in 3(g) if n is even, whereas Ad(G) C
Int(gc) and 3¢(g) = 3(g) if n is odd. In both cases, via the standard
coordinates of a Cartan subalgebra of gc ~ 0(n+2, C), we have the following
Harish-Chandra isomorphisms

3(g) S(Cmrh)o
u U
dalg) ~ S(CmHHYe.

12

Here we identify a Cartan subalgebra b of gc =~ o(n+2,C) with C™*! where
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m = [5], and set

Spp1 X (Z)27)mH for n = 2m + 1,
Wy =W (A(gc, be)) = +1 X (Z/22)

Cit1 X (Z)2Z)™ for n = 2m,
Wg =61 X (Z/27)™

We shall describe the 35(g)-infinitesimal character by an element of CV
modulo W via the following isomorphism.

Home.ag(3(g),C) ~ CN/W,
¢ ¢

Homc a4 (3¢(g), C) CN/We (2.15)

12

To define the notion of “regular” or “singular” about 3¢(g)-infinitesimal
characters, we use the action of the Weyl group W; for the Lie algebra gc =
o(n +2,C) rather than the Weyl group W for the disconnected group G as
below.

Definition 2.1. Let G = O(n+1,1) and m := [5]. Suppose x € Homc_a(3c(g), C)
is given by u € C™™! mod W via the Harish-Chandra isomorphism (215]).
We say x is integral if

= pa € 2",

see (ZI6]) below for the definition of pg, or equivalently, if

ezt for n = 2m (even),

1
we (Z+ §)m+1 forn=2m+1 (odd).

We note that this condition is stronger than the one which is usually referred
to as “integral”:
(u,a")y € Z for all a € A(gc, be)

where ¥ denotes the coroot of a.
For pn € C™*, we set

W, = W,), :={we Wy :wp = p},
(Wea), i={w e Wg : wp = p}.
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We say p is Wy-regular (or simply, reqular) if (W), = {e}, and Wg-regular if
(Wg), = {e}. These definitions depend only on the Wg-orbit through p be-
cause #W, = #W,, if y' € Weu. We say x is reqular integral (respectively,
singular integral) infinitesimal character if y is integral and W, = {e} (re-
spectively, W, # {e}). In the coordinates of = (11, , fm+1), W, = {e}
if and only if

i # E£p; (1<Vi<Vj<m+1) for n even,
i # £y (1<Vi<Vi<m+1), i #0 (1 <Vk<m+1) forn odd.

Remark 2.2. Suppose G = O(n + 1,1) with n > 1. Then the 3(g)-
infinitesimal character of an irreducible finite-dimensional representation of
GG is regular integral, and conversely, for any regular integral yx, there ex-
ists an irreducible finite-dimensional representation F' of G such that y is
the 3¢(g)-infinitesimal character of F'. Here we remind from Definition 21
above that by “regular” we mean Wj-regular, and not Wg-regular.

The 3¢(g)-infinitesimal character of the trivial one-dimensional represen-
tation 1 of G = O(n + 1,1) is given by

nn n n n
= (= 1. == [51+1 ) 21
The infinitesimal character pg will be also referred to as the trivial infinites-

tmal character.

Definition 2.3. We denote by Irr(G), the set of equivalence classes of ir-
reducible admissible smooth representations of GG that have the trivial in-
finitesimal character p.

The finite set Irr(G), is classified in Theorem .20 (2) for G = O(n+1,1)
and in Proposition [5.11] (3) for the special orthogonal group SO(n + 1, 1).

2.2 Representations of the orthogonal group O(N)

We recall that the orthogonal group O(N) has two connected components.
In this section, we review a parametrization of irreducible finite-dimensional
representations of the disconnected group O(N) following Weyl [68, Chap. V,
Sect. 7]. For later reference we include classical branching theorems for the
restriction of representations for the pairs O(N) D O(N — 1) and O(N) D
SO(N). The results will be applied to the four compact subgroups K, K,
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M and M’ = M N K’ of G introduced in Section B.T.T] which satisfy the
following obvious inclusive relations:

K o> K’ On+1)x0(1) D O(n) x O(1)
U U | = U U
M > M O(n) x diag(O(1)) D O(n —1) x diag(O(1))

2.2.1 Notation for irreducible representations of O(N)

For finite-dimensional irreducible representations of orthogonal groups, we
use the following notation. We set

AP N = A=\, AN €EZY A > N> - > Ay >0} (2.17)

We write FUVN)()) for the irreducible finite-dimensional representation of
U(N) (or equivalently, the irreducible polynomial representation of GL(N, C))
with highest weight A € AT(N). If A is of the form

(Cla"'aclac%”'7627"'7057"'76&07'”’0)’
~—— ~ N——
mi m2 my
then we also write A = (], 5", -+, ¢}") as usual.

We define a subset of AT(N) by
AT(O(N)):={A e AT(N): N} + ), < N},

where \] = max{i : \; > 1} and N\, := max{i : \; > 2} for A =
(A1,.. ., An) € AT(N). We note that \| equals the maximal column length
in the corresponding Young diagram.

It is readily seen that AT (O(N)) consists of elements of the following two

types:

Type I: (A1, -+, A, 0, -+ ,0), (2.18)
N——
N—k
Type IL: (A, -+, Ag, 1+ ,1,0,--+,0), (2.19)
N -2k k

with Ay > Ay >+ > A\ >0and 0 < k < [F].

For any A € AT(O(N)), there exists a unique O(N)-irreducible sum-
mand, to be denoted by FO)()\), of the U(N)-module FY™)()) which con-
tains the highest weight vector. Following Weyl ([68] Chap. V, Sect. 7]), we
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—

parametrize the set O(N) of equivalence classes of irreducible representations
of O(N) by
AY(O(N)) =5 O(N), X FOM()). (2.20)

By the Weyl unitary trick, we may identify FO)()\) with a holomorphic
irreducible representation of O(N, C), to be denoted by FOW:C)()), on the
same representation space.

—

Definition 2.4. We say FO™)()\) € O(N) is of type I (or type II), if A €
AT(O(N)) is of type I (or type II), respectively.

We shall identify O/(-JV) with AT(O(N)) via [220), and by abuse of nota-
tion, we write o = (0y,- -+ ,0n) € O(N) when (01, ,0n) € AT(O(N)).
Remark 2.5. We shall also use the notation
FOM(gy -+ 4,0, ,0)4 instead of FON) (), - 0y, 0, ,0),

—— ———
3]+ Nk
FOMN(gy - 04,0,---,0)_ instead of FOMN)(gy,--- oy, 1,---,1,0,---,0),
[%Fk N—-2k k

by putting the subscript + or — for irreducible representations of type I or
of type II, respectively, see Remark [Z4.1]in Appendix I.

We define a map by summing up the first k-entries (k < [%]) of o:

k
(: AT(O(N)) =N, o l(o):=) o (2.21)
i=1
which induces a map
¢: O(N) =N

via the identification (Z20). By [Z23), we have
l(o) = {(0 @ det). (2.22)

2.2.2  Branching laws for O(N) | SO(N)

—

Definition 2.6. We say 0 € O(N) is of type X or type Y, if the restriction
olsov) to the special orthogonal group SO(N) is irreducible or reducible,
respectively.
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With the convention as in Definition 2.4, we recall a classical fact about
the branching rule for the restriction O(N) | SO(N).

Lemma 2.7 (O(N) | SO(N)). Let 0 = (01, ,0n) € AT(O(N)), and k
(< [5]) be as in @IB) and @I9).
(1) (type X) The restriction of the irreducible O(N)-module FO™N) (o) to

SO(N) 1s irreducible if and only if N # 2k. In this case, the restricted
SO(N)-module has highest weight (o1, -+ , 04,0, ,0).

(2) (typeY) If N = 2k, then the restriction FO™(X)|soy splits into two
inequivalent irreducible representations of SO(N) with highest weights
(017 e 7Uk—170k) and (0-17 oy 0k-1, _Uk)'

Example 2.8. The orthogonal group O(N) acts irreducibly on the ¢-th exte-
rior tensor space /\*(CY) and on the space H*(CY) of spherical harmonics of
degree s. Via the parametrization ([Z220)), these representations are described
as follows:

A(CY) = FOM (1) (0<C<N),
H(CN) = FOWM)(5,0,---,0) (s € N).

The O(N)-module A*(CY) is of type Y if and only if N = 2¢; the O(N)-
module H*(CY) is of type Y if and only if N =2 and s # 0.

Irreducible O(N)-modules of types I and II are related by the following
O(N)-isomorphism:

FO(N)(al,--- ag,1,---,1,0,---,0) :det®FO(N)(a1,--- ,ag, 0,---,0).
(2.23)
Hence we obtain the following:

—

Lemma 2.9. Let 0 € O(N). Then o is of type Y if and only if o @ det ~ 0.

Then the following proposition is clear.

—

Proposition 2.10. Suppose o € O(n).
(1) If o is of type Y, then o is of type 1.

(2) If o is of type I, then o is of type X.
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2.2.3 Branching laws O(N) | O(N — 1)

Next we recall the classical branching laws for O(N) | O(N — 1). Let 0 =
(01, ,on) € AT(O(N)) and 7 = (71, ,7n_1) € AT(O(N —1)).

Definition 2.11. We denote by 7 < o if
01 2T 2022Tp 2 " 2TN-1 2 ON-

Then the irreducible decomposition of representations of O(N) with re-
spect to the subgroup O(N — 1) is given as follows:

Fact 2.12 (Branching rule for orthogonal groups). Let (o1, -+ ,0n) € AT(O(N)).
Then the irreducible representation FO(N)<O'1, -+ ,on) decomposes into a
multiplicity-free sum of irreducible representations of O(N — 1) as follows:

FO(N)(Ub T ,UN)\O(N—U = @ FO(N*l)(Tl, L TN-1)- (2.24)
T<0
The commutant O(1) of O(N — 1) in O(N) acts on the irreducible sum-
mand FO(Nfl) (7—1’ . e 7TN—1) by (Sgn)zyzl O—J‘_ZzNzill Ti.
The following lemma is derived from Lemma 2.9 and Fact

—

Lemma 2.13. Let 0 € O(n) be of type I (see Definition [2.4]). Then the
following four conditions are equivalent:

(i) o ®det ~ o;

(i) [o|lom=1) : 7] = [olom=-1) : T ® det] for all T € O(?jl);

(iii) n is even and o = FOM (sy, - y 80,0, ,0) with s» # 0;

(iv) olsom) is reducible, i.e., o is of type Y (Definition [2.4).

2.3 Principal series representations I;(V,\) of the or-
thogonal group G =O(n + 1,1)

We discuss here (nonspherical) principal series representations Is(V, A) of
G = O(n+1,1). We shall use the symbol J.(W,v) for the principal series
representations of the subgroup G' = O(n, 1).
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We recall the structure of principal series representations for rank one
orthogonal groups. The main references are Borel-Wallach [9] and Colling-
wood [l Chap. 5, Sect. 2] for the representations of the identity component
Go = SOp(n + 1,1). We extend here the results to the disconnected group.
For representations of the disconnected group G, see also [d4, Chap. 2] for
the spherical case (i.e., V = 1) and [B7 Chap. 2, Sect. 3] for V = A*(C")
(0 <i<mn).

2.3.1 (C*-induced representations I5(V,\)

We recall from Section PZT.T] that the Levi subgroup M A of the minimal
parabolic subgroup P of G is a direct product group (O(n) x O(1)) x R.
Then any irreducible representation of M A is the outer tensor product of
irreducible representations of the three groups O(n), O(1), and R.
One-dimensional representations § of O(1) = {1,m_} are labeled by +
or —, where we write 0 = + for the trivial representation 1, and 6 = — for

e~

the nontrivial one given by d(m_) = —1. Thus we identify O(1) with the set
{£}.

For A € C, we denote by C, the one-dimensional representation of the
split group A normalized by the generator H € a (see ([2.2]) as

A~ C*, exp(tH) — eM.

Let (o, V) be an irreducible representation of O(n), § € {£}, and A € C.
We extend the outer tensor product representation

Vis:=VKIXC, (2.25)

of the direct product group M A ~ O(n) x O(1) x R to a representation of
the parabolic subgroup P = M AN, by letting the unipotent subgroup N,
act trivially. The resulting irreducible P-module will be written as Vys =
V®JI®C, by a little abuse of notation. We define the induced representation
of G by
L(V,\) = 1(V®6§,\) = Ind5 (V).
We refer to 0 as the signature of the induced representation. If § = + (the
trivial character 1), we sometimes suppress the subscript.
If (6,V) € O/(;) is given as V = FO" (g, .- 0,) with (o1, ,0,) €
At (O(n)) via Z20), then I5(V, A) has a 3¢(g)-infinitesimal character
n

n n n n n n
L L N D et D=y 20
(01+2 702+2 ; ,O'k+2 72 ) 72 [2]7 2) ( 6)
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in the standard coordinates via the Harish-Chandra isomorphism, see (2.15)).
We are using in this article unnormalized induction, 7.e., the representa-
tion I5(V, %) is a unitarily induced principal series representation. Thus if
A is purely imaginary, the principal series representations I5(V, A 4 %) are
tempered. If n is even, then every irreducible tempered representation is iso-
morphic to a tempered principal series representation. If n is odd, then there
is one family of discrete series representations parametrized by characters of
the compact Cartan subgroup and every irreducible tempered representation
is isomorphic to a tempered principal series representation or a discrete series
representation.

We denote by

V)\75 =G Xp V)\’g (2.27)
the G-equivariant vector bundle over the real flag manifold GG/ P associated to
the representation V) s of P. We assume from now on that the principal series
representations I5(V, A) are realized on the Fréchet space C*(G/P,V,s) of
smooth sections for the vector bundle V)5 — G/P. Thus I5(V,\) is the
induced representation C>°-Ind%(V} s) which is of moderate growth, see [,
Chap. 3, Sect. 4]. As usual, we denote the representation space and the
representation by the same letter. We trivialize the vector bundle V) s over
G/ P on the open Bruhat cell via the following map

LN Rn:)N_ :)N_OCG/P

Then I5(V, \) is realized in a subspace of C*(R") ® V' by
in: (Vo) = COR") @V, F— f(b):=F(n_(b)), (2.28)

and this model is referred to as the noncompact picture, or the N-picture,
see Section

2.3.2 Tensoring with characters y.. of G

The character group (G/Gy)~ of the component group G/Gy ~ Z/2Z x 1/ 27
acts on the set of admissible representations II of GG, by taking the tensor
product

eIy (2.29)

for x € (G/Go)~. This action leaves the subsets Irr(G) and Irr(G), (see
Definition 2.3) invariant. We describe the action explicitly on principal se-
ries representations in Lemma 2.I4] below. The action on Irr(G), will be
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given explicitly in Theorem 2.20] (5), and on the space of symmetry breaking
operators in Section B.7]

—

Lemma 2.14. Let V € O(n), 6 € {£}, and A € C. Let x+4 be the one-
dimensional representations of G = O(n + 1,1) as defined in 2I3). Then
we have the following isomorphisms between representations of G:

L(V,A) @ xqm =L 5(V, ),
LV, @ x_y 2l 5(V @ det, \),
[5(‘/, )\) & X—— 2[5(‘/ (9 det, )\)

Proof. For any P-module U and for any finite-dimensional G-module F', there
is an isomorphism of G-modules:

F®Ind%(U) ~ IndG(F @ U).

Then Lemma T4 follows from the restriction formula of the character y of
G to the subgroup M ~ O(n) x O(1) as below:

Xo—|m = 1Ksgn, x_4|y ~det®sgn, x__ |y ~ det X1,
O

A special case of Lemma 214 for the exterior tensor representations V =
A(C™) will be stated in Lemma 3306

2.3.3 K-structure of the principal series representation I5(V,\)

o~

Let (o,V) € O(n) and 6 € {£} as before. By the Frobenius reciprocity
law, K-types of the principal series representation Is(V, A) are the irreducible
representations of K = O(n+1) x O(1) whose restriction to M ~ O(n)xO(1)
contains the representation V' X ¢ of M. The classical branching theorem
(Fact Z12) is used to determine K-types of the G-module I5(V,\). We
shall give an explicit K-type formula in the next section when V is the
exterior tensor representation A\'(C") of O(n). For the general representation

—

(0,V) € O(n), we do not use an explicit K-type formula of I5(V, ), but just
mention an immediate corollary of Fact .12

Proposition 2.15. The K-types of principal series representations Is(V, \)
of O(n + 1,1) have multiplicity one.
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2.4 Principal series representations [5(i, \)

For 0 <i <mn, § € {£}, and A € C, we denote the principal series repre-
sentation I;(AY(C"),\) = C=-Ind%(AY(C") ® § ® Cy) of G = O(n + 1,1)
simply by Is(i, A). Similarly, we write J.(j, ) for the induced representation
C®-Ind$ (N(C" ) @e®C,) of & = O(n,1) for 0 < j <n—1, e € {£},
and v € C. In the major part of this monograph, we focus our attention on
special families of principal series representations I5(i, A) of G and J.(j,v) of
the subgroup G.

In geometry, Is(i, A) is a family of representations of the conformal group
O(n+1,1) of S™ on the space £(S™) of differential forms (c¢f. [E7, Chap. 2,
Sect. 2]) on one hand. In representation theory, any irreducible, unitarizable
representations with nonzero (g, K)-cohomologies arise as subquotients in
I5(i, A) with A =i for some 0 <4 < n and 6 = (—1)%, see Theorem 220 (9),
also Proposition in Appendix 1.

In this section we collect some basic properties of the principal series
representations

Is(i, N) for6 € {£},0<i<n, AeC,

which will be used throughout the article.

2.4.1 3;(g)-infinitesimal character of I5(i, \)

As we have seen in ([Z20]) in the general case, the 34 (g)-infinitesimal character
of the principal series representation I5(7, \) is given by

n n n n n n n n

el —m— il — =1 = —[=] A= = fo<i<—

(\2’2 g TR T LG [2]/’ 5) BE=t=9
b [2]—i

n n n n n n n n

L Y ST PR S T Lo I WA T R P

(G ~br g it g di-l g —[GlA-g) g sisn
n—i i,[Ll]

2

In particular, the G-module I5(i, A) has the trivial infinitesimal character
pc if and only if A =14 or n —i.

2.4.2 K-type formula of the principal series representations Is(i, \)

By the Frobenius reciprocity, we can compute the K-type formula of I5(i, \)
explicitly by using the classical branching law (Fact 212) and Example
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as follows:

Lemma 2.16 (K-type formula of I5(i,\)). Let 0 < i < n and 6 € {£}.
With the parametrization [Z20), the K-type formula of the principal series
representation 15(i,\) of G = O(n+ 1,1) is described as below:

(1) fori=0,
P FOtI(a,0m) R (—1)6;
a=0

(2) for1<i<n-—1,

@ FO(n+1)(a’ 11’) Onfi)gl(_l)aé@@ FO(nJrl)(a’ 1171’ 0n+1—i)&(_1)a+15;

a=1 a=1
(3) fori=n,
P (det @F" (0, 0™) K (~1)*+'.
a=1

See Proposition [[4.29] for a more general K-type formula of the principal
series representation Is(V) \).
2.4.3 Basic K-types of I5(i,\)

Let 6 € {£} and 0 < i < n. Following the notation [37 Chap. 2, Sect. 3],
we define two irreducible representations of K ~ O(n + 1) x O(1) by:

1 (i,6) = A\(C") R 6, (2.30)
(i, 8) == N\FH(CMTY R (—6). (2.31)

This means:

{ubu,ﬂ = N(C" K1, {MH) = A"FH(C) K sgn,
w06, =) = N(C) Rsgn, | p(i,—) = ATHC) R,

The superscripts # and b indicate that there are the following obvious K-

isomorphisms
pi(i,0) = (i +1,-8)  (0<i<n), (2.32)
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which will be useful in describing the standard sequence with trivial infinites-
imal character pg (Definition 221 below), see also Remark 2191

By the K-type formula of the principal series representation I5(i, \) in
Lemma ZT6 the K-types 1 (i,8) and p (4, ) occur in I5(3, \) with multiplic-
ity one for any A\ € C.

Definition 2.17. We say p°(i,8) and p*(i, §) are basic K-types of the prin-
cipal series representations Is(i,A) of G = O(n+1,1).

2.4.4 Reducibility of I5(i, \)

The principal series representation I5(i, \) is generically irreducible. More
precisely, we have the following.

Proposition 2.18. Let G=0(n+1,1),0<i<mn, § € {+}, and X € C.
(1) The principal series representation Is(i, ) is reducible if and only if

Ae{i,n—itU(=Ny)U(n+Ny). (2.33)

(2) Suppose (n, \) # (2i,4). If X satisfies (Z33), then the G-module I5(i, \)
has a unique irreducible proper submodule (say, A) and has a unique ir-
reducible subquotient (say, B) and there is a nonsplitting exact sequence
of G-modules:

0—A— Ii(i,\) - B—0.

(3) Suppose (n,\) = (2i,i). Then the Is5(i, \) decomposes into the direct
sum of two irreducible representations of G which are not isomorphic
to each other.

When n # 2i, the “only if” part of the first statement and the second one
in Proposition follow readily from the corresponding results ([9 [Tl 07])
for the connected group SOg(n + 1,1) and from Lemma below because
A'(C") is irreducible as an SO(n)-module. We need some argument for n =
2i where \'(C") is reducible as an SO(n)-module, see Examples and
in Appendix II for the proof of Proposition 218 (1) and (3), respectively.
In Section B.5 we discuss the description of proper submodules of reducible
I5(i, \) by using the Knapp-Stein operator (8I4) and its normalized one
(B2T). The “if” part of the first statement is proved there, see Lemma RT6
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The composition series of I5(i, A) with trivial infinitesimal character pg
(i.e., for A =i or n—1i) will be discussed in the next subsection (see Theorem
220), which will be extended in Theorem 3Tl to the case of regular integral
infinitesimal characters.

2.4.5 Irreducible subquotients of I5(i,1)

Every irreducible representation of G = O(n + 1, 1) with trivial infinitesimal
character p is equivalent to a subquotient of I5(i,4) for some 0 < i < n and
d € {£}, or equivalently, of I, (i,7) ® x with i > n/2 and x € (G/Gy)". We
recall now facts about the principal series representations 1, (i,4), 1_(i,1),
I.(n—i,i) and I_(n — i,7) of the orthogonal group O(n + 1,1) and their
composition factors.

We denote by I5(7)’ and I5(i)* the unique irreducible subquotients of
I5(i,1) containing the basic K-types p’(,8) and u*(i,d), respectively. Then
we have G-isomorphisms:

Ii(i)f ~I_5(i4+1) for0<i<n-—1andd e {£}, (2.34)

see Theorem 2201 (1) below. For 0 < ¢ <n+ 1 and 6 € {£}, we set

_ Iy (0<¢<mn),
Hes = {1_5(6 —1F  (1<l<n+1). (2.35)

In view of ([Z34]), the irreducible representation 1,5 of G is well-defined.

Remark 2.19. The point here is that each irreducible representation Il 5 (1 <
¢ <n,§ = £) can be realized in two different principal series representations:

I5(¢,€) =IndF (A (C") @ 6 @ Cy),
I5(0—1,0—1)=Ind%(A"HC") ® (=6) @ Cr_y).

Theorem 2.20. Let G =0(n+1,1) (n > 1).
(1) For0 <{ <mn andd € {£}, we have exact sequences of G-modules:

0— H&g — [5(6, 6) — Hul,,g — 0,
0— Hg.,_l,_(s — [5(&71 — f) — ng(s — 0.

These exact sequences split if and only if n = 2¢.
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(2)

Irreducible admissible smooth representations of G with trivial 3¢(g)-
infinitesimal character pg can be classified as

Irr(G), ={Ilis: 0<l<n+1,§ ==}

For any 0 < ¢ < n+1 and § € {£}, the minimal K-type of the
irreducible G-module Ty 5 is given by p’(¢,8) = N (C"1) K 4.

There are four one-dimensional representations of G, and they are
given by

oy =1, Io- ~x4oy ppris =x—y, hpr- = x-—(=det)}

The other representations 1,5 (1 < ¢ < n,6 € {£}) are infinite-
dimensional.

There are isomorphisms as G-modules for any 0 < ¢ < n+1 and d = +:

s @ x4+ =1l s,
Hes @ x—t+ = 1ny1-r6,
s @ x—— =105
Every ;s (0 <0 <mn+1,0 ==) is unitarizable and self-dual.

Forn odd, there are exactly two inequivalent discrete series representa-
tions of G = O(n+ 1,1) with infinitesimal character pg. Their smooth
representations are given by

All the other representations in the list (2) are nontempered represen-
tations of G.

Forn even, there are exactly four inequivalent irreducible tempered rep-
resentations of G = O(n + 1, 1) with infinitesimal character pg. Their
smooth representations are given by

{H%#;, H%—H,é (0= :|:}
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(9) Irreducible and unitarizable (g, K')-modules with nonzero (g, K)-cohomologies
are exactly given as the set of the underlying (g, K)-modules of 114
(0<l<n+1,0=42).

The exact sequences in Theorem 2.20] (1) leads us to a labeling of the
finite set Irr(G), as follows:

Definition 2.21 (standard sequence). Let G = O(n + 1,1) and n = 2m or
2m — 1. We refer to the sequence

H0,+ ) H1,+ 5 ) Hmfl,Jr ) Hm,+

as the standard sequence starting with the trivial one-dimensional represen-
tation Iy 4 = 1. Likewise, we refer to the sequence

1_-[0 - Hl,— 3 ) Hm—l,— ) Hm,—

)

as the standard sequence starting with the one-dimensional representation
IIp - = x4—. Sometimes we suppress the subscript + and write 1I; for II;
for simplicity.

More generally, we shall define the standard sequence starting with other
irreducible finite-dimensional representations of G in Chapter [[3], see Defini-
tion [3:2 and Example[I3.5 An analogous sequence, which we refer to as the
Hasse sequence, will be defined also in Chapter [[3] see Definition-Theorem

051

We give some remarks on the proof of Theorem Basic references are
O 01, B7]. Theorem (1) generalizes the results proved in Borel-Wallach
[ pp. 128-129 in the new edition; p. 192 in the old edition] for the identity
component group Go = SOy(n + 1,1). (Unfortunately and confusingly the
restriction of our representations 7 (i,4) to the connected component Gy are
denoted there by I; when n # 2i.) See also Collingwood [II] Chap. 5, Sect. 2]
for the identity component group Go; B, p. 20] for the disconnected group
G=0(n+11).

For the relationship between principal series representations of G and of
its identity component group Gy, we recall from [ Chap. 5] the following.

Lemma 2.22. For G = O(n+1,1), let Py := PNGy. Then Py is connected,
and is a minimal parabolic subgroup of Go. Then we have a natural bijection:

Go/Py = G/P (~ S™).
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Then we can derive results for the disconnected group G from those for
the connected group G and wice versa by using the action of the Pontrjagin
dual (G/Gy)" of the component group G /Gy and the classical branching law
O(N) | SO(N) (Section 22Z2). In Appendix II (Chapter [0 we discuss
restrictions of representations of O(n + 1,1) with respect to SO(n + 1,1) in
the same spirit.

In Proposition[I4.44 of Appendix I, we will give a description of the under-
lying (g, K')-modules (II; 1)k of the G-irreducible subquotients II; 4 in terms
of the so-called Ay(\)-modules, i.e., cohomologically induced representations
from one-dimensional representations of a -stable parabolic subalgebra .

By using the description, Theorem (9) follows readily from results of
Vogan and Zuckerman [65], see Proposition in Appendix I. The unita-
rizability of the irreducible subquotients II; + (Theorem (6)) traces back
to T. Hirai [IT], see also Howe and Tan [I§]. Alternatively, the unitarizability
in Theorem 22201 (6) is deduced from the theory on A4()), see 26, Thm. 0.51].

Remark 2.23. Analogous results for the special orthogonal group SO(n+1, 1)
will be given in Proposition [5.11]in Appendix II, where we denote the group

by G.
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3 Symmetry breaking operators for principal
series representations—general theory

In this chapter we discuss important concepts and properties of symmetry
breaking operators from principal series representations I5(V, A) of the or-
thogonal group G = O(n+1,1) to J.(W,v) of the subgroup G’ = O(n, 1). In
particular, we present a classification scheme (Theorem BI3)) of all symmetry
breaking operators, which is built on the strategy of the classification in the
spherical case [#4] and also on a new phenomenon for which we refer to as
sporadic operators (Section B.23]). The classification scheme is carried out
in full details for symmetry breaking from principal series representations
Is(V,A) of G to J.(W,v) of the subgroup G’, which will play a crucial role
in understanding symmetry breaking of all irreducible admissible representa-
tions of G having the trivial infinitesimal character (Chapters @ [I and [I2)).
Various theorems stated in this chapter will be proved in later chapters, in
particular, in Chapter [

3.1 Generalities

We refer to nontrivial homomorphisms in
HOIHG/(Lga/, )\>|G/7 JS(VV, l/))

as intertwining restriction operators or symmetry breaking operators. Here
d,e € ZJ27Z in our setting where (G,G") = (O(n + 1,1),0(n,1)). For a
detailed introduction to symmetry breaking operators we refer to [B5 and
A4 Chaps. 1 and 3].

3.2 Summary of results

We keep our setting where (G, G’) = (O(n+1,1),0(n,1)).

For (o,V) € O(n), § € {£}, and A € C, we write I5(V,\) for the princi-
pal series representation of G' as in Section Similarly, let (7,W) be an
irreducible representation of O(n — 1), € € {}, and v € C. We extend the
outer tensor product representation

W, =WHKeXC,
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of the direct product group M’'A ~ O(n—1) x O(1) xR to P’ = M'AN/_by
letting IV act trivially. We also write W,,. = W ® e ® C,, when we regard it
as a P’-module. We form a G’-equivariant vector bundle W, . := G’ xp W, .
over the real flag manifold G’/ P’. The principal series representation J.(W, v)
of G' = O(n,1) is defined to be the induced representation Ind% (W,.) on
the space C>(G'/P', W, ) of smooth sections for the vector bundle.

For (o,V) € O/(\n) and (1, W) € O(?Tl), we set
[V : W] := dimc Homo -1y (V]o@m-1), W). (3.1)

If we want to emphasize the subgroup, we also write [V]o@-1) : W] for
[V« W]. We recall from Fact on the classical branching rule for the
restriction O(N) | O(N — 1) that the multiplicity [V : W] is either 0 or 1.

3.2.1 Symmetry breaking operators when [V : W] # 0

Suppose [V : W] # 0. In this case we prove the existence of nonzero symme-
try breaking operators for all A, v € C and for all signatures 0, ¢ € {£}:

Theorem 3.1 (existence of symmetry breaking operators, see Theorem

B22). Suppose (o,V) € O/(F) and (1,W) € O(Zjl). Assume [V : W] # 0.
Then we have

dim¢ Homer (I5(V, N)|er, J-(W,v)) > 1 for all 6,e € Z/2Z, \,v € C.

Theorem [B.]is proved in Section [B.10 by constructing symmetry breaking
operators: generic ones are nonlocal (e.g. integral operators) see Theorem
below, whereas a few are local operators (i.e. differential operators, see
Theorem [B.1)).

Definition 3.2. We say that the quadruple (A, v, 4, ¢) is a generic parameter
if (\,v) € C? and §,¢ € {£} satisfy

{1/ — A ¢€2N when de = +; (3.2)

v—Ag2N+1 when de = —.

We recall from ([I3) that the set of “special parameters” is given as the
complement of “generic parameters”, namely,

U = {(\1v,6,6) e C* x {£}*: v — A €2N when de = +
or v—A€2N+1 whende=—-1}. (3.3)
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In the case [V : W] # 0, we also prove the following “generic multiplicity-
one theorem”, which extends 4], Thm. 1.1] in the scalar case (V =W = C).

—

Theorem 3.3 (generic multiplicity-one theorem). Suppose (o,V) € O(n),

(r,W) € O(/n-—\l) with [V : W] # 0. If (\,v,0,e) € C* x {£}? satisfies the
generic parameter condition, namely, (A, v,0,¢) & Uy, then

diHl(C HOngl([(;(‘/, )\)’G’; Jz—:(Wv V)) =1

Theorem gives a stronger estimate than what the existing general
theory guarantees:

e the dimension < 1 if both [5(V, \) and J.(W,v) are irreducible [59],
e the dimension is uniformly bounded with respect to o, 7, 0, €, A, v [I].

We note that I5(V,\) or J.(W,v) can be reducible even if (A, v,d,¢) € Ug,.
Theorem will be proved in a strengthened form by giving an explicit
generator (see Theorem B.41]in Section [L.10).

3.2.2 Differential symmetry breaking operators when [V : W] # 0

We realize the principal series representations I5(V,A) and J.(W,v) in the
Fréchet spaces C*°(G/P,Vy5) and C*(G'/P'\ W, ).

Definition 3.4 (differential symmetry breaking operator). A linear map
D: C®(G/P,Vys5) = C*(G'/P' W, )

is called a differential symmetry breaking operator if D is a differential op-
erator with respect to the inclusion G'/P" — G/P and D intertwines the
action of the subgroup G’. See Definition in Chapter [d for the notion of
differential operators between two different manifolds. We denote by

Diff@/ (Ig(v, )\)‘G’y JE(VI/? V))

the subspace of Home (I5(V, )|, J-(W,v)) consisting of differential symme-
try breaking operators.

We retain the assumption that [V : W] # 0. We give a necessary and suf-
ficient condition for the existence of nonzero differential symmetry breaking
operators:
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Theorem 3.5 (existence of differential symmetry breaking operators). Sup-

— T

pose (o,V) € O(n) and (1,W) € O(n — 1) satisfy [V : W] # 0. Then the
following two conditions on the parameters \,v € C and 6,e € {£} are
equivalent:

(i) The quadruple (A, v,d,€) does not satisfy the generic parameter condi-
tion B2), namely, (\,v,d,¢) € Y.

(i) Ditter (I (V Al Jo(W, ) # {0}.

We shall prove Theorem in Chapter [l see Theorem

3.2.3 Sporadic symmetry breaking operators when [V : W] =0

This section treats the case [V : W] = 0. In the holomorphic setting, we
found in @2 a phenomenon that all symmetry breaking operators are given
by differential operators (localness theorem). This phenomenon does not oc-
cur in the real setting if both V' and W are the trivial one-dimensional rep-
resentations [A4]. However, we shall see that this phenomenon may occur in
the real setting for vector bundles. Indeed, the following theorem shows that
there may exist sporadic symmetry breaking operators which are differential
operators in the case [V : W] = 0:

Theorem 3.6 (localness theorem). Assume [V : W] = 0. Then
Homer (I5(V, N)|gr, J-(W,v)) = Diff o/ (Is(V, N) | v, Jo(W, v))

for all (\,v,0,e) € C* x {£}?, that is, any symmetry breaking operator (if
exists)
C™®(G/P,V\s) — C=(G'/P',W,.)
is a differential operator.
Theorem is proved in Section BB We call such operators sporadic
because there is no regular symmetry breaking operator if [V : W] = 0, see
Theorem below. Another localness theorem is formulated in Theorem

313 (2-b) (see also Proposition [6.16 in Chapter [6) under the assumption
that the parameter (\,r) € C? satisfies v — A € N.

Example 3.7. Suppose (V, W) = (AY(C"), A7(C*™1)). Then [V : W] # 0 if
and only if j =i—1 or . Hence Theorem B.Gltells that there exists a nonlocal
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symmetry breaking operators I5(i, \) — J.(j,v) only if j € {i—1,4}. (In fact,
this is also a sufficient condition, see Theorem[@.1l) On the other hand, there
exist nontrivial differential symmetry breaking operators for some (\, v) € C?
if and only if j € {i—2,i—1,4,i41}, as is seen from the complete classification
of differential symmetry breaking operators (Fact B.22)). Thus there exist
sporadic (differential) symmetry breaking operators when j =i —2 or ¢ + 1.

Remark 3.8. The assumption [V : W] # 0 in Theorems and is not an
intertwining property for M’ = MNG’' ~ O(n—1)xO(1) but for the subgroup
O(n — 1) which is of index two in M’. We note that for V5 := VX € M
and W, .= WK e e M,

Hompp (Vs|pr, We) # {0} if and only if [V : W] #£ 0 and 6 = e.

Indeed the condition § = ¢ is not included in the assumption of Theorem B3]
on the construction of regular symmetry breaking operators. The reason is
clarified in Theorem in the next subsection.

3.2.4 Existence condition for regular symmetry breaking opera-
tors

A regular symmetry breaking operatoris an “opposite” notion to a differential
symmetry breaking operator in the sense that the support of its distribution
kernel contains an interior point in the real flag manifold, see [A4] Def. 3.3].
(See also Definition in our special setting.) In @4 Cor. 3.6] we give a
necessary condition for the existence of regular symmetry breaking operators
in the general setting. This condition is also sufficient in our setting:

Theorem 3.9 (existenci\ofregular symmetry breaking operators). Suppose

—

V € O(n) and W € O(n—1). Then the following three conditions on the
pair (V,W) are equivalent:

(i) [V : W] #0.
(ii) There exists a nonzero reqular symmetry breaking operator from the G-

module I5(V,\) to the G'-module J.(W,v) for some (\,v,d,g) € C% x
{3

(iii) For any (d,¢) € {£}?, there is an open dense subset U in C? such that
a nonzero reqular symmetry breaking operator exists from Is(V,\) to

J-(W,v) for all (\,v) € U.
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The proof will be given in Section .71 The open dense subset U is
explicitly given in Proposition [5.39)

3.2.5 Integral operators, analytic continuation, and normalization
factors

For an explicit construction of regular symmetry breaking operators, we use
the reflection map 1,, defined as follows:

2zl
22

Then 9, (x) gives the reflection v, (x) with respect to the hyperplane {y €
R" : (z,y) = 0}. Clearly, we have

Un(1) = P (—2), Yu(x)*=1,, and deti,(z) = —1. (3.5)

U R* = {0} - O(n), z~—1, (3.4)

— —

Suppose (0,V) € O(n) and (7,W) € O(n —1). For the construction of
regular symmetry breaking operators, we need the condition [V : W] # 0,
see Theorem B9 So let us assume [V : W] # 0. We fix a nonzero O(n — 1)-
homomorphism

pry_w:V =W,

which is unique up to scalar multiplication by Schur’s lemma because [V :
W] = 1. We introduce a smooth map

RYW.R" — {0} — Home(V, W)

by
RYW .= pry,_y 00 0 1. (3.6)
In what follows, we use the coordinates (z,z,) € R" = R"! & R where
x = (x1, -+ ,Tp_1), and the n-th coordinate z,, will play a special role.
We set
1
A = (e 22) TR (2,), (37)
1
./Zl’v’l‘jvf = — — (|az:|2 + mi)_”|xn|)‘+”_"SgnanV’W(m,xn).
A, I“(A+V2n+2)1—\(/\ ;4—1)
(3.8)
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Theorem 3.10 (regular symmetry breaking operators). Suppose [V : W] #
0 and~y € {£}. Then the distributions j‘;%, initially defined as Home(V, W)-
valued locally integrable functions on R™ for Re A > |Rev|, extends to P'-
invariant elements in D' (G /P, V5 ;) @ W, for all (\,v) € C* and §, e € {*}
with 0e = ~. Then the distributions .ZQ\/ZI; induce a family of symmetry
breaking operators

ALY O%(G/PVrs) = C%(G'/P W),

vyt
which depends holomorphically on (\,v) in the entire C2.

Remark 3.11. The denominator in ([B.7) is different from the product of the

denominators of the two distributions % and % on R" that
2 2

depend holomorphically on (), v) in the entire C?. In fact the product

= O 2 s

F(n;u) F(A—i—ugn—i-l)

(3.9)

does not always make sense as distributions on R". For instance, if (\,v) =
(—1,n), then the multiplication (B9) means the multiplication (up to nonzero
scalar multiplication) of the Dirac delta functions 6(xy,---,z,) by d(z,),
which is not well-defined in the usual sense.

Theorem will be proved in Section [B.0l

We prove in Theorem B.I9 that the normalization is optimal for (V, W) =
(AY(C™), A(C"1)) in the sense that the zeros of 1&‘;1‘7 . are of codimension
> 1 in the parameter space of (\,r), namely, discrete in C? in our setting.
For the general (V, W), we shall give an upper and lower estimate of the null

set of the symmetry breaking operators ,&;/EV + and 1&}(}7 _ in Theorem [B.13

3.3 Classification scheme of symmetry breaking oper-
ators: general case

In this section, we give a general scheme for the classification of all symmetry
breaking operators Is(V,\)|¢r — J.(W,v) between the two principal series
rﬁpﬂesentations of G g(lche subgroup G’ in full generality where (o,V) €
O(n) and (7,W) € O(n — 1).

We begin with conditions on the parameter (), v, d, ) for the existence of
differential symmetry breaking operators.
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Theorem 3.12 (existence of differential symmetry breaking operators).

(1) (Theorem [ZZ21) Suppose \,v € C and 6, € {£} satisfy the generic
parameter condition (3.2). Then,

Diffa/ (15(V, N)|er, Jo(W,v)) = {0}

— —

for any (0,V) € O(n) and (7,W) € O(n — 1).

(2) (Theorem [61]) Suppose [V : W] # 0. Then the converse statement
holds, namely, if (\,v,0,e) € Uy, (see (L3)), then

Differ (I5(V, N e, Jo(W, v)) # {0}.
We give a proof for the first statement of Theorem [3.12]in Section (5.4l and
the second statement in Section Keeping Theorem on differential

symmetry breaking operators in mind, we state a general scheme for the
classification of all symmetry breaking operators:

Theorem 3.13 (classification scheme of symmetry breaking operators). Let

-~

n>3, (0,V)€0n), (W) eOm—1), \,veC and s, € {£}.
(1) Suppose [V : W] =0. Then
HOIHG/(I(SG/, )\)|G/7 JS(VV, l/)) = Diffgl(](s(v, )\)|G/, JE(VV, l/))

(2) Suppose [V : W] # 0.

(2-a) (generic case) Suppose further that (\,v,6,e) & Uy, namely, it
satisfies the generic parameter condition [B2l). Then

Home: (I5(V, M|, J-(W,v)) = CAVY, .

: VW : . ‘
In this case, Ay’ s. 1s nonzero and is not a differential operator.

(2-b) (special parameter case I, localness theorem) Suppose 1&;{%5 #0
and (N, v,0,e) € Vg, (i.e., does not satisfy the generic parame-
ter condition [B2)). Then any symmetry breaking operator (in
particular, 1&2\/%8 ) is a differential operator and

Home (I5(V, N |, J.(W, v)) = Diffe: (Is(V, N|ar, J.(W, 1)) > Xxy;%g.
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(2-¢) (special parameter case II) Suppose ,&K%E = 0. Then (\,v,d,¢) €

Uy, and the renormalized operator AK’%E (see Section [Z11.3)
gives a nonzero symmetry breaking operator which is not a dif-
ferential operator. We have

Homer (I5(V, M|, Jo(W,v)) = CAYV @Diff o (1s(V, )7, Jo(W,v)).
In particular,
dim@ H0m01<l5(‘/, )‘)|G’7 Js(VV, V)) Z 2.

The first assertion of Theorem B I3]is a restatement of Theorem 3.6 The
case (2-a) is given in Theorem .41l and the case (2-b) is in Proposition 610
The first statement for the case (2-c) is proved in Theorem (1). The
direct sum decomposition is given in Corollary (.46l The last statement fol-
lows from the existence of nonzero differential symmetry breaking operators
for all special parameters (Theorem (2)).

Theorems 3.5 and lead us to a vanishing result of symmetry breaking
operators as follows:

Corollary 3.14 (vanishing of symmetry breaking operators). Let (o,V) €

On), (1. W) €O —1), \,v € C and §,e € {£}. If[V : W] =0 and (\, )

satisfies the generic parameter condition [B.2]), then
Home (I5(V, N)|ar, J.(W,v)) = {0}
Proof. By Theorem (1), we have
Home/ (I5(V, )|, J.(W,v)) = Diff e/ (I5(V, M) |er, Jo (W, v))

because [V : W] = 0. In turn, the right-hand side reduces to zero by Theorem
because of the generic parameter condition ([3:2). O

Theorem [3.13] gives a classification of symmetry breaking operators up to
the following two problems:

e the location of zeros of the normalized regular symmetry breaking op-

VW
erator A/\,w’

e the classification of differential symmetry breaking operators.
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For (V,W) = (AY(C"), A(C"1)), these two problems are solved explic-
itly in Theorem and Fact B.22] respectively, and thus we accomplish
the complete classification of symmetry breaking operators. This will be
stated in Theorem (multiplicity formula) and in Theorem (explicit
generators).

3.4 Summary: vanishing of regular symmetry break-
ing operators A)\ Zvi

As we have seen in the classification scheme (Theorem BI3) for all symme-
try breaking operators, the parameter (/\ v,0,¢) for which the (generically)

regular symmetry breaking operator A/\ + vanishes plays a crucial role in
the classification theory. For (A, v,d,¢) € \Ifsp, we noted:

VW :
e when A/\O v+ = 0, we can construct a nonzero symmetry breaking op-

erator AAO Vot DY “renormalization” which is not a differential operator
(Theorem [£.47));

e when A‘A/O vot 7 0, we prove a localness theorem asserting that all sym-
metry breaking operators are differential operators (Proposition [6.16]).

We obtain a condition for the (non) vanishing of AKZV . as follows. Using
the same notation as in [@4 Chap. 1], we define the following two subsets in
72

Leven :={ (=i,—j):0<j<iandi=j mod 2 }, (3.10)
Loga :={(—i,—j):0<j<iandi=j+1 mod2}. (3.11)

—

Theorem 3.15. Let (0, V) € (7(;) and (1,W) € O(n — 1) with [V : W] # 0.
(1) There exists N(o) € N such that

AKK =0 if (\,v) € Leyen and v < —N(0),
AE\/XV_ =0 if (\,v) € Loga and v < —N (o).

(2) IFAYY, =0 thenv — X € 2N; if AY) =0 thenv — A € 2N+ 1.

o7



Remark 3.16. We shall show in Lemma that N(o) can be taken to be
((0), as defined in (2.22).

Theorem (2) is a part of Theorem (2), and will be proved in
Section B.8

Combining Theorems and BI8, we see that there exist infinitely
many ()\,v) € C? such that the multiplicity m(Is(V,\), J.(W,v)) > 1 as
follows:

— —_—

Corollary 3.17. Let (0,V) € O(n) and (1,W) € O(n — 1) satisfy [V : W] #
0. If

Leven N{v < —N(0)} for de = +,
(A.v) € {Lodd N{r < —-N(o)} for 6e = —,

then we have
dim¢ HOHle/(L;(M )\)’G/, JE(W, I/)) > 1.

By Theorem [B.T3] we get readily the following corollary, to which we shall
return in Chapter [[3] (see Example [3.32]).

Corollary 3.18. Suppose that AK’% = 0. Then A}ﬁ‘;,n—l—u,a # 0.
Theorem B.I5 means that

Leven N{v < =N(0)} c{(\,v) € C*: 1&‘;3{1 =0} Cc{(\v)eC*:v— \e 2N},

Loaa N{v < =N(0)} c{(A\,v) € C?: A} =0} C {(A\,v) €C?:v— N € 2N+1}.
We shall determine in Theorem the set {(\,v) € C?: A‘;m =0} for

v = =+ in the special case where (V,W) = (A(C"), A7(C"™1)). If ¢ is the

i-th exterior representation o on A?(C"), then we can take N (o) to be 0 if

i=0ormn;tobelifl1 <i<mn-—1. In this case, the left inclusion is almost

a bijection. On the other hand, concerning the right inclusions, we refer to

Theorem B.I3] (2-b), which will be proved in Section[6.8] see Proposition [6.16

3.5 The classification of symmetry breaking operators
for differential forms

Let (G,G") = (O(n +1,1),0(n,1)) with n > 3 as before. We consider the

special case

(V. W) = (A'(C™), N(C")).
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Then the corresponding principal series representations Is(V,\) of G and
J-(W,v) of the subgroup G’ are denoted by I5(i, \) and J.(j, v), respectively.
In this section we summarize the complete classification of symmetry break-
ing operators from the G-module I5(i,\) to the G’-module J.(j,v). The
main results are stated in Theorems and Our results rely on the
vanishing condition of the normalized regular symmetry breaking operators

AZAJM (Theorem B.19) and the classification of differential symmetry breaking

operators (Fact B.22]).

3.5.1 Vanishing condition for the regular symmetry breaking op-
erators A/

We apply the general construction of the (normalized) symmetry breaking
operators A‘;K in Theorem B0 to the pair of representations (V, W) =
(AY(C™), A2(C"1)). Then we obtain (normalized) symmetry breaking oper-

ators, to be denoted by A}’ _, that depend holomorphically on (A,r) in the

entire complex plane C? if j € {i — 1,i} and v € {#£}, see Theorem
We determine the zero set of A}, explicitly as follows:

Theorem 3.19 (zeros of regular symmetry breaking operators &;JV 4)-
(1) For0<i<mn-—1,

{(\v)eC?: A}, =0}

o Leven Zfl - 07
| Teven — v =0hU{(,0)}  fl<i<n—1.

(2) Forl<i<n,
{(\v)eC? AL =0}
B {(Leven—{VzO})U{(n—i,n—i)} fl<i<n-—1,

Leven ZfZ:TL
(3) For0<i<mn-—1,
{(\v)eC?: A}, =0}
| Loaa ifi=0,
N Leaa—{r=0y if1<i<n-—1.
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(4) For1<i<n,

{(\v)eC* A =0}

o Lodd—{V:O} Zflglgn—l,
B Lodd ’LfZ:TL

Theorem [B.19 will be proved in Section by using the residue formula

of A, , ([38]).

A special case of Theorem includes the following.
Example 3.20. (1) For 0 <i <mn, 1&;;+ =0 and &ffﬂ-’n%fl# # 0.
(2) For0<i<n—1,Al"" =0and AlZ"707) L #£0.

Remark 3.21. In the case i = 0, Igi\lu . 1s the scalar-valued symmetry breaking

operator induced from the scalar-valued distribution JZA% +, as we recall from
(E40). Thus the case i = 0 in (1) was proved in 4] Thm. 8.1].

3.5.2 Differential symmetry breaking operators

We review from [37] the notation of conformally equivariant differential oper-
ators £4(S™) — £7(S™Y), namely, differential symmetry breaking operators
L(V,N|e — J.(W,v) with (V,IWV) = (AY(C"), A(C"1)). The complete
classification of differential symmetry breaking operators was recently ac-
complished in [37, Thm. 2.8] based on the F-method [32].

Fact 3.22 (classification of differential symmetry breaking operators). Let
n>3. Suppose 0 <i<n,0<j<n-—1, \veC, andd,ec € {£}. Then
the following three conditions on 6-tuple (i, j, \,v,0,¢) are equivalent.

(i) Differ(£5(i, A)ler, J=(5,v)) # {0}
(i) dime Differ (153, N, J. (4, v)) = 1.
(iii) v — XA € N, (=1)""* = ¢, and one of the following conditions holds:

(a’> J:Z_272§Z§n_17 ()\7V):(n_7/7n_l+1),
(&) (4,5) =(n,n—-2), = AeN, v=1;
(b) j=i—1,1<i<n;
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The generators are explicitly constructed in [B7, (2.24)—(2.32)] (see [23]
M0 A4 for the ¢ = 0 case), which we review quickly. Let Cf(z) be the
Gegenbauer polynomial of degree ¢, normalized by

8 ek
T(a+ [&1]) (=1) k(0 — 2k)!

k=0

Co(z) = (2z)¢-2F (3.12)

as in 87 (14.3)]. Then C%(z) # 0 for all @ € C and ¢ € N.
For ¢ € N, we inflate Cj'(z) to a polynomial of two variables x and y:

Ce(x,y) ;:xé@g(%>
4]
_ - (=T (0 -k + a) B
= Do+ B0 — 2k + 1! (2y)" 2", (3.13)

For instance, C&(z,y) = 1, C%(z,y) = 2y, C¢(x,y) = 2(a + 1)y — =, etc.
Notice that Cf*(2?,y) is a homogeneous polynomial of z and y of degree .

For v—\ € N, we set a scalar-valued differential operator C s CF(R?) —
> (Rn—l) by

0

C,, == Resty,_00C 7 (—Aga-1, —). (3.14)
’ ox,,
For € C and a € N, we set
1 if a is odd,
v(p,a) = { . Lo (3.15)
5 if a is even.

We are ready to define matrix-valued differential operators
Cy,: EIR™) — E(R™)
which were introduced in [B7, (2.24) and (2.26)] by the following formulse:

y - - 1 -
C’i\’,zu = CA+1,V—1dR"dIE" _’Y()‘_ga V_)‘)C)\,u—ldR"[‘ai+§(V_Z.>C)\,w (316>
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n—1

- R
7I/_)\)C)\+1,Van+§()\—i_l_n)(c)\,VL%'
(3.17)
Here 17: EY(R™) — £1(R") stands for the interior product which is defined

to be the contraction with a vector field Z.
We note that

ii—1l . ¥
C}\,l/ = _C/\+1,u—1dR"anL%—’Y(>‘_

1 ~ - 1
Cgl?/ = §VCA,V7 C?/’,ly = 5(7/ - i>ReStzn:0)
3,0—1 1 . n,n—1 I ~
Cyy = §(A+z—n)Restxn:00L%, CY, = §I/CMOL%,

The operators Cf\’fy vanish for the following special values of (A, v):
CK?V:O ifand only if A\ =v =1 orv=1=0,
C&fy_l:O ifandonlyif \=v=n—1¢ orv=n—1i=0.

In order to provide nonzero operators, following the notation as in [37],
(2.30)], we renormalize C}’ as

Rest,,,—o if A=v,
CY, = CA’." if i =0, (3.18)
(CY, otherwise,
(Restxnzo Lo if A =v,
Cy, =1 Cy 000 if i =n, (3.19)
cyt otherwise.
\ s

For j =1 —2or i+ 1, we also set

* ™~ 5 -1 1 )
An—itl Rest., _o OL%d*n f2<i<n—1,A=n-—1.
Chitl . dgn-1 0 (E/\,o ifi=0,Ae-N,
Ai+l - Rest$n:0 odgn ifl1<i<n-— 2, A=1.

With the notation as above, we can describe explicit generators of the
space Diff/ (I5(7, A)|¢r, J-(j, €)) of differential symmetry breaking operators:

62



Fact 3.23 (basis, B7, Thm. 2.9]). Suppose that 6-tuple (i,j, A\, v,d,€) is one
of the sixz cases in Fact[322 (i1i). Then the differential symmetry breaking
operators 15(i,\) — J.(j,v) are proportional to

j=i-2:COL i @<i<n—1); CY7(i=n),

j=i—1:C5,

j=i:  CY,

j=i+1:Ciiff(1<i<n-—2); C})(i=0).

Remark 3.24. The scalar case (i = j = 0) was classified in Juhl 23] for
n > 3. See also H0 for a different approach using the F-method. The
case n = 2 (and ¢ = j = 0) is essentially equivalent to find differential
symmetry breaking operators from the tensor product of two principal series
representations to another principal series representation for SL(2,R). In
this case, generic (but not all) operators are given by the Rankin—Cohen
brackets, and the complete classification was accomplished in [A3] Thms. 9.1
and 9.2]. We note that the dimension of differential symmetry breaking
operators may jump to two at some singular parameters where n = 2.

3.5.3 Formula of the dimension of Homg: (I5(i, A)|¢, Jo(7,v))

For admissible smooth representations II of G and 7 of the subgroup G’, we
set
m(1I, 7) := dim¢c Home (|6, 7).

In this subsection we give a formula of the multiplicity m(II, 7) for 1T =
Is(i, \) and m = J.(j,v).

Theorem 3.25 (multiplicity formula). Let (G,G’) = (O(n + 1,1),0(n, 1))
with n > 3. Suppose 11 = I5(i,\) and m = J.(j,v) for 0 <i<n,0<j<
n—1,0,e€{x}, and \,v € C. Then we have the following.

(1)

m(Il, ) €{1,2} if j=1—1 ori,
m(II, m) €{0,1} ifj=i—2ori+1,
m(Il, 7) =0 otherwise.
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(2) Suppose j =i —1 ori. Then m(Il, ) =1 except for the countable set
described as below.

(a) Casel <i<n—1. Then m(Is5(i,\), J-(i,v)) = 2 if and only if

j:ia 58:+7 ()\7V) eLeven_{V:O}U{(iui)}7
j =1, e = —, ()\,V) € Loqa — {V = 0},
j=1—1, de=+4, (MV) € Loyen —{v=0}U{(n—i,n—1)},

or
j=1—1, de=—, ()\,V)GLodd—{VZO}.

(b) Casei=0. Thenm(I5(0,\), J-(0,v)) =2 ifde = +,(\, V) € Loyen
or de = —, ()\, V) € Logq-

(¢) Casei=n. Then m(Is(n,\),J-.(n — 1,v)) =2 if
de =+, (N, V) € Leyen 01 96 = —, (A, V) € Logq.

(3) Suppose j =i —2 ori+ 1. Then m(Il, ) = 1 if one of the following
conditions (d)—(g) is satisfied, and m(Il, ) = 0 otherwise.
(d) Casej=i—2,2<i<n-—1, (\,v)=(n—i,n—i+1), de = —1.
(e) Case (i,7) = (n,n—2), =X\ €N, v =1, je = (1)1,
(f) Case j=i+1,1<i<n—-2,(\v)=(i,i+1), de =—1.
(g) Case (i,5) = (0,1), =A €N, v =1, de = (=1)M?!.

The proof of Theorem [B.28] will be given right after Theorem B.26 by
using Fact B22] and Theorems B.I3] and B.I9, whose proofs are deferred at
later chapters.

3.5.4 Classification of symmetry breaking operators /;(i, \) — J.(j,v)

In this subsection, we give explicit generators of
HomG/(I(S(Z.a )‘)|G’7 J€<j7 V)))

of which the dimension is determined in Theorem .23 For most of the
cases, the regular symmetry breaking operators A’)fy’ 4 and the differential
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symmetry breaking operators ((N:’/\JV give the generators. However, for the
exceptional discrete set classified in Theorem [3.19, we need more operators
which are defined as follows: for (Ag,9) € C* such that A} . = 0, we

renormalize the regular symmetry breaking operators Af\jy . as follows (see
Section [@.9). For j =i of i — 1, we set

—

A = Jim I JAY 1 (3.20)
Ao~ 1= i TS ——)A%, - (3.21)

Then AZ)\]V 4 are well-defined and nonzero symmetry breaking operators (The-
orem )
For j € {i —1,i} and v € {£}, the set

{(\v)eC*: Ay, =0}

is classified in Theorem B.J9 Then we are ready to give an explicit basis of
symmetry breaking operators:

Theorem 3.26 (generators). Suppose j =i ori — 1.

(1) m(Is(i,N), J-(4,v)) = 1 if and only if&&fme # 0. In this case
Homg: (I5(i, A)|er, J(j,v)) = CAYY, ;..
(2) m(Is(i, N), J=(4,v)) = 2 if and only if &&fy,&s = 0. In this case
Home (I5(i, M|ar, J-(j, ) = CAY ;& CTY.

See Theorem [B.I9for the necessary and sufficient condition on (4, j, A, v, )
for A%

xp~ b0 vanish.

Remark 3.27. For j = i+ 1 or « — 2, all symmetry breaking operators are
differential operators by the localness theorem (Theorem B.6]), and the gen-
erators are given in Fact [3.23
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Proof of Theorems and [3.2d. We apply the general scheme of symmetry
breaking operators (Theorem B.I3)) to the special setting:

V=A(C") and W = A/(C"1).

Then the theorems follow from the explicit description of the zero sets of the
(normalized) regular symmetry breaking operators AY’, - (Theorem B.T9) and
the classification of differential symmetry breaking operators (Fact B22]). [

Remark 3.28. The first statement (i.e., ¢ = + case) of Theorem B2H (2) (b)
was established in 4] Thm. 1.1], and the second statement (i.e., de = —
case) of (b) can be proved similarly. In this article, we take another approach
for the latter case: we deduce results for all the matrix-valued cases (including
the scalar-valued case with de = —) from the scalar valued case with de = +.

3.6 Consequences of main theorems in Sections
and [3.5]

In this section we discuss symmetry breaking from principal series represen-
tations II = I5(V,\) of G to m = J.(W,v) of the subgroup G’ in the case
where II and 7 are unitarizable. Unitary principal series representations are
treated in SectionB.6.1l and complementary series representations are treated
in Sections and We note that II and 7 are irreducible in these
cases. On the other hand, if A (resp. v) is integral, then II (resp. ) may
be reducible. We shall discuss symmetry breaking operators for the subquo-
tients in the next chapter in detail when they have the trivial infinitesimal
character p.

3.6.1 Tempered representations

We recall the concept of tempered unitary representations of locally compact
groups.

Definition 3.29 (tempered unitary representation). A unitary representa-
tion of a unimodular group G is called tempered if it is weakly contained in
the regular representations on L*(G). By a little abuse of notation, we also
say the smooth representation II*° is tempered.

Returning to our setting where (G,G’') = (O(n + 1,1),0(n, 1)), we see
that the principal series representations I5(V, A) and J.(W,v) are tempered
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if and only if A € /—1R + 5 and v € Vv—1IR + %(n — 1), respectively. We
refer to them as tempered principal series representations.

We recall [V : W] = dim¢ Homo,—1)(V]om-1), W). Then Theorem
implies the following:

Theorem 3.30 (tempered principal series representations). Let (o,V) €

O(n), (r,W) € O(/n?l), b, € {£}, and A € V=1R+2, v € /=1R+(n—
1) so that I5(V, \) and J.(W, v) are tempered principal series representations.
Then the following four conditions are equivalent:

(i) [V': W] #0;

i) [V: W] =1

(ii) Homer(Is(V, A)lar, Je(W,v)) # {0};
(it") dim¢ Homer (15(V, A)|gr, Jo(W,v)) = 1.

Applying Theorem B30 to the exterior tensor representations V = A*(C")
of O(n) and W = AJ(C"1) of O(n — 1), we get:

Corollary 3.31. Suppose A € vV—1IR+ %, andv € vV/—1R+ 2(n—1). Then

27

o
dime Homgr (I5(i, A, J- (G, 1)) = fi=jorj=i-1,
0 otherwise.

3.6.2 Complementary series representations

We say that I5(V, \) is a (smooth) complementary series representation if it
has a Hilbert completion to a unitary complementary series representation.
If the irreducible O(n)-module (o, V') is of type X (see Definition 20, i.e.,
the last digit of the highest weight of V' is not zero, then the principal series
representation I5(V, A) is irreducible at A = %, and consequently, there exist

complementary series representations I5(V,\) for some interval A\ € (5 —
a, 5 +a) with a > 0.

Example 3.32. Suppose (0,V) is the i-th exterior tensor representation
A (C™). We assume that this representation is of type X, equivalently, n # 2i
(see Example 2.]). The first reduction point of the principal series represen-
tation of I5(i, \) is given by A =i or n — ¢ (see Proposition R.I8]). Therefore
Is(i,\) = I;(\*(C"), \) is a complementary series representation if

min(i,n —i) < A < max(i,n — 7).
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In the category of unitary representations, the restriction of a tempered
representation of G to a reductive subgroup G’ decomposes into the direct
integral of irreducible unitary tempered representations of a reductive sub-
group G’ because it is weakly contained in the regular representation. In
particular, complementary series representations of the subgroup G’ do not
appear in the unitary branching law of the restriction of a unitary tempered
principal series representation I5(V, A), whereas Theorem in the cate-
gory of admissible smooth representations shows that there are nontrivial
symmetry breaking operators

AVT I5(V,A) = J(W,v)

to all complementary series representations Js(W,v) of the subgroup G’ if
VW] #0.

Moreover, Theorem (2) implies also that there are nontrivial sym-
metry breaking operators from any (smooth) complementary series represen-
tation I5(V, \) of G to all (smooth) tempered principal series representations
J-(W,v) of the subgroup G’ as far as [V : W] # 0.

3.6.3 Singular complementary series representations

We consider the complementary series representations I;(i, s) for i < s < %
with an additional assumption that s is an integer. These representations are
irreducible and have singular integral infinitesimal characters. We may de-
scribe the underlying (g, K')-modules of these singular complementary series
representations in terms of cohomological parabolic induction A4(\) where
the parameter A wanders outside the good range relative to the #-stable
parabolic subalgebra q (see [28] Def. 0.49] for the definition).

For 0 < r < "T“, we denote by g, the f-stable parabolic subalgebra of

gc = o(n+2,C) with Levi factor SO(2)" xO(n—2r+1,1)in G = O(n+1,1)
(see Definition [[Z4.37).

Lemma 3.33. Let 0 <i < [§] — 1. Forse {i+1,i+2,---,[§]}, we have
an isomorphism as (g, K)-modules:

I (i,8) ~ Ag (0,-- 0,8 — ).

qi+1

See Remark in Appendix I for the normalization of the (g, K)-
module A;(A\) and Theorem for more details about Lemma B33l See

68



also 29 Thm. 3] for some more general cases. The restriction of these
representations to the special orthogonal group SO(n+1, 1) stays irreducible
(see Lemma [[53lin Appendix IT). Bergeron and Clozel proved that there are
automorphic square integrable representations, whose component at infinity
is isomorphic to a representation I5(7, s)|som+1,1) (see B O]).

A special case of Theorem includes:

Proposition 3.34. Suppose s € N andi < s < [5]. Let §, € € {£}.
(1) Fori<r<|[2%1],

Home (15(, s)|gr, J:(i,7)) = C.

(2) For0<i—1<r<[%2],
HOInG/(LS(Z., 8)|G’7 ‘]E<Z - 17T)) =C.

Remark 3.35. Proposition B.34] may be viewed as symmetry breaking op-
erators from the Casselman-Wallach globalization of the irreducible (g, K)-
module A,()) to that of the irreducible (g’, K)-module Ay (v) in some special
cases where both A\ and v are outside the good range of parameters relative
to the -stable parabolic subalgebras.

In the next chapter, we treat the case with trivial infinitesimal character
p, and thus the parameters stay in the good range relative to the #-stable
parabolic subalgebras. In particular, we shall determine a necessary and
sufficient condition for a pair (q, q’) of f-stable parabolic subalgebras q of gc¢
and q' of its subalgebra g such that

HOHIGV(H|G/, 7T) 7é {0},

when the underlying (g, K)-module Il of IT € Irr(G) is isomorphic to (Aq)++
and the underlying (g’, K')-module of 7 € Irr(G’) is (Ay )+, see Theorems
AT and for the multiplicity-formula, and Proposition [£.44] in Appendix
I for the description of IIx in terms of (Ay)++. In contrast to the case of
Proposition B.34], the irreducible G-module II and G’-module 7 do not coin-
cide with principal series representations, but appear as their subquotients
in this case, see Theorem (1).
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3.7 Actions of (G/Gy) x(G'/G{)” on symmetry breaking
operators

In this section we discuss the action of the character group of G x G’ on the
set
{HOHIGV (H’Gv, 7T)}

of the spaces of symmetry breaking operators where admissible smooth repre-
sentations IT of GG and those 7 of the subgroup G’ vary. Actual computations
for the pair (G,G") = (O(n+1,1),0(n, 1)) are carried out by using Lemma
2.14] for principal series representations and Theorem (5) for their irre-
ducible subquotients.

3.7.1 Generalities: The action of character group of G x G’ on
{Home(Il|g/, m)} in the general case

Let G D G’ be a pair of real reductive Lie groups. Then the character group
of G x G’ acts on the set of vector spaces {Home (11|, 7)} where II runs
over admissible smooth representations of G, and 7 runs over those of the
subgroup G’. Here the action is given by

Home (IT|gr, ) = Homeg (IT®@ x ™ H|ar, 7 @ X')

for a character y of G and x’ of the subgroup G'.

In what follows, we regard a character of G as a character of G’ by
restriction, and use the same letter to denote its restriction to the subgroup
G'. Then for all characters x and x’ of G, we have the following isomorphisms:

Home: (1@ x)|er, 7 @ X') =~ Home (Mg, 7 @ x ™ @ X)
~ Home (I ® (x) e 7@ x ™)
~ Homg ((IT® x @ (X)) H|ar, 7). (3.22)

The above isomorphisms define an equivalence relation on the set
{Homer (I, m) }

of the spaces of symmetry breaking operators where Il and 7 vary.
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3.7.2 Actions of the character group of the component group on
{HomG/(LS(iv )‘)’GU Js(ja V))}

We apply the above idea to our setting
(G,G") = (0O(n+1,1),0(n,1)).

Then the component groups of G and G’ are a finite abelian group given by
G')Gy~ GGy ~=7)27 x 7)]27L. (3.23)

We recall from (213)) that the set of their one-dimensional representations
is parametrized by

(G'/Go)” = (G/Go)” = {Xav : a,b € {£}}.

By abuse of notation, we shall use the same letters x,, to denote the corre-
sponding one-dimensional representations of G, G, G/Gy, and G'/Gj,.

The action of the character group (Pontrjagin dual) (G/Gq)”" on the set
of principal series representations can be computed by using Lemma P.T4]
To describe the action of the Pontrjagin dual (G/Gy)~ ~ (G'/G{)" on the
parameter set of the principal series representations I5(i, \) of G and J.(j, v)
of the subgroup G’, we define

S:={0,1,--- ,n} x Cx Z/2Z, I(s) .= Is(i,\) for s = (i,\,0) €5,
T:={0,1,--- ,n—1}y x Cx Z/2Z, J(t):= J.(j,v) fort=(j,v,e)€T.

We let the character group (G/Gp)~ act on S by the following formula:

X++ (27 )\7 6) ::(iv >\7 5)7 X+- <Z7 )‘7 5) ::(ia )\7 _5)7
et - (0, 0,0) :==(i,\, =0), x—_-(i,\,6) :=(i,\, 0),

where i := n — i. The action of (G'/G4)" on the set T is defined similarly,
with obvious modification .
ji=n—1—j

when we discuss representations of the subgroup G’ = O(n,1). By Lemma
T4 and by the O(n)-isomorphism A*(C") ~ A" ¢(C") ® det, we obtain the
following.
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Lemma 3.36. For all x € (G/Gy)” ~ (G'/Gy)” and fors € S, t € T, we
have the following isomorphisms as G-modules and G'-modules, respectively:

I(s)@x ~I(x-s),
J(t) @ x >~ J(x 1)

Then the equivalence defined by the isomorphisms ([.22]) implies that
it suffices to consider symmetry breaking operators for (4,¢) = (+,+) and
(0,¢) = (+, —). To be more precise, we obtain the following.

Proposition 3.37. Let \,v € C. Then every symmetry breaking operator

m
U U U Home(Is(i, Nler, J-(j,v))
d,ee{£} 0<i<n 0<j<n-—1
15 equivalent to a symmetry breaking operator in

U U Eome (L (i, Vo J+(.)) U Home (L (6, Ve, J-(j. 1) -

0<i<[2] 0<j<n—1

Proof. We use a graph to prove this. We set

(5,8) = HOngl([g(i,)\)|G/,Ja(j,y)),
(g) = Homeg (Is(n — i, N)|gr, Je(n — j — 1,v)).

In the following graph the nodes are indexed by (4, ) in first row and by (g)

in the second row. The nodes are connected by a line if they are equivalent.
By Lemma 330 we obtain the graph by taking y = x’ = y4_ in B22) for
horizontal equivalence, and x = x’ = x_+ in (B22) for crossing equivalence
(we omit here lines in the graph corresponding to x = x’' = x—— in (322) for
vertical equivalence):
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We observe that there are exactly two connected components of the graph,
and that Home: (14 (7, \)|er, J+(7,v)) and Home: (14 (3, N)|er, J—(7,v)) are in
a different connected component. Moreover, we may choose i or n — ¢ in the
same equivalence classes, and thus we may take 0 <4 < 7 as a representative.

m

Example 3.38. (1) Suppose n = 2m and i = m. Applying the isomor-
phism B22) to (II,7) = (Is(m, A), Jo(m,v)) with x = ¥’ = x__, we

obtain a natural bijection:
Homg: (Is(m, A)|gr, Je(m,v)) ~ Home: (Is(m, N)|gr, Jo(m — 1,v)).

We note that the G-module I5(m, \) at A = m splits into the direct sum

of two irreducible smooth tempered representations (Theorem 2201 (1)
and (8)).

(2) Suppose n = 2m + 1 and ¢ = m. Similarly to the first statement, we
have a natural bijection:

HomG/(L;(m, )\)’G/, Jg(m, I/)) ~ HomG/(L;(m + 1, )\)’G/, Jg(m, I/))

In this case, the G’-module J.(m,v) at ¥ = m splits into the direct
sum of two irreducible smooth tempered representations.

73



3.7.3 Actions of characters of the component group on Home (11, 5|/, 7j )

In the next chapter, we discuss
HOHIG/ (H’G/, 7T)

for I € Irr(G), and 7 € Irr(G’),. In this case, (B22)) implies the following:

Proposition 3.39 (duality for symmetry breaking operators). There are
natural isomorphisms

Homer (Il 5|ar, m5.) =~ Homer (Hny1—isler Tnejic)
~ Home (IL; —5|cr, 7j,—<)
~ Homer (1115 —slar, Tn—j—c)-
Proof. By Theorem 2.201 (5), we have a natural G-isomorphism II; 5 ® x_4 =~
II,,+1-;5 and a G'-isomorphism 7, ® x_4 ~ m,_;.. Hence the first isomor-

phism is derived from (B22). By taking the tensor product with x,_, we get
the last two isomorphisms again by Theorem 2201 (5). O
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4 Symmetry breaking for irreducible repre-
sentations with infinitesimal character p.

In this chapter, we focus on symmetry breaking operators from irreducible
representations II of G = O(n 4 1, 1) with 3¢(g)-infinitesimal character pg
to srreducible representations 7w of the subgroup G’ = O(n, 1) with 3¢/(g')-
infinitesimal character pg,. The main results are Theorems 1] and 2]
where we determine the multiplicity dim¢ Home (11| o/, 7) for all pairs (IT, ).
A diagrammatic formulation of the main results is given in Theorem 3]

The proof uses basic properties of the normalized symmetry breaking
operators for principal series representations of G and G’,

AV st Is(i, N) = Je(j,v),
in particular, the (K, K')-spectrum on basic K-types (Theorem[@.8)) and their
functional equations (Theorems 0:24] and @.27]).

4.1 Main Theorems

We recall from Theorem .20 that irreducible admissible smooth represen-
tations of G with trivial 34(g)-infinitesimal character pg are classified as

Irr(G), ={ILs:0<i<n+1,6==+}

Similarly, irreducible admissible smooth representations of the subgroup G’ =
O(n, 1) with trivial 3¢ (g')-infinitesimal character pgr are classified as

Irr(G'), = {mj-: 0<j <n,e==£}

where we have used lowercase letters 7 for the subgroup G’ instead of I1. We
also recall that the representation II; s of G = O(n +1,1) is

e one-dimensional if and only if ¢ = 0 or n + 1;

e the smooth representation of a discrete series representation if ¢ = "TH
(n: odd);

e that of a tempered representation if i = § (n: even).
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The following two theorems determine the dimension of
Home (|, 7)  for II € Irr(G), and 7 € Irr(G'),.
Theorem 4.1 (vanishing). Suppose 0 <i<n+1,0<j<n, dee {+}.
(1) If j # 4,1 — 1 then Homer (1L, 5|cr, ;) = {0}.
(2) If 6 = —, then Home (IL; 5|cv, m;.) = {0}.

Theorem 4.2 (multiplicity-one). Suppose 0 < i <n+1,0 < j <n and
dee{x}. If j=1i—1 ori and if b = +, then

dimg HOIHG/(Hi,6|G’a Wj,a) = 1.

The proof of Theorems E.1] and will be given in Chapter The
nonzero symmetry breaking operators from II, ; to w4 (j € {i — 1,i}) will
be applied to construct periods in Chapter[I2 (see Theorem [[2.6 for example).

4.2 Graphic description of the multiplicity for irre-
ducible representations with infinitesimal charac-
ter p

Using the action of the Pontrjagin dual of the component group (G/Gy)” x
(G'/GY)” on Homer (11, 5|, ). ), see Proposition B39, we see that Theorems
[T and are equivalent to their special case where 1 < ”TH and 0 = +.
Furthermore, taking the vanishing result (Theorem []) into account, we
focus on the case j < § and € = 4. We then describe Theorems 1] and
graphically in this setting.

We suppress the subscript, and write II; for II; ;, and 7; for 7; . Then
I, (0 <4< ) and 7; (0 < j < %) are the standard sequence of repre-
sentations with infinitesimal character p of G, respectively G’ starting with
the trivial one-dimensional representation (Definition Z.27]). In the diagrams
below, the first row are representations of GG, the second row are representa-
tions of the subgroup G’. Arrows mean that there exist nonzero symmetry
breaking operators.

Theorem 4.3. Symmetry breaking for the standard sequence of irreducible
representations starting at the trivial one-dimensional representations are
represented graphically in Diagrams [{-1] and[{.3
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Diagram 4.1: Symmetry breaking for O(2m + 1,1) | O(2m, 1)

HO Hl Hm—l Hm
il v 1 v
0 st Tm—1 TTm,

Diagram 4.2: Symmetry breaking for O(2m +2,1) | O(2m + 1,1)

My, I, ... T,y I, I
A A A R
o 1 Tm—1 Tm,
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5 Regular symmetry breaking operators

Let I5(V, A) be a principal series representation of G = O(n+1, 1) realized in
the Fréchet space C*°(G/P,Vy5), and J.(W,v) that of G' = O(n, 1) realized
in C*°(G'/P',W,.) as in Section 3.1l In this chapter we apply the general
result in [44] Chap. 3] to construct a “matrix-valued regular symmetry break-
ing operators” ;&}\/XV 4 Is(V,A) = Jus(W,v) that depend holomorphically on
(A, v) € C% We shall prove that the normalization ([B1) and ([B.8) is optimal
in the sense that the zeros of the operator AE\/ZV , are of codimension > 1 in
the parameter space of (A, v), that is, discrete in C? in our setting. A key
idea of the proof is a reduction to the scalar case.

5.1 Generalities

We recall from the general theory @4 Chap. 3] on the distribution kernels
of symmetry breaking operators, which will be the basic tool in this chapter.
Furthermore, we discuss some subtle questions on the underlying topology
of representation spaces for symmetry breaking, see Theorem .41

5.1.1 Distribution kernels of symmetry breaking operators

Throughout this monograph, we shall regard distributions as the dual of com-
pactly supported smooth densities rather than that of compactly supported
smooth functions. Thus we treat distributions as “generalized functions”,
and write their pairing with test functions by using the integral symbol, as
if they were ordinary functions (with densities).

Let G D G’ be a pair of real reductive Lie groups, and P, P’ their
parabolic subgroups. We do not require an inclusive relation P O P’ in
this subsection. Let (o,V’) be a finite-dimensional representation of P, and
(T, W) that of the subgroup P’. We form homogeneous vector bundles over
flag manifolds by

V=GxpV —G/P,
W =G xXp W — G//Pl.
We write Ind%(5) for the admissible smooth representation of G' on the

Fréchet space C°(G/P,V), and IndS,(7) for that of the subgroup of G’ on
C>(G'/P'\W).
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We denote by V* the dualizing bundle of V, which is a G-homogeneous
vector bundle over G/ P associated to the representation

V* = VY ® |det(Adg)|

of the group P, where V'V denotes the contragredient representation of (o, V).
Then the regular representation of G on the space D'(G/P, V*) of V*-valued
distribution sections is the dual of the representation on C*(G/P, V).

The Schwartz kernel theorem guarantees that any symmetry breaking
operator can be expressed by using a distribution kernel. Conversely, distri-
butions that give rise to symmetry breaking operators are characterized as
follows.

Fact 5.1 (44l Prop. 3.2]). There are natural linear bijections:
Home: (C®(G/P,V)|er, C¥(G'/P'\W)) = D'(G/P x G' /P, V' ’RW)*).

Here V* XKW denotes the outer tensor product bundle over the direct product
manifold G/P x G'/P'.

We note that the multiplication map
m: G xG =G, (z,y)—~y 'x
induces a linear bijection

D'(G/P x G' /P V' RW)A) & (D(G/P, V) @ W),

where the right-hand side stands for the space of P’-invariant vectors under
the diagonal action on the tensor product of the G-module D'(G/P, V*) and
the P’-module W.
Thus Fact B may be reformulated as the following linear bijection
Home (C®(G/P,V)|cr, C(G'/P',W)) ~ (D'(G/P,V*) @ W)AF)  (5.1)

The point of Fact [B.1lis that the map
Cx(GIPV) » D@IPW), o [ Kpf@)
b
to the space D'(G'/P',W) of distribution sections becomes automatically
a continuous map to the space C*(G'/P', W) of smooth sections for any

K € D'(G/P x G'/P',V* K W)AE), This observation leads us to the proof
of the isomorphism ([B.3]) in Theorem 5.4
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5.1.2 Invariant bilinear forms on admissible smooth representa-
tions and symmetry breaking operators

We retain the setting of the previous subsection, in particular, we suppose
that G D G’ are a pair of real reductive Lie groups.

Let (II,U) and (m,U’) be admissible smooth representations of G and
G', respectively. We recall that the underlying topological vector space of
any admissible smooth representation is a nuclear Fréchet space. We define
II X 7 to be the natural representation of the direct product group G x G’
on the space U®U’. In this subsection, we study the space Home (IIX 7, C)
of continuous functionals that are invariant under the diagonal action of the
subgroup G'.

For an admissible smooth representation (I, U) of G, we denote by II" the
contragredient representation of II in the category of admissible smooth rep-
resentations, namely, the Casselman—Wallach minimal globalization of (IIV)
(B8, Chap. 11]). The topological dual UY of U is the space of distribution
vectors, on which we can define a continuous representation of G. This is the
maximal globalization of (II)g in the sense of Casselman—Wallach, which
we refer to (ITY)~>°. Thus we have

(V) Cc ¥ c (I1Y)~°.

We shall use these symbols for a representation m of the subgroup G’ below.

Example 5.2. Let 7 be a finite-dimensional representation of a parabolic
subgroup P’ of G, and 7 := Ind%,(7) the representation on C=(G'/P',W).
The dualizing bundle W* is given as the G’-homogeneous vector bundle over
G'/ P’ associated to 7% := 7V ® | det(Ad|y )| 7', where 7 is the contragredi-
ent representation of 7. Then the smooth admissible representation 7 of G’
is given as a representation Ind$, (%) on C*(G’/P’,W*), whereas (7¥)~> is
given as a representation on D'(G'/P’', W*).

Any symmetry breaking operator T: II|e» — 7" induces a continuous
bilinear form
X7 — C, u® v (Tu,v),

and we have a natural embedding

Home (I, 7TV) — Home/ (ITX 7, C) ~ Homeg (11|, (71'\/)700). (5.2)
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Here the second isomorphism follows from the natural bijections for nuclear
Fréchet spaces ([61l, Prop. 50.7]):

Home (U @ U’, C) ~ Home (U, (U")Y),

where Hom¢ denotes the space of continuous linear maps.
As an immediate consequence of Fact Bl we have the following:

Proposition 5.3. Suppose ¢ and T are finite-dimensional representations
of parabolic subgroups P and P’, respectively. Let 11 = Ind%(&) and ™ =
Indg:(?) be admissible smooth representations of G and G', respectively.
Then the embedding in (5.2) is an isomorphism.

Proof. We recall that Home(+, C) denotes the space of (continuous) func-
tionals. Then Home (II X 7, C) is naturally isomorphic to the spaces of
G'-invariant elements of the following vector spaces

Homc(C*(G/P x G'/P', VK W),C) ~D'(G/P x G'/P', V' KW?),
and so we have
Home (II K7, C) ~ D'(G/P x G'/ P, V* R W*)A(E),
Since 7** ~ 7, the right-hand side is canonically isomorphic to
Home (C™(G/P, V)|, C*(G' /P, W*)) ~ Home (11| g/, 7V)
by Fact b1l and Example Hence Proposition is proved. ]

More generally, we obtain the following.

Theorem 5.4. Let G D G’ be a pair of real reductive Lie groups. For any
II € Irr(G) and m € Irr(G'), we have a canonical bijection:

Homg (I|gr, ) = Home (ITX 7, C). (5.3)

By the second isomorphism (5.2)), Theorem (4] is deduced from the fol-
lowing proposition, where we change the notation from 7" to 7 for simplicity.

Proposition 5.5. Suppose II € Irr(G) and m € ITrr(G'), Let 7= be the
representation of G' on distribution vectors. Then the natural embedding

Homg (1|, 7) < Home (| g/, m°°)

s a bijection.
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Proof of Proposition[2.4. We take P and P’ to be minimal parabolic sub-
groups of G and G, respectively. By Casselman’s subrepresentation theorem
(or equivalently, “quotient theorem”), see 60l Chap. 3, Sect. 8] for instance,
for any II € Irr(G), there exists an irreducible finite-dimensional represen-
tation (&, V) of P such that I is obtained as a quotient of Ind%(5) g, and
therefore, there is a surjective continuous G-homomorphism p: C*(G/P,V) —
IT by the automatic continuity theorem [66, Chap. 11, Sect. 4]. Likewise, for
any 7 € Irr(G’), there exists an irreducible finite-dimensional representation
(7, W) of P’ such that 7y is a subrepresentation of Ind%, (7) -, and therefore,
there is an injective continuous G’-homomorphism ¢: 77> < D'(G'/P', W)
by the dual of the automatic continuity theorem. If 7': II — 7=
tinuous G’-homomorphism, then 7" induces a continuous G’-homomorphism

1S a con-

toTop: C*(G/P,V)— D'(G'/P,W).
By Proposition 5.3l ¢ o T o p is actually a continuous G’-homomorphism,
C™(G/P,V) — C=(G'/P',W).

Hence the image of T is contained in the admissible smooth representation 7.
Since the topology of the admissible smooth representation 7 coincides with
the relative topology of C*(G’/P’',W), T is actually a G’-homomorphism
H|G/ — TT. ]

Remark 5.6. (1) In [2 Lem. A.0.8], the authors proved the injectivity of

the map (B.2).

(2) Theorem simplifies part of the proof of [34, Thm. 4.1] on twelve
equivalence conditions including the finiteness criterion for the dimen-
sion of continuous invariant bilinear forms.

5.2 Distribution kernels of symmetry breaking opera-
tors for G=0(n+1,1)

We analyze the distribution kernels of symmetry breaking operators in coor-
dinates. For this, we set up some structural results for G = O(n + 1,1).
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5.2.1 Bruhat and Iwasawa decompositions for G = O(n+ 1,1)

We recall from (B4]) that the map ,: R* — {0} — O(n), z — ¥, (x) is
defined as the reflection with respect to the hyperplane orthogonal to z.
By using ¢, (), we give an explicit formula of the Bruhat decomposition

G = NywMAN, UMAN, and the Iwasawa decomposition G = K AN, for
an element of N_ for G = O(n + 1,1). Here we set

w:=diag(l,---,1,—1) € Ng(a). (5.4)

Retain the notation as in Section LTIl In particular, we recall from
Z4) and Z3J) the definition of the diffeomorphisms n,: R® = N, and
n_: R* 5 N_, respectively.

Lemma 5.7 (Bruhat decomposition). For b € R" — {0},

—1
no () =nia) | va®) | en,

where a € R™ and t € R are given uniquely by a = —# and et = |b|?,
respectively, and n € N,.

Proof. Suppose that a € R", e = +1, B € O(n), t € R and n € N, satisfies
n_(b) = ny(a)w B e, (5.5)

Applying ([&3) to the vector p, =*%1,0,---,0,1) € Z (see [Z8)), we have
1—[bf? 1—Jaf?
2b = eé' 2a
1+ |b)? —1—|a|?

Hence ¢ = —1, ' = #, and a = —|a|?b. Thus |a||b] = 1. In turn, (E3)
amounts to

whence B = I, +2a'b = I, — % = (D). O
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For b € R", we define k(b) € SO(n + 1) by

- 1 (2 2\ 1
k(b) == L1 + T 0P ( o _opt) = Ynii(L:D) I (5.6)

Lemma 5.8 (Iwasawa decomposition). For any b € R", we have
n_(b) = k(b)e'n,(a) € KAN,, (5.7)

where a € R™ and t € R are given by a = e and ¢! =1+ |b]>.

1+|b

Proof. We shall prove that k(b) in (51) is given by the formula (G.6]). Since
n_(b) is contained in the connected component of G, k(b) = (k(b);)o<i j<n i
(1) belongs to the connected group SO(n+1). We write k(b) = (k(b)o, k' (b))
where k(b)y € R™™! and k/(b) := (k:(b)”)o<z<n € M(n+1,n;R). Applying

1<j<n

&) to the vector py =%1,0,---,0,1), we have
1 — |b)?

0 ) < (KO,
1+ [

The last component shows e' = 1 + |b|2. In turn, we get the first column
vector k(b)o of k(b). On the other hand, we observe

k()i = (n—(b)ny(a) e )y = (n_(b)ny(a) ™)y
for0<i<n+1and1<j<n. Hence we get
) (L—[bP)'a—"
(1+[b*)a+%

which implies

b 1— ‘b‘2tb b *22tb
a=— and k(b)) = o, = L
T+ P ( T A

In particular, we have shown that k(b) in (57 is given by the formula ([G.0).
[
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5.2.2 Distribution kernels for symmetry breaking operators

We apply Fact Bl to the pair (G,G’") = (O(n + 1,1),0(n, 1)) and a pair of
the minimal parabolic subgroups P and P’. With the notation of Fact B.1]
we shall take

5:V®(5®C>\ ODV)\’(;
T=W®e®C, onW,.,

as (irreducible) representations of P and P’, respectively, for (o,V) € @,

—

d € {£},and A € C and (7, W) € O(n—1), ¢ € {£}, and v € C. We
recall from (2.27)) that V) 5 = G X p V) 5 is a homogeneous vector bundle over
the real flag variety G/P. The dualizing bundle V5 of Vy5, is given by a

G-homogeneous vector bundle over G/ P associated to the representation of
P/N; ~ MA~O(n) xZ/2Z x R:

Vis=(Vao) @Co = VVKIKC,_,,

where V'V denotes the contragredient representation of (o, V). Then the regu-
lar representation of G on the space D'(G/ P, V5 ;) of V5 s-valued distribution
sections is the dual of the representation I5(V,\) of G on C*(G/P,Vy ;) as
we discussed in Example

In this special setting, Fact .1l amounts to the following.

Fact 5.9. There is a natural bijective map:

Home (I5(V, N)|ar, J.(W,v)) 5 (D/(G/P,Vis) @ W,.) 2P, T — K.
(5.8)

In [ Def. 3.3], we defined regular symmetry breaking operators in the
general setting. In our special setting, there is only one open P’-orbit in the
real flag manifold G/P, and thus the definition is reduced to the following.

Definition 5.10 (regular symmetry breaking operator). A symmetry break-
ing operator T': I5(V,\) — J.(W,v) is regular if the support of the distribu-
tion kernel Kr is G/P.
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5.2.3 Distribution sections for dualizing bundle V5 ; over G/P

This section provides a concrete description of the right-hand side of (5.8]) in
the coordinates on the open Bruhat cell.

We begin with a description of the G- and g-action on D'(G/P, V5 ;) in
the coordinates. We identify D'(G/P, V5 ;) with a subspace of VV-valued
distribution on G via the following map:

D'(G/P, Vi) ~ (D'(G) @ Vi) cD(G) o VY.

We recall that the Bruhat decomposition of G is given by G = N,wP U P
where w = diag(1l,---,1,—1) € G, see (4]). Since the real flag manifold
G/ P is covered by the two open subsets Ny wP/P and N_P/P, distribution
sections on GG/ P are determined uniquely by the restriction to these two open
sets:

D'(G/P, V) = D' (NywP/ P,V |,y p) O (N_P/P, Vi yln ). (5.9)

By a little abuse of notation, we use the letters ny and n_ to denote the
induced diffeomorphisms R"” = N,wP/P and R® = N_P/P, respectively.
Via the following trivialization of the two restricted bundles:

R" x V'V :> V;75|N+wp/p C V;\k,(; D) V;75|N_P/p <: R" x V'V

I \ \ \ 1
R™ % N,wP/P c G/P > N_P/P & R",
ny n_

the injection (5.9 is restated as the following map:

D(G/PV5;) = (DR @ V)@ (D'R) @ VY),  fer (Fx, F) (5.10)
where
Fula) == f(ny(a)w), — F(b) := f(n_(b)).
Lemma 5.11. Let ¢,: R" — {0} — O(n) be the map taking the reflection
defined in (B4).
(1) The image of the injective map (BIQ) is characterized by the following
identity in D'(R" — {0}) @ V'V

b

F(b):5av(z/1n(b)’1)|b\2A*2"FOO(—W) onR* — {0}.  (5.11)
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(2) (first projection) f € D'(G/P, V5 ;) is supported at the singleton {[py]} =
{eP/P} if and only if F = 0.

(3) (second projection) The second projection f +— F is injective.

Proof. (1) The image of the map (B9) is characterized by the compatibility
condition on the intersection (N, wP N N_P)/P, namely, the pair (F., F)
in (B.I0) should satisfy:

F(b) = 03 5(p) ' Fi(a)

for all (a,b,p) € R" x R™ x P such that ny(a)wp = n_(b). In this case, b # 0
because N wP # e. By Lemma 5.7 we have

—1

b
a= _Wa p= Yn(D) G

where e’ = |b|?. Then

F(b) =f(n-(b))
=03 5(p7") f(ny(a)w)
:5‘b|2>\—2n0v (wn(b))Foo (a)

(2) Clear from G — NywP = P.

(3) Since PPN_P = G @4 Cor. 5.5], the third statement follows from [44]
Thm. 3.16].

[]

The regular representation of G on D'(G/ P, V5 5) induces an action on the
pairs (Fi, F') of VV-valued distributions through Lemma [E11] (1). We need
an explicit formula of the action of the parabolic subgroup P = M AN, or
its Lie algebra p = m+a+n,, which is given in the following two elementary
lemmas.

We begin with the first projection f +— F,, in (EI0). Since the action
of P on G/ P leaves the open subset N,wP/P = PwP/P invariant, we can
define the geometric action of the group P on D'(N,wP/P, V5 5) as follows.
We recall M = O(n) x {1,m_} (see [Z1)). We collect some basic formulae
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for the coordinates n.: R® = N.: for ¢ = & (by abuse of notation, we also
write as € = £1),

1 1
ne(Bb) = B ne(b) B! for B € O(n), (5.12)
1 1
n.(—b) =m_n.(b)ym~*, (5.13)
n.(eb) =en.(b)e . (5.14)

Lemma 5.12. We let P = M AN, act on D'(R") @ V¥ by

1
T B Fy | (a) =0V (B)Fs(B ta) for B O(n), (5.15)
1
(m(m_)Fy)(a) = 0F(—a), (5.16)
(m(e"™Fy)(a) = O (e7ta)  forallt € R, (5.17)
(m(ny(c))Fx)(a) = Fo(a—c) for all c € R™. (5.18)

Then the first projection f — Fy in (BI0) is a P-homomorphism.

Proof. We give a proof for (5.I7)) on the action of the split abelian group A.
Let t € R. By (BI4) and e " w = we'! | we have

Fe™n (a)w) = Flny (e ta)e™ ) = O~ f(n, (e a)w) = O EL (e a),
whence we get the desired formula. The proof for the actions of M and N,
is similar. N

Next, we consider the second projection f — F'in (B.I0). In this case, the
group N, does not preserve the open subset N_P/P in G/P, and therefore
we shall use the action of the Lie algebra n. instead (see (B.22)) below). We
denote by E the Euler homogeneity operator ), , :Cga%e.

Lemma 5.13. We let the group M A and the Lie algebra ny act on D'(R")®
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1
s B F | (b)=0"(B)F(B™'b) for B € O(n), (5.19)
1
(m(m_)F)(b) =0F (=), (5.20)
(m(e"YF)(b) = NE(eh)  for all t € R, (5.21)
1 0 :
dn(N;)F(b) = (()\ —n)b; —b;E + §|b|28_b) F for1<j<n.

(5.22)

Here b = (by,--- ,b,). Then the second projection f +— F in ([I0) is an
(M A, n)-homomorphism.

Proof. See [ Prop. 6.4] for (22). The other formule are easy, and we
omit the proof. O

5.2.4 Pair of distribution kernels for symmetry breaking opera-
tors

We extend Lemmal[b.ITlto give a local expression of the distribution kernels of
symmetry breaking operators via the isomorphism (B.8]). Suppose (7, W) €

O(/njl), veC, and ¢ € {£}. We define
(D'(R™) ® Home(V, W))A"") = (D'(R™) ® Home (Vi s, W, )2 (5.23)

to be the space of Homg(V, W)-valued distributions 75, on R" satisfying the
following four conditions:

7(B) o Too (B 'y, yn) 0 0 (B) = Too (¥, yn) for all B € O(n—1), (5.24)
Too(=y, =yn) = 6 Toc (Y, Yn), (5.25)
Too(ety, €y) = eAT "N (y, 4) for all t € R, (5.26)
Too(¥ — 2,9n) = Too (Y, Yn) for all z € R (5.27)

For the open Bruhat cell N_P C G, we consider the following.

Definition 5.14. We define Sol(R"™; V)5, W, ) C D'(R") ® Homc(V, W)
to be the space of Homge(V, W)-valued distributions 7 on R” satisfying the
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following invariance under the action of the Lie algebras a, n’_, and the group
M ~O(n—1)x0(1):
(E—(A—v—n))T =0, (5.28)

0

1
AN=n)z; —z;E+ =(|z* +22)=— | T =0 (1<j<n—-1), (529)
2 3:1:]-

7(m) o T(m™'b) oa(m™) = T(b) for all m € O(n — 1),
(5.30)
(5.

T(=b) = 6T (D). 5.31)

Applying Lemma [E.IT] to the right-hand side of (B.8]), we have the follow-
ing:

Proposition 5.15. Let (o,V) € ]\7, (r,W) € ]T/[\’, d,e € {zx}, and \,v € C.

(1) There is a one-to-one correspondence between a symmetry breaking op-

erator

T € HomG/(L;(V, )\)|G/7 J{;(VV7 l/))

and a pair (Te, T) of Home(V, W)-valued distributions on R™ subject
to the following three conditions:

Too €(D'(R™) @ Home(Vy 5, W, )) 20, (5.32)
T €Sol(R™; Vs, W), (5.33)
T(b) =0Q(b)> " Ta (—’b%) o o(1hn(b))  on R™ — {0}. (5.34)

(2) T determines T uniquely.

(3) Suppose that T <« (Ts,T) is the correspondence in (1). Then the
following three conditions are equivalent:

(i) Too = 0.
(ii) Supp7T C {0}.
(iii) T s a differential operator (see Definition [6.3).
Proof. The first statement follows from Fact 59 Lemmas B1T] (1), and
The second statement is immediate from Lemma (.11 (3). The third

one is proved in [A2], see Section for more details about differential oper-
ators between two manifolds. ]
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Remark 5.16. The advantage of using 7T is that the second projection
Home (I5(V, N)|ar, J-(W,v)) = Sol(R™; 056, Tve), T+ T

is bijective, and therefore, it is sufficient to use 7 in order to describe a
symmetry breaking operator T. This was the approach that we took in [44].
In this monograph, we shall use both 7, and 7. The advantage of using 7 is
that the group P’ leaves N, wP/P invariant, and consequently, we can easily
determine 7, (see Proposition below), although the first projection

Home (I;(V, M| e, J-(W,v)) = (D'(R™) @ Home(V, W)2F) T — T

is neither injective nor surjective. We shall return to this point in Section
0.0l

5.3 Distribution kernels near infinity

Let (7o, 7T) be as in Proposition BI85 This section determines 75, up to
scalar multiplication. The main result is Proposition (.20 which also deter-
mines uniquely the restriction of 7 to R™ — {0} up to scalar multiplication.
Example 5.17. Foro =1, 7=1, 6 = +1, and

Too(yayn) = |yn|>\+y_n

9

we have from (.34
T, 0) = (Jal* + 23) ™ |27

We begin with the following classical result on homogeneous distributions
of one variable:

Lemma 5.18. (1) Both F(lﬁ)\t]“_l and F(;}H)\t]“_lsgnt are nonzero dis-
2 2
tributions on R that depend holomorphically on p in the entire complex

plane C.
(2) Suppose k € N. Then

o
T(E) ~2h(2k — D)l
it tsgnt  (—1)F(k—1)!

resly o (2k-1)!

a@(t) if = —2k,

SEV@)  ifpu=—2k—1.
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(3) Suppose pu € C and v = +1. Then any distribution g(t) on R satisfying
the homogeneity condition

glat) = a*tg(t) for alla > 0, and g(—t) = vg(t)

is a scalar multiple of i [t|"~! (v = 1), or of ﬁ]t\“_l sgnt (v =
2 2

1),

For (o,V) € O(n) and (17,W) € O(n — 1), we recall that [V : W] is the
dimension of Homo,—1)(V|om-1), W). Suppose [V : W] # 0, or equivalently,
[V : W] =1. We fix a generator

Pry ,w € HomO(nfl)(V|O(n71); W)

which is unique up to nonzero scalar multiplication by Schur’s lemma. In
light of the I'-factors in Lemma B.I8| we introduce Home(V, W)-valued dis-

tributions (.ZlKZV +)oo O R™ that depend holomorphically on (), v) € C? by

~ 1 rVyr—nm
(A;/,’E/+)00<w7 Ty) ::F(A+an+1) |xn|)\+ Pry_ws (5.35)
2
~ 1 vr—nm
(A}\/:L/I,i)oo(w7mn) ::—F(/\+u—n+2) |2, [N sgn @, pry Ly - (5.36)
2

We regard pry,_,y,, = 0 if [V : W] =0.

Remark 5.19. The notation (A;/,%)OO with double tildes is used here because

it will be compatible with the renormalization AE\/ZVV of the normalized sym-

metry breaking operator &K% which we will introduce in the next sections.

Let v = de. If there exists 7, € Sol(R"; V)s, W, ) such that the pair
((;lV’W )oo, T-) satisfies the compatibility condition (B.34)), then the restriction

A\ V,E

T+ |rn {0y must be of the form (./:4‘/’W ) € D'(R" — {0}) ® Hom¢(V, W) where

Ay
we set

(A0 = prmmamy (l + a) o R @, 2), (5.37)

2

z 1

VW A —v v—n s

(A)\J/,—), .:I“(>\+V—TL+2) (|CL’|2 + ZL‘%) |In|)\+ SgnanVW<'r7 ZL‘n), (538>

2

92



with RY'W = pry,_,;, oo 01, (see [B0)). We have used the notation (.Zl‘;%)’

instead of ,zlf\/ri/ because it is defined only on R™ — {0} and may not extend
to R™ (see Proposition 619 below).
Then we have:

—

Proposition 5.20. (1) For any (o,V) € O(n), (1,W) € O(??l), d,e €
{£}, and \,v € C, we have

(D/<Rn) ® HOIn(C(V)\,éa Wu,e))A(P/) = C<;l§\/:l%a)00

(2) IF [V : W] #0 then (AV7,) £0 for all \,v € C. )
(3) If T € Sol(R™; Vy5,W,c), then T |gn_1oy is a scalar multiple of (.Zlf\/%e)’

Proof. Suppose F € (D'(R") ® Home (Vy 5, W,,.))20).

(1) Let p,: R* — R be the n-th projection, and p}: D'(R) — D'(R") the
pull-back of distributions. By the N -invariance (B.21), F' depends only on
the last coordinate, namely, F' is of the form p’ f for some f € D'(R) ®
Homc(V, W). In turn, the O(n — 1)-invariance (5.24]) implies

f € D'(R) ® Homo—1)(V]om-1), W).

In particular, F =0 if [V : W] = 0.

From now, we assume [V : W] # 0. Then f is of the form h(y,) pry_w
for some h(t) € D'(R). By (525) and (5.26]), A is a homogeneous distribution
of degree A + v — n and of parity de. Then h(t) is determined by Lemma
BI8 and we get the desired result.

(2) The assertion follows from the nonvanishing statement for the distribu-
tion of one-variable (see Lemma (1)).

(3) The third statement follows from the first assertion and Proposition
O

5.4 Vanishing condition of differential symmetry break-
ing operators: Proof of Theorem B.12] (1)

In this section, we prove a necessary condition for the existence of nonzero
differential symmetry breaking operators as stated in Theorem B.12] (1):
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Theorem 5.21 (vanishing of differential symmetry breaking operators).
Suppose that V' and W are finite-dimensional representations of O(n) and
O(n — 1), respectively, 6, ¢ € {£}, and (\,v) € C2. If (\,v,8,¢) satisfies
the generic parameter condition B2), namely, v — X\ &€ 2N for ée = +, or
v—AE2N+1 for de = —, then

Diffe/(I5(V, M), J-(W,v)) = {0}.

Remark 5.22. In the above theorem, we do not impose any assumption on V'
and W. In Chapter [6] we give a converse implication under the assumption

[V : W] # 0, see Theorem G611

For the proof of Theorem [.2T] we use the following properties of distri-
butions supported at the origin:

Lemma 5.23. Let F' be any Homc(V, W)-valued distribution on R™ sup-
ported at the origin and satisfying the Fuler homogeneity differential equation

B23).
(1) Assume v — X\ &€ N. Then F must be zero.

(2) Assume v — X € N. Then F(—x) = (—1)" " F(z).

Proof. Let 6(x) = §(x1,--+ ,x,) be the Dirac delta function on R"™. For a
multi-index a = (ay, -+, a,) € N, we define another distribution by
olel
§&w(I1,"',$n)' 6($1,"',$n)

T 9ayt - Qo

where |a| = a1 + - + a,,. By the structural theory of distributions, F' must
be of the following form

F = Z a0 (2, -+, xy) (finite sum)

aeN"”

with some a, € Home(V, W) for a € N*. Since §¥(zy,--- ,2,) is a homo-
geneous distribution of degree —n — |a|, the Euler homogeneity operator E
acts as the scalar multiplication by —(n + |a), and thus

EF = — }E:(nf+|cw>aa5«ﬂ(mly"'7xn»

aeN?
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Since {6 (21, -+, 2,)}aenn are linearly independent distributions, the dif-
ferential equation (B.28)), namely, EF = (A — v — n)F implies that

ao =0  whenever —n — |a] #X—v —n.
Thus we conclude:
(1) If v — A €N, we get a, =0 for all &« € N*, whence F' = 0.

(2) If v — A € N, then a, can survive only when |a] = v — A. Then
F(—2) = (—=1)llF(2) = (=1)"F(z) because d(x) = §(—x).

Therefore Lemma [5.23] is proved. O

Proof of Theorem [2.Z1l Immediate from the characterization of differential
symmetry breaking operators (Proposition (.10 (3)) and from Lemma 523
O

5.5 Upper estimate of the multiplicities

We recall from the general theory HI] that there exists a constant C' > 0
such that

dimc HomG/(L;(V, /\)|G”7 Ja(W, I/)) S C (539)
for any (0,V) € O(n), (r,W) € O(n— 1), 6,e € {£}, and (\,v) € C2
Moreover, we also know that the left-hand side of (£.39) is either 0 or 1 if
both the G-module I5(V, A) and the G’-module J.(W,v) are irreducible [59].
In this section, we give a more precise upper estimate of the dimension of
(continuous) symmetry breaking operators by that of differential symmetry
breaking operators. Owing to the “duality theorem” (see [A2 Thm. 2.9],
see also Fact in the next chapter), the latter object can be studied al-
gebraically as a branching problem for generalized Verma modules, and is
completely classified in [B7] when (V, W) = (AY(C"), A7(C"')). The proof
for the upper estimate leads us to complete the proof of a localness theo-
rem (Theorem B.6]), namely, a sufficient condition for all symmetry breaking
operators to be differential operators.

—

Theorem 5.24 (upper estimate of dimension). For any V € O(n), W €
O(n—1), 6, € {£}, and (\,v) € C?, we have

dim@ HOIIlGV(](;(V, )\)|G’; JE(W, l/)) < 1+ dlmc Diff@/([g(v, >\)|G’7 JE<W, V))
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Proof. Let (T, T) be the pair of distribution kernels of a symmetry breaking
operator T as in Proposition 5.15l Then the first projection T + 7, induces
an exact sequence:

0 — Difg: (I5(V, \)|cr, J- (W, 1)) — Homen(I(V, e, Jo(W, ) = CALY ),

by Proposition 515 (3) and Proposition .20 Thus Theorem [5.24] is proved.
O

We are ready to prove a localness theorem stated in Theorem

/

Proof of Theorem[Z4. If [V : W] = 0 then (D'(R") ® Homg (Vi s, W, .))" =
{0} by Proposition 0201 because pry,_,; = 0. Hence we get Theorem B.6 by
the exact sequence in the above proof. O]

We also prove a part of Theorem B3] a generic uniqueness result.

— —

Corollary 5.25. Suppose (0,V) € O(n), (1,W) € O(n—1), §,e € {£},
and (\,v) € C2. If (\,v,d,¢) satisfies the generic parameter condition [B2),
namely, if v — X € 2N for e =+, orv — A & 2N+ 1 for de = —, then

dimc HOva/([(;(V, )\)‘Gl, JE<W, V)) < 1.

Proof of Corollary[2.23. Owing to Theorem B.24] we obtain Corollary (.25
by Theorem B.2T] ]

We shall see that the inequality in Corollary .25 is actually the equality
by showing the lower estimate of the multiplicities in Theorem [(.42] below.

5.6 Proof of Theorem [B.10: Analytic continuation of
V,W

symmetry breaking operators A’
The goal of this section is to complete the proof of Theorem about the
analytic continuation of A;/:E/:t‘ For (0,V) € O(n) and (1,W) € O(n —1)
such that [V : W] # 0 and for §,e € {£}, we set v = de and construct a
family of matrix-valued symmetry breaking operators, to be denoted by

AYW (VN = LW, ),

Avyy s

which are initially defined for Re A > |Rev| in Lemma 5311 We show that
they have a holomorphic continuation to the entire plane (\,v) € C? and
thus complete the proof of Theorem [3.10]
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Here is a strategy.
Step 0. (distribution kernel near infinity)
We define Hom(c(V, W)-valued distributions (.,Z(KZVW)OO on R™ as a mul-

tiplication of (A}’ ,%) (see (B3H) and (B36)) by appropriate holomorphic
functions of A and v (Section B.G.Jl). The distributions (,2(;/ v )oo depend
holomorphically on (), r) in the entire plane C? (but may vanish at special

(A, v)).

Step 1. (very regular case) For ReA > |Rev|, we define Home(V, W)-

valued locally integrable functions Ay’ XV + on R™ such that the restriction

)\ M i|Rn_{0} satisfies the compatibility condition (B.34]). We then prove that
the pair ((AY")., A" ) belongs to (D'(G/P, Vis) ® W, )2 for de = v

Avyy

if ReA > |Rev/|.

AUy

Step 2. (meromorphic continuation and possible poles of .AM, i) We find

polynomials pVW()\ v) such that pVW()\ V)./ZG\/ X[; is a family of distributions

on R" that depend holomorphically on (\,v) € C* (see Proposition [£.32).

Step 3. (holomorphic continuation of .A/\ V. jE) We prove that there are actu-

ally no poles of the distributions A ., by inspecting the residue formula of
the scalar-valued symmetry breakmg operators and the zeros of the polyno-
mials p¥"" (A, v). Thus .ZC\/ ZV are distributions on R™ that depend holomor-
phlcally on (A, v) € C%

Thus the pair ((./ZC\/%)OO, .ZE\/M) gives an element of D'(G/P, V5 ;) @ W, .
for ¢ = ~ which is invariant under the diagonal action of F’, yleldlng a
regular symmetry breaking operator A W , that depends holomorphlcally on

(A, v) € C% by Proposition

The key idea for Steps 1 and 2 is a reduction to scalar-valued symmetry
breaking operators which will be discussed in Section (£.6.2 (Lemma (.37]).

5.6.1 Normalized distributions (ftf,%)oo at infinity

This is for Step 0. We note that the map T + 7., in Proposition B.19l is
neither injective nor surjective in general. In particular, the nonzero distri-

bution (.ZC\/E/ L)oo 00 R™ (see (B30) and (B30)) does not always extend to
the compactification G/P as an element in (D'(G/P, Vs ;) ® W, )2 )| see
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Proposition [6.19 However, we shall see in Section [£.6.6] that the following
renormalization extends to a distribution on the compact manifold G/P for
any A\, v € C.

1 SV 1 Av—
(AV‘A/7L/I/ >OO ::——V(AA’V )OO = —v vV—n |In| +l/ nprv W?
Wit F(AT) Wt F(A2 )F(/\+ > +1) —
(A)oe = (AN ) = =3y e T sen @ pry Ly
Yy F(’\ 2+1> Y, F(/\ 2+1)F(/\+ > +2) —

By definition, (.ZE\/ZV 1 )oo are distributions on R™ that depend holomorphically
on (A, v) in the entire C2. Inspecting the poles of I'(25%) and I'(2=%tL), we
immediately have the following:

Lemma 5.26. Suppose [V : W| # 0. Then, (.Z(AVZVJF)OO = 0 if and only if
v—X€2N; (AV) ) = 0 if and only if v — X € 2N + 1.

5.6.2 Preliminary results in the scalar-valued case

As we have seen in Section[5.6.1] the analytic continuation of the distribution

(VZC\/%)OO at infinity is easy. In order to deal with the nontrivial case, i.e., the

distribution kernel jf\/x near the origin, we begin with some basic properties
of the scalar-valued symmetry breaking operators. We recall from [4] (7.8)]
that the (scalar-valued) distribution kernels /T)\’V’i € D'(R") are initially
defined as locally integrable functions on R™ by

1

D70 (3)

1

F( )\+V;7L+2 )F( A—g—&—l )

(J? + 7)™ a7, (5.40)

A (T, 20) =

"Z()\,u,— (I7 ‘T'fl) -

(|z* + 22) Y|z, M " sgna,,  (5.41)

respectively for Re A > |Rev|. (In 4], we used the notation I?ﬁy for the

scalar-valued distribution kernel .Z)\M +-) More precisely, we have:

Fact 5.27 ([44, Chap. 7]). “Z(/\,u,i are locally integrable on R™ if Re (A —v) >
0 and Re(A+v) > n — 1, and extend as distributions on R" that depend
holomorphically on X\, v in the entire (\,v) € C2.

The distributions .Z)\’V, + were thoroughly studied in [, Chap. 7], and

analogous results for A, ,  can be proved exactly in the same way.
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We introduce polynomials pi (A, v) of the two-variables A and v by

N
PN\ V) = H()\ —v—2j) for N € N, (5.42)
j=1
N
p—nN(A V) ::()\—i—y—n)H()\—y—l—Zj) for N € N. (5.43)
=0

We use a trick to raise the regularity of the distribution lev/\’u Lz, x,) at
the origin by shifting the parameter. The resulting distributions are under
control by the polynomials py x(\, v) as follows:

Lemma 5.28. We have the following identities as distributions on R™:
PN ) Ay g (2, 20) =27 (|2 + 20) Y Ay w1 (@, 20),
p-N(A V)AA,V,—(% Tn) :2N+2(‘5’7’2 + xi)anA)\—N—l,V-i-N,—i-(x’ Tn).

Proof. For Re A > | Rev|, we have from the definition (&40),

~ N(2%)
2 2\N 2
+ A — ) n - A 1 )y n
(|£E| mn) A N,V+N,+(x T ) F()\;V _ N) A, 7_‘_(1‘ T )
1 -
:2Np+7N()\7 V>A)\,V,+ (ZE, l’n)

Since both sides depend holomorphically on (\,v) € C? we get the first
assertion. The proof of the second assertion goes similarly. O

Lemma 5.29. If (\,v) € C? satisfies py y(\,v) = 0, then
h(zx, xn)AVAfN,V+N,+ =0 inD'(R"),
for all homogeneous polynomials h(x,x,) of degree 2N .
Proof. 1t follows from p; y(A,v) = 0 that
(v+N)—(A=N)e{0,2,4,--- 2N — 2}.

By the residue formula of the scalar-valued symmetry breaking operator
Ay (see B4 Thm. 12.2 (2)]), we have

A,\—N,V+N,+ = qC)\—N,y-i-N
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for some constant ¢ = ¢4(\ — N,v + N) depending on A — N and v + N.
Since Cy_y ., is a distribution of the form Dd(zy,---,z,) where D =

~A-N-—n=l
) F) . . .
Con—gj * (—Arn-1,5.-) is a differential operator of homogeneous degree

2N — 2j(< 2N), see ([BI3)), an iterated use of the Leibniz rule shows
h(x,x,)Do(x1, -+ ,x,) =0 in D'(R")
for any homogeneous polynomial h(x,z,) of degree 2N. O
Lemma 5.30. If (\,v) € C? satisfies p_ y(\,v) =0, then
xoh(z, mn)j/\_N_LHN,JF(:E, r,) =0 in D'(R")
for all homogeneous polynomial h(x,x,) of degree 2N .

Proof. Tt follows from p_ y(\,v) = 0 that (v+N)—(A—=N-1) € {0,2,--- 2N}
or (A= N —1)+ (v+ N) =n— 1. By using again the residue formula of the
scalar-valued symmetry breaking operator Ay, , . in [#4, Thm. 12.2], we see
that the distribution kernel .ZA_N_17V+N7+(3:',3:”) is a scalar multiple of the
following distributions:

d(zn) if A\ +v=n,
~A-N-—1-n=1
where D = C;\N]le 2 (—Agn-1, %) is a differential operator of homoge-

neous degree 2N —2j (< 2N +1). Then the multiplication by a homogeneous
polynomial z,h(z, z,) of degree 2N +1 annihilates these distributions. Hence
the lemma follows. O

5.6.3 Step 1. Very regular case

We recall from ([B8) that RY'W = pry_, 00 0, € C°R" — {0}) ®
Homg(V, W). For Re A > | Rev/|, we define ZKZ‘; € C(R"—{0})®@Hom¢(V, W)

1
AV —v v—nm B
'A)\,l/,+ ':F(/\+V—n+1)r()\_y)(|x|2 +x721) |xn|>\+ RVW(Iaxn)a
2 2

1 _ _
,ZQ/ZV_ = (|z* + 22) Y|z, M " sgn 2, RV WY (2, ),

F( /\—l—l/gn—i—ﬂ )F( /\—12/+1 )

(see B1) and ([B.8), respectively. The goal of this section is to prove the
following lemma in the matrix-valued case for Re A > |Rev|.
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—

Lemma 5.31. Let (0,V) € O(n), (1,W) € 0(7—\1) and §, ¢ € {£}.
Suppose Re (A —v) >0 and Re(A\+v) >n — 1.

(1) A“\;L/Vi are Home (V, W)-valued locally integrable functions on R™.

(2) The pair ((@%E)m,@lﬁg defines an element of (D'(G/P,V5s) ®
W, )AF) " and thus yield a symmetry breaking operator :AQ\/”%E: Is(V,\) —
J-(W,v).

Proof. We fix inner products on V and W that are invariant by O(n) and
O(n — 1), respectively. Let || - ||op denote the operator norm for linear maps
between (finite-dimensional) Hilbert spaces. In view of the definition RV"W =

Pry_,w ©0 © l/Jn (See (m))7 we have
HRV’W(ZE,xnmop < ||0' o ¢n(xa$n)||op =1 forall ('r’xn> cR" - {0}

Hence the first statement is reduced to the scalar case as stated in Fact 0.27]
The compatibility condition (B.34]) can be verified readily from the defi-
nition of (JZKZVi)oo and .Z‘;Z‘; Hence the pair ((JZ(;\/:,%E)OOa JZE\/%E) defines an

element of D'(G/P,V5 ;) ® W, by Lemma BTl The invariance under the
diagonal action of P’ follows from Proposition (.20 for (.ZC\/:%E)OO and from a
direct computation for .Zl:‘\/jl%E when Re A > | Rev| because both (.2()‘\/”%6)00

and .Z)‘:’%g € L (R™). O

5.6.4 Step 2. Reduction to the scalar-valued case
We shall prove:

—

Proposition 5.32. Let (o,V) € O(n) and (1,W) € O(/ntl). Then the
distributions .ZC\/”E;, initially defined as an element of L. .(R")®@Home(V, W)

forRe A > |Rev| in Lemmali 3], extend meromorphically in the entire plane
(\,v) e C2

In order to prove Proposition 5321 we need to control the singularity of
oo, € C°R" —{0}) ® Endc(V) at the origin. We formulate a necessary
lemma:
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Lemma 5.33. For any irreducible representation (o,V') of O(n), there exists
N € N such that

9(w, ) = (‘JZP + xi)NJ(wn(CEa Tn))

is an End(V')-valued homogeneous polynomial of degree 2N .

o~

Definition 5.34. For o € O(n), we denote by N (o) the smallest integer N
satisfying the conclusion of Lemma [(.33]

We prove Lemma by showing the following estimate of the integer
N(0). Let £(0) be as defined in [22T]).

—

Lemma 5.35. N(o) < (o) for all o € O(n).

Proof of Lemma[Z33. Suppose (o1, ,0,) € AT(O(n)), and let (o,V) be
the irreducible finite-dimensional representation F°(ay,---  a,) of O(n)
via the Cartan-Weyl isomorphism ([220). It is convenient to set o,.; =
0. Since the exterior representations of GL(n,C) on A?(C™) have highest
weights (1,---,1,0,---,0), and since

n

Z<0j _0j+1)(17"' 1,0, 70) = (0-17"' 7an)7
= !],_/

we can realize the irreducible representation of GL(n, C) with highest weight
(01,+++ ,0,) as a subrepresentation of the tensor product representation

n

RN (€)7o,

Jj=1

This is a polynomial representation of homogeneous degree

Y iloy— o) =) o
=1 j=1

We set N := 37, 0;. Then the matrix coefficients of this GL(n, C)-module
are given by homogeneous polynomials of degree N of z; (1 < 7,57 < n)
where z;; are the coordinates of GL(n,C). Since the representation (o, V)
of O(n) arises as a subrepresentation of this GL(n,C)-module, the formula
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B4) of 1, shows that the matrix coefficients of o(¢,(z, x,)) is a polynomial

of z and m,, after multiplying (|z|? + z2)".

We note that det,(z,z,) = —1 for all (z,z,) € R" — {0} by BI).
Therefore, we may assume that (o,V) is of type I by ([Z23]), namely, o441 =
-+« = o, for some k with 2k < n. In this case N = [(0) by the definition
21). By [222), we have shown the lemma. O

The estimate in Lemma [5.35] is not optimal.

Example 5.36. 1) N(o) = 0 if (0,V) is a one-dimensional representa-
tion.

2) N(o) = 1if o is the exterior representation on V = A{(C") (1 <i <
n —1). See (CI0) and Lemma [74] (2) for the proof.

Let N = N(o) € Nand g € Pol[zy,- -+ ,x,] ® Endc(V) be as in Lemma
B33 and pry_,y 0 V — W be a nonzero O(n— 1)-homomorphism. We define
gV € Pol[zy,- -+, x,] ® Home(V, W) by

g"" = pry_w og. (5.44)
With notation of RV as in ([B.8]), we have

9" (@, n) =(|2* +27) Y RV (2, 20) (5.45)

(l2)* + 23)™ pryw oo (n(@, 7).

Then ¢g"'" is a Homc(V, W)-valued polynomial of homogeneous degree 2/NV.
The following lemma will imply that the singularity at the origin of the
matrix-valued distributions .ZC\/E/ , is under control by the scalar-valued case:

Lemma 5.37. Suppose Re A > |Rev|. Let po(\,v) be the polynomials of A
and v defined in (542) and (543). Then,

AV A
p+,N(/\7 V)‘A)\,z/,-&-(x’ xn) ZQNA)\—N,V—i-N,—i-(xa J}n)g

. ~
p*,N()‘a V)AAZB/— (iL‘, xn) :2N+2$nA/\_N_17V+N7+(JZ', l‘n)g

VW (g, x,), (5.46)
Wiz, x,).  (5.47)

Proof. For Re A > |Rev|, both JZE\/K; and lev,\%i are locally integrable in
R". By definition, we have

~ ~
(Jaf* + an) VAL, = Ax oy (2, 20) 9" (0, 20)
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for v = £. By Lemma [.28] we have
v ~
(J2f* + 22) ™ (P w N ) AR (2, 20) = 2V Ay v (2, 20) g™ (2, 20)) = 0.

Hence we get the equality (0.40) as Homc(V, W)-valued locally integrable
functions in R”. Similarly, we obtain

p—,N(/\a l/)./z)\’y77($, ZL’n)

(|x|2 + IZ)NA)\fol,u+N,+(xa L) Ty = oN+2

Thus the second statement follows. O]
We are ready to prove the main result of this section.

Proof of Proposition[5:32. Since ¢"'W(x,z,) is a polynomial of (x,z,) =
(w1, ,2,), the multiplication of any distributions on R™ by ¢"'W is well
defined. Therefore, the right-hand sides of (.46 and (5.47) make sense as
distributions on R" that depend holomorphically in (A, v) € C2.

Taking their quotients by the polynomials py n (A, V), we set

2N ~
AV T, Ty) i=—— A\ N, z,2,)9""V (2, x,), 5.48
/\,u,+< ) NN, V) A—N, +N,+( )" ( ) ( )
~ 2N+2
AA’ZV— (T, 20) = A N1 (T fn)xngv’w(xa Tn). (5.49)
H p—,N()‘7 V) ’ ’

Then .,ZC\/XV + are Homge (V, W)-valued distributions on R™ which depend mero-
morphically on (A, v) € C? because ./Zl//\,yl/’ (@, z,) is a family of scalar-valued
distributions on R™ that depend holomorphically on (X, ') € C? (Fact E27))
and ¢""W(z,x,) is a polynomial. By Lemma 37 they coincide locally inte-
grable functions on R" that are defined in ([B.7) and (B.8]), respectively, when
Re A > |Rev|. Thus Proposition is proved. O

5.6.5 Step 3. Proof of holomorphic continuation

In this section, we show that there are no poles of .ZC\/XV 4

Lemma 5.38. jyyi are distributions on R™ that depend holomorphically

on (\,v) € C?.
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Proof. By (B.48) and (5.49), the only possible places that the distribution

./ZC\/% may have poles are the zeros of the denominators, namely,
N

pex(Av) =] =v—2)) v =+,
j=1

N
p-x(Av)=A+v-—n)][A-v-1-2j) y=-
7=0

however, we have proved that they are not actually poles by Lemmas (.29
and 030 respectively. Hence .Z‘A/Z‘; are distributions that depend holomor-
phically on (\,v) € C2. O

5.6.6 Proof of Theorem

We are ready to prove that the matrix-valued symmetry breaking operator
AKZV . has a holomorphic continuation in the entire plane (\,v) € C?.

Proof of Theorem [Z10. Suppose (o,V) € (7(;) Let N = N(o) € Nbe as in
Lemma We recall from ([45) that the Home(V, W)-valued function

9" (@, 20) = (|2 + 27)" pry_w 0o (Yu(z, 7))

is actually a Homg(V, W)-valued polynomial of homogeneous degree 2N,
We know that the pair ((.Z‘/\/L/Vi)oo, .ZXZ‘;) satisfies the following proper-
ties:

(1) (VZG\/E/ +)oo is @ Home(V, W)-valued distribution on R™ satisfying (B32)
that depend holomorphically in (A, v) € C2

is a Hom¢ -valued distribution on that depend holo-
(2) AV, is a Home(V, W)-valued distrib R" that depend hol
morphically on (\,v) € C%

(3) For 6, ¢ € {£}, A, /\ME € Sol(R™; Vs, W,). Moreover, the conditions
(EBD and ([5.34) are satisfied when Re A > | Rev/|.

All the equations concerning Sol(R™; V), 5, W, .) depend holomorphically

n ()\,v) in the entire C2. On the other hand, for v € {&}, the proper-
ties (1) and (2) tell that the pair ((./ZX %)OO,JZX E[{Y) depends holomorphi-
cally on (), v) in the entire C?. Hence the property (3) holds in the entire
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(\,v) € C? by analytic continuation. In turn, Proposition .15 implies that
the pair ((jf\/,%)oo, AY vv) gives an element of (D'(G/P,V; ;) @ W)~ for
all (\,v) € C?, and we have completed the proof of Theorem B0 O

5.7 Existence condition for regular symmetry breaking
operators : Proof of Theorem

In Theorem B.I0, we have assumed [V : W] # 0 for the construction of sym-
metry breaking operators. In this section we complete the proof of Theorem
B9 which asserts that the condition [V : W] # 0 is necessary and sufficient
for the existence of regular symmetry breaking operators.

Suppose [V : W] #£ 0. Let A}\/V[ga Is(V,\) = J.(W,v) be the normalized
symmetry breaking operator which is obtained by the analytic continuation of
the integral operator in Section We study the support of its distribution
kernel ,Zl}\/:l%g We define subsets U™ and U™®in C? by

Ut :={(\,v) eC*:n—A—v—1¢2N,v—\¢g?2N}, (5.50)
Ut ={(\r)eC®:n—A—v—-2¢2N,v—\—1¢2N} (5.51)

Proposition 5.39. Suppose V' € O( ) and W € 0(7—\1) satisfy [V : W] #

0. Let 6,e € {£}. Then A/\W;E 18 a nonzero reqular symmetry breaking
operator in the sense of Definition [EI0 for all (A, v) € Ug®.

Proof of Pr’oposztzon- As in Proposition BI8, the distribution kernel
of the operator A/\ME can be expressed by a pair ((VLK%E)OO,.E\/%E) of
Homg (V, W)-valued distributions on R™ corresponding to the open covering
G/P = NywP/P U N_P/P. Then it suffices to show Supp(.A)\W;g) =R"
for (\v) € USE. If (\,v) € U™, then (\,v,0,¢) ¢ U, and therefore
("Z)‘\/:z%s)oo # 0 by Lemma [5.200 Moreover, if n — A — v — 1 & 2N for je = +
(orif n— X —v —2¢ 2N for de = —), then we deduce Supp(A/\Vas) =R"
from Lemma [BI8 about the support of the Riesz distribution. Hence Propo-
sition is proved. H

Definition 5.40 (normalized regular symmetry breaking operator). We shall
say ,&K’%E: Is(V,\) — J.(W,v) is a holomorphic family of the normalized
(generically) regular symmetry breaking operators. For simplicity, we also
call it a holomorphic family of the normalized regular symmetry breaking
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operators by a little abuse of terminology. We are ready to complete the
proof of Theorem

Proof of Theorem[39. The implication (i) = (iii) follows from the explicit
construction of the (normalized) regular symmetry breaking operators 1&}(3/ L
in Theorem B.I0, and from Proposition .39

(ili) = (ii) Clear.

Let us prove the implication (ii) = (i). We use the notation as in Section
2.1 which is adopted from [4] Chap. 5]. Then there exists a unique open
orbit of P" on G/P, and the isotropy subgroup at [¢.] = [{0,---,0,1,1)] €
=/R* ~ G/P is given by

1

i 7, |:Beow-1)y=0m-1.

1

Then the implication (ii) = (i) follows from the necessary condition for the
existence of regular symmetry breaking operators proved in [44] Prop. 3.5].
Thus Theorem is proved. m

5.8 Zeros of AKE; : Proof of Theorem

This section discusses the zeros of the analytic continuation of the symmetry
breaking operator A‘;’K: Is(V,\) = J.(W,v) with de = ~.

Proof of Theorem[Z13. (1) Let N := N(o) as in Definition £.34 We first
observe that

(A=N,v+ N) € Loyen  if (A, V) € Leyen and v < —N|
A=N—-1v+N) € Loyen if (\, V) € Lpga and v < —N.

Then the scalar-valued distributions /Al//\_ NN+ and jl:\_ N-1p4+N4+ vanish,
respectively by 4 Thm. 8.1]. By Lemma BE37 the Home(V, W)-valued
distributions p+,N()\,1/),ZK’E/ 4 and p_ n(A, V),ZC\/ZV _ vanish, respectively, be-
cause the multiplication of distributions by the polynomial ¢""W(x,z,) is
well-defined. Since py n(A,v) # 0 for (A, ) € Leven and p_ (A, v) # 0 for
(A, V) € Loaa, the first assertion follows from Proposition (2).
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2) If the symmetry breaking operator A}" vanishes, then its distribution
Yy Yy g op v,y

kernel is zero, and in particular, (JZC\/ZI;)OO = 0 (see Proposition B.I5]). This
implies v — A € 2N for v = 4+, and v — A € 2N + 1 for v = —, owing to

Lemma [5.2601 Hence Theorem [3.17 is proved. ]

5.9 Generic multiplicity-one theorem: Proof of Theo-
rem

We recall from ([B.3]) the definition of “generic parameter” ([B.2) that (A, v,0,¢) &
Vg, if and only if

v—Ag2N for de = +; v —A&2N+1 for de = —.

We are ready to classify symmetry breaking operators for generic parameters.
The main result of this section is Theorem [B.41] from which Theorem
follows.

—

Theorem 5.41 (generic multiplicity-one theorem). Suppose (o,V) € O(n),
(1, W) € O(n—1) with [V : W] # 0. Assume (\,v) € C? and 6, € {£}
satisfy the generic parameter condition, namely, (\,v,0,e) & VUys,. Then

. VW . . .
the normalized operator Ay’ s, is nonzero and is not a differential operator.
Furthermore we have

Homer (I5(V, N)|ars Jo(W, 1)) = CALY, .

Proof. By Theorem B.10] AXZV 4 is a symmetry breaking operator for all A\, v €
C. The generic assumption on (\, v, §, ) implies 1&‘;%5 2 0 by Theorem B.15
(2). On the other hand, by Theorem and Corollary (.25, we see that
1&;{:%5 is not a differential operator and dim¢ Homg (I5(V, A)|gr, J-(W,v)) <
1. Thus we have proved Theorem [E.411 O

The generic multiplicity-one theorem given in Theorem is the second
statement of Theorem [B.41]

5.10 Lower estimate of the multiplicities

In this section we do not assume the generic parameter condition (Definition
B.2), and allow the case (A, v,0,¢) € Uy,. In this generality, we give a lower
estimate of the dimension of the space of symmetry breaking operators.

108



o~ —

Theorem 5.42. Let (o,V) € O(n) and (7,W) € O(n — 1) satisfying [V :
W] # 0. For any §,¢ € {+} and (\,v) € C?, we have

dim(c HOIHGV(LS(V, /\)|G’7 JE<W7 V)) 2 L.

We use a general technique from 44 Lem. 11.10] to prove that the mul-
tiplicity function is upper semicontinuous.

As before, we denote by ((.ZK,K)OO, .,Z‘;,%) the pair of Homge (V, W)-valued
distributions on R™ that represents the symmetry breaking operator &KZVW
via Proposition .13

We fix (Mg, ) € C?, and define Homc(V, W)-valued distributions on R™

for k,¢ € N as follows:

ak—i—Z

Fro = 5 AV
ONFOVE [ x=xo Avyy?
V=1
8k+€ W
(Fké)oo = —a)\kayé A ( )\:Vﬂ)oo.
V=1

Lemma 5.43. Let v € {£} and m a positive integer such that
((Fit)oos Fie) = (0,0)  for all (k,¢) € N* with k +{ < m.

Then for any (k, ) with k+¢ = m, the pair ((Fr)oo, Fre) defines a symmetry
breaking operator I5(V,\) — J.(W,v) for (§,¢) with ée = .

Proof. Since both the equations (5.32))-(5.34]) and the pairs ((.ZC\/ZI;)OO, .,ZC\/Z‘;)
satisfying (532)—(E34) depend holomorphically on (A, v) in the entire C?, we
can apply E4l Lem. 11.10] to conclude that the pair ((Fie)oo, Fre) satisfies
E3D)-E3A) at (N, v) = (Mo, 1) for any (k,¢) € N? with k + ¢ = m. Then
((Fe)oos Fre) gives an element in Homer (15(V, \o)|ar, Jo(W, 1)) by Proposi-
tion 0

Definition 5.44. Suppose we are in the setting of Lemma B43l For (k, /)
with k4 ¢ = m and 0,e € {£} with de = v, we denote by

8k+€ ~ W
W Y A)\:Vﬁy - HOHle/(Ls(V, /\0)|G/, JE(VV, 1/0))7

V=1

the symmetry breaking operator associated to the pair ((Fi¢)oo, Fie)-
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Proof of Theorem[5.49 Set v := de. Then the pair ((./ZC\/%)OO,.ZX%) of
Homg (V, W)-valued distributions depends holomorphically on (A, v) in the
entire C? and satisfies (5.32)—(E34) for all (\,v) € C2% Moreover, the pair
((.A/\ , 7)oo, A)\ , 7) is nonzero as far as v —\ € N by Lemmal[5.26l This implies
that, given (Ao, 7o) € C2, there exists (k,¢) € N? for which ((Fye)oo, Fre) is

nonzero. Take (k,¢) € N? such that k+/ attains the minimum among all (k, £)

k- VW

for which the pair ((Fj¢)oo, Fke) is nonzero. By Lemmal[5.43] aikaul Y Ay
V=1

is a symmetry breaking operator. O]

5.11 Renormalization of symmetry breaking operators

~V
Ay
In this section we Construct a nonzero symmetry breaking operator A‘A/Omlfo ~

by “renormalization” when A rovon = 0- We shall also prove that the renor-
malized operator is not a differential operator. The main results are stated
in Theorem [£.45]

AVW

\v~ along v = constant

5.11.1 Expansion of
We fix v € {&} and (\g, o) € C? such that

20 for v = +,
1/0—)\0:
2041 for v = —

with ¢ € N. For every (o,V) € (7(\) and (1,W) € O(n — 1), the distribution
kernel ./ZC\/ ZV of the symmetry breaking operator A/\XV is a Homg(V, W)-
valued dlstrlbutlon on R" that depend holomorphlcally on (A\,v) € C* by
Theorem B We fix v = 1 and expand AV
A= )X as

Ao With respect to A near

A =Fo+ (A= 2)Fi+ (A=) Fa+ - (5.52)
with Home(V W)—valued distributions Fy, Fy, Fs,--- on R". By definition,

# 0 if and only if Fy # 0.

>\0 VoY

For the next term F;, we have the following two equivalent expressions:

Fr= lm S

AV — AWy, (5.53)

A,v0,Y 0,0,
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and

9 VW
= 5.54
1= a)\ g ‘AA V0,Y " ( )
5.11.2 Renormalized regular symmetry breaking operator A‘;K
We consider the following renormalized operators
A—
A‘;K =I(—— )AXXQ for v — A & 2N, (5.55)
A — 1.~
Ay ::F(%)A{’ZY_ for v — A @ 2N + 1. (5.56)

Since AV ., depend holomorphically on (A,r) in c?, AE\/ZV are obviously
well- deﬁned as symmetry breaking operators I5(V, \) — J. (W v) if v = de,
because the gamma factors do not have poles in the domain of definitions
(G) and (250)

On the other hand, Theorem (2) implies that the gamma factors
in (B.55) or (B.50) have poles if A)\ Vl[f ~ = 0. Nevertheless we shall see in

Theorem (.49 below that the renormalization AVW still makes sense if

A0,V0,7Y
AKOVKO Y = 0.
Theorem 5.45. Suppose [V : W] # 0 and let (A\g,v9) € C? such that
VW
A0,v0,7Y =0.
(1) There exists £ € N such that
20 when v = +,
Vg — )\0 =
2041 when v = —.
(2) We set
= 2(-1)¢ 0
vwoo . _ AV.W
Aosv0,Y T /) 5 s A)\ O (557)
=A0

Then AKOVZO ~ gives a nonzero symmelry breaking operator from Is(V,\)

to J.(W, ) with e =~y
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(3) We fixv =wvy. Then AKZZV defined by (BEH) and [EEA) for A # Ao,
and by BRD) for A = Xo, is a family of symmetry breaking operators
from I5(V, ) to J.(W,vy) with 0 = v that depend holomorphically on
A in the entire complex plane C. In particular, we have

AYW i AV (5.58)

0,10,y A— o Avo,y”

(4) AZ\/OVZO ., s not a differential operator.

Proof. (1) The assertion is already given in Theorem (2).
(2) The assertion follows from Lemma [5.43

(3) By the first statement, we see (A, 1p,0,¢) with de = ~ satisfies the
generic parameter condition ([B.2) if and only if A # Ay and that

Avw F()\ - Xo

Aoy

—OAYY A £ ).

AL0,Y

We expand the distribution .,Z(‘A/ZZ ., as in (B.52) near A = Ag. By the

assumption that AE\/OM:O , =0, 1t follows from the two expressions (L.53)
and ([B54) of the second term Fj that

— T; 1 aAvw g 1 VW
= /\ILH/\IO A= Ao A)"VO’V B /\h—>n/\lo (A — )\O)F(/\_QAO- — () A/\’VOW
(=D Zvaw
= 2 A)\O,VO Y

e .
=, we obtain

In light that lim, o uI'(§ — £) = =

lim &v,w QA
A Ao Avoyy T T Ao,

Since Af\/x -, depends holomorphically on A in C — {Ao}, and since it is

. o VW
continuous at A = Ao, Ay,

plane C.

is holomorphic in A in the entire complex
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(4) Let ((.ZC\/OVZM)OO,;C\/OVZM) be the pair of the distribution kernels for
R

oo Vid Proposition b.15 (1). Then as in the above proof, we have

(A )= lim (AP )

A0,v0,Y A= Ao Y0y
By Proposition 20 (2), the right-hand side is not zero. Hence AKOMV/O N
is not a differential operator by Proposition .13 (3).
O

We are ready to complete the proof of Theorem (2-C).

Corollary 5.46. Let v € {£}. Suppose Ayx = 0. Then the following
holds.

Home (I5(V, M| e, J-(W, v)) = CAX;ZY& @ Diff e (Is(V, N)| e, Jo(W, v)).
(5.59)

Proof of Corollary[5.46 By Theorem [(.45] the renormalized operator AK’%E
is well-defined and nonzero. Moreover, the right-hand side of (B.59)) is a direct
sum, and is contained in the left-hand side.

Conversely, take any T € Home: (I5(V, \)|gr, J-(W,v)), and write (7o, T)
for the corresponding pair of distribution kernels for T via Proposition B.I5
Let v := de. Then Proposition tells that 7o, must be proportional to
(AV’W )oo, namely, T, = C (AV’W )oo for some C' € C. This implies that the

)\,I/,’Y - )\,I/,’Y ~
distribution kernel 7—C AE\/K of the symmetry breaking operator ']T—C’A;/’K;

is supported at the origin, and consequently T — CA‘;VM; is a differential
operator by Proposition B.15] 0
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6 Differential symmetry breaking operators
In this chapter, we analyze the space
Diffo/ (I5(V, Mg, J-(W,v))

of differential symmetry breaking operators between principal series repre-
sentations of G = O(n + 1,1) and G' = O(n, 1) for arbitrary V' € O(n) and

W e O(n — 1) with [V : W] # 0.
The goal of this chapter is to prove Theorem below. We recall from

(L3) that the set of “special parameters” is denoted by

Uy, ={(\1v,0,6) e CPx{£}*:v—A€2N (de = +) or v — A€ 2N+ 1 (6 = —)}.

—

Theorem 6.1. Let (G,G’') = (O(n+1,1),0(n,1)). Suppose (o,V) € O(n)
and (1,W) € O(n — 1) satisfy [V : W] # 0.

(1) The following two conditions on \,v € C and §,e € {£} are equivalent:
(i) (\,v,d,¢) € Uy,
(i) Diff(15(V, N, (W, ) # {0},
(2) If 2\ € 7Z then (i) (or equivalently, (ii) ) implies
(i) dime Diffg/ (I5(V, N)|gr, Jo(W, v)) = 1.

The implication (ii) = (i) in Theorem [6.1] holds without the assumption
[V : W] # 0 as we have seen in Theorem [(.2I1 Thus the remaining part is
to show the opposite implication (i) = (ii) and the second statement, which
will be carried out in Sections and [6.6] respectively.
Remark 6.2. In the setting where (V,W) = (A(C™), A?(C"*™1)), an explicit
construction and the complete classification of the space Diff ¢/ (I5(V, N)|¢r, J.(W, v))
were carried out in [B7 without the assumption [V : W] # 0, see Fact

6.1 Differential operators between two manifolds

To give a rigorous definition of differential symmetry breaking operators, we
need the notion of differential operators between two manifolds, which we
now recall.
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For any smooth vector bundle V over a smooth manifold X, there exists
the unique (up to isomorphism) vector bundle J*V over X (called the k-th
jet prolongation of V) together with the canonical differential operator

JEC®(X,V) = C=(X,J*Y)

of order k. We recall that a linear operator D: C®(X,V) — C>(X,V’)
between two smooth vector bundles V and V' over X is called a differential
operator of order at most k, if there is a bundle morphism Q: J*V — V'
such that D = Q, o J*, where Q.: C*(X, J*V) — C>*(X,V’) is the induced
homomorphism. We need a generalization of this classical definition to the
case of linear operators acting between vector bundles over two different
smooth manifolds.

Definition 6.3 (differential operators between two manifolds [0, @2]).

Suppose that p: ¥ — X is a smooth map between two smooth manifolds Y

and X. Let V — X and W — Y be two smooth vector bundles. A linear

map D: C*(X,V) — C=(Y, W) is said to be a differential operator of order

at most k if there exists a bundle map Q: p*(J¥V) — W such that
D=Q,op o J"

Alternatively, one can give the following equivalent definitions of differ-
ential operators acting between vector bundles over two manifolds Y and X
with morphism p:

e based on local properties that generalize Peetre’s theorem [B5 in the
X =Y case (A2 Def. 2.1]);

e based on the Schwartz kernel theorem (2] Lem. 2.3]);

e by local expression in coordinates (2, Ex. 2.4]).
Here is a local expression in the case where p is an immersion:

Example 6.4 (2] Ex. 2.4 (2)]). Suppose that p: Y < X is an immersion.
Choose an atlas of local coordinates {(y;,2;)} on X such that Y is given
locally by z; = 0 for all j. Then every differential operator D: C*(X,V) —
C*(Y, W) is locally of the form

olal+18l ‘
D= Zgaﬁ Y) 8y°‘82r3 . (finite sum),

where g,5(y) are Hom(V, W)-valued smooth functions on Y.
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Let X and Y be two smooth manifolds acted by G and its subgroup G,
respectively, with a G'-equivariant smooth map p: ¥ — X. When V — X
is a G-equivariant vector bundle and W — Y is a G’-equivariant one, we
denote by

Diff (C(X, V)|ar, C*(Y. W)

the space of differential symmetry breaking operators, namely, differential
operators in the sense of Definition that are also G’-homomorphisms.

6.2 Duality for differential symmetry breaking opera-
tors

We review briefly the duality theorem between differential symmetry break-
ing operators and morphisms for branching of generalized Verma modules.
See 2] Sect. 2| for details.

Let G be a (real) Lie group. We denote by U(g) the universal envelop-
ing algebra of the complexified Lie algebra gc = Lie(G) ®g C. Analogous
notations will be applied to other Lie groups.

Let H be a (possibly disconnected) closed subgroup of G. Given a finite-
dimensional representation F' of H, we set

The diagonal H-action on the tensor product U(g)®c F' induces an action
of H on U(g) ®uyy) F, and thus indj(F) is endowed with a (g, H)-module
structure.

When X and Y are homogeneous spaces G/H and G'/H’, respectively,
with G' € G and H' € H N G', we have a natural G’-equivariant smooth
map G'/H" — G/H induced from the inclusion map G’ — G. In this case,
the following duality theorem ([2l Thm. 2.9], see also [0, Thm. 2.4]) is a
generalization of the classical duality in the case where G = G’ are complex
reductive Lie groups and H = H' are Borel subgroups:

Fact 6.5 (duality theorem). Let F' and F’ be finite-dimensional represen-
tations of H and H', respectively, and we define equivariant vector bundles
V=GxygF and W =G’ xyg F' over X and Y, respectively. Then there is
a canonical linear isomorphism:

HomgxyH/(indg:(F'V), 1ndg(FV) |g’,H’) ~ lefG/(COO (X, V) |G/, COO(Y, W))
(6.2)
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Applying Fact to our special setting, we obtain the following:

—

Proposition 6.6. Let (G,G') = (O(n+ 1,1),0(n,1)), V € O(n), W €
On—1), \,veC, and b, € {£}. Let Vs =V ® § ® Cy be the irreducible
representation of P with trivial N -action as before, and VAYé the contra-
gredient representation. Similarly, W)/_ be the contragredient P'-module of
W, =W ®e®C,. Then there is a canonical linear isomorphism:

Homy pr(ind§ (W), ), ind§ (Vi'5)le,rr) = Diffe: (I5(V, M|, J(W,v)).  (6.3)

6.3 Parabolic subgroup compatible with a reductive
subgroup

In this section we treat the general setting where GG is a real reductive Lie
group and G’ is a reductive subgroup, and study basic properties of differen-
tial symmetry breaking operators between principal series representation II
of G and 7 of the subgroup G’. We shall prove in Theorem below that
the image of any nonzero differential symmetry breaking operator is infinite-
dimensional if II is induced from a parabolic subgroup P which is compatible
with the subgroup G’ (see Definition [6.7]).

Let us give a basic setup. Suppose that G is a real reductive Lie group
with Lie algebra g. Take a hyperbolic element H of g, and we define the
direct sum decomposition, referred sometimes to as the Gelfand-Naimark
decomposition (cf. [I4]):

g=n_+I[+n,
where n_, [[ and n, are the sum of eigenspaces of ad(H) with negative,

zero and positive eigenvalues, respectively. We define a parabolic subgroup
P=P(H) of G by

P=LN, (Levi decomposition),

where L = {g € G : Ad(9)H = H} and N, = exp(n;). The following
“compatibility” gives a sufficient condition for the “discrete decomposabil-
ity” of the generalized Verma module ind}(V") when restricted to the subal-
gebra g, which concerns with the left-hand side of the duality ([62) (see [B1]
Thm. 4.1]):

Definition 6.7 ([2I]). Suppose G’ is a reductive subgroup of G with Lie
algebra g’. A parabolic subgroup P of G is said to be G'-compatible if there
exists a hyperbolic element H in g’ such that P = P(H).
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If P is G'-compatible, then P’ := P N G’ is a parabolic subgroup of the
reductive subgroup G’ with Levi decomposition P’ = L'N’, where L' := LNG’
and N\ := N, NG

Theorem 6.8. Let G be a real reductive Lie group, P a parabolic subgroup
which is compatible with a reductive subgroup G, and P’ := PNG'. Suppose
that V is a G-equivariant vector bundle of finite rank over the real flag man-
ifold G/P, and that W is a G'-equivariant one over G'/P'. Then for any
nonzero differential operator D: C*(G/P,V) — C*(G'/P',W), we have

dim¢ ImageD = oo.

As we shall see in the proof below, Theorem follows from the defini-
tion of differential operators (Definition [63]) without the assumption that D
intertwines the G’-action.

Proof of Theorem[6. 8. We set Y = G'/P" and X = G/P. Then Y C X
because P’ = PNG’. There exist countably many disjoint open subsets {U;}
of X such that Y NU; # 0. It suffices to show that for every j there exists
p; € C°(X, V) such that Supp(yp;) C U; and Dy; # 0 because Supp(Dyp;) C
U, NY and because {U; N Y} is a set of disjoint open sets of Y. We fix j,
and write U simply for U;. By shrinking U if necessary, we trivialize the
bundles V|y and W|yny. Then we see from Example that D can be
written locally as the matrix-valued operators:

Plal+18l
D= zﬁ:gaﬁ(y) 99028

z=0

Take a multi-index /5 such that ¢g,3(0) # 0 on U for some o. We fix a such
that |a| = aq + -+ + @gimy attains its maximum among all multi-indeces «
with g.s(y) # 0. Take v in the typical fiber V at (y,z) = (0,0) such that
9ap(0)v # 0. By using a cut function, we can construct easily ¢ € C*(X,V)
such that Supp(p) C U and that o(y,2) = y*z%v in a neighbourhood of
(y,2) = (0,0). Then we have

Dy #0.
Thus Theorem is proved. H
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6.4 Character identity for branching in the parabolic
BGG category

We retain the general setting as in Section [6.3] and discuss the duality the-
orem in Section To study the left-hand side of ([63)), we use the results
[BT] @0 on the restriction of parabolic Verma modules indy(F') with respect
to a reductive subalgebra g’ under the assumption that p is compatible with
g’. For later purpose, we need to formulate the results in [BI] H{] in a slightly
more general form as below, because a parabolic subgroup P of a real reduc-
tive Lie group is not always connected.

Suppose that P = LN, is a parabolic subgroup of G which is compatible
with a reductive subgroup G’. We set n’_ := n_Ng’. Then the L'-module
structure on the nilradical n_ descends to the quotient n_/n’ | and extends
to the (complex) symmetric tensor algebra S((n_/n") ®g C).

For an irreducible L-module F' and an irreducible L'-module F’, we set

n(F, F") := dimc Homp/ (F', F|, ® S((n_/n") ®g C)). (6.4)

Then we have the following branching rule in the Grothendieck group of
the parabolic BGG category of (g, P')-modules ([31] Prop. 5.2],A0, Thm. 3.5]):

Fact 6.9 (character identity for branching to a reductive subalgebra). Sup-
pose that P = LNy is a G'-compatible parabolic subgroup of G (Definition
[67). Let F' be an irreducible finite-dimensional L-module.

(1) n(F,F") < oo for all irreducible finite-dimensional L'-modules F".

(2) We inflate F' to a P-module by letting N, act trivially, and form a
(9, P)-module ind}(F) = U(g) ®ug) F. Then we have the following
tdentity in the Grothendieck group of the parabolic BGG category of
(¢, P')-modules:

ind3(F)|y.p ~ @D n(F, F)ind, (F').
F/

In the right-hand side, F' runs over all irreducible finite-dimensional
P'-modules, or equivalently, all irreducible finite-dimensional L'-modules
with trivial N -actions.

Proof. The argument is parallel to the one in [0, Thm. 3.5] for (g¢,p’)-
modules, which is proved by using [BI] Prop. 5.2]. ]
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6.5 Branching laws for generalized Verma modules

In this section we refine the character identity (identity in the Grothendieck
group) in Section to obtain actual branching laws. The idea works in the
general setting (cf. [0 Sect. 3]), however, we confine ourselves with the pair
(G,G") = (0(n+1,1),0(n, 1)) for actual computations below. In particular,
under the assumption 2\ € Z, we give an explicit irreducible decomposition
of the (g, P)-module ind}(V}’;) when we regard it as a (g, P')-module:

Theorem 6.10 (branching law for generalized Verma modules). Let V €

O/(\n), A€ C, and 6 € {£}. Assume 2\ & Z. Then the (g, P)-module
indy(Vy's) decomposes into the multiplicity-free direct sum of irreducible (g', P')-
modules as follows:

md V)\(; |g/p/ @ @ lIld W>\+a7(_1)a5)v). (65)

a=0 [V:W]#£0
Here W runs over all irreducible O(n — 1)-modules such that [V : W] # 0.

Proof of Theorem[G10 The hyperbolic element H defined in ([22I) is con-
tained in g’ = o(n, 1), and therefore, the parabolic subgroup P is compatible
with the reductive subgroup G’ = O(n, 1) in the sense of Definition 6.7 We
then apply Fact to

n n—1
(Fono,n’) = (V5. Y RN;, Y RN;)
j=1 j=1

Since n_/n’ ~ RN, , the a-th symmetric tensor space amounts to
S*((n_/n )erC) 21X (-1)*KC_,
as a module of L' ~ O(n — 1) x O(1) x R. Therefore we have an L'-

isomorphism:

Flpy @S ((n_/n )@rC)~ P WYR(-1)"6RC_\,,

WEO(n 1)
[V:W]£0

where we observe [V : WV] # 0 if and only if [V : W] # 0. Thus the identity
[0 in the level of the Grothendieck group of (g, P')-modules is deduced
from Fact 6.9
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In order to prove the identity ([6.3) as (g, P')-modules, we use the follow-
ing two lemmas. []

Lemma 6.11. Assume 2\ & Z. Then any 3(g')-infinitesimal characters of
the summands in ([G3) are all distinct.

Lemma 6.12. Assume 2\ € Z. Then any summand indg:((W,\Jra’(_l)a(;)V) in
@A) is irreducible as a (g, P")-module.

Proof of LemmalG 11l Via the Cartan—Weyl bijection (2.20)) for the discon-
nected group O(N) (N = n,n — 1), we write V. = FO™W(y) and W =
FOUD) for p = (-, pn) € AT(O(n)) and p = (- ) €
At(O(n — 1)). By the classical branching law for the restriction O(n) |
O(n — 1) (Fact Z12)), [V : W] # 0 if and only if

>y > e > >l > (6.6)

Since any irreducible O(N)-module is self-dual, we have W ~ FOr=1 (/).
Therefore, the 3(g’)-infinitesimal character of the g'-module indgi(WV ®
(—1)% ® C_,_,) is given by

n—-1 , n—-3 , n-95 , n—1 n—1

(—A—CL‘FT,M‘FT’M"‘Ta“'  Hjnsay + - 7 )

modulo the Weyl group &,, X (Z/27Z)™ for the disconnected group G’ =
O(n,1) where m = [2£1]. Hence, if 2) ¢ Z, they are all distinct when a runs
over N and g runs over AT (O(n — 1)) subject to (G.6]). Thus Lemma 61T is
proved. O

Proof of Lemma[6.13. By the criterion of Conze-Berline and Duflo [T, the
g’-module indg:(n ® C_)_,) is irreducible if 7, is an irreducible so(n — 1)-
module with highest weight (v, - - -  Vjnst ) satisfying

—1 n—3 n—>y5 n—1 n-—1

<_)\_a+n 7V1+ 7y2+—a"' 7V[E]+ _[
2 2 2 2 2 2

]7Bv> ¢ N+,

where 3V is the coroot of 3, and 8 runs over the set
i n . n+1 .
AT(ge) —AT(Ig) ={e1 £e;:2<j < [T]}(U{el},when n is even).

This condition is fulfilled if 2\ & Z because vy, - - -, Vino1) € %Z and a €
N. Hence indg:((W,\M,(,l)aa)v) is an irreducible g’-module if WY(~ W) €
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O(n — 1) is of type X (Definition [Z0]), namely, if WV is irreducible as an
s0(n — 1)-module. On the other hand, if WY € O(n — 1) is of type Y, then
indgi((WHa,(_l)a(g)V) splits into the direct sum of two irreducible g’-module
according to the decomposition of WY into irreducible so(n — 1)-modules.
Since the/se two g’-submodules are not stable by the L’-action, we conclude
that ind}, (Wi ya,(—1)a5)") is irreducible as a (g, L')-module, in particular, as
a (¢g/, P')-module. Thus Lemma [12 is proved. O

6.6 Multiplicity-one theorem for differential symmetry
breaking operators: Proof of Theorem (2)

Combining Proposition (duality theorem) with the branching law for
generalized Verma modules (Theorem [6.10]), we obtain a generic multiplicity-
one theorem for differential symmetry breaking operators as follows:

o~ —

Corollary 6.13. Suppose V € O(n) and W € O(n — 1) satisfy [V : W] # 0.
Suppose that (A, v,0,¢) € Uy, (see (LI)). Assume further 2\ ¢ Z. Then

din’l(c Diffgl([g(v, A)‘G’; J5<W7 V)) =1L

This gives a proof of the second statement of Theorem B.11

6.7 Existence of differential symmetry breaking oper-
ators: Extension to special parameters

What remains to prove is the implication (i) = (ii) in Theorem G for special
parameters, namely, for 2\ € Z. We shall use the general idea given in [44]
Lem. 11.10] and deduce the implication (i) = (ii) for the special parameters
from Corollary [6.13] for the regular parameters, and thus complete the proof
of Theorem (1).

Let Diff*""(n_) denote the ring of holomorphic differential operators

on n_ with constant coefficients and (, ) denote the natural pairing n_ =
> RN; and ny = 37" | RN} . Then the symbol map

Symb: Diff***(n_) — Pol(ny), D, Q(()
given by the characterization

Dze(z,Q _ Q(C)€<Z7C>
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is a ring isomorphism between Diff*"**(n_) and the polynomial ring Pol(n_.).
The F-method (42 Thm. 4.1]) characterizes the “Fourier transform” of
differential symmetry breaking operators by certain systems of differential
equations. It tells that any element in Diffe (I5(V, \)|gr, Jo.(W, X + a)) is
given as a Homgc(V, W)-valued differential operator D on the Bruhat cell
N_ ~R" as
D = Rest,, —¢ o (Symb™' ® id)(v)),

where ({1, -+ , () is a Home(V, W)-valued homogeneous polynomial of de-
gree a satisfying a system of linear (differential) equations (cf. [A2] (4.3) and
(4.4)]) that depend holomorphically on A € C.

If we write the solution ¥(() as

Q)= D Bt

Bi++fn=a

then the system of differential equations for ¢(¢) in the F-method amounts
to a system of linear (homogeneous) equations for the coefficients {(3) :
18] = a}. We regard ¢ = (p(B)) € C* where k := #{3 € N" : |3| = a}, and
use the following elementary lemma on the global basis of solutions:

Lemma 6.14. Let Qyp = 0 be a system of linear homogeneous equations
of ¢ € CF such that Qx depends holomorphically on A € C. Assume that
there exists a nonempty open subset U of C such that the space of solutions
to Qxp = 0 is one-dimensional for every X in U. Then there exists @) € C*
that depend holomorphically on A in the entire C such that Qxpx = 0 for all
A e C.

Proof. We may regard the equation )y = 0 as a matrix equation where (),
is an [ by k matrix (I > k) whose entries are holomorphic functions of A € C.
By assumption, we have

rank Q) =k — 1 forall A e U.

We can choose a nonempty open subset U’ of U and k row vectors in () such
that the corresponding square submatrix Py is of rank k — 1, provided A be-
longs to U’. Then at least one of row vectors in the cofactor of Py is nonzero,
which we choose and denote by ). Clearly, ¢, depends holomorphically on
the entire A € C, and Q p) = 0 for all A € U’.

Since both @), and ¢, depend holomorphically on A in the entire C, the
equation @ e\ = 0 holds for all A € C. O
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We note that the solution ¢, in Lemma [6.14 may vanish for some A € C.
However, the following nonvanishing result holds for all A € C.

Proposition 6.15. Suppose we are in the setting of Lemma[6.1 Then
dimc{p € C*: Qyp=0}>1  forall X\ €C. (6.7)

Proof. Let ¢y be as in Lemma [BGI4 Then it suffices to show (&) for A
belonging to the discrete set {\ € C : ¢, = 0}. Take any )¢ such that
x = 0. Let k& be the smallest positive integer such that

" g ,
Q/JAOZ:W)\_)\QO)\#O and W)\_)\gp)\zo for 0 <j<k-1.
A0 A0
By the Leibniz rule, 2 a,\k . (Qrpyx) = 0yields Qy,1¥n, = 0, because 8‘9/\] . Oy =

Oforall 0 <7< k-1 Therefore ), 18 a nonzero solution to Q,\0<p =0,
showing (G.7) for A = X\g. Hence Proposition [6.18 is proved. O

As in the proof of Theorem .42 the implication (i) = (ii) in Theorem
follows from Corollary [GI3] (generic parameters) and the extension result

to special parameters (Proposition [GI3]). Thus we have completed a proof
of Theorem [6.]] and in particular, of Theorem B.12 (2).

6.8 Proof of Theorem (2-b)

In this section, we give a proof of Theorem BI3] (2-b), namely, we prove the
following proposition.

Proposition 6.16 (localness theorem). Suppose [V : W] # 0. Suppose that
(A, v,0,e) € Uy, namely, (\,v) € C* and 0,e € {+} satisfy

v—X€e2N when e = +; v — X € 2N+ 1 when de = —
Assume further that A)\ vse 7 0. The we have
HOHle/(L;(V )\Ng/ (W l/)) lefcy([(;(v )\)|G’ (W I/))

We need two lemmas from [A4].
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Lemma 6.17 (4] Lem. 11.10]). Suppose D, is a differential operator with
holomorphic parameter u, and F), 1s a distribution on R"™ that depends holo-
morphically on p having the following expansions:

Dy = Do+ Dy + pi*Dy + -+,
Fo=Fy+pF+ "B+

where D; are differential operators and F; are distributions on R". Assume
that there exists € > 0 such that D, F,, = 0 for any complex number p with
0 < |u| < e. Then the distributions Fy and Fy satisfy the following differential

equations:
D()FO =0 and DOF1 + D1F0 = 0.

Lemma 6.18 (H4 Lem. 11.11]). Suppose h € D'(R") is supported at the
origin. Let E be the Euler homogeneity operator Y, _, xza%[ as before. If

(E+ A)2h =0 for some A € Z then (E + A)h = 0.

The argument below is partly similar to the one in Section B.IT.2, how-

ever, we note that the renormalization A}\/OVZO ,, in Theorem B.45]is not defined

under our assumption that &YOVZM # 0 and (Ao, 10, 6,¢) € WUy, Instead, we

shall use the distribution (.Zl;/%)’ on R™ — {0}, of which we recall (5.37) and
(5.38) for the definition.

Proof of Proposition[6.18. Take any symmetry breaking operator
T e HOHle(L;(Vv, )\O)l(;/, JE(W, Vo))-

We write (75, T) for the pair of distribution kernels of T as in Proposition
.18 We set v := de.

It follows from Proposition (3) that T|gn_qoy = ¢ (.;lV’W )/ for some

0520,
deC. N
Suppose Af\/(’)‘jgm #0and vp— A €2N (y=+)or € 2N+ 1 (y = —). As
in (B.52)), we expand ﬂf\/,‘//gw near A\ = \g:

./ZMW :F0+()\—/\0)F1+<)\—)\0)2F2+,

A0,y

where F; € D'(R")@Homc(V, W). We note that Fy # 0 because AE\/OVZOAY # 0.
We define a nonzero constant ¢ by
2(=1)"

n

¢ := lim ,ulj(ﬁ —1)= (6.8)
n—0 2
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In view of the relation

1 I

TV v,w

(*AA v +) A/\,u,— ‘R”—{O} = F(,\—u+1) (A/\,uv—)/’
2

VW _
Ay rn— oy =

we get
CFl ‘R"*{O} ("4)\0 Vo 'y)
as in the proof of Theorem [.43] (3). We set

u 0
DOZ:E—)\0+V0+7’L:Z.Tj%—/\0+V0+n.
j= J

Applying Lemma [617 to the differential equation (G28)):

= (Dy— (A= X)) AV =0,

Av0yY

(E =M+ 15+ n)ALY

Avosy T

we get
DoFy =0, DyF — Fy=0. (6.9)
We set
h:=T —cF, € D'(R") ® Homc(V, W).
Then Supp h C {0}. Moreover, D3h =0 by DyT =0 and (69).
Applying Lemma [G we get Doh = 0. It turn, e Fy = 0 again by
DyT =0and [@9). T herefore it AW = 0, or equivalently, if AW #0,

0,10, . A0,10,7Y i
then we conclude ¢ = 0 because Fy # 0. Thus T is supported at the origin,

and therefore T is a differential operator (see Proposition b1 (3)).
Hence Proposition [6.16] is proved. O]

The above proof implies that the distribution (A/\ vv) eED'(R"—{0}) ®
Homc(V, W) in (537) and (B38) does not always extend to an element of
Sol(R™; V3 5, W, 0) (v = de):

Proposition 6.19. Let v € {£}. Suppose (\,v) € C? satisfies
v—XAe2N when y=+4; v—Ae2N+1 wheny=—.
If A/\M # 0, then for §,e € {£} with de ==, the restriction map

Sol(R™; Vys5,W, ) = D'(R" — {0}) ® Hom¢(V, W)

15 identically zero.
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7 Minor summation formula related to exte-
rior tensor A‘(C")

This chapter collects some combinatorial formulae, which will be used in later
chapters to compute the (K, K')-spectrum for symmetry breaking operators
between differential forms on spheres S™ and S"~!, namely, between principal
series representations I5(V,A) of G and J.(W,v) of its subgroup G’ in the
setting where (V, W) = (AY(C"), A7(C"™1)).

7.1 Some notation on index sets

Let n be a positive integer. We shall use the following convention of index
sets:

Jpii={I C{l,---,n}:#I =i} (7.1)

Convention 7.1. We use calligraphic uppercase letters I, J instead of Ro-
man uppercase letters I, J if the index set may contain 0. That is, if we
write T € Jp41,, then

Zc{0,1,---,n} with #I =1.

In later applications for symmetry breaking with respect to (G,G") =
(O(n+1,1),0(n, 1)), the notation J,;,; for subsets of {0,1,--- ,n} will be
used when we describe the basis of the basic K-types and K'-types, whereas
the notation J,,;, J,—1,; will be used when we discuss representations of M
and M’, respectively.

7.1.1 Exterior tensors /\‘(C")

Let {e1,--- ,e,} be the standard basis of C". For I = {ky,ka,--- ,k;i} € Ty
with k1 < ky < - -- <I{Zi, we set

er =ex A Aep, € N(CH).

Then {e; : I € J,;} forms a basis of the exterior tensor space A’(C"). We
define linear maps

pr_;: N'(C") = N(CY), (j=i—1,i)
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er if n ¢ ],
o = 7.2
pri(er) {O e (7.2
0 ifné¢l,
r, ., 1(er) = . 7.3
Then we have the direct sum decomposition
N(C) =~ N(C e NTHE. (7.4)
7.1.2 Signatures for index sets
Let N € N,. In later sections, N will be n — 1, n or n + 1.
For a subset I C {1,---, N}, we define a signature (k) by
1 ifkel,
6[(]6) = .
-1 itkel,
and a quadratic polynomial Q;(y) by
Qr(y) ::ny for y=(y1, - ,yn) € RY. (7.5)

lel

We note that v
2Q1(y) — |y|2 = Z&(k‘)ykz-
k=1
For I,J C Jn,, we set
I —J|:=#I—#INJ)=#J—#(INJ).

By definition, |I — J| = 0 if and only if [ = J; |I — J| = 1 if and only if
there exist K € Ty, and p, ¢ ¢ K with p # ¢ such that [ = K U {p} and
J =K U{q}.

Definition 7.2. For I € {1,2,--- ,n} and p,q € N, we set

Sgn(I;p) ::(_1)#{r61:r<p}7
sgn([;p, q) ::(_1)#{relzmin(p,q)<7"<max(p,q)}‘
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The following lemma is readily seen from the definition.

Lemma 7.3. For I C {1,2,--- ,n} and p,q € N, we have

sgn(l;p, q) if min(p, q) ¢ I,

I; I;q) =
ssalip)sen(lia {—sgn(f;p, q)  if min(p,q) € 1.

For y = (y1,- -+ ,yn) € RY, we define quadratic polynomials S7;(y) by

SN er(k)y? if I =J,
S1s(y) = 9 2sgn(K;p, Q)ypYq if I =KU{p},J=KU{q}, (7.6)
0 if |1 —J)>2,

where we write [ = K U {p} and J = K U{q} (p # q) when |I — J| = 1.
It is convenient to set

N

Sw(y) == _up- (7.7)

k=1

7.2 Minor determinant for ¢ : RY — {0} — O(N)
We introduce the following map:
Un:RY x C = M(N,C), (y;\)— Iy —Ay'y. (7.8)

Here we have used a similar notation to the map ¢y (y) defined in ([B4)). In
fact, the map (C.8) may be thought of as an extension of the previous one,

since its special value at A\ = W recovers (B3.4) by
Y

on(y) = Un(y; &) for y € RY — {0}, (7.9)

For I,J C {1,2,--- , N} with #I = #J, the minor determinant of A =
(Aij)lgi,jSN € M(N, R) is denoted by

det Ary := det(A;j)ier-

jE€J
Then the exterior representation

o: O(N) = GLc(AF(CY))
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is given by
o(A)ey = > (det A)yyep. (7.10)

JIGjNyk

It follows from (ZI0) that for A, B € O(N) we have

det(AB)ypr = Y (det A);n(det B) (7.11)

J”GjN’j

Lemma 7.4. Suppose I, J C {1, , N} with #I = #J.
(1) For (y;\) € RN x C,

1 —2Q:(y) if I =1,
det v (y; Mg = § —Asgn(EKsp, q)ypyg if I = KU{p}, J =K U{q},
0 if [T —J| > 2.

(2) Forye RN —{0},

1
det Yn(y)rs = — WSIJ(?J)
L [FXhe dI=,
“I X« =2sgn(K;p, q)ypy, if I =KU{p},J=KU{q},
0 if |I—J|>2.

Proof. (1) Suppose I = J. Since the symmetric matrix y 'y is of rank 1, its
characteristic polynomial has zeros of order N — 1:

N
det(uly —y'y) = ™ — " N(Tracey 'y) = p™ — N1 7,
j=1

and therefore N
det(Iy — Ay y) =1— )\Zng
j=1
Applying this to the principal minor of size #1I, we get the first formula.

Next suppose |I — J| = 1. We may write as I = K U {p}, J = K U{q}.
Then the ¢-th column vector of the minor matrix (Iy — Ay 'y)r; is of the
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form —Ay,(yi)ier. Adding this vector multiplied by the scalar (—y;/y,) to
the j-th column vector for j € J — {q}, we get

det @DN(ZJ; )\)U = sgn(K; CI) det<_)‘yq(yi)iela (51]);66}1()
= — Asgn(K;p) sgn(K; q)ypy,-

Hence the second formula follows from Lemma The third one is proved

similarly.

(2) Substitute A = ;. O
As a special case of Lemma[7.4] (2) with N = n+1, we have the following:

Lemma 7.5. ForZ,J € Jp41, and b € R", we have

-1
det 77Z}n+1(17 b)Ij = TWSIJ(:[, b)

Here (1,b) := (1,by,- -+ ,b,) € R""1,

7.3 Minor summation formulae

We collect minor summation formulse that we shall need in computing the
(K, K')-spectrum of symmetry breaking operators for “basic K-types”.

We recall from ([Z3) that Q(b) = >, ;b
Lemma 7.6. Suppose I € J,,;. Forbe R" and s,t € C, we have:

(1) ) det by (b;s)ry det by (bst)ry = 1= (s + £)Qr(b) + st|b*Qr (D).
JETn i
(7.12)

(2) Z det ¥,11(1, b5 5) rugoy,sugoy det ¥y (b 1) 1
JETn ;i
=1-s—(s+t—st)Qs(b) + st|b]*Qr(b).  (7.13)
(3) ) detthnya(1,b55)ry det b (bst)ry =1 — (s + £)Qu(b) + st|b*Qs (D).
JETn,;
(7.14)
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Proof. (1) By Lemma [(4] the left-hand side is equal to

(1= sQr(b)(1 —tQs(b)) + > _ stbih]
kel
1¢1

=1 — (s +1)Qr(b) + stQ;(b)* + stQ;(b)(|b]* — Q1 (D)),

whence the equation (Z.I2).
(2) By Lemma [C4], the left-hand side is equal to

(1= s(1+Qr(0)(1 —tQ;(b)) + st Y _ b7by,
kel
1¢1

whence the equation (ZI3).
(3) By Lemma [[4] the left-hand side is equal to

(1= sQs(1))(1 = tQr(b)) + st > _ biby
kel
11

=1 — (s +t)Qr(b) + stQr(b)* + stQr(b)(|b|* — Q1(b)),
whence the equation (Z.14]). O

The following proposition will be used in obtaining the closed formulae of
the (K, K')-spectrum of the Knapp—Stein intertwining operators (Proposi-
tion B9)) and the ones of the regular symmetry breaking operators (Theorem

0.8).
Proposition 7.7. For I € J,;, we have:

2Q1(b)
(L+ [b[*)[b>

=1+ b 2Q1(b)
L 1p[> (14 [b)[b[*

2
(1) Z.det Vn(b; TW)IJ det ¢, (b)1y =1 —

2) Z det ¥ 11(1,0) rugoy,0u{0y det ¢y (b) 15

Jejn,i
(3) Z (det U (b L)IJ + det ¥ 41(1,0) 1ug0y Ju{o}) det 1, (b) 1y = 2|b|? .
2Q;(b)
4) det ¥4 1(1,0) 1y det ¢, (b) g =1 — ——— 2 (715)
Jezfin,i o (1 + |b|2)‘b|2
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Proof. The assertions (1), (2), and (4) are special cases of Lemma (1),

2 .
TV)P and t = W The third one

follows from the first two. O

(2), and (3), respectively, with s =

Lemma 7.8. For I € J,_1,_1,

2(—1)i*+'b,,

det 1,b det v, (b =
5 det a1 B)go s det v s = S

JETn i

Proof. Since 0 ¢ J, the summand vanishes except for the following two cases:
Case 1) J =1U{n}.
Case 2) J =1U{p} for some p € {1,2,--+- ,n—1} — I.

By Lemma [[4] we get

(1+ |b|2)’b‘2 Z detwn+1(1yb)lu{0},J detwn<b>lu{n},J
JEjnJ

=(=2sgn(Z;0,n)b,)([b]* - 2Qr(b) — 2b;,)
+ Z (—2sgn(1;0,p)b,)(—2sgn(l; p,n)b,by,)
pe{1,2, m—1}—1I
=2(=1)""10,(2Q1(b) + 207 — [b]*) + 4(=1)"""0, ([o]* = Qr(b) — b})
=2(—1)"b[?b,,.

Hence Lemma is proved. m

Lemma 7.9. For I € J,,_1,,

2(_1)i+1bn

det 1.0 det b)ry =
Z e ¢n+1( ’ )IU{n},JU{O} € @/Jn( )IJ 14+ |b[2

JETn i

Proof. Since 0 ¢ I, |[(I U{n}) — (JU{0})| < 1 holds in the following two
cases:
Case 1. I =J.
Case 2. I =K U{p}and J=KU{n} for some K € J,_1;1.
In Case 1,

2(—1)i+1b, 2Q;(b)
e U e

det Yn41(1,0) 1ugny,sutoy det ¥, (0) 11 =
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In Case 2,

det Yn11(1,0) kugpn}, KU{0,0} det ¥ (D) kUp}, KU{RY
~ —2sgn(K U{n};0,p)b,  —2sgn(K;p,n)byby
N 1+ |bf? lds

4
= (=12 .
D Tt

Adding the term in Case 1 and taking the summation of the terms over p € I
in Case 2, we get the lemma. O
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8 The Knapp—Stein intertwining operators re-
visited: Renormalization and K-spectrum

In this chapter, we discuss the classical Knapp—Stein operators, which may
be viewed as a baby case of symmetry breaking operators (i.e., G = G’ case).
We determine the (K, K)-spectrum (K-spectrum, for short) of the matrix-
valued Knapp-Stein operators ﬁf}\/,n—,\: Is(V,\) — Is(V,n — X), see (RI3)
in the case where V' = A(C"). We also study the renormalization of the
operator 'ﬁ\/n_ , When it vanishes, see Section

8.1 Basic K-types in the compact picture

Let (1, U) be an irreducible representation of a compact Lie group K, and
(0,V) that of a subgroup M. The classical Frobenius reciprocity tells that u
occurs in the induced representation Indy;o if and only if Homy,(par, o) #
{0}. In this section we provide a concrete realization of (u, U) in the space
C*®(K/M,V) of global sections for the K-equivariant vector bundle V =
K x,; V which we will use later.

Lemma 8.1. (1) Let (u,U) be a finite-dimensional representation of a
compact Lie group K. The left reqular representation on C*(K,U)
is defined by f(-) — f(¢7') for f € C®(K,U) and { € K, where we
regard U just as a vector space. By assigning to u € U, the function
fu: K = U is defined by f,(k) := p(k)"*u. Then the K-module U can
be embedded as a submodule of the left reqular representation C* (K, U)
by

U— C®(K,U), U= fo.

(2) Let V' be a vector space over C, and pry_,, : U — V a linear map.
Then we have a K-homomorphism

U— C®(K,V), U Pry_y O fu.
(3) Suppose that o : M — GLc(V) is a representation of a subgroup M

of K and that pry_y is an M-homomorphism. Then we have a well-
defined K-homomorphism

U— C®(K/M,V), U Pry_y O fu,
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where we identify the space of smooth sections for V := K X V' over
K /M with the space of M-invariant elements

C®(K, V)M :={F € C*(K,V): F(-m) = o(m)"'F(-) for allm € M}.
Proof. The detailed formulation of each statement gives a proof by itself. [

Applying Lemma to differential forms on the sphere, we obtain:

Example 8.2. Let K := O(n + 1), and o be the i-th exterior tensor rep-
resentation of the subgroup M := O(n) on V := A’(C"). Then the vector
bundle V = K x,; V is identified with the i-th exterior tensor of the cotan-
gent bundle of the n-sphere S™ ~ K/M, and we may identify C®(K, V)M ~
C>(K/M,V) with the space £/(S™) of differential i-forms on S™. Suppose
that p is the k-th exterior tensor representation of K = O(n+ 1) on U :=
AF(C™1). For k =i or i+ 1, the projection pr;_,;: A*(C"1) — A(C"), see
[C2) and ([Z3]), is an M-homomorphism, and therefore, Lemma gives a
concrete realization of the K-module U = A*(C"*1) in £1(S™) ~ C=(K, V)M
as below. Let {eg,e1, -+ ,e,} be the standard basis of C"*1, and {e; : Z €
Jpi14} the standard basis of AF(C™H1).

We treat the cases £ = ¢ and i + 1, separately. In what follows, we
use Convention [ ] for the index set J,+1 . See also Section for minor
determinant (det A);; of A € M(N,R).

Case 1. Suppose k = i. Then 1% := pr,_,; of., is a map given by

O(n+1) = N(C"), ke 15k)= > (detk)ze,. (8.1)
Jejnﬂ
Thus 17 is regarded as an element of C*°(O(n 4 1), A*(C"))°™ ~ £i(S™).

Case 2. Suppose k = i + 1. Then hf := (=1)pr,,,_,; ofe; is a map given
by
O(n+1) = N(C"), kP (k)= ) (detk)r su0pes, (8.2)

JEjnJ

which is again regarded as an element of £/(S™). We remark that the pro-

jection . ‘
Priio; s ATHE™) = AY(CT)

is given by “removing” ey, whereas the projection in ([Z.3]) was by “removing”
€n-
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By Lemma BJ] we obtain injective O(n + 1)-homomorphisms

N(CF) = &), erm— 1,
/\i+1((cn+1) N gZ(STL)’ er — hI.

8.2 K-picture and N-picture of principal series repre-
sentations

—

Let (o,V) € O(n), 0 € {£1}, and A € C. We recall from Section Z3.1] that
the principal series representation

I;(V,\) =Ind$(V @ § @ Cy)

of G = O(n+1,1) is realized on the Fréchet space C*(G/P, V) s) of smooth
sections for the homogeneous vector bundle G xp V) ;s over the real flag

manifold G/ P, see (227).

8.2.1 Explicit K-finite vectors in the N-picture

In this subsection we review the K-picture and N-picture of the principal
series representation I5(V, \), and provide a concrete formula connecting the
two pictures.

As we saw in (228, the noncompact picture (N-picture) of I5(V, A) is
given by

in: Is(V,A) = C*(RM) @V, F f(b):=F(n_(b)),

as the pull-back of sections via the coordinate map of the open Bruhat cell
in: R" < G/P, b+ n_(b) - o, where n_: R" = N_ is defined in ([Z3]).

Next, let Vs denote the outer tensor product representation V X o of
M = O(n) x O(1). Then the diffeomorphism tr: K/M = G/P induces
an isomorphism ¢}, (Vys) ~ K X Vs as K-equivariant vector bundles over
K /M, and hence K-isomorphisms between the space of sections:

e (Vo) S OF(K /M, K % Vi) ~ (CF(K) @ V)M,

which is referred to as the K-picture of I5(V, \).
The transform from the K-picture to the N-picture is given by

=y o (L) (CP(K) @ Va)M — C*(R™) @ V. (8.3)
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Then the three realizations of the principal series representation I5(V, \) of
G are summarized as below.

C®(G/P, Vs s)

C*(R™) ®V (N-picture)

(K-picture)

To compute ¢}, we recall from Lemma that the map
E:R" = SO(n+1)Cc K=0(n+1)x0(1),

see (L.0), induces the following commutative diagram:

K

R® ni> N_ — G/P<K/M
Lemma 8.3. Suppose F € (C®(K) ® V5)™. Then we have
(5 F)(b) = (1 + [b*) *F(k(b)) for all b € R™. (8.4)
Here k(b) € SO(n + 1) is viewed as an element of K on the right-hand side.

Proof. We define t € R by e =1+ |b]%. Tt follows from Lemma 5.8 that
* x —1 x —1 ) O H _b
(BE)(b) = (e F)(n-(b)) =(t)c F) 1) € ”+(r’b|2)

KB) 0\
0
—(1+ [b2)F ((kgﬁ ?)) |

Hence the lemma is verified. O]
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8.2.2 Basic K-types in the N-picture

We recall from the K-type formula (Lemma 210) that the principal series
representation I5(z,A) of G = O(n + 1,1) contains two “basic K-types”
@i, 0) = N(C™ K § and pb(i,6) = ATHC"H) K (—6) for 0 < i < n.

In this section, we write down explicit K-finite vectors belonging to
1’ (i,0) and pf(i,0) in the noncompact picture.

Let 17 and h? be the elements in £1(S") ~ C=(O(n + 1),V)°™ con-
structed in Example B2 where we take V to be AY(C"). We note that the
pair

(K, M)=(0O(n+1)x0(1),0(n) x O(1))

is not exactly the same with the pair (O(n+ 1),0(n)) in Example B2 how-
ever, the diffeomorphism O(n + 1)/O(n) = K/M induces the following iso-
morphisms

E'(8") = C*(0(n +1) @ V)oM & C*(K @ Vg)".

Thus we may regard that {17 : T € J,,1,} is a basis of 1°(i,6) and {h? :
T € Jpy14e1) is a basis of pf(i,8). Applying the map 1} : C®°(K @ V)M —
C®(R") @V (see [BA)), we set

15 =51t for 7 ¢
i =uiht for T e

jn-ﬁ-l,ia
J

n+1,74+1-

By Lemma and Example B2 we have shown the following.
Proposition 8.4 (basic K-type i’ and pf). We define linear maps by

/\i(C"+1) — C*(R", /\Z((C”)), er — lf forT e
ATHC™) = C®°(R", A(C")), er—hi forZe

1., (8.5)
jn+1,i+1-

Then, for § = %, the images give the unique K -types p’(i,8) = N\'(C"*1) X 6§
and pi*(i,0) = NHH(CY) X (=0) respectively, of the principal series repre-
sentation I5(i, \) = Ind%(A'(C") ® § ® Cy) of G in the N-picture.

An explicit formula for 1% and hf is given as follows.

Lemma 8.5. Let Sz7(b) be the quadratic polynomial of b = (by,--- ,by)
defined in (LGl).
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(1) Let 0 <i<n. ForZT € J,41,; and X € C, we have

15(0) =(L+ o)™ Y detthura(1,b)zsey

JETn i

— (LB D Sr(1,b)e (8.6)

JE€Tn,i
Ifi =0, we regard T =) and 1% = (1 + [b]>)™ (see [TD)).
(2) Let 0 <i<n. ForZT € 341,41 and X € C, we have

h3(b) = — (14 1b)~ Z det ¥n+1(1,b)z, 010160

JETni
=L+ B > Sz (L, bes. (8.7)
JETn i
We note that Lemma R3] implies
€T 0 ¢2Z
15(0) = ’ 8.8
{0 {O - (33)
€z—{0} 0eZ,
h3(0) = 8.9
o) {O ver (39)

Proof of Lemmal83 Suppose b € R, and let k(b) € SO(n+1) be as defined
in (5.0). By (81) and ([B2), respectively, the formula ([84) of .5 tells that

13(0) = (317) () = (1 + [o*) 17 (k(b))

(L+[0)7 D (detk(b))zses,
JETn .

(1+ [o*) R (k (b))

L+ (det k(D)7 u0pes-

JESnJ

It follows from Lemma [7.4] (2) that, for Z,J C {0,1,--- ,n} with #Z =
#J = i, the minor determinant of k(b) is given by

ha(b) = (13h7)(b)

Srz(1,b)

T (8.10)

(det k(b))z7 = —e7(0)(det ni1(1,0))z7 = €7(0)
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where we set €7(0) = —1 for 0 ¢ J and £7(0) =1 for 0 € J.
Now the second formulee in Lemma are also shown. O

8.3 Knapp—Stein intertwining operator

In this section we summarize some basic results on the matrix-valued Knapp—
Stein intertwining operators, see 4] 20]. In the general framework of sym-
metry breaking operators for the restriction G | G’, this classical case may
be thought of as a special case where G = G’, and the proof is much easier
than the general case G 2 G'. Nevertheless, we sketch a proof of results
which we need in other chapters.

8.3.1 Knapp—Stein intertwining operator

—

For (0,V) € O(n), d,e € {£} and \,v € C, we consider intertwining op-
erators between two principal series representations I5(V, \) and I.(V,v) of
G =0O(n+1,1). They are determined by distribution kernels, and Fact
(see {4l Prop. 3.2]) with G = G’ and V = W gives a linear isomorphism

Homg(I;(V, \), I.(V,v)) =~ (D'(G/P, Vi5) ® V, ), (8.11)

where P acts diagonally on the (G x P)-module D'(G/P,V5;) @ V.. As
in Proposition (2), the restriction to the open Bruhat cell determines
invariant distributions in the right-hand side, and thus we have an injective
homomorphism

(D'(G/P,V3s) @V, o)) = D'(R") @ Ende(V),  f > F(z) = f(n_(x)),

where we have used the canonical isomorphism VV®V ~ End¢(V). Different
from the case G 2 G’ for symmetry breaking operators, there are strong
constraints on the parameter for the existence of nonzero elements in (81T]).
In fact, it follows readily from the P-invariance that F|g»_go} is nonzero only
if v =n— )\, and in this case it is proportional to |2|**~2"¢(1,,(z)), where we
recall from (BA]) the definition of 1, : R® — {0} — O(n). We normalize as

1

A =2)

Thna() = 2720 (¢ (). (8.12)

Remark 8.6. The normalization of the Knapp—Stein operator is not unique,
and different choices are useful for different purposes. See for example

Knapp-Stein [24] or Langlands [51].
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With the normalization ([8I2), we now review the Knapp-Stein inter-
twining operators in this setting as follows.

Lemma 8.7 (normalized Knapp—Stein operator). The distribution (8I2)
belongs to L (R") ® Endc( ) if ReA > 0, and extends to an element of
(D'(G/P, V) @ Vaers) ). Furthermore, it has an analytic continuation
to the entire A € C.

By definition, the (normalized) Knapp—Stein intertwining operator
TS oon : Is(V,A) = Ii(Vin = A) (8.13)

is defined in the N-picture of the principal series representation by the for-
mula

When (0, V) is the i-th exterior representation on A'(C"), we write sim-
ply ']I‘)\n 5 and ’TML ), for the operator ']I'ML , and the distribution ’7;\n %
respectively.

The Knapp-Stein operator (8I3) gives a continuous G-homomorphism
Is(i,\) = I.(j,v) when j =i (and 6 =&, ¥ = n — A). On the other hand,
there exist G-intertwining operators Is(i, A\) — I.(j,v) also when i # j for
special parameters. Like sporadic symmetry breaking operators (cf. Theorem
[B.4), they are given by differential operators as follows.

Fact 8.8. Suppose that 0 <i<n—1.

(1) We can identify I_1yi(i,1) with the space E'(S™) of differential i-forms
endowed with the natural action of the conformal group G = O(n+1,1).

(2) The exterior derivative d: E'(S™) — E1(S™) induces a G-intertwining
operator
D;: I(,l)z‘(i,i) — [(,1)”1(7; + 1,7+ 1).

The kernel of D; is I1; (_yyi, and the image is IT; 11 (_1yit1.

This follows from [B7, Thm. 12.2]. We note that the existence of such
an intertwining operator is assured a priori by the composition series of the
principal series representation (Theorem 220), see also [II].
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8.3.2 K-spectrum of the Knapp—Stein intertwining operator

This section gives an explicit formula for the eigenvalues of the (normalized)
Knapp—Stein intertwining operator

I’Jﬂfg\,nf)\ : [5(i7 )\> — 15(7:7 n— )\) (814)

on the basic K-types p°(i,8) and pf(4,0) (see (230) and (Z31), respectively).
For 0 <i<nand A € C, we set
A—i ith—b,

(i :—W% :
.2) F()\Jrl)x{n—i—)\ if § = §. (8.15)

Proposition 8.9. Suppose 0 < i < n, A € C and 6 € {£}. Then the
(normalized) Knapp—Stein intertwining operator

;ﬂ:é\’n_)\ : L;(i, )\) — ]5(@, n — )\)

acts on the basic K -types 1i°(i,6) = N'(C"*Y)X6 and pf(i,6) = NTH(CHK
(—0) as the scalar multiplication:

T}, 00 =i, \in s on (i, 6) for g => ort.
In other words, we have

~ A —i)re ~
T)\,nf)\(]'i) :(F(A——:l)liA fOT’ all T € Jn+1,i7

(n—i— M2

Th A (h%) = Ry hE \ for allT € Jpyrisn.

Remark 8.10. Proposition Bdin the i = 0 case for 1”(i, §) was proved in [},
Prop. 4.6].

We will give a proof of Proposition in Section
We recall from Theorem 2201 that the composition series of I5(i,7) and
Is5(i,n — i) are described by the following exact sequences of G-modules:

0—1IL;s — Is(i,i) = ;49 s — 0,
0— 1ty 5 — Is(i,n —1i) = 1L, 5 — 0,

which do not split if ¢ # §. Thus Proposition implies:
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Proposition 8.11. Suppose G = O(n + 1,1) and i # 5. Then the kernels
and the images of the G-homomorphisms Té\m_/\: Is(i, A) = Is(i,n — \) for
A =1, n—1 are given by

) =1l ~ Tmage(T"

nfi,i)

KeI‘(’j\fi,nfi

Image(T;,,_;) ~ Il 1,5 ~ Ker(T"

nfi,i)'

8.3.3 Vanishing of the Knapp—Stein operator

There are a few exceptional parameters (i, A) for which 'Tf”)\nf ) Vanishes:

Proposition 8.12. Suppose G = O(n+1,1), 0 <i <n, and A € C. Then

the normalized Knapp-Stein intertwining operator TY ,,_y is zero if and only
ifA=1=73.

Proof. See [Bd]. O

A renormalization of the Knapp—Stein intertwining operator 'f“)\nf ), for
n = 2i¢ will be discussed in Section [B.4]

8.3.4 Integration formula for the (K, K)-spectrum

In this subsection, we give a proof of Proposition Let § =b or f. Since
the multiplicity of the K-type uf(i,d) in the principal series representation
I5(i, \) is one, there exists a constant ¢*(i, \) depending on 7 and A such that

'ﬁ‘f\m_/\ ouf = (i, N, on pi(4,0). (8.16)
We shall show that the constants ¢?(i,)\) in the equation ([BIG) are given

by the formule ([8IH). The first step is to give an integral formula for the
constants c(i, A) for § = b and #:

Lemma 8.13. Suppose 0 < i <n and \ € C with Re\ > 0. Then we have

2 7
A (N O RN ( G S— a3 IV}
F(A=3) Jrn [0[>(1 + [0]?) ; :

/ ‘b|2)\72n+2(1 4 |b’2)f)\fldb'
Rn

144



Proof of Lemmal813 We first consider (810 for § =b. Then we have
Ty, 2 (15) = N11_,  forall Z € T,y
Take Z € J,,41,; such that 0 € Z. Then (8] tells that
(T}, 213)(0) = (i, Nez, (8.17)

Let us compute the left-hand side. In view of the distribution kernel
([BI2) of the normalized Knapp-Stein operator T ,_,, for Re A > 0 we have

(T s D0) = gy [ 1= 020 (b))

By ([ZI0) and the formula ([88]) of 1%(b), the integrand amounts to

Y BT BP) T (det g (1, 6)) 2 (det 4 (B) e

J,J' €Tn i
Comparing the coefficients of ez in the both sides of ([8I7), we get

1

YN =t

B2 (1 + [b]*) gz (b)db,
R”

where we set

2Q7(b)

gz(b) = Z (det ©,41(1,0))zs(det 1, (b))zs = 1 — W

JETn i

(8.18)

The second equality was proved as the minor summation formula in Propo-
sition [0 (4), where we recall Qz(b) = >,.7b7. Therefore, by taking 7 =
{1,2,--- ,n}, we get the first assertion of Lemma BT3
Next, we consider (8I6) for § = §. Then we have
Th A (hX) = A(i, \RL_,  for all T € Jpqipa.
Take I € J,,;, and set 7 := [ U {0} € J,41,+1. By (89), we have

T} o2 (h)(0) = (i, Aer. (8.19)
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By (812)), we have

T}, A (h3)(0) = ﬁ

Comparing the coefficients of e; in the both sides of the equation ([8I9]), we

get from (7)) and (ZI0)

. | — b2 72" (¢, (= b)) hX () db.

1
f(; - 23-2n (1 2\—\ 7
(i, A) o= 1) /R D% (1 + [b]7) " g (b)db,

where we set

gr(b) == > (det v i1(1,5)) 1000y 000y (det (D)1
JETn i

We note that

2

det ¥, 11(1,0) 15 = det 9y (b T]b\z

)IJ

it I,J €7, is regarded as elements of J,1; in the left-hand side. Then we
have

2|b]*
b) + g)(b) =

from Proposition [[.17 (3), and thus we get

2

Cb(i, )\) — Cﬁ(i, )\) = F()\——%)

’b‘2/\+2_2n(1 + ‘b|2)_>\_1db.
Rn

Now Lemma [B.13]is proved. O

The second step is to compute the integrals in Lemma B.13
Lemma 8.14. For Re A > 0, ¢’(i,)\) and c*(i, \) take the form (BIH).

Proof. Let B(A,v) denote the Beta function. By the change of variables

r? = £, we have
—X

> 1 [ 1
/ r(1 4 r%)’dr = 5/ 11— z) e = §B()\, v), (8.20)
0 0
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where a = 2\ —1 and b = —A—v. Then Lemma[8.13]in the polar coordinates
tells that

M(B()\_ﬁ E)—%B(A—

. n n
i, A) = 22 " 29

+1))
by ([B20) and by the following observation:
1
/ |wi|*dw = —vol(S™™1) (1 <i<n).
Sn—1 n

Since vol(S"!) = %, we get the first statement.
2

By the second formula of Lemma B.13] we have

1 n n
b/ b - = n—1 -
(i, \) — (i, N) F()\_%)VOI(S )B(A 575 +1)
(@A —n)r2
F(A+1)
Thus the closed formula (8IH) for (i, \) is also proved. O

Proof of Proposition[8.9. The assertion follows from Lemmas BI3] and
for Re A > 0. For general A\ € C, Proposition holds by the analytic continu-
ation. O

8.4 Renormalization of the Knapp—Stein intertwining
operator

Because of the vanishing of the normalized Knapp—Stein intertwining oper-
ators in the middle degree when n is even (Proposition BI2]), intertwining
operators from I5(%, A) to I5(%,n — A) require special attention. In this case,
we set n = 2m and renormalize the Knapp—Stein intertwining operator of
G = O(2m + 1,1) at the middle degree by

1 ~m
T (8.21)

T, =
A,2m—X .

Then 'f[‘%m_/\: Is(m,\) — Is(m,2m — \) depends holomorphically in the
entire A € C, and is vanishing nowhere.
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If A = m, then TQWA acts as an endomorphism of I5(m,m). On the
other hand, we know from Theorem 201 (1) that the principal series represen-
tation I5(m, m) decomposes into the direct sum of two irreducible tempered
representations of G as follows:

Is(m,m) ~ Is(m)’ & I;(m)* = 5 & My, 5.
Lemma 8.15. Let n = 2m and G = O(2m + 1,1). Then the renormalized

m
m,m

Knapp-Stein operator T acts on Is(m,m) ~ 11, 5 & Il,,41 s as

m

™. .
ﬁ(ldﬂm,s D (_ld)n’mr‘rl,fﬁ)'

Proof. Since the irreducible G-module 1I,, 5 is not isomorphic to the irre-
ducible G-module II,,, 41 —5, the renormalized Knapp—Stein intertwining oper-

ator T™ acts on each irreducible summand by scalar multiplication. There-
fore, it is sufficient to find the scalars on specific K-types occurring in each
summand. By Proposition B9, the renormalized Knapp-Stein intertwining
operator TY',,, _, acts on vectors that belong to the K-types 11’ (m, §)(C Ily6)
and pf(m,0)(C 41, s) by the scalars

I (A=m)m™ q 1 2m—m—X\)a™
an
A—m I(A+1) A—m '(A+1) ’
respectively. Taking the limit as A tends to m, we get the lemma. [

8.5 Kernel of the Knapp—Stein operator

In this section, we discuss the proper submodules of the principal series
representation I5(i, A) of G = O(n + 1,1) at reducible points (see ([233])).

We consider the composition of the Knapp-Stein operators, 'A]fj;b_)w\ o
T4,_» € Enda(I5(i,A)). By Proposition B3, its K-spectrum on the basic

K-type 1°(i,6) is given as

i i Iy _ (A—d)(n—A—9)7r"
Tn—)\,)\ © T)\,n—)\(]')\> - F(/\ + ].)F(?’L —\ + 1)

(1%) forall Z € T,y

Since the principal series representation I5(i, A) is generically irreducible, we
conclude

A=d)(n—X—1di)m"
F'A+1DI'(n—A+1)

T 20 Th,y= id on I;(i,\) (8.22)
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for generic A by Schur’s lemma, and then for all A € C by analytic continu-
ation.

Lemma 8.16. Let G=0(n+1,1), 0<i<mn, and § € {£}. Assume
Ae{i,n—i}tU(=Ny)U(n+Ny).
Then Is(i, A) is reducible.

Proof. If (n,\) = (2i,i), we already know that I5(i, \) is reducible, see
Lemma BTl

Assume now (n,A) # (2i,7). Then Proposition tells that neither
'ﬁ‘flﬂ\,)\ nor ﬁ‘g\,n#\ vanishes. On the other hand, by ([822]), the assumption
on A implies

Tfm—)\,)\ © ﬁfg\,n—)\ = 07
which shows that at least one of the G-modules I5(i,\) or Is(i,n — A) is

reducible. By Lemma B30, we conclude that both I5(i, A) and its contragre-
dient representation I5(i,n — \) are reducible. O

Lemma gives an alternative proof for the “if part” of Proposition
(1).
Proposition 8.17. Let G = O(n+1,1), 0 <i < n, § € {£+}, and X € C.
Assume further that I5(i, \) is reducible, namely,

Ae{i,n—itU (=N )U(n+Ny).

(1) Suppose (n,\) # (2i,i). Then the unique proper submodule of Is(i, N)
is given as the kernel of the Knapp—Stein operator Tf\m—/\: Is(i,\) —
]5(i, n — /\)

(2) Suppose (n,\) = (2i,i). Then Tt

\n_i = 0, and there are two proper

submodules of Is(i,\), which are given as the kernel of ']:I‘§Z + 7Zr.—!iid €
Endg(I5(i,1)) where ']Tzl is the renormalized Knapp—Stein operator.

Proof. (1) There is a unique irreducible submodule of I5(i, \) for the pa-

rameter A under consideration. Hence Ker('f]fg\,n_ ,) is the unique irre-
ducible submodule by the proof of Lemma .16

(2) This is already proved in Lemma BTl
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9 Regular symmetry breaking operators A}’

from I5(i,\) to J.(j,v)

In this chapter we apply the general results developed in ChapterBon the an-
alytic continuation of integral symmetry breaking operators AK’%E (Vo) —

J-(W,v) to the special setting where

(V. W) = (N'(C), N(C")), (9.1)

and construct a holomorphic family of (normalized) regular symmetry break-
ing operators o
AV, set Is(i, \) — J.(4,v),

which exist if and only if j = ¢ — 1 or i (Theorems and [@2]). Then the
goal of this chapter is to determine

e the parameter (A, v) for which AZ)\]V . vanishes (Section [@.2));
e the (K, K')-spectrum of &;]Vi (Sections @.3HI.T);

e functional equations of A%’ . (Sections I8 I).

Thus we will complete the proof of Theorem that determines the zeros
of the normalized operators Af\’fma. This is the last missing piece in the
classification scheme (Theorem B.I3)), and thus we complete the proof of the
classification of the space Homer (15(4, A)| ¢, Jo(7,v)) of all symmetry breaking
operators as stated in Theorems and

The (K, K')-spectrum resembles eigenvalues of a symmetry breaking op-
erator (Definition[@.7)), for which we find an integral expression and determine
the explicit formula for basic K- and K’-types (Theorem [O.g]).

The matrix-valued functional equations among various intertwining op-
erators are determined explicitly in Theorems and by using the
formula of the (K, K')-spectrum, which in turn will play a crucial role in an-
alyzing the behavior of the symmetry breaking operators at reducible places
(Chapter [I0I).

Degenerate cases where the normalized operators &;]y 4 vanish will be
discussed in Sections and

As an application of the matrix-valued functional equations (Theorems
and [@0.27]) and the residue formulse of AZA]V . (Fact @3), we determine
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when the differential symmetry breaking operators (N:Z)\]V (j =id,i—1) are
surjective in Section [Q.1T]

9.1 Regular symmetry breaking operators A/ZAJV N

In this section, we give the existence condition and an explicit construction of
(generically) regular symmetry breaking operators from G-modules I5(V, \)
to G'-modules J.(W, v) in the setting (@) by applying the general results of
Chapters Bl and [l in particular, Theorems and and their proofs.

9.1.1 Existence condition for regular symmetry breaking opera-
tors

We recall from Definition B.10 the notion of reqular symmetry breaking oper-
ators. We also recall from (E50) and (B51]) the definition of the open dense
subsets UL in C2. Then the existence condition of regular symmetry break-
ing operators in the setting ([@.]) is stated as follows.

Theorem 9.1. Suppose 0 < i1 < n and 0 < j < n—1. Then the following
three conditions on the pair (i,7) are equivalent:

(i) there ezists a nonzero reqular symmetry breaking operator from the G-
module Is(i,\) to the G'-module J.(j,v) for some (\,v,d,e) € C? x
{£}*

(ii) for any (5,¢) € {£}?, there exists a nonzero reqular symmetry breaking
operator from Is(i, \) to J.(j,v) for all (\,v) € Us®;

(iii) j =i ori— 1.

Proof. As we have seen in the decomposition ([Z4)), [V : W] # 0 in the setting
@1 if and only if j =i — 1 or 4. Then Theorem follows from Theorem
and Proposition (.39 O

9.1.2 Construction of .&f\]yi for j € {1 — 1,4}

In this section we apply Theorem BI0 about the construction of the (gener-
ically) regular symmetry breaking operators AY:V  in the setting (@.1]) with
J =1 —1ori. In particular, we give concrete formula of the matrix-valued

distribution kernels A}’ | for the operators.
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Let j =i —1 ori. We recall from (.2) and (Z3) that the projection
pri;: AY(C") = A/(C"71) defines an element of

Homo,_1y(V, W) = Homgg, 1) (A (C™), A’ (C™)).
Denote by ¢ = o the i-th exterior representation of O(n) on /\l(cn) Then

the matrix-valued function RV'W (see ([B:8])) amounts to the following map
R 2 R" — {0} — Home(A'(C), N(C)
given by B
R" :=pr, ;00 09, (9.2)
where we recall from ([B4) that ¢,: R” — {0} — O(n) is the map of taking

“reflection”.

Applying the general formule 1) and B8) of the distribution kernels
.ZQ\/ZVi in the setting (@), we obtain Home(A*(C™), A7(C"1))-valued locally
integrable functions on R™ for Re A > | Re v| as follows.

~. . 1 .
4J = T 2 + 93'2 v Tn /\—Hj_nRZ,] XyTy), 9.3
v = s e+ )l (@, 22) 93)
~ . 1 ..
A, = (o + 22) VP Psgua, R (2, 2,). (9.4

Av— A—v
D(AHgm )0 (A=)
Then, as a special case of Theorem [3.10, we obtain:

Theorem 9.2 (holomorphic continuation of integral operators). Let (V, W)
be as in [@J)) with j = i,i — 1, and 0, € {£}. Then the distributions
jf\”jy’és, initially defined as Home(V, W)-valued locally integrable functions
on R™ for ReA > |Rev/|, extends to (D'(G/P, V5 ;) @ W, )2 that depends
holomorphically on (\,v) in C2. Then the matriz-valued distribution kernels

.ZIAJV se induce a family of symmetry breaking operators

BYset 16, 0) = J:ov) (9.5)
for all (\,v) € C%

Then KZ)\JV 4 is the normalized (generically) regular symmetry breaking
operator (Definition [B40) in the sense that there exists an open dense subset

U, in C? for v € {+£} such that the support of the distribution kernel of .&Z)\JIJ y
equals the whole flag manifold G/P as far as (\,v) € U,, see Proposition

.39 By a little abuse of terminology, we say that {.&Z)\Jy 4} is a family of
normalized reqular symmetry breaking operators.
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9.2 Zeros of .ZVAJV . : Proof of Theorem

In this section we determine the exact place of the zeros of the normalized
regular symmetry breaking operators A% xvser and thus give a proof of Theo-
rem [3 In particular, we see that the Gamma factors i in the normalization
@3) and ([@4) are optimal in the sense that the zeros of A , are of codimen-
sion two in C2, namely, form a discrete subset of C2. The proof of Theorem
J consists of the following steps.

Step 0. (existence condition) Regular symmetry breaking operators from
I5(2, A) to Jo(j, v) exist if and only if j € {i — 1,i} (Theorem [.T]).

Step 1. (generically nonzero) If AQJV sc = 0, then (A, v,0,¢) belongs to the
set W, of special parameters (Theorem EEII)

Step 2. (residue formula) If (A, v, d,¢) € Vg, then &;JV s 1s proportional to
the differential symmetry breaking operator (Ci:jy with explicit proportional
constant (Fact [@.3)).

9.2.1 Residue formula of the regular symmetry breaking operator
Az)\Ju +

Generalizing the re51due formula of the scalar-valued regular symmetry break-

ing operators A . for spherical principal series representations given in [33]

(see also [ Thm 12.2]), we determined the residue of the matrix-valued

regular symmetry breaking operators AA] - in [B6], as follows:

Fact 9.3 (residue formula [B6l Thm. 1.3]). Let C’/\’fy be the differential sym-
metry breaking operators defined in BI6) and BID) for j =i—1 ori.

(1) Suppose v — X\ = 20 with £ € N. Then,

~i ( 1)1 ]-l—f g[
Avt ~ 2211 (v + 1) X

(2) Suppose v — X\ =20+ 1 with { € N. Then,

~i ( 1)1 I €|
Av— 226-‘1—21—‘(’/ _I__ 1) AI/'
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We may unify the two formulae in Fact into one formula: forv—\ € N
and j € {i,i — 1},

- 2(_1)1'*3‘77"7’1 .
A = CYy’ 9.7
Ay, (—=1)r—A C](V _ /\)P(V + 1) A0 ( )

where we set, for m € N,

1 Zz%
q(m) := (9.8)
-1 €+122€+3
CUZ20 ot

14

9.2.2 Zeros of &Z)\in

The zeros of the operators A/’Aly s. for the special parameter in Uy, (see (L3
for the definition) were determined in [BG] as a corollary of the residue formula

(Fact @.3]), which we recall now.

Corollary 9.4 (zeros of ,&gzyi for Uy, Ba, Thm. 8.1]). (1) Suppose v—X\ €
2N.
AY, . =0 if and only if

Leven fori - O’
W)E{<Leven—{u=0}>u{<z',z'>} fri<isn-1

&gl;i = 0 if and only if

even fO?"i =nNn.

(A v) € {(Leven‘{”:O}W{(n—ivn—i)} for1<i<n-—1,

(2) Suppose v — A€ 2N+ 1.
AY, =0 if and only if

L, L =0,
(A\v) e Jors .
Loga — {v =0} for1<i<n-—1.
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.(N%gz;i =0 of and only if
Loga —{vr=0 1<i<n-—1,
()\,V)G{ aa — {v } for.__z_n
odd fori=n.

We are ready to complete the proof of Theorem [3.I9 on the zeros of the
analytic continuation Af\’fy ., of regular symmetry breaking operators.

Proof of Theorem[Z13 We apply Theorem E.41] to the exterior representa-

tions (@), and see that A&fyﬁ = 0 only if
v—A€2N (y=+4) or v—Ae2N+1 (y=-). (9.9)
Then Theorem follows from Corollary [0.4] O

9.3 (K, K')-spectrum for symmetry breaking operators

The second goal of this chapter is to formulate the concept of the (K, K')-
spectrum for symmetry breaking operators (Definition [0.7]), and give an ex-
plicit formula of the (K, K')-spectrum

Tig oy _ (e (A v) B (\v)
S(A)\,V,E) - (Ci’j<>\, I/) dé’j()\, I/) ) (910)

€

(see ([@I3)), for the regular symmetry breaking operator AZ/\JVE s 153, A) —
Js-(j,v) with respect to basic K-types p(i,d) and K'-types uf(j, de)’ (see
(Z30) and @310) for § = b or §. We will discuss the (K, K’)-spectrum in
Sections @.3H9. 7l The main results are Theorem which will be proved in
Proposition (vanishing results) and Theorems and

One of the algebraic clues that we introduced in the study of symmetry
breaking operators A in [44] was an explicit formula of the “eigenvalues” of A
on spherical vectors. In the setting of this article, there is no spherical vector
in the principal series representation I5(i, A) if i > 0 or J.(j,v) if 7 > 0. In
this section, we extend the idea of 4] to the (K, K')-spectrum for symmetry
breaking operators with focus on basic K-types.
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9.3.1 Generalities: (K, K')-spectrum of symmetry breaking oper-
ators

We begin with a general setup. Let (G,G’) be a pair of real reductive Lie
groups. Suppose Il is a continuous representation of G, and 7 is that of the
subgroup G’. We define a subset of K x K’ by

D(IL,7) o= {(p. 1) € K x K" : (Wl : pl, [l 2 ), [l = 1) € {0,131}

Here is a sufficient condition for D(II, 7) to be nonempty:

Proposition 9.5. Let P = LN and P' = L'N’ be parabolic subgroups of
G and its subgroup G', respectively. Suppose that 11 = Indg(a ® C,) and
7 = Ind% (r @ C,) are the induced representations from irreducible finite-
dimensional representations o @ Cy of L ~ P/N and T ® C, of L' ~ P'/N’,
respectively.

(1) (spherical principal series) If o and 7 are the trivial one-dimensional
representations, then D(II, ) 5 (1k, 1x/).

(2) If (K, LNK), (K',L'"K') and (K, K') are strong Gel’fand pairs, in
particular, if they are symmetric pairs, then D(Il, ) = K x K'.

Proof. (1) Clear from the Frobenius reciprocity.

(2) Immediate from the multiplicity-free property for strong Gel’fand pairs.
O

The following is an example of Proposition (2).
Example 9.6. Let (G,G’) = (O(n+1,1),0(n,1)), and we consider II =

Is(V,A), m = J.(W,v) for any (0,V) € O/(\n) and any (1,W) € O(?—\l).
Then D(II,7) = K x K'.

Now we introduce a (K, K')-spectrum for symmetry breaking operators
as follows.

Definition 9.7 ((K, K')-spectrum). Let (u, ') € D(IL, 7). If [Il|x : p| =
7|k p] = [ulrr : @] = 1, then we fix a nonzero K-homomorphism ¢ :
1 = II and nonzero K’-homomorphisms ¢’ : y/ < 7 and ¢ : ' < p that are
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unique up to scalar multiplication. Suppose A € Homg (11|, 7). Then by
Schur’s lemma, there exists a constant S, ,/(A4) € C such that

Aopor=>S,,(A)oy  ony. (9.11)
If one of [I|x : p], [7|x : /], or [u|k = p'] is 0, then we just set
Sy uw(A) =0 for any A € Home (I|¢r, 7).
Thus we have defined a map
S: Homg (Il|gr, ) x DI, 7) — C, (A, (p, 1) = S, w(A).  (9.12)

We say S, ,/(A) is the (K, K')-spectrum of the symmetry breaking operator
A for (u,p') € K x K’. We note that it is independent of the choice of the
normalizations of ¢, ¢, and ¢ whether S, ,/(A) vanishes or not.

9.4 Explicit formula of (K, K')-spectrum on basic K-
types for regular symmetry breaking operators Akfy, n

We return to our setting where (G,G’') = (O(n + 1,1),0(n, 1)), and thus
K=0(n+1)x0(1) D K'=0(n) x O(1).

We consider a pair of representations Il = I5(i, A) of G = O(n + 1,1) and

7 = J.(j, v) of the subgroup G’ = O(n,1). In this case D(II, ) = K x K’ as
we saw in Example 0.6, however, the following finite subset

D = DI 7) i= {1 (i,0), 1 (1, 0)} x {4 (j, €)', i (j.e) } € K x K

will be sufficient for the later analysis of symmetry breaking operators. Here
we recall from ([Z30) and (Z31)) that 1°(3,0) and p(,0) are “basic K-types”
of the principal series representation I5(i,\) of G and that u’(j,¢)’ and
p#(j,¢)" are those for J.(j,v) of the subgroup G'.

Then the (K, K')-spectrum restricted to the subset D”* is described as a
2 X 2 matrix:

S - Homer (Is(i, Nler, (. v)) — M(2,C),  Aws (Z Z) (9.13)

by taking a, b, ¢, d to be S, ,/(A) as follows:
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St (4) M w

« | #G0) =ANCTES @G = N(C)Re
b @0 = ANCTYES | e = NTC B ()
¢ HE0) = ATCTYR(=8) | #(,e) = N(C)Re
d w0 = ATER(=0) | wGie) =ATC) B ()

To be more precise, we need a normalization of the map ¢, ¢’ and ¢ in
Definition in this setting. For this, we realize the K-types 1’(i,d) =
A(CHY X § and p#(i, 6) = ATFH(C) X (=) in I5(i, \) as in Proposition
B4l Similarly, 1°(j,¢) = N (C") K e and pf(j,¢) = NVHC") X (—¢) are
realized in J.(j,v). When p/ and p are representations on the exterior tensor
spaces AY(C") and A*(C"™) (I = k or k — 1) respectively, we normalize an
O(n)-homomorphism

Lk Al(@n) SN /\k((anrl)
such that pr;_,; oy, = id, where the projection pr,_,; : A¥(C"*1) — A{C")

is defined in (Z2) and (Z3). With these normalizations, the map ([@I3)) is
defined. We obtain the following closed formula of the (K, K’)-spectrum

for the normalized regular symmetry breaking operators 1&2/\]” Lo Is(i, A) —
Jié (]a V)'
Theorem 9.8 ((K, K')-spectrum for ;&f\{,i) Suppose (\,v) € C%. Then

the (K, K')-spectrum of the analytic continuation Ai’fy’i of reqular symmetry
breaking operators takes the following form on basic K-types:

Nido\ _ T A—i 0 , s
n—1
Nisi T2 0 0 , o

n—1

~i,i—1 o ™2 n—V—l O . .
S(A)\,V,—i-) _F(A—i—l) ( 0 /\—TL+Z) fOT‘l <i1<n

n—1
Yii—1y _ T 2 0 -2 .
S(A)\J/,—) _F(A i 1) (0 0 ) fOT’ 1 S 1 S n.

The vanishing result (an easy part) of Theorem will be shown in
Proposition[@.9 and the remaining nontrivial part will be proved in Theorems

9.10] and [0.19]
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9.5 Proof of vanishing results on (K, K’)-spectrum

In this section, we formulate and prove vanishing results for (K, K')-spectrum
that hold for general symmetry breaking operators.

Proposition 9.9. Suppose j € {i — 1,i}, d,e € {£}, and \,v € C. Let
A Is(i, ) — Je(4,v) be an arbitrary symmetry breaking operator. Then the
(K, K')-spectrum S(A) for basic K-types takes the following form:

de + — + -

w2 Co) G 6)

Proof. Without loss of generality, we may assume 6 = 4. The K-modules
p (i, +) and pf(i,+) (see (B30) and Z31)) decompose into the sum of irre-
ducible representations of the subgroup K:

j i i i—1 i—1

Wi+ = NCHRL  =AC)EL e\ (C)E L
PG 4) = AT B sgn ~ATH(CT) Bisgn @ AY(CT) B sg.

Using the notion p?(j, &) with § = b or # for K'-types, we may rewrite
these decompositions as

12 (i, ) g gl (i, ) © (6 — 1,4 (9.14)
~pF(i =1, =) @ (i = 2, =),

A ) e i (i, +) @ pf (i = 1, +) (9.15)
(i1, =) @ (i, —)

The second isomorphisms follow from (2.32)).

For simplicity, we discuss the symmetry breaking operator A: I5(i, \) —
J-(j,v) in the case j =i, 6 = +, and € = —. Then the branching rule (0.14])
tells that neither the K’-type p’(i,—) nor pf(i,—)" occurs in the K-type
p (i, +) of I.(i,\). Likewise, (II5) tells that the K’-type u*(i, —)" does not
occur in the K-type pf(i,+). Hence the matrix S(A) in [@I3) must be of

the form 8
The vanishing statements in the other cases are proved similarly. O]
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9.6 Proof of Theorem on (K, K')-spectrum
for the normalized symmetry breaking operator
AZ)\"L’+ : [5(i, )\) — J(j(j, V)

In this section, we determine the (K, K')-spectrum a’’(\,v) and d%7 (), v)
for j = i,i— 1 in (@I0) when ¢ = +. The case ¢ = — will be discussed
separately in Section By definition (@.I1J), the constants a’/(\,v) and
dbi (A, v) are characterized by the following equations:

on N\(C"), (9.16)
on A7TH(C™), (9.17)

Ni»j * _bJ
AV, oot =al (A v

NE R

A bd * __ b
A)\,I/,—i- Oly Oljt1-it1 —d+ ()\7 V)L

where &f\{, 4o Is(i, A) = J5(j,v) is the normalized symmetry breaking opera-
tor, ¢} is the transform from the K-picture to the N-picture (see ([83])), and
tisi: N(C™) — AY(C™1) is the normalized injective O(n)-homomorphism
such that pr, ,;ot;; = id. The main results of this section are part of
Theorem 0.8 which is given as follows:

Theorem 9.10. Suppose \,v € C.

n—1

i 12 (A=)
CL+ ()\, l/) —m
ai,zel()\ V) :WnT_l(n —v—i
o D(A+1)
i _W%(V — 1)
i1 T T (A —n+i)
AN\ ) = NEESY (9.19)

Remark 9.11. Theorem [0.10 generalizes 44, Thm 1.10] in the spherical case
(t=j7=0and §d =e=+4).
The proof of Theorem is divided into the following two steps:

e integral expression of a’’(\,v) and d’(\,v) (Section IG.I);

e computation of the integral (Section [.6.2]).
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9.6.1 Integral expression of (K, K’')-spectrum

As the first step of the proof, we give an integral expression of the (K, K')-
spectrum a’ (A, v) and d’(\,v). For I € J,;, we recall from () that the
quadratic form Q(b) is defined to be 3, _; b”, and set

. 20Q:i(0)
ar(b) =1 (ERTER (9.20)
5;(b) :=1 210 26:(h) (9.21)

IR TR
Consider the following integrals:
A )= [ A O+ ) arb)a,
R’I’L

Di(\,v) = /R ) A, o (B)(1 +|b[) 76, (b)db.

Then the (K, K')-spectrum a’’ (\,v) and d(\,v) in ([@I6) and @I7),
respectively, is given by the integrals A;(\,v) and D;(A,v) as follows:

Proposition 9.12 (integral expression of (K, K')-spectrum).

aii(A, V) =Ar(\v) forany I €3, withn &1,
aii_l(/\’ v) =A;(\, v) forany I €3, ; withn €I,
@\ v) =Di(Av)  forany I € 3 with n ¢ I,
Ay A\ v) == Di(\v)  forany I € J,; withn € 1.

In order to prove Proposition [@.12, we use the N-picture of the principal
series representations I5(i, \) and J.(j,v). By Proposition B4l for the vectors
1% and h% belonging to the basic K-types, the equation (@I6) means that
for 7 € jn+17z‘

Ay, A5 =)L) (n ¢ 1),
A = ()T LT (e ),

The signature in the second formula arises from the definition (Z3]) of the
projection pr;_,;_;.
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To compute the constants aij(/\,y), we take I € J,; and set 7 := I,
regarded as an element of J,.4;,, where we recall Convention [I.T] of index
sets. Since 0 ¢ Z, it follows from (BF)) that

AK?V,—&—(]‘i)(O) :a’i’—i()\? V>el if n ¢ I’
A 1ADO) =)l A\ v)er gy i nel
Likewise, the equation (O.I7) means that for Z € J,41 41
AL hY =d (A )l (n¢I),
N i gisi— I—{n
AV =(-1)'d T T (ne ).

In this case, we take I € J,; and set Z := [ U {0} € J,41,+1. Then (D)
implies

(A5, 1 (0) =d (A v)es ifn¢l, (9.22)
(AN (0) =(=1)'dY (A v)er gy ifn el

Let us compute J&f\]H(lf\)(O) and &&fy,Jr(hf\u{o})(O) forj=dandi—1. If

Re A > |Rev|, then the matrix-valued distribution kernel A}’ | (see (@.3)))

of the regular symmetry breaking operator ‘&f\]y + 1s decomposed as
z)\’,]u,—l- = A)\,V,+Rl7j>
where .Z/\M . is the scalar-valued, locally integrable function defined in (5.40)

and the matrix-valued function R € C*°(R"—{0})®@Hom¢(A*(C™), A?(C*™1))
is defined in ([@2]). Hence, we have

(AY, . 0)(0) = - A1 (D) RY (=b)b(b)db
= | A ORIy ()
in the N-picture for any ¢ € (5(E(S™)) € C*°(R") ® A(C"). Thus Propo-

sition [0.12] is a consequence of the following two lemmas on the computation
of R%(b)y(b) € N(C"1) for o = 14 or hiu{o} and for j =i or i — 1.

Lemma 9.13. Suppose I € J,, ;.
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(1) If n & I, then the coefficient of e in R%(b)14(b) is given by

_ _ 2Q(b)

1+ b)) ar(b) = (L+ b)) M1 — ———~L—

(L ) a0) = (070 - 22
where we recall Qr(b) = >, b7 from ([TT).

(2) If n €1, then the coefficient of e;_gny in R*1(b)14(b) is given by

2Q(b)

(D7 U ) ar®) = L+ B = e

Lemma 9.14. Suppose I € J,, ;.
(1) If n & I, then the coefficient of ey in R"’i(b)hiu{o}(b) is given by

2Q;(b
(1+ |b|2)_)‘51(b) =(1+ |b|2)—>‘—1(1 _ |b|2 . Cfblé ))
(2) If n € I, then the coefficient of er—{n} in Ri’i_l(b)hf\u{o}(b) is given by
2Q(b)

(=17 L+ ) 0 (0) = (=1)" 7 (A + b)) (1 — [of* —

oF )

Proof of Lemma[@I3 Let o be the i-th exterior representation on A*(C").
We recall from [@2) R/ = pr,_,; oo 0th,. We identify I € J,,; with T € Jp i1
such that n € Z as usual, and apply the formula (B8] of 1. Then we have

o (Yn(B))15(0) = (1 + [B]*) o(wa(b)) D (dettnya(1,b)) 1.

By the formula (ZI0) of the matrix coefficients of the exterior tensor repre-
sentation, the coefficient of e; in o (1, (b))14(b) amounts to

(L+ (617> (detthni1(1,5)) 1s(det 1 (b)) 1,
=

which is equal to

2Q1(b)
(1 +[b[?)]]?
by the minor summation formula (ZIH) in Proposition[.7} Hence the lemma

follows from pr;_,;(er) = er (n ¢ I) and pr,_,;_,(e;) = (=1)"'er_ny (n € 1)

(see ([2) and ([Z.3)). O
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Proof of Lemma[9.14) The proof goes in parallel to that of Lemma[0.I3] For
the sake of completeness, we give a proof.

By (1) and ([ZI0), we have
o (a(0))h3 1 (0)
= — (1+ ) Po(wu(d) 3 (det i1 (1, b)) rugopauiores

JEjnﬂ'

= — (1 + ’b|2)_>\ Z Z (det 'l/Jn_H(l, b))lu{o},Ju{o} det @Dn(b)J/JQJ/.

JE€Tn,i J'€Jn i

Hence the coefficient of e; in 0(¢n(b))hiu{o}(b) is equal to
—(1+1p)*) Z (det ¥n41(1,0)) rugoy,sufoy det ¢y, (b) 1,
JGjnyi

which amounts to

2Q(b)
[bf?

(14 o)™ (1 = [of* = ) = (1+ [b]*) =01 (b)

by the minor summation formula in Proposition[.7 (2). Thus we have shown
the lemma. ]

Therefore we have completed the proof of Proposition 0.12]

9.6.2 Integral formula of the (K, K')-spectrum

As the second step, we compute the integrals A; (A, v) and D;(A, v) in Section
0.6.1] We begin with the following integral formulse: Denote by dw the
standard measure on the unit sphere S" ' = {w = (w1, - ,w,) € R" :
2?21 WjZ = 1}.

For a,b € C with Rea,Reb > —1, we set
S(a,b) = Sp(a,b) = / |wn|*|wp—1 |Pdw. (9.23)
Snfl

Then we have

. o7 I(4tL)
Sn(a,()) = / |Ct}n| dw = Tnf,
Sn—l -

2

(9.24)

see M4 Lemma 7.6], for instance. More generally, we have the following.
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Lemma 9.15. Suppose Rea > —1 and Reb > —1. Then we have

n=2rq
2r 2 (<)%

F( a+g+n )

S(a,b) = (9.25)

It is convenient to write down the following recurrence relations that are

derived readily from (@.25):

Aﬂ@2)—ainsm¢m (9.26)
ﬂa+1®—21iﬂm®. (9.27)

Proof of Lemma 213 For any f € C(S"!), the polar coordinates give the
following expression of the integral:

f@ﬂw:/l FVT= B t)(1— ) dndt.  (9.28)
gn—1 —1Jgn-2

Then we have

1 q
Sv) = [ [ TP - ) F

n+b—3

1
- / el [ 11— )5 ar.
Sn—2 -1

The first term equals S,,—1(b,0), see ([@.24]). The second term is given by the

Beta function: . )
P2A-LI L Bl = 2
/0 ( ) 2I'(A + B) (9.29)

Here we get the lemma. O]

Lemma 9.16. Let ,Zlv/\M+ be the (scalar-valued) locally integrable function on
R™ defined in (540) for Re(A—v) >0 and Re (A +v) >n — 1.

(1) We have
T 2

T\

A (D)L + [b) b =
Rn
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(2) Letl e {1,2,--- ,n}. Then we have

. 2b,°
Ay, (D) + b)) ———db
[ D00+ 0
T if1<i<n-—1,
CT(A+1) Av—n+1 if { = n.

Proof. (1) This formula was given in [44] Prop. 7.4], but we give a proof here
in order to illustrate our notation for later purpose. By (B20), the left-hand
side amounts to

1 /OO A—v—1 2=\ / Av—
T (1 +r dr Wy | T M dw
F(A+u;n+1)r(>\;u) 0 ( ) gn-1 | |
1 A—v A+v
= v—n —v B< ’ )S()‘+V_n70)7
QF()\—I— > +1)F<)\2 ) 2 2

which equals %=+ by @23).
(2) By a smular computatlon as above, the ratio of the two integrals is given

as

the left-hand side of (2) 2 [~ 7™ (1 +72) A dr [ [waM " wi|Pdw
the left-hand side of (1) [ (L4 r2) A [ |wn P dw

The right-hand side depends on whether ¢ = n or not. It amounts to

2B(25%, 2% +1) 1 9 SA+v—n,2)

B34, Ay S(A+v —n,0) SA+v—n+2,0)
At 1 " 1 ifl1<i<n-1,
DY Av Ad+rv—n+1 ifl=n

by the recurrence relations (@.20) and (@.27]). O

n—1

Lemma 9.17. A;(\,v) — Dr(\,v) = WFT(AES\;)V)'
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200

Proof. By the definitions (@.20) and ([@.21)), we have a;(b) — d;(b) = 1+ B2

Thus we have

Ar0v) = DyAw) =2 [ Ay ()1 + 02 o
R

20 2

F(%ﬂw()&u;wrl) ’

B3, A+ 1)S(A+v —n,0)

as in the proof of Lemma (1). Thus the lemma follows from (@.25). O
Proof of Theorem[ZI0 Tt follows from Lemma that
T — 1 if I
A w) = i x4 L
) A—(G—-1)—A+v—-n+1) ifnel,

whence the first two formulse of Theorem @.I0 are proved by Proposition
9, 12
By Lemma 0.T7, we have

n—1

Tz (A—v)
Di(A\v)=A(\v) — ———+
I( 7V) I( 7V) F(}\+1)
= === ifngl,
S T(A+1) n—v—i)—A\—v) ifnel,
whence the last two formulae of Theorem by Proposition @.121 ]

Remark 9.18. Alternatively, one could derive the last two formula of Theorem
0. 100 from the first two by using the duality theorem for symmetry breaking
operators given in Proposition [3.39

9.7 Proof of Theorem on the (K, K')-spectrum for
AZ)\’]]/_ : [5(i,)\) — J_(;(j, I/)

bl

In this section, we determine the (K, K”)-spectrum b"'~'(\, v) and ¢”*(\, v) in

([@I0Q) for the normalized regular symmetry breaking operators *&ZAJ;,* s s(i, \) —

167



J_s(j,v) with j € {i — 1,i}. By definition, these constants b (\,v) and
c”'(\,v) are characterized by the following equations:
I&K,Z;,i © L: :bi—ﬂ;l()‘a V)th O Prii on /\i(CnJrl)a (93())
Ay, o =(=1)ic"(\v)orsopryy; on ATHCM. (9.31)
The main results of this section are given as follows:

Theorem 9.19. Suppose \,v € C. Then we have

ii— 2r"7
bi 1()\, V) = — m, (932)
i _2<_1)i+1ﬁn7_1
Cc_ ()\, V) —W (933)

This is the remaining part of Theorem [0.8] and the proof of Theorem
will be complete when Theorem is shown. The proof of Theorem
is parallel to that of Theorem @10, and thus will be discussed briefly. We
begin with an integral expression of the constants " *(\,v) and ¢"*(\, v) as
follows.

Proposition 9.20 (integral expression of (K, K')-spectrum).
B ) =—2 [ Ay, (0)(1+ [b]*) ™ b,db,
Rn
A v) =2(=1)"1 [ AL, (B)(1+ (b)) bydb.
R

Admitting Proposition @.20 for the time being, we complete the proof of
Theorem [O.19]

Proof of Theorem[9.19 Theorem@.I9is an immediate consequence of Propo-
sition [@.20] and the following lemma. [

Lemma 9.21.
n—1

1 1 2)—A-1 __7 '
T G e
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Proof. We use the identity
b’ﬂA)\,V,— (b) = 'A/\—i-l,l/,—i-(b)‘
Then the lemma follows from Lemma [9.16] O

The rest of this section is devoted to the proof of Proposition 0.200 In
the N-picture, the equation ([@30) amounts to

il Ty
Az)\fu,f(]‘)\) - {
for all Z € J,,41,4, whereas (@.31)) amounts to

T

Ai\,zu,—h)\ - {

for all 7 € J,,41,,41. In particular, we have

b\ v)R'E ifné¢Z,
0 ifnel,

O v)rEtn ifneZ,
0 ifn¢Z,

Aif;i(liu{o})(()) =b"""'(\,v)e; forany I € J, 1, 1, (9.34)

(&f(fy7_hiu{n})(0) =c"'(\,v)e;  forany I €3, 1, (9.35)
by B8) and ([3]) because 0 ¢ I.

The distribution kernel AK?M— of the regular symmetry breaking operator
J&ZA]V_ is decomposed as
"Zgz,jl/,— = "Z)\,V,—Ri’j?

where lev/\vyv_ is the scalar-valued, locally integrable function defined in (5.41))
and the matrix-valued function R/ is defined in ([@2). Then we have

(AP, _0)(0) = [ A, _(=b)R"(=b)p(b)db

=— | AL (O)RI(b)p(b)db

R

in the N-picture for any ¢ € ¢5(£°(S™)). Hence Proposition @201 is a conse-
quence of ([@34)), [@3H), and of the following two lemmas.

Lemma 9.22. Suppose [ € J,,_1;. Then the coefficient of er in Ri’i_l(b)liu{o}(b)
18 equal to
2(1+ b)) b,,.
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Proof. Using the formula [®0) of 1%(b), we have for I € J,,

(L4 ") R (0) 1,71 1)

JETn i

=priiq Y. Y detthni(1,0) 1000y det v (b) e

JEVn i J'E€Tn i

=(—1)"1 Z Z det ¥n41(1, 0) rugoy,s det 1y (b) g e g —(ny-

Jejn,i Jlejn,i_jnfl,i

Here, for J' € J,,;, we mean by J' &€ J,_1, the condition that n ¢ J’. Hence
the coefficient of e; in R*~1(b)11"1” (b) amounts to

(_1)171 Z det ¢n+1<1ab)lu{0},J det wn<b)lu{n},J-

JEjnyi
Now the lemma follows from Lemma O

Lemma 9.23. Suppose I € J,,_1;. The coefficient of e; in R*(b)h."1" (b)
15 given by ‘
2(=1)"(1 + [p]*) = "bn.

Proof. By (B1) and (ZI0)), we have

o (0 (0) " (b)

= — (L+ b)) o (¥n(b)) Z det ¥n41(1,0) 1ugny,Juf0y €
JEjnﬂ'

= — (1 + |b|2)_>\ Z Z det ¢n+1(]—7 b)IU{n},JU{O} det @Z}n(b)J/JGJ/.

.]Ejn’i J/Gjnﬂ‘
Applying the projection pr,_,; : A*(C") — AY(C"™!) (see [T2)), we find that
the coefficient of e; in R (b)hi"t™ (b) is equal to

—(1+pHA Z det Yn41(1,0) 1uny, 00y det ¥y (D) 1.

Jejn,i

Hence the lemma follows from the minor summation formula in Lemma [7.0l

[]
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9.8 Matrix-valued functional equations

The third goal of this chapter is to obtain explicit matrix-valued functional
equations for the regular symmetry breaking operators AZA]V 4. We retain the
setting where (G,G") = (O(n +1,1),0(n,1)). By the generic multiplicity-
one theorem (Theorem B.3), two symmetry breaking operators from the G-
module I5(V,\) to the G'-module J.(W,v) must be proportional to each
other if [V : W] # 0 and (A, v, 0,¢) does not belong to the set Wy, of special
parameters. In Sections and 0.9 we consider the case

(V. W) = (N(C), N(C"), jeli-1i},

and compare the (normalized) regular symmetry breaking operator ‘&)\I/ N
with its composition of the Knapp—Stein intertwining operator for G or for
the subgroup G’ as in the following diagrams:

AGd

I5(i, ) —————=J.(j.v) LN
\ ’]Af‘f/ n—1—v ﬁé\ n)\l N
i, l | |
! J-(j,n—1—-v), Is(i,n — \) ——— J.(j,v)

3y

n—A\,v,y
where v = de. We obtain closed formulee of the proportional constants
for the two operators in each diagram in Theorems [0.24] and 025 The
zeros of the proportional constants provide us crucial information on the
kernels and the images of the symmetry breaking operators Af\’fm ot Is(i, A) —
J-(7,v) at reducible places of the principal series representations, which will
be investigated in Chapter [0l

(¥

9.8.1 Main results : Functional equations of &)\,Vﬁ

Suppose j € {i — 1,i}. Let 1&&7%55: Is(i,\) — J.(j,v) be the normalized
symmetry breaking operators as defined in ([@.5]), and T’ J-(j,v) —

vn—1—v"

J-(j,n—1—v) be the normalized Knapp—Stein operators as defined in (814))
for principal series representations of the subgroup G’. Then we obtain:

Theorem 9.24 (functional equation). Suppose (\,v) € C? and v € {£}.
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Then

T (v — i)~

0 1,7 .
lejn 1-v A)\ Y WANH*PVW for0<i<n-—1,
1 1 T2 (v =)~ .
Tf/n 1—v o Al)\ll/'y F(V + 1) ’;\,177»—1—11,’7 fOT 1 S 1 S n.

In the next theorem, we use the same letter ’]T‘Z)\ n_» to denote the normal-

ized Knapp—Stein intertwining operators ']I‘)\n vi Is(i, N) — Is(i,n — A) for
the group G. Then we obtain:

Theorem 9.25 (functional equation). Suppose (\,v) € C* and v € {£}.
Then

T3 (n = A=) 5
ST AT e

T2 (A =) Niyi—1
F(n — A1)
Remark 9.26. Theorems and generalize the functional equations
which we proved in the scalar case [44] Thm. 8.5]. Matrix-valued functional
identities (factorization identities) for differential symmetry breaking oper-
ators were recently proved explicitly in B Chap. 13]. Alternatively, we
could deduce a large part of the identities [B7, Chap. 13] from Theorems
and @.25] by using the residue formula of the normalized symmetry breaking
operators A)\ vt given in Fact @3] see [34].

A:f Ay Tl)\,nf)\ for0<i<n-—1,

2,2—1 o~
A An—\

n—Awny © for1<i<n.

9.8.2 Proof of functional equations

In this section we give a proof of the functional equations that are stated in
Theorems and

We apply Proposition on the K’-spectrum of the Knapp-Stein inter-
twining operator to the subgroup G’ = O(n,1). Then the K’-spectrum of
the (normalized) Knapp—Stein intertwining operator Tyn 1y ¢ Je(gv) —
Jo(3,n —1—v) of G’ is given by

Tf/n 1—v L?;ZC(], ) n v on Mh(j7€),

for § = b or f, where

n—1

y_n—1—-j—vmr=
I'v+1)

. r_ (V_])ﬂ-n21
b(%”) = W,




Proof of Theorem[9.2]) For j =ior j—1and for (\,v) € C* withv—\ ¢ N,
we recall from Theorem and Corollary that
Homgl(l+(2 )\>|G’ (j, —1-— V)) CAZ]

An—l—ve®

Hence, there exists a constant p42(i, j,&; A\, v) € C such that

T/ o AW = plA(i j e A v)AY

vn—1—v A\ V,E An—1l—ve

(9.36)

ifn—1—v—X¢gN. We compute pﬁA(i,j,e; A, v) by using the (K, K')-
spectrum S, (see Section Iﬂl) for ([@30) with an appropriate choice of
basic K-types pu € K and w e K'. We recall from Theorem 0.8 an explicit
formula of the (K, K')-spectrum

S(AL

A\, V,E

for the regular symmetry breaking operator A%
respect to basic K-types.

Case 1. j = i and ¢ = +. Take (u,p/) = (1’ (3, +), (i, +)"). Then the
computation of S, ,, on the both sides of ([@.30]) leads us to the following
identity:

c 1y (i, \) — Jo(j,v) with

A\, V,E

) mTweg)
al’(A\n—1-v) Iv+1)

pﬁA(i,i, +i\v) = cb(i, v) -

Case 2. j =i and ¢ = —. Take (u, i') = (u(i, +), (i, —)"). By the same
argument as above, we have

n—1

'\ v) Tz (v—1j)
HAn—1-—v) D+1)

pA (7'7—;/\71/):Cb(2'71/)/'

Case 3. j =i—1and e = +. Take (u,it') = (i (i, +), (i — 1, +)").

5T\ ) ™% (n—v—1i)
TA(: - , _ b / - : _
L,i—1,+A\v)=c@—1,v) - — = - 1.
pa )= ) &7 A n—1—v) T(v+1)
Case 4. j=i—1and e = —. Take (u, ') = (' (3, +), (i — 1, -)").
b () ™% (n—v—1i)

TA/: - . _ ﬁ . / 9 o

L,i—1,—A\v)=c(i—1,v) — = - 1.
pa )= ) bt n—1-v) I'(v+1)
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Since both sides of ([@36) depend holomorphically in the entire (), v) € C?,
the identity ([@.36) holds for all (\,v) € C?. Hence Theorem is proved.
[l

Proof of Theorem[Z23. The proof of Theorem (.25 goes similarly. Since
ATy eoTy, \ € Home (I, (i, N)|er, J=(j, 7)), there exists a constant

il (i, 4,6\ v) € C

such that
A

n—\v,e

o T)\,nf/\ =Pa (Zvjv & /\7 V)A)\,u,s

(9.37)
by the generic multiplicity-one theorem (Theorem BA)) for j € {i — 1,4},
ee{£} and (\,v) € C* withv — A ¢ N.

Case 1. j = i and € = +. Take (pu,p') = (u*(i,+), p*(i,+)'). Applying
both sides of ([@37) to the basic K'-type ' = u(i,+)" via the inclusion
W — = p(i,+), we get the following identities from Proposition and
Theorem Q.10

din—A\v) win-XA—1i) TA+1)

AT (5 5 4.\ — Fi ) - - = . .
P4 (Zala—"a 77/) C(l7 ) df()\yy) F(,\+1) F(n—)\+1)

The other three cases are proved similarly as below.
Case 2. j =i and ¢ = —. Take (u, ) = (pf(i,+), 1’ (i, —)").

cif(n—/\,l/)_ﬂg(n—)\—z') L(A+1)

AT (5 i o\ — AN - . = . .
P (b6 =4 v) = (i A) (A, V) F(A+1) I(n—=A+1)

Case 3. j=i—1and e = +. Take (u, ') = (1’ (i, +), 1’ (i — 1,+)").

1,0—1 n .
AT - . by A (n=Awv) wmr(A—d)  T(A+1)
PRI LA = 0N = o) T T D) T A1)

ay

Case 4. j =i — 1 and ¢ = —. Take (u, i') = (p’ (i, +), b (i — 1, -)").

. T =) wE(A—i)  T(A+1)
AT 1. -\ — >\ - _ ! = . .
i b= L= A = A e T S T ) T A D)

Thus Theorem is proved. m

174



3 3 X Z7J
9.9 Renormalized symmetry breaking operator AA’V’ n
In Theorem B.45], we constructed a renormalized symmetry breaking opera-

tor A}\/ZV 4 when the normalized regular symmetry breaking operator &;\/ZV L
vanishes. We apply it to the special case (V, W) = (AY(C"), A?(C"1)), and
obtain for those (A, v) for which A}’ _ = 0 the renormalized symmetry break-

ing operator A;JV ., as the analytic continuation of the following:

=, [(A52)AY if y =
R, =T e T (9.38)
" L(=5)AY, if v =—.
We recall that for j € {i—1,4} and v € {£}, we have determined in Theorem
precisely the zero set

{(\v)eC*: AY, =0}

In this section, we discuss functional equations and (K, K')-spectrum of the

renormalized operators A}’ . only in the few cases that are necessary for
later arguments.

9.9.1 Functional equations for the renormalized operator Af\zl n

In this subsection, we treat the case j = i. For v = i(= j), Af\lm = 0 if and

only if A =4 € {0,1,---,n — 1} and v = + by Theorem BI9 Then the

v I5(i, ) — Js(i,4) is the analytic continuation

renormalized operator Ay | :

of the following:
A=l g

AV =T SIS (9.39)

A)i)—i_ -

Then gkf\zz 4 15(i, N) = J5(i,4) is a G'-homomorphism that depends holomor-

phically on A in the entire complex plane C by Theorem B.45 (3).

We determine functional equations and (K, K’)-spectrum S (A&Z ) (see
[@I3)) on basic K- and K'-types for the renormalized operator A;ZZ L as
follows.

Lemma 9.27 (functional equations and the (K, K')-spectrum for A;Z_/\H)
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Suppose 0 < i <n—1and X € C. Then we have

Ti n—1—i © AZ ! _07 (940)
~ %(nAz+1> .
A¥ ot = i 9.41
n—A,i,+ )\,nfz\ (AT)F(TL _ )\ + 1) i, ( )
id - i 2 0
S(A/\z—l—) _F(/\ ) 0 0) : (942>
Proof. Applying Theorem @24 with v =i (0 < i < n), we have
Ti, ,_;0AYy,, =0 forall \eC.
Taking the limit as A tends to ¢ in the following equation:
7 )\ Z 7
Tzn 1—i F( 2 )A)\er_O’
we get the desired formula ([.40) by the definition ([0.39) of the renormaliza-
tion Af\zz 4

Similarly, the formule ([@ZT) and ([@ZJ) for the renormalized operator

A“ follow from the limit of the corresponding results for AA . given in
Theorems 928 and @.8 respectively. O

9.9.2 Functional equations at middle degree for n even

For n even (say, n = 2m), at the “middle degree” i = %(= m), we observe

that the Knapp—Stein operator ']T%m_/\: I.(m,\) = I;(m,2m — \) vanishes
if A\ = m (see Proposition BI2), and so the functional equation (@.47]) is triv-

ial. Instead we use the renormalized Knapp-Stein operator ’]MI’T’me 5 defined
in (B2I) for another functional equation, see ([@.43]) below. We recall from

Lemma [R.T5] that ']T‘Zfzm_ , i1s an endomorphism of I5(m,m) when A = m, but
is not proportional to the identity operator when \ = m.

Lemma 9.28 (functional equation for Am m+). Let (G,G') = (O(n+1,1),0(n, 1))

with n = 2m. Then we have

Arm omm =T Amm (9.43)
’ m

m,m,+ m,m,+*

176



Proof. By Theorem 545 and (8.21),

:m,m —m . <2m B )\) —m Am,m . mm
Am,md— ° Tm,m :(}1_51;1”1—‘< 2 )A2m—)\,m,+) © (/\h_r)l;ln - m /\,2m—)\)
r m—A\ _ .
= lim % >A;n7ﬁ,\ m+ © TXom— -

Aom A —m

In turn, the functional equation in Theorem [@.28] shows that the right-hand
side amounts to

. F<mTi)\) 7Tm(2m_>‘_m> mm -7 . F(mTi)\) = m,m
lim Aom + = ( lim A— ) mm,+
Aom A—=m T@2m—A+1) ™0 T(m+1) dom D(A52)7 ™™
T =

=——A"" 9.44
F(m + 1) m,m,+ ( )
Hence the formula (@43) is proved. O
In congrast to Lemma [0.28 where we needed to treat the renormalized
operator A7 because A7 = 0, the normalized operator Aj7  does

not vanish (Theorem BI9 (3)). In this case, the functional equations for
AT™ are given as follows:

m,m,—

Lemma 9.29 (functional equation for z&nmlm,) We retain the setting that
(G,G") =(0(n+1,1),0(n,1)) with n = 2m. Then we have

K ofm = — oA (9.45)
ST, s m' 3T,
T . 0 A _ =0, (9.46)

Proof. By the definition of 'ﬁ';’féﬁf , in ([B2I) and the functional equation in
Theorem [0.25], we have

~ = ~ 1 ~
m,m mo_1: m,m m
Am,m,— © Tm,m - /\h_{%l A2m—)\,m,— o A—m A2m—A
— lim 7Tm<m — A) m,m
Aom (A —m)T(2m — A4 1) M
o -7 Am,m
- | m,m,—"*
m!

Hence the first statement is verified. The second statement is a special case
of Theorem [0.24] O
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ii—1

9.9.3 Functional equations for the renormalized operator A/\,n—i, n

In this subsection, we treat the case j =i —1. For j=¢—1and v =n — 1,
Ay, = 0if and only if v = + and A = n — i by Theorem BI9 In
this case, the renormalized symmetry breaking operator A;f;_lz i Is(i, ) —
Js(i —1,n — i) is obtained as the analytic continuation of the following:

~ii—1
A F( 2 ) )\,n*i,‘f’ ’

A,n—i,+ =

see Theorem [B.45] (3). )
- , : i1
We determine functional equations and (K, K')-spectrum S(A i, ) (see
. : i1
EIEB])) on basic K- and K'-types for the renormalized operator A}’ . as
ollows.

Lemma 9.30 (functional equations and the (K, K')-spectrum for Af\zn__lz L)

Suppose 1 <1 <n and A € C. Then we have
QW%F(% +1) Xii—1

Al ok . L 0.47
n—A,n—i,+ © An—A F(TL —\ + 1)F(A_;+z) An—i,+ ( )
Ty o1 0 AL =0, (9.48)

< T /0 0
S Az,z 1' __ - )
( A,n—z,—&-) F(}\ i 1) (0 2)
Proof. The functional equations follow from Theorems and @251 The
formula for the (K, K')-spectrum is derived from Theorem 0.8 O

9.9.4 Functional equations at middle degree for n odd
For n odd (say, n = 2m+ 1), the Knapp—Stein operator T J-(4,v) —

v,n—v—1 :
Je(j,n — 1 —v) for the subgroup G’ = O(n, 1) vanishes at the middle degree
j = i(n—1)(= m) if v = m by Proposition BI2l We note that the exact
sequence in Theorem 220 (1) for G’ = O(2m + 1,1) splits, and we have a

direct sum decomposition
J&(ma m) = Tim,e S Tm+1,—¢

of two irreducible tempered representations of G'. In this case, the functional
equations (@.40) in Lemma 027 and (@48) in Lemma O30 are trivial, and
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we replace them by the following functional equations for the renormalized
Knapp-Stein operator ’]Tm’m.

Lemma 9.31. For (G,G') = (O(n+1,1),0(n,1)) with n =2m+1 and for
A € C, we have

,n.m

B0 AL, =T AT, (0.09)
:m m 1,m " m 1,m
T © Al " = — — AL (9.50)
Lemma tells that
Image(Ar;f;Zer: Is(m, \) = Js(m,m)) C T,

Image([&’;xjrm: Isim+1,A) = Js(m,m)) C Tpmi1,—s,

for all A € C by Lemma B.15]
Proof. The functional equations in Theorem tell that

1 ~ A—m ~ T A—m. ~
T™ N(——)AT"" = r AT
(1/ —m V,Qm—l/) © ( 2 ) A\ v, + F(I/ i 1) ( 2 ) A2m—v,+)
1 ~ A—m ~ e A—m ~
™ re—- Am—l—l,m — T m+1,m )
<I/ - m 1/,2m—z/) © ( 9 ) A\ v, F(I/ + 1) ( 2 ) A2m—v,+
Taking the limit as v tends to m, we get Lemma [9.37] O

9.10 Restriction map [;(i, \) — Js(i, A)

The restriction of (smooth) differential forms to a submanifold defines an
obvious continuous map between Fréchet spaces, which intertwines the con-
formal representation (see [37 Lem. 8.9]). We end this section with the most

elementary symmetry breaking operator, namely, the restriction map for the
pair (G'/P',G/P) C (8", S™).

Lemma 9.32. The restriction map from G/P to the submanifold G'/P" in-
duces obvious symmetry breaking operators

Resty'y , : Is(i,A) = Js(i, \).
Then the (K, K')-spectrum for basic K- and K'-types (see (@I3))) is given by

ii 10
S(Resty'y ;) = (0 1> . (9.51)
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Proof. We recall from Proposition that
{]&— NS jn+1,i}

forms a basis of the basic K-type 1°(i,§) of the principal series representation
I5(i, \) in the N-picture. Let Z € J,,.1; and (z,7,) € R ® R = R". By
(B4l), we have

15 (z,2,) = —(L+ |z|* + 22) ! Z Sz(1,x,2,)ey.
JEjmi

Then an elementary computation by using ([Z.8]) shows

1,7 (z) ifn¢Z
1.5 @) Ae, ifneZ

15(z,0) = {

The case for the basic K-type uf(i,d) is similar, where we recall from Propo-
sition that {h% : Z € J,41,441} forms its basis, for which we can compute
the restriction x,, = 0. Thus Lemma [0.32] is shown. O

9.11 Image of the differential symmetry breaking op-
o
erator Cy’,
In Theorem [6.8 we have proved that the image of any nonzero differential
symmetry breaking operator from principal series representation is infinite-

dimensional. As an application of the functional equations of the (generi-
cally) regular symmetry breaking operators A}’ , (Theorems [1.24] and 0.23])

and of the residue formulee of ,&f\jy , (Fact @3 see [3G]), we end this chap-
ter with a necessary and sufficient condition for the renormalized differential
symmetry breaking operator C;jy to be surjective when j = i, i — 1, see
Theorems and

9.11.1 Surjectivity condition of @;JV
Suppose j € {i,i—1}. We recall from ([B.I8]) and ([B.19) that the renormalized
differential symmetry breaking operator C’,: I5(i,\) — J.(j,v) is defined

for (\,v) € C? with v — X € N and de = (—1)”"*. Moreover, @AJV is nonzero
for any (4,4, A\,v) with j € {i,i—1} and v — X € N.
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In what follows, we shall sometimes encounter the condition that (A, n—
1 — V) € Leyen U Logq, which is equivalent to

(A\v)€Z? and A+v<n—-1<v. (9.52)

Theorem 9.33. Suppose 0 < i <n—1,v—X€eN, and 0, ¢ € {£} with
(=1)"=* = §e. Then the following two conditions (i) and (i) on (i, \,v) are
equivalent:

(i) @AZV I5(i,\) — J.(i,v) is not surjective.

(ii) One of the following conditions holds:

)1<i<n—-1,v=i,and Z> X <1
) nis odd, i =0, and (T52);
(ii-c) nis odd, 1 <i<n-—1, @52, and v #n — 1;
) nisodd, 1 <i<i(n—1), (\v)=(i,n—1—1).
Theorem 9.34. Suppose 1 < i < n, v—X € N, and 0, ¢ € {+} with

(=1)"=* = §e. Then the following two conditions (i) and (i) on (i, \,v) are
equivalent:

(i) @Azy_l Is(i,\) = J.(i — 1,v) is not surjective.

(ii) One of the following conditions holds:

ira) 1<i<n—1l,v=n—i,andZ>\<n—1;

ii-b) nis odd, 1 <i<n-—1, (@52, and v #n — 1,

¢) n is odd, i =n, and [@52);

ii-d) nis odd, 1(n+1)<i<n-—1, and (\,v) = (n—i,i—1).

—~ o~

11-

A~~~

For the proof of Theorems [0.33] and [0.34] we first derive the functional
equations for C}’ in Theorem @30 from those for the regular symmetry

breaking operators &f\{j 4 in Chapter @ and from the matrix-valued residue
formulee [B0]. The results cover most of the cases where the Knapp—Stein

intertwining operators T,{m_l_y do not vanish. A special attention is required
when TV = 0. In this case, the principal series representation J.(j,v)

v,n—1—v
splits into the direct sum of two irreducible representations of the subgroup

G’ = O(n, 1), and we shall treat this case separately in Section Q. ITT.3l The
proof of Theorems [0.33] and 0.34] will be completed in Section Q.1T.4.
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9.11.2 Functional equation for (Njf\{/

Suppose 0 <i<n,0<j<n-—1,and j =i ori— 1. We set p/(\,v) by

B 1 fi=0o0rA=v
X )\,V = ’ 953
(A ) {%(y — ) otherwise, )
- 1 ifi=norA=v,
PN ) = 1 ' I
Yv+i-n) otherwise.

Theorem 9.35 (functional equation for @)\]u) Suppose 0 <i<n, <5<
n—1, and j € {i,i —1}. For (\,v) € C* with v — X\ € N, we have

T 1 0 O, = av = NP (LAY s, (9.54)
where q(m) is a nonzero number defined in (O.8]).
Proof. We set
(v —1) if j =i
) =42 ! 9.55
Pis () {%(n—y—z’) if j=i—1. (9-55)

By the functional equation for the regular symmetry breaking operator &Z)\]V n
given in Theorem 0241 we have for v € {£}

277 pi;(v)
T‘Ijj,nflfl/ o AZ}:,]V,V = ﬁ Z):,jn—l—u,v‘

Suppose ¥ — A € N. Applying the residue formula ([@.1) of Af\Jy L to the
left-hand side, we get

! 0 CY, = (—1)7q(v = Npi;(AY |, e (9.56)

vn—1—v

On the other hand, by using p™(\,v) and p; ;(v), the relation between the

unnormalized operators C’ and the renormalized operators @;]V defined in
BI8) and [BI9) are given as the following unified formula:

pi’j()\,u)(Ci’fy = (—1)i_jpi7j(u)(6i’fy for j € {i,i—1}.

Multiplying both sides of the equation ([@.58) by p™/ (A, v), we get the desired
formula. O
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Proposition 9.36. Suppose v — X € N, and ¢, ¢ € {£} with (—1)"* = de.

(1) Suppose 0 < i < n—1. Then the following two conditions on (i, \, V)
are equivalent:

(i)

(ii) One of the followmg conditions holds:

(iira) 1<i<n—1,v=i,and Z >\ < i

(ii-b) n is odd, i = 0, and ([@52);

(ii-c) nis odd, 1 <i<n-—1, @52), and v #n — 1,

(ii-d) nis odd, 1 <i < $(n—1), and (\,v) = (i,n — 1 —1).

(2) Suppose 1 < i < n. Then the following two conditions on (i, \,v) are
equivalent:

(iii) The image of((NZf\’i,_l: I5(i,\) = J.(i—1,v) is contained in Ker (T%_"
(iv) One of the following holds:

vn—1—v

(iv-a) 1<i<n—1lL,v=n—i,andZ5 X <n—i;

(iv-b) nis odd, 1 <i<n-—1, @52, andv #n —1;

(iv-c) n is odd, i = n, and ([Q.52);

(iv-d) nis odd, 3(n+1) <i<n—1, and (\,v) = (n —1i,i—1).

The difference of this proposition from Theorems @33 and is that the

cases i = 3(n— 1) in (1) and i = $(n+ 1) in (2) are included in Proposition

@30 In these cases, the Knapp-Stein intertwining operator TV n_1_, vanishes
where j =i in (1) and =4 — 1 in (2), and the conditions (i) and (iii) do not
provide any information of Image(@f\’fy). In these special cases, we shall study

Image(@f\’jy) separately in Section by using the renormalized Knapp—
Stein operators ’]I‘Vn _—
Proof. By the functional equation (@.54]) in Theorem 0.35] we see that

Image (((N:”) C Ker (']I‘f,n 1)
if and only if p“/(\,v) = 0 or A” 1y 1 = 0. Suppose 0 < i < n,
0<j<n-—1,and j € {i,i —1}. By definition (@.53)),

P\ r)=0 A #v=3i and 1<i<n-1,
PN =0 A rv=n—i and 1<i<n-—1.
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On the other hand, we claim

Ay i = 06 (ik-b), (iic), or (ii-d) holds;
A s = 06 (iv-b), (iv=c), or (iv-d) holds.
Let us verify the first equivalence for 1 <7 < mn — 1. The vanishing condition
of AY’ . given in Theorem (1) and (3) shows that AY' (Capr =0

if and only if one of the following three conditions holds:

0, Ain—1-v)€eZ* (v+1—-n)— X =v—X\ mod 2, and

e i A0, An—1-v)eZ (v+1—-—n)— X =v—X mod 2, and
O<v+1—n< =X\

e i #£0,v—A€2Z,and (\,n—1—v)=(i,1).

These conditions amount to (ii-b), (ii-c), and (ii-d) in Proposition @36 (1),
respectively. The second equivalence is shown similarly. Hence Proposition
9,30 is proved. [

Remark 9.37. For A = v, the above conditions are fulfilled if and only if

Av)=(GEn-1),3(n—1)) and i = 3(n — 1) in Proposition (1) or

i = 2(n+1) in Proposition @36 (2). This is exactly when Ti,n—l—u (j =1,
i — 1) vanishes.

9.11.3 The case when TV

v,n—1—v

=0

J
v,n—1—v

By Proposition B.I2] the Knapp—Stein operators T for the subgroup

G’ = O(n, 1) vanishes if and only if n is odd and

n—1
2

We note in this case that v —¢=0fori=jand v+i—n=0fori=j+1,
and therefore the definition ([@53) tells

1 it \=v,

2,7 A —
PrAv) {0 TS
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When n = 2m + 1 and j = (n — 1) (= m), we use the renormalized
Knapp—Stein operator, see (821]), given by

x 1 ~
T, = —— T

v,2m—v v—m v2m—v*

Proposition 9.38. Suppose (G,G") = (O(n +1,1),0(n, 1)) with n = 2m +
1. Leti = m or m+ 1. Then the composition T o @A’Z Is(i,\) —

v,2m—v

J.(m,2m —v) forv— X €N and e € (—1)""* is given as follows.
(1) Forv—\e Ny,

B 0 T = Salv = NALL, L, Lo
In particular, if m — X\ € N, then
B0 Cim, = (~1) B,
(2) Forv=\=m,
T, o Cim = AL" & (—1)im+1%n:@fm.

Proof. (1) The functional equation ([@.54]) with n = 2m+1 and j = m shows

mYm
TV,QM7I/

o Cy™ = q(v — Np™™ (A, )AL

A2m—v,(=1)v=XA*
By ([@53), we have for i € {m,m + 1} and X\ # v,

, 1
P\ v) = §(V —m).
Hence the first equation is verified. For the second statement, we substitute
v = m. Then the second equation follows from the residue formula ([@7) and

from the fact C™ = CZ)\Tn when A\ # m.

(2) The case i — m + 1 will be shown in Lemma D025 The case i = m is
similar by using

li 1 Am,m _ &m,m " @m,m
zxgrrln v —m v2m—v,+ — Pmm+ T W m,m
as it will be explained in (I020) of Chapter [0l O
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9.11.4 Proof of Theorems [0.33] and 0.34]

Suppose 0 < j < n — 1. Then the principal series representation Js(j,v) is
reducible as a module of G' = O(n, 1) if and only if

ve{jn—1—7}U(-Ny)U(n+N), (9.57)

see Proposition (1). Suppose v satisfies ([@217). Then the proper sub-
modules of Js(j,v) are described as follows:

Case 1. (n,v) # (25 + 1,7), equivalently, ']I‘Vn 1, # 0.

In this case, the unique proper submodule of J5(j, V) is given as the kernel
of the Knapp—Stein operator ']I'WL _— Jg(], v) = Js(j,n—1—v).
Case 2. (n,v) = (2j + 1, ), equivalently, ’I["m -, = 0.

In this case, there are two proper submodules of J; (J,v), which are given

as the kernel of TI‘;] + %id € Endeg/(J5(7,7)), see Lemma B.I0l

Proof of Theorems[9.33 and[9.3]} Assume (n,v) # (2j+1, 7). This excludes
the case where Z > X < j from the conditions (ii) (i = j) and (iv) (i = j+1)
in Proposition In this case Theorems and are immediate
consequences of Proposition [0.30

Assume now (n,v,j) = (2m + 1,m, m) for some m € N;. Then C”" i
not surjective if A\ < m, and is surjective if A = m by Proposition 0.3 ( )
and (2), respectively. Thus Theorems 0.33] and [@0.34] are proved. O
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10 Symmetry breaking operators for irreducible

representations with infinitesimal charac-
ter p : Proof of Theorems 4.1 and

In the first half of this chapter, we give a proof of Theorems (1] and that
determine the dimension of the space of symmetry breaking operators from
irreducible representations Il of G = O(n + 1,1) to irreducible representa-
tions 7 of the subgroup G’ = O(n, 1) when both II and 7 have the trivial
infinitesimal characters p, or equivalently by Theorem (2), when

elr(G), ={I;;:0<i<n+1,6¢c{£}},
melr(G),={m::0<j<n,ec{£}}

The proofs of Theorems [Tl and .2 are completed in Section [[0.J]and Section
0024 respectively. In the latter half of this chapter, we give a concrete
construction of such symmetry breaking operators from II to . We pursue
such constructions more than what we need for the proof for Theorems [£.1]
and some of the results will be used in calculating “periods” in Chapter
Our proof uses the symmetry breaking operators for principal series
representations and their basic properties that we have developed in the
previous chapters.

10.1 Proof of the vanishing result (Theorem [4.7])

This section gives a proof of the vanishing theorem of symmetry breaking
operators (Theorem [L]). In the same circle of the ideas, we also give a proof
of multiplicity-free results (Proposition [[0.7)). In order to study symmetry
breaking for irreducible representations I1; 5 of G, we embed Homer (11, 5| v, 7j.¢)
into the space of symmetry breaking operators between principal series rep-
resentations as follows:

Lemma 10.1. Let d,e € {£}. Then we have natural embeddings:
(1) for0<i<nand0<j<n-1,
Home (I; 6|, 7j.) € Homer (I5(2,n — )|, J=(4, 7)); (10.1)
(2) for1<i<n+1land0<j<n-1,
Home (11, 5|6r, m5.) C Homer (I_5(i — 1,0 — 1)|¢r, J=(4,7));  (10.2)
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(3) for0<i<nand1<j<n,

HOmG/(Hi75|G/77Tj7g) - HomG/(Ig(i,n — i)|Gl, J_S(j — l,n — ‘]))7 (103)

(4) for1<i<n+1landl<j<n,

HOHIG/(HZ"5|G/,7TJ"5) C HOva(I_(;(i — ]_,l — 1)|G’7 (]_e(j — 1,n —]>>
(10.4)

Proof. We recall from Theorem[2Z20] (1) that there are surjective G-homomorphisms
I —-1l;s forI=1Is(i,n—1)orl s(i—1,i—1)

and injective G’-homomorphisms
Tje —J for J=J.(j,7) or J_o(j —1,n— 7).

Then the composition I — II;5 — 7. — J.(j,7) yields the embeddings
(0.1)-[@0.4. O
Proposition 10.2. If j ¢ {i —1,i}, then Home (1L 5|¢r, 7;.) = {0}.

Proof. Assume Home (IL; 5|cr, m;-) # {0}.

Suppose first 1 < ¢ < n. By Theorem (1), we get j € {i —3,i —
2,0 — 1,1} from (I02), and j € {i — 1,4,i + 1,7+ 2} from ([I03]). Hence we
conclude j € {i —1,}.

Suppose next i = 0 or n + 1. By using Theorem (1) again, we get
j €40,1} from [I0) for i =0, and j € {n —1,n} from ([{0.2) for i =n+ 1.
Since dim¢ Ily 5 = dim¢ 11,41 5 = 1 whereas both 7 . and 7,_; . are infinite-
dimensional irreducible representations of G’ (Theorem 2201 (4)), we have an
obvious vanishing result:

HOHleI(HZ"(;IGV, 7Tj’€) = {0} if (Z,j) = (0, 1) or (Tl + 1,71 — 1)
Hence we conclude j € {i — 1,i} for i =0 or n + 1, too. O

Proposition 10.3. If e = —, then Home (1L 5|¢r, 7;.) = {0}.
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Proof. We have already proved the assertion in the case j ¢ {i — 1,4} in
Proposition Therefore it suffices to prove the assertion in the case
J =1 —1 and 2. We begin with the case j =17 — 1.

Suppose 2 < ¢ < n. Then by Theorem (3),

Home (15(i,n — i)|qr, Je(i — 2,n —i + 1)) = {0}

because §(—¢) = +. This implies Home/ (11, 5|, mi-1.) = {0} from ([I03).
For the case (i,7) = (1,0), we know from [44] Thm. 2.5 (1-a)] that

HOHIG/(HL_|G/, 7T07+) = {0}

(F(0) = mo4+ and 7'(0) = II; — with the notation therein.) It then follows
from Proposition that Home (I1; 4|6/, m0.—) = {0}.

For the case (4, j) = (n+1,n), we use the fact that both II, s and =, . are
one-dimensional. In fact, we have isomorphisms II,, 115 >~ x_s and m,, ~
X-.|e by Theorem (4). Thus the vanishing assertion is straightforward
forj=i—1(1<i<n+1).

The case j = i is derived from the case j = i—1 by duality (see Proposition

B.39). 0

By Propositions [0.2] and [0.3], we have completed the proof of Theorem
41

10.2 Construction of symmetry breaking operators from
II; 5 to m;5: Proof of Theorem

In this section we prove the existence and the uniqueness (up to scalar mul-
tiplication) of symmetry breaking operators from the irreducible G-module
11, 5 to the irreducible G’-module 7; . when j € {i—1,i} and de = +, and thus
complete the proof of Theorem 2 Moreover, we investigate their (K, K')-
spectrum for minimal K- and K'-types, and also give an explicit construction
of such operators.

10.2.1 Generators of symmetry breaking operators between prin-
cipal series representations having the trivial infinitesimal
character p

We have determined explicit generators of symmetry breaking operators
Is(i,\) — J.(j,v) in Theorem B.26l In this subsection, we extract some
special cases which will be used for the proof of Theorem [4.2]
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The following lemma is used for the proof of the multiplicity-free theorem
(Proposition [[0.7 below), and also for an explicit construction of nonzero
symmetry breaking operators II — 7 with II € Irr(G), and © € Irr(G'),

(Proposition [0.T3).

Lemma 10.4. (1) Suppose 0 <i<n—1 and e = +. Then

Home (I5(i,n — i)|cr, J5(i,1)) ~ = o . c
CA,~ 0 CC, if 20 = n.

(2) Suppose 1 <i<n-—1 and de =+. Then
Homer (1_5(i — 1,3 — 1)|er, J2(i, 7)) = CCL_y7.
(3) Suppose 0 <i<n—1and o € {£}. Then we have
Home (Is(i, )|, Jo(i,§)) = CAYS, @ CCL
(4) Suppose 1 <i <n and de = +. Then

Homgl(f_g(i - 1,2 - 1)|G/, J_E(i - 1,7’L - Z))

oA ifn 21,
| CAZ L e CCy L ifn=2i— 1.

Proof. We determined the dimension of the left-hand side by Theorem
(2) and (3). Then the lemma follows from Theorem for (1), (3), (4);
and from Fact for (2). O

Remark 10.5. In the N-picture where the open Bruhat cells for the pair of
the real flag manifolds G’/P’ C G/P are represented by R*™! C R", we
have @11_“ = Rest,,—o in Lemma [0.4] (1), @zjz = Rest,, —¢ © dg» in (2),
@ZZ = Resty,, o in (3), and @Zj;j = Rest,,—o in (4).

The following lemma is used for an alternative construction (see Propo-
sition below) of symmetry breaking operators I1I; 5 — ;5.

Lemma 10.6. Suppose 1 < i <n and § € {+}. Then we have
Home (I5(i, 1) |ar, J-5(i — 1,n — 7)) = CAV .

Proof. By Theorem (2), 1&2;__1 _ # 0, and therefore the lemma follows

2

from Theorem [3.26] ]
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10.2.2 Multiplicity-free property of symmetry breaking

In this subsection, we prove the following multiplicity-free property:

Proposition 10.7. For any 0 <i<n+1,0<j <n, and d,e € {£+}, we
have
dim(c HomG/(Hi,5|G/, 7Tj’5) S 1. (105)

Proposition [[0.7 is a very special case of the multiplicity-free theorem
which was proved in Sun—Zhu [59], however, we give a different proof based
on Lemmas M0 and 04 because the following short proof illustrates the
idea of this chapter.

Proof of Proposition[10.7. Owing to the vanishing results (Theorem E.]), it
suffices to show ([0 when j € {i — 1,i} and de = +. Moreover, the case
J = 1 — 1 can be reduced to the case j = i by the duality between the
spaces of symmetry breaking operators (Proposition B:39). Henceforth, we
assume j = i € {0,1,...,n} and de = +. Then, owing to the embedding
results given in Lemma [[0.J] the multiplicity-free property (I0.5]) holds for
1 <i<n—1by Lemma [I04] (2), and for i = 0 and n by Lemma 0.4 (1)
and (4). Thus Proposition [[07 is proved. O

10.2.3 Multiplicity-one property: Proof of Theorem

In proving Theorem [£2], we use the following proposition, whose proof is
deferred at the next subsection.

Proposition 10.8. Home/ (11, 5|¢r, mi5) # {0} for all0 <i <nandd € {£}.

Remark 10.9. Obviously Proposition holds for i = 0 because Il s|¢ =~
mos as G'-modules for 6 € {£}. Indeed, the G-modules Il ; and II,_ are
the one-dimensional representations 1 and respectively x;_ (Theorem
(4)), and likewise for the G’-modules 7 4.

Before giving a proof of Proposition [[0.8, we show that Proposition [[0.8
implies Theorem

Proof of Theorem[{.2 By the duality among the spaces of symmetry break-
ing operators (Proposition B.39), we may and do assume j =i and § =& = +
because j :=n —j and ¢ :=n + 1 — ¢ satisfy j = ¢ — 1 if and only if j = i.
Then Theorem [L.2] follows from Propositions [0 (uniqueness) and (ex-
istence). O
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For later purpose, we need a refinement of Proposition [[0.§ by providing
information of (K, K')-spectrum in Proposition [0.12 below. For this, we fix
some terminology:

Definition 10.10 (minimal K-type). We set m := [%%]. Suppose p € K.
To describe an irreducible finite-dimensional representation p of K = O(n +
1) x O(1), we use the notation in Section [4.Jlin Appendix I rather than the
previous one in Section Z.2.1] and write

W= Fo(”+1)(01, e Om)e X0

for o = (01, -+ ,0m) € At(m) and €, € {£}. We define ||u|| > 0 by

m

> = (o5 +n+1=25) (= o+ 20,
j=1
where 2p. = (n —1,n —3,--- ;n+ 1 — 2m) is the sum of positive root for
tc = o(n + 1,C) in the standard coordinates. For a nonzero admissible

representation Il of GG, the set of minimal K-types of 11 is
{pe K : pu occurs in 1T, and || is minimal with this property},
see [20] Chap. 2] or [63] Def. 5.4.18].

We then observe:

Remark 10.11 (minimal K-type). The basic K-type (see Definition 2XT7]) of
the principal series representation I5(i, A) is the unique minimal K-type of
the irreducible G-module II; 5, as stated in Theorem 2.201 (3).

Proposition 10.12. Let (G,G') = (O(n+1,1),0(n,1)), 0 < i < n and
d € {£}. Then there exists a nonzero symmetry breaking operator

Ai,i: Hi,5 — T (106)
such that its (K, K')-spectrum for the minimal K'- and K-types 1’ (i,6) (<
1’ (i,0)) is nonzero.

Proposition is an existence theorem, however, we shall prove it by
constructing nonzero symmetry breaking operators 1I; s — ; 5, see Proposi-
tion [0.I3lin the next subsection. Alternative constructions are also given in
Sections and [0.2.0] and thus we construct symmetry breaking oper-
ators II, 5 — m; 5 in the following three ways:
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o AVl Ii(ii) = J_s(i — 1,n — i), (Proposition [II3),

,n—1,— °
. AZ:Z,# I5(i,3) — Js(i,1), (Proposition M0.TH),
o ALy i Iolin — i) = J(i,0), (Proposition [ITG).

10.2.4 First construction II;5 — w5 (1 <i<n)

In this subsection, we construct a nonzero symmetry breaking operator
I s — mis for 1 <i<n,de{£},

by using Lemma [10.6
Proposition 10.13. Suppose 1 <i <n and § € {£}. Then the normalized
symmetry breaking operator

AL Ti(iyi) = J_s(i — 1,n — )

1,M—1,— "
satisfies the following:

(1) Image(A™ L )i = (mis)i as (¢, K')-modules;

1,N—1,—

(2) AjT I, # 0.

In particular, it induces a symmetry breaking operator 11; 5 — m; 5 as in the
diagram below. Moreover, the (K, K')-spectrum of the resulting operator for
the minimal K'- and K -types 1i°(i,0)" (<= u’(i,0)) is nonzero.

~ii—1

1,n—i,—

Ig(i, Z) —— J_(g(i - 1, n— Z)

Convention 10.14. Hereafter, by abuse of notation, we shall write simply
as Image(Azzj;liﬁ) = ms if their underlying (g', K')-modules coincide (cf.

Proposition [0.13 (1)).
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Proof of Proposition[I0.13. (1) First we observe
Image(A"L ) ¢ Ker(T'Z, )

,n—1,— n—i,i—1

because Theorem [0.24] with v = n — i tells the functional equation :]fff_li,i_1 o

Ay =0.
When n # 2i — 1, we conclude Image(.&%__li,_) = m; s by Proposition B.11]

because 7; 5 is irreducible as a G’-module. When n = 2i—1, the Knapp-Stein

operator 'ﬁ‘;__li7i_1 vanishes (Proposition BI2). Instead we use the following

renormalized Knapp—Stein operator (see (821])):

Ti—1 _ I &

v,n—1—v v—i 4 1 vn—1—v-

Then the functional equation given in Theorem [0.24] implies
Ti-! ™ ia)e Al —g
i—li-1 1T ml oAy - =0

By Lemma applied to the subgroup G’ = O(n,1) (= O(2i — 1,1)), we
conclude Image(&f\’f;_liv_) = Image(&f\’fi:117_) = m;s in the case n = 2i — 1,
too.

(2) The second statement follows from the fact that the (K, K’)-spectrum of
&gl;i (Theorem ) for the basic K-types (u, 1) = (p’(i,0), u(i — 1, —=5)")
does not vanish. The last assertion is derived from the following observation
(see (232)): there are isomorphisms of representations of K’ = O(n) x O(1),

ph(i = 1,=0) =~ 1’ (i,5)'.
Hence Proposition is proved. H

Proof of Proposition[10.12 Clear from Proposition [[0.13 and Remark [[0.9
O

Thus, the proof of Theorem has been completed.

For the rest of this chapter, we give alternative constructions of symmetry
breaking operators for later purposes.
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10.2.5 Second construction II;5 — 1,5 (0 <i <n—1)

In this subsection, we provide another construction of a nonzero symmetry
breaking operator

ILs > ms for0<i<n-—1,0§¢€{£},

by using Lemma [0 (3).

Proposition 10.15. Suppose 0 <i<n —1 and § € {£}. Then the renor-
malized operator

A L Is(iyd) = Js(4,0)
satisfies the following:
(1) Image(f&iiﬁ = T;s;

(2) A%y

IL; 5 # 0.

In particular, it induces a symmetry breaking operator 11, 5 — m; 5 as in the
diagram below. Moreover, the (K, K')-spectrum of the resulting operator for
the minimal K'- and K-types 11°(i,6) (< p’(i,6)) is nonzero.

Ly(i, i) —— Js(i, 1)

Proof of Proposition 013 (1) By the functional equation ([@40), we have
Inlage(Af\’fi7+) C Ker(’f;nflfi).

When n # 2i + 1, we conclude Image(Af\’Z, +) = ;s by Proposition B.T1]

When n = 2i + 1, the Knapp-Stein operator T;, , ; = T, vanishes
(Proposition BI2]). Instead we use the functional equation (@49) for the
renormalized operators ']T‘;Z and AZAZZ +» which tells that

i = 7t )
Image(AMﬂr) - Ker (Tz,l — m ld) .
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By Lemma we conclude Image(AY". ) = 7, 5 because A%’ | is nonzero
i, + i,0 Ai,+
and m; 5 is irreducible as a G’-module.

(2) The assertion follows readily from the (K, K')-spectrum of the renor-

malized operator Af\l“r (see ([@42)) for the basic K- and K'-types (u,p') =

(1 (i,6), 1’ (i, 6)"). O

10.2.6 Third construction II; ; — 7, 5

We give yet another construction of a nonzero symmetry breaking operator
II; 5 — m s in the case n # 2i. In the case n = 2i, the normalized operator
A", ;. vanishes. We shall discuss this case separately in Section [0.3.T] see
Proposition I0.19

Proposition 10.16. If 2i # n, then ,&;Z_“Jr € Home (Is(i,n —1)|gr, J5(i,7))
satisfies

Ai,z’

_ i _
it =0 and Image(A)" ;) =ms.

JIFE

Thus it induces a symmetry breaking operator 11; 5 — m; 5 as in the diagram
below. Moreover, the (K, K')-spectrum of the resulting operator for the min-
imal K'- and K-types 1/’ (i,6) (< p’(i,6)) is nonzero.

N,

. ) Aniit .
I(S(Zan_l) — J5(27Z)
l U
IL; 5 ~ 15(27 n— i)/HH—l,—(s _____ > T.5
Proof. Since J&ZZJF = 0 by Theorem BI9 (1), the composition A;ZHJF o'f‘§7n_i
vanishes by the functional equation (Theorem [0.25]). Thus A;ZH . is identi-

cally zero on Image(@,n_i) ~ II;11 5 (see Proposition B.IT]).
For the second assertion, we use another functional equation (Theorem
0.24) to get T}, , ;0A}",; . = 0. Hence

Image(A™’

n—i,i,+

) C Ker(ﬁ,n—l—i) =T

by Proposition BIIl Since J&;Z_” + 7# 0 (see Theorem B.I9 (1)) and since

;5 is irreducible, the underlying (g’, K’)-modules of Image(A," ; ; ) and ;5
coincide. O
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10.3 Splitting of I;(m,m) and its symmetry breaking
for (G,G') =(0(2m+1,1),0(2m, 1))

Suppose n is even, say n = 2m. A distinguished feature in this setting is
that the principal series representation Is(m,A) of G = O(2m + 1,1) splits
into the direct sum of two irreducible G-modules when A\ = m: for § € {£},

L;(m, m) ~ Hm75 D HerL,(;, (107)

both of which are smooth irreducible tempered representations of G, see
Theorem 220 (1) and (8). Accordingly, the space of symmetry breaking
operators has a direct sum decomposition:

Homg/ (I5(m,m)|cr, J-(m, m))
~ HomG/(Hm75|Gl, Ja(m, m)) D HomG/(Hm+17_5|Gl, Ja(m, m)), (108)

for each ¢ € {£}. The left-hand side of (I0.8) has been understood by the
classification of symmetry breaking operators given in Theorem (see
(IOTI) as below). On the other hand, the target space J.(m,m) is not irre-
ducible as a G’-module. We recall from Theorem (1) that the principal
series representation J.(m,v) of G’ = O(2m, 1) at ¥ = m has a nonsplitting
exact sequence of G'-modules:

0— Tme — JS(mam) — Tm+1,—¢ — 0. (109)

With this in mind, we shall take a closer look at the right-hand side of (I0.8)

and determine each summand as follows:

| de =+ | be=—
HOI’IIG/(Hmﬁ’G/, Js(m, m)) C {O} (1010)
HOIHG/(Hm+17_5|G/, Ja(m, m)) C C

See Section [[0.3.1] for the left column of ([I0.I0) in detail, and for Section
for the right column.

10.3.1 Homg (I5(m, m)|g, Je(m,m)) with de = +

We begin with the case de = +. Without loss of generality, we may and do
assume § = ¢ = +.
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Then Lemma [[0.4] (3) with Remark tells that

Home (I (m, m)|e, J4 (m,m)) = CAT™ , & CRest. (10.11)

The first generator Aﬁz , is defined as the renormalization (Theorem

= A\ — ~
AT = Yim T (Tm) A (10.12)

of the normalized regular symmetry breaking operator Xx’;‘;{‘ . which vanishes
at A = m (Theorem BIJl). The second generator, Rest = Rest,, —¢, is the
obvious symmetry breaking operator (cf. Lemmal[0.32]), given by Rest,, o in
the N-picture. By using the second generator, we obtain the following.

Proposition 10.17. Let (G,G’) = (O(2m + 1,1),0(2m,1)). Then we have

Home (11, 4 |6ry J4(m, m)) = CRest|n
Home (I 41,—|er, J4(m, m)) = CRest|r,,,, _.

m,4)

Proof. By the direct sum decompositions (I0.IT]) and ([I0.7), we have

2 =dim¢ Homg: (I (m, m)|qr, J+(m,m))
=dim¢ Homer (IL,,, 1 |¢r, J1(m, m)) + dime Home (11,41 —| a7, J+ (M, m)).

On the other hand, we know from Lemma 0.32] that Rest|r,, , # 0 and
Rest|,,,,  7# 0. Hence we have proved the proposition. O

We have not used the other generator A™"™ , in (IOII) for the previous

m,m,+
proposition. For the sake of completeness, we investigate its restriction to

each of the irreducible components in ([0.7]).
Proposition 10.18. Retain the notation as in ([0.IT).

2 m,m —
Am,m,+|ﬂm+1,f = 0.

2772

= 2
m,m _
Am,m,Jr |1‘[m7+ TReSﬂHm# .

~ We also determine the image of the nonzero symmetry breaking operators
AZZ + and Rest on each irreducible summand in (I0.7).
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Proposition 10.19. With Convention [10.1]], we have

Image(&rgﬁﬁ\nm&) =Image(Rest|r,, ,) = Tm,+,

Image(Rest|r,,,, ) =J+(m,m).

For the proof of Propositions [0.I8 and [0.19, we use Lemma [0.28 about
functional equations with appropriate renormalizations. We set

,ﬂ_m

c(m) = - (10.13)
Proof of Proposition [L.I8 Tt follows from the functional equation @43) for
the renormalized Knapp—Stein operator ’ﬁ‘z’m that

Amm o (¢(m)id — mem) =0.

m7m7+

On the other hand, Lemma R3] implies that the renormalized Knapp—
Stein operator satisfies

c(m)id — ’Mm = 0idp,, , ©2idn,,., _,

which implies Image(c(m)id — ']T'zm) = 41, Therefore, A7 | is identi-
cally zero on the irreducible G-submodule II,,,1; .
To see the second statement, we use Proposition [0.I7 which shows that

AZ;Z,AHM must be proportional to Rest|r,, .. Comparing the (K, K’)-
spectrum of the two operators AZ% + and Rest with respect to basic K'-
and K-types p’(m,+)" < p’(m,+) (see the formula (T42)) for AﬁﬂHr and
Lemma [0.32] for Rest), we get the second statement. [

Proof of Proposition[I0.19 By the functional equation ([@.40),
Tmage(An |, ,) C Ker(Tp, 1) = o+

m,m—1

Since A7 |, . is nonzero, and since 7, 4 is an irreducible G'-module, we

m7
get the first statement. For the second one, we compare the (K, K')-spectrum
of A’TZZ; . (see [@Z2)) and that of Rest (see ([@E])) in Lemma [0.32 O
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10.3.2 Homg/ (I5(m, m)|gr, J-(m, m)) with dc = —
The case e = — is much simpler because the space of symmetry breaking
operators is one-dimensional:

Homg (I5(m, m)|cr, J.(m,m)) = CAj

see Theorem B201 Without loss of generality, we may and do assume (4, ) =

(4, —). The restriction of the generator z&zz, to each irreducible component
in (I0.7) is given as follows.

Proposition 10.20. Let (G,G’) = (O(2m +1,1),0(2m,1)). Then we have

m,m _
Am,m,— Hm,+ :O
m,m o
Image(Am,m7,|Hm+L_) =T,

The proof of Proposition [[0.20] relies on the functional equations given in
Lemma [0.29

Proof. The functional equation (@.45) implies

Apm o (Tp,, + c(m)id) = 0.
By Lemma BT17] Image(’ﬁmm + ¢(m)id) = IL,, +. Hence the first statement
is proved.

The second statement follows from the functional equation (@.48) and
Ker(T" cJ_(m,m) = J_(m,m — 1)) = 7, _ (see Proposition BIT]). O

m,m—1

10.4 Splitting of J.(m,m) and symmetry breaking op-
erators for (G,G') = (O(2m +2,1),0(2m + 1,1))

Suppose n is odd, say n = 2m + 1. In contrast to the n even case treated
in Section [0.3] a distinguished feature in this setting is that the principal
series representation J.(m, ) of the subgroup G' = O(2m + 1, 1) splits into
the direct sum of two irreducible tempered representations when v = m: for
e € {+},

Jo(m,m) >~ Ty e @ Tyt —e, (10.14)
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see Theorem [2.20] (1) and (8). Accordingly, the space of symmetry breaking
operators has a direct sum decomposition:

HomG/(L;(z', )\)|G/, Jg(m, m))
~ HOIHG/(I5(i, /\)|G”7 7Tm,€) & HOIIlG/(Ig(Z', /\)|G”7 7Tm+17_5) (1015)

for any A € C. The left-hand side of (I0.I%5) is understood via explicit
generators given in Theorem B.20 (classification). In this section, we examine
the following two cases:

Home (Is(m + 1,m)|ar, Js(m, m)) =CAH" @ CCmtlm (10,16
Home (I_.(m,m)|er, Jo(m,m)) =CAm (10.17)

in connection with the decomposition in the right-hand side of (I0.I6).
We retain the notation (ITI3) in the previous section, that is,

m

c(m) = ok

Then the irreducible G’-modules 7, - and 7,41, in (I0.I4]) are the eigenspaces

of the renormalized Knapp—Stein operator 'ﬁ‘%m for the subgroup G’ with
eigenvalues ¢(m) and —c(m), respectively, by Lemma RI5

The case [I0IG) will be discussed in Section II.ZT] and the case (I0.I7)
in Section I0.4.2 In particular, we shall see in Section I0.5], that both A’ :=

LAY 4 e(m)Cortlbm in ([0IB) and L (—1)" A" in ([II7) yield the
same symmetry breaking operator

Am—l—l,m: Hm+1,§ — TTm, 5

which will be utilized in the construction of nonzero periods in Chapter [[2]
see Theorem [[2.3]

10.4.1 Homg (Is(m + 1,m)|g, Js(m, m)) for n =2m + 1

We recall from Theorem (2) that the regular symmetry breaking opera-
tor .&;JVJF vanishes when (n,, 7, \,v) = (2m +1,m + 1, m, m,m), and there-
fore, the left-hand side of (ILIH) at A = m is two-dimensional by Theorem
3201 (2). More precisely, the classification of symmetry breaking operators
given in Theorem shows (I0.I6]).
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On the other hand, we recall from Theorem (1) that the principal
series representation I5(m + 1,m) has a nonsplitting exact sequence of G-
modules:

0—Ilhio-5— Is(m+1,m) = I,115 = 0.

The irreducible G-submodule II,,, 15 _5 is the image of the Knapp—Stein oper-
ator T%ﬁm for the group G. With this in mind, we shall take a closer look
at the right-hand side of (I0.15]).

We introduce the following element in (I0.16]):

1= ~
A= éAﬁ;};_’? + c(m)Cpt i, (10.18)

The main result of this subsection is the following.
Proposition 10.21. Let (G,G') = (O(2m + 2,1),0(2m + 1,1)). Then
A Is(m+1,m) — Js(m,m) is a symmetry breaking operator satisfying

A/ o P]Afm—l-l :O,

m+1,m

f[‘%% o A" =c(m)A,
p 10
S(A") =c(m) (O 0) :

Proposition [0.2T] follows from the corresponding results for the renormal-
ized operator A" (Lemma [[022 below) and for the differential operator

m7m7+

@ZTT}’” (Lemmas M0:23] 020 and D0.26). We begin with the functional
equations and the (K, K')-spectrum of the first generator Ayt in (T0IG).

m

Lemma 10.22. Retain the setting where (G,G") = (O(2m + 2,1),0(2m +

= m+1,m

1,1)). Then the renormalized regular symmetry breaking operator Amm#

satisfies the following:

= m+1lm _ mm+1 N m+1,m

Am,m,Jr © P]Tm—i-l,m - 2C(m)Am+1,m,+’
:m :m—i-l,m - :m+1,m
rEm,m © Am,m,Jr - C(m>Am,m,+ ;

:m—l—l,m - 0 0
st =e(m) () 5)-

Proof. See Lemma for the first and third equalities, and Lemma
for the second. O
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For the differential symmetry breaking operator ((N:gt;m in (0.6, we re-
call from [BG, Thm. 1.3] the residue formula of the regular symmetry breaking
operators Af\’jw;a: I5(i,\) = J:(j,v) when (A, v,0,e) € Uy, for j =i —1 and
1, see Fact Applying [@0) to (n,i,5,\,v) = 2m+ 1,m+1,m,\, \), we
obtain

Am+lm (m — )‘>7Tm ~m+1.m
MET DA+ M

where we recall from ([Z.I7) that the differential symmetry breaking operator
Cy; ! vanishes for the parameter that we are dealing with, namely, when

(10.19)

. . ~ii—1 .
A =v =mn—1i. So we use the renormalized operator C%* " instead. We note
AV

that @)\Z/\_l = Rest,, 00t o .

Oxn

Lemma 10.23. The (K, K')-spectrum of (N:zfnlm is given by

~ 1 0
m+1my\ __
Proof. By the residue formula (IILIJ), we have

: L < +1, ~m+1
Jim S AL = el B
Now the lemma follows from the (K, K’)-spectrum of the regular symmetry
breaking operator A}’ . given in Theorem [0.8 O

The symmetry breaking operator &i\"j U™ vanishes at (\,v) = (m,m).

We recall from Lemma and Definition B.44] that

- okt ~
m+1,m m=1l,m
(A +1 +1

kl = A\ta. 1
mom’+') ONEOUL | aey M

for (k,1) = (1,0) and (0,1).

The base change of the vector space Home: (Is(m + 1,m)|qr, Js(m,m)),
see ([0.IG), is given as follows.

Lemma 10.24. (1) Q(Am-&-l,m)l,o _ &m—i—l,m

m,m,+ m,m,+ 7

S HOHI@(L;(TH + 1, m)|G/, J(;(m, m))

(2) (Am-l-l,m)lvo + (Am-i-l,m)ql _ _C<m>(’é$jnl,m

m7m7+ m7m7+
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Proof. The first assertion is immediate from the definition of the renormal-

. ~ 1 .
ized operator A" see (GEZ). The second assertion follows from the

residue formula (I0.T9) O
It follows from Lemma [10.24] that
1 ~ = ~
lim ———AYS " = A 4 o(m)Ct b, (10.20)

Aom A —m

Now we give functional equations of the differential symmetry breaking
operators Cﬁtnlm and the (renormalized) Knapp—Stein operators for G’ and
G as follows.

:m ~m+1lm _ :m—l—l,m ~m+1,m
Lemma 10.25. Ty o Cotbm™ = AT 4 c(m)Ct ™.

Proof. By the functional equation in Theorem @.24], we have

mm Am+1,m (m - /\)ﬂ-m Am+lm
Tomr oAy = TOT 1) rem-as

Hence we get from the residue formula (I019)

mm ~m+lm _ Tm+lm
T,\,zm—,\ © (C)\,)\ = AA,2m—,\,+~

Now Lemma [[0.27] follows from (I0.20). O
Lemma 10.26. @fg*;nlm o ’ﬁ‘%ﬂm = AZEZjL

Proof. By the functional equation in Theorem [@.28] we have

m-+
Amtim gm0 = A) ponam
AN+ 2m—+1—-A\ F()\ i 1) 2m+1—A N+

=

By the residue formula (I0.I9) and by analytic continuation, we get

~m+1lm _ mm41 1T m1m
Cox oo s =m2 A0 A

. :m+1,m 1T m41lm spe .
Since Ap Ty o = mzANT T by the definition ([@38) of the renormalized

operator A’)\JV ., the lemma is proved. O]
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10.4.2 Homg (I_.(m,m)|cr, J.(m,m)) for n =2m + 1

In this subsection, we examine
Home: (I_(m, m)|er, J-(m,m)) = CAI™

as stated in ([0I7), which is derived from Theorems and We
recall from Theorem (1) that there is a nonsplitting exact sequence of
G-modules:

0— Hm7_5 — I_(;(m,m) — Hm+1,6 — 0.

Concerning the regular symmetry breaking operator .&mz,, we have the

following.

Lemma 10.27. Let (G,G') = (O(2m +2,1),0(2m + 1,1)). Then we have

T m © A, — =c(m)A
A m,m mm _
Am,m,f © Tm—l—l,m _Oa

St ) =21 et (1 ().

Proof. The proof of first formula parallels to that of Lemma @.31] and the
second formula is a special case of Theorem 025 The third formula follows
from Theorem 0.8 ]

10.5 Symmetry breaking operators from II;; to m;_; 5

In Sections and [[0.3] we constructed nontrivial symmetry breaking op-
erators from the irreducible representation II; s of G = O(n + 1,1) to the ir-
reducible one 7; 5 of G’ = O(n, 1). This is sufficient for the proof of Theorem
by the duality theorem (Proposition B.39) between symmetry breaking
operators for the indices:

(i,j) and (,7) = (n+1—i,n—j).

Nevertheless, we give in this section an explicit construction of the normalized
symmetry breaking operators II; 5 — ;. also for j = i — 1, and determine
their (K, K')-spectrum of symmetry breaking operators from II; 5 to m;_1 .
The results will be used in the computation of periods of admissible smooth
representations in Chapter
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We begin with some basic properties of the regular symmetry breaking
operator o
A (i, ) = Js(i — 1,v)

for (\,v) = (n—1i,i—1).
Proposition 10.28. Suppose 1 <i <n and § € {£}.

(1) i, C Ker (AL ).
(2) Tmage (AL ) ~miisifn#£2— LAY | =0ifn=2i-1.
Proof. (1) Applying the functional equation given in Theorem (27 with

iji—1
— nfiﬂj»’y
image of the Knapp-Stein intertwining operator T}, _;: I5(i,4) — I5(i,n—1),

namely, on the irreducible submodule II;;; 5 (see Theorem (1)).
(2) By Theorem 319 A:Z:,li—1,+ =0 if and only if n = 2i — 1.
Suppose from now that n # 2i — 1. Applying the functional equation

given in Theorem @24 with (\,v,7) = (n —4,i — 1,4), we see that the
mi—1

A =1, we see that the symmetry breaking operator A vanishes on the

composition T e &31; i is a scalar multiple of the symmetry breaking

vn—1—v
operator A;:ln_z +, which vanishes by Theorem B.I9 In turn, applying

Proposition RITl to G’ = O(n, 1), we get

Ker(T'! Js(i—1v)—=> Js(i—1n—1—-v)) ~m_1s

v,n—1—v"

because i — 1 # %(n — 1). Hence the second statement is also proved. O

Since ,&;:11_1 + = 0forn = 2i—1, we treat this case separately as follows.
Suppose n = 2m + 1. We recall that there are a nonsplitting exact sequence
of G-modules

0—1IL,_5— I_s(mm)—1Il,15 =0

and a direct sum decomposition of irreducible G’-modules
Js(m,m) =~ T 5 © Tpg1,—s-
We use the following regular symmetry breaking operator

AT T s(m,m) — Js(m,m).

m,m,—

Proposition 10.29. Suppose (G,G’) = (O(2m + 2,1),0(2m + 1,1)) and
d e {£}.
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(1) Ker(Apm ) D1, 5.

(2) Image(Ap ) = Ty

Proof. The assertions follow from Lemma ]

It follows from Proposition that if n # 2i — 1 then the normalized

symmetry breaking operator A;ljnﬂ . yields a surjective G'-homomorphism

Ai,’i*l: Hi,§ — Ti—1,8 (1021)
by the following diagram.
Réi-1
Is(i,n — i) /"0 o 5C Js(i— 1,3 —1)

—
i ; -
—
-
—

I s < Is(i,n — 1) /Tli1 5

If n = 2i—1, we set (n,i9) = (2m + 1,m + 1). Then, similarly to the
case n # 2i — 1, Proposition [0.2T] shows that the symmetry breaking op-
erator A": Is(m + 1,m) — Js(m,m) defined in (I0I8) yields a surjective
G'-homomorphism

Aerl,m: Hm+175 — Tm,6 (1022)

by the following diagram.

Is(m+1,m) Tm.s C Js(m,m)

>
O -7
l’ -
—
—

—

—

Hm+1,6 -~ Is (m + 17 m)/Hm+2,75

In order to define the (K, K')-spectrum, we need to fix an inclusive map
from the K’-type into the K-type, see Definition In our setting, we use
the natural embedding of the minimal K- and K’-types

1 (i,6) <= p’(i —1,6) (10.23)

of the irreducible representations II; 5 and m;_1 5 of G and the subgroup G,
respectively, as in Section Then we get the following formula for the
(K, K')-spectrum.
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Proposition 10.30. Let (G,G') = (O(n+1,1),0(n,1)) and 1 <i <n-+1.
Then the symmetry breaking operator

Ai,i—li ILi s — miz1s

acts on (i —1,0)" (= u’(i,6)) as the following scalar:

n—1 A
T i A2 -1,

zz ifn=2i—1.

Proof. Forn # 2i—1, the assertion follows directly from the (1, 1)-component
of the matrix S(A;Zy_i) in Theorem with (A\,v) = (n —4,i — 1). For
n = 2i — 1, the (1,1)-component of S(A’) in Proposition T0.2T with (n,i) =

(2m + 1,m + 1) shows the desired formula. O

Remark 10.31. When n = 2i — 1, we set (n,i) = (2m+1,m+1) as above. In
this case we may use A, in Lemma [0.27 for an alternative construction

of Ams1m € Home (IL416lcr, Tms). To see this, we recall from Section
10.4.2 the following natural inclusion

HOIHG'/(Hm+175|G/, 7Tm75) C HomG/(I_(;(m, m)|Gl, J(g(m, m)) = C"&m,m

m,m,—"

and therefore any element in Homey (11,41 5|7, mm,s) is proportional to the
one which is induced from A7 . On the other hand, Proposition [0.29
tells that the symmetry breaking operator A;7"  yields a surjective G'-
homomorphism II,,, 11 5 — 7, s by the following diagram.

&m,m

m,m,— C

I—5 (m7 m) TTm,s

—~
O -7
—~
—~
—~
—~

Hm+1,5 = 175(m7 m)/Hm,fé

Js(m,m)

By Lemma [0.27] %(—1)’”“1&%:%7_ has the (K, K')-spectrum for the basic
K- and K'-types
s Lpymagmm ) my (00
2 m,m,— 1 0 °
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In view of the (2,1)-component, the resulting symmetry breaking operator
from II,,414 to my,s has the (K, K')-spectrum c¢(m) for the embedding of
the K- and K'-types p’(m + 1,6) < p’(m,d)’. This is the same with the
(K, K')-spectrum of A,,41,, which is induced from A’ € Home (I5(m +
1,m)|¢r, Js(m,m)). Hence %(—1)””1&%:%,_ induces the same symmetry
breaking operator with A,, 1 .
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11 Application I: Some conjectures by B. Gross
and D. Prasad: Restrictions of tempered
representations of SO(n+1,1) to SO(n,1)

Inspired by automorphic forms and L-functions, B. Gross and D. Prasad
published in 1992 conjectured about the restriction of irreducible tempered
representations of special orthogonal groups SO(p+ 1, q) to a special orthog-
onal subgroup SO(p, q), see [[4]. B. Sun and C.-B. Zhu [B9] proved that in
this case the multiplicities are at most one, and B. Gross and D. Prasad con-
jectured that given a Vogan packet of tempered representations of SO, .o X
SO, there exist exactly one group SO(p+1, q) x SO(p, q) with p+q = n+1
and one (tempered) representation U; X U, of this group with m(U; K
U,,C) = 1. They also stated a conjectured algorithm to determine the group
and the representation U; XU, in the Vogan packet with m/(U, XUy, C) = 1.

In this chapter we prove that the algorithm of B. Gross and D. Prasad
predicts the multiplicity correctly for representations in Vogan packets of
tempered principal series representations of SO(n+1,1) x SO(n, 1) as well as
for the 3 irreducible representations II, 7, % of SO(2m+2,1), SO(2m+1,1),
SO(2m, 1) with trivial infinitesimal character p.

The Gross—Prasad conjectures are stated only for representations of spe-
cial orthogonal groups in [I8]. Thus we are considering in this chapter sym-
metry breaking for tempered representations of G x G’ = SO(n + 1,1) x
SO(n, 1) and not as in the previous chapters for GxG" = O(n+1,1)xO(n, 1).
We refer to Appendix IT (Chapter [[3]) for notation and for results about the
restriction of representations from orthogonal groups to special orthogonal
groups.

11.1 Vogan packets of tempered induced representa-
tions

We use a bar over representations to distinguish between representations of
the special orthogonal group and those of the orthogonal group.

Every tempered principal series representation of SO(n + 1,1) is of the
form

I5(V.\) =mdS(VRG,\) for (7,V) e SO(n), 6 € {&}, Ae g + VIR,
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which is the smooth representation of a unitarily induced principal series rep-
resentation from a finite-dimensional representation of the minimal parabolic
subgroup P of G = SO(n +1,1).

For n even, we assume that the central element —1I, .5 of the special
orthogonal group G = SO(n + 1,1) acts nontrivially on the principal series
representation I5(V, ), and thus I5(V, \) is a genuine representation of G,
i.e., that —1I, 5 is not in the kernel of V X 4. For n odd, G = SO(n + 1,1)
does not have a nontrivial center, and we do not need an assumption on the
pair (V,6).

We observe if n is odd, the Langlands parameter of the representations
of SO(n,0) factors through the identity component of its L-group, and it
defines a representation of SO(n — 2p, 2p) and not of O(n — 2p,2p), see B].

The Langlands parameter of the induced representations Is(V, \) factors
through the Levi subgroup of a maximal parabolic subgroup of the Langlands
dual group YG [EI]. This parabolic subgroup corresponds to a maximal
parabolic subgroup of SO(n + 1,1) whose Levi subgroup L is a real form
of SO(n,C) x SO(2,C) and thus is isomorphic to SO(n,0) x SO(1,1) ~
SO(n) x GL(1,R). Note that SO(1,1) ~ GL(1,R) is a disconnected group
and so determines the character 9.

The pure inner real forms of SO(n,C) with a compact Cartan subgroup
are SO(n — 2p,2p), 0 < p < §. For n even, we assume that the center of
SO(n — 2p, 2p) is not contained in the kernel of the discrete series represen-
tation, see Proposition [[5.11] (6).

By I3 p. 35], if G is SO(2m +2,1) or SO(2m + 1, 1), then there are 2™
representations in the Vogan packet containing a tempered representation
I5(V,)\) and they are parametrized by characters of a finite group A; ~
(Z)27Z)™. We write V P(I5(V,\)) for this Vogan packet.

The representations in the Vogan packet V P(I5(V,\)) can be described
as follows: we call a real form SO(¢, k) of SO(¢ + k,C) pure if £ is even and
thus admits discrete series representations. We consider parabolic subgroups
of SO(n —2p+ 1,1+ 2p) with Levi subgroups L, which are pure inner forms
of SO(n) x GL(1,R). Hence they are isomorphic to

L~ SO(n—2p,2p) x GL(1,R).

The Vogan packet V P(I5(V,\)) contains the tempered principal series
representations of SO(n —2p+1,1+2p) which have the same infinitesimal
character as I5(V, A), and which are induced from the outer tensor product of
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a discrete series representation of SO(n —2p, 2p), with the same infinitesimal
character as V and a one-dimensional representation y, of GL(1,R), [G4].

We use the same conventions for a Vogan packet VP(J.(W,v)) of the
tempered principal series representation J.(W,v) of G'.

11.2 Vogan packets of discrete series representations
with integral infinitesimal character of SO(2m,1)

We begin with the case n = 2m — 1. In this case SO(n+ 1,1) = SO(2m, 1)
has discrete series representations. We fix a set of positive roots At C &
for the root system A(so(2m + 1,C),t¢) and denote by p half the sum of
positive roots as before. Let n be an integral infinitesimal character, which
is dominant with respect to A*. For £+ k = 2m + 1, we call a real form
SO, k) pure if £ is even. The Vogan packet containing the discrete series
representation with infinitesimal character 7 is the disjoint union of discrete
series representations with infinitesimal character n of the pure inner forms.
The cardinality of this packet is

=S (')

14
0<t<2m 2
{:even

There exists a finite group Ay ~ (Z/2Z)™ whose characters parametrize the
representations in the/\ Vogan packet. For the discrete series representation
with parameter x € Ay we write 7(x). For more details see [IH] or [64]. If
T is a discrete series representation of SO(2m, 1) we write V P(7) for the
Vogan packet containing 7.

Example 11.1. Suppose that 7 is a discrete series representation of SO(2m, 1)
with trivial infinitesimal character p.

(1) The trivial one-dimensional representation 1 of the inner form SO(0, 2m+

1) is in V P(T).
(2) We can define similarly a Vogan packet V P(7) containing (SO(1,2m), 7).
11.3 Embedding the group G’ = SO(n — 2p,2p + 1) into
the group G = SO(n —2p+1,2p + 1)
To formulate the Gross—Prasad conjecture we have to fix an embedding of

G into G.
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We observe:

(1) The quasisplit forms of the odd special orthogonal group are SO(m, m+
1) and SO(m + 1,m). The pure inner forms in the same class as
SO(m,m+ 1) are SO(m — 2p,m + 2p+ 1) and those in the same class
as SO(m + 1,m) are SO(m + 1 — 2p, m + 2p).

(2) The quasisplit forms of the even special orthogonal group are SO(m, m),
SO(m — 1,m+ 1), and SO(m + 1,m — 1). The pure inner forms are
SO(n —2p,n+2p) and SO(m+1—2p, m — 1 — 2p), respectively, with
p<73.

So

1. if n = 2m, then the orthogonal group SO(2m + 1,1) is a pure inner
form of SO(m+1,m+1) if m is even and of SO(m+2,m) if m is odd,;

2. if n = 2m — 1, then the orthogonal group SO(2m,1) is a pure inner
form of SO(m + 1,m) if m is odd and of SO(m, m + 1) if m is even.

We consider an indefinite quadric form

Qnspi1opr1(T) = 25+ F X0 oy = Th e = — Thy

of signature (n —2p+1,2p+1). We assume that n —2p+ 1 > 0 and identify
SO(n—2p,2p+1) with the subgroup of SO(n—2p+1,2p+1) which stabilizes
the basis vector e,_gp41. This allows us to identify the Levi subgroup of the
maximal parabolic subgroup of SO(n — 2p,2p + 1) with the intersection of
the corresponding maximal parabolic subgroup of G. This embedding of
SO(n,1) into SO(n+1,1) is conjugate to the one we consider in Section 211
We use this embedding in the formulation of the Gross—Prasad conjectures.

For tempered principal series representations we consider symmetry break-
ing operators, namely, SO(n — 2p, 2p + 1)-homomorphisms from representa-
tions in VP(I5(V,\)) to representations in V P(J.(W,v)), see Section T4l

If the tempered representation of G or of G’ is a discrete series repre-
sentation, we consider symmetry breaking from a Vogan packet of discrete
series representations to a Vogan packet of tempered principal series rep-
resentations, respectively from a Vogan packet of tempered principal series
representations to a Vogan packet of discrete series representations (Section

IL5).
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11.4 The Gross—Prasad conjecture I: Tempered prin-
cipal series representations

By Theorem [3.30] there is a nontrivial symmetry breaking operator between
the tempered principal representations I5(V,\) of G = O(n + 1,1) and

J.(W,v) of G’ = O(n,1) if and only if (0, V) € O(n) and (r,W) € O(n — 1)
satisfy
[V : W] = dim@ Homo(n_l)(V|O(n_1), W) 7é 0.

An analogous result holds for a pair of the special orthogonal groups (G, G’) =
(SO(n+1,1),50(n,1)). We set

[V . W] = [V|go(n_1) . W] = dim(c Homso(n_l) (V|SO(n—1)7W>~

In Theorem [[5.14l in Appendix II we prove:

Theorem 11.2. There is a nontrivial symmetry breaking operator between
the tempered principal series representations I5(V,\) of G = SO(n+ 1,1)
and J.(W,v) of G’ = O(n,1) if and only if (7,V) € ;S% and (7,W) €
SO@\— 1) satisfy

Vlsom=1) : W] # 0.

In their article B. Gross and D. Prasad presented a conjectured algorithm
to determine the pair of representations in the Vogan packets V P(I5(V,\))
and VP(J.(W,v)) with a nontrivial SO(n, 1)-symmetry breaking operator.
We prove next that the algorithm in fact predicts :

Vlisom-1): W] #0 if and only if  Homg(I5(V,\)|a, J.(W,v)) # {0}.

Observation 11.3. A Levi subgroup L with [L, L] = SO(r, s) of the maxi-
mal parabolic subgroup determines the class of pure inner forms of SO(r +
1,541). So for any algorithm to determine the pair (SO(r+1, s), SO(r, s)) of
the groups in the Gross—Prasad conjectures it is enough to determine the pair
of the Levi subgroups and their corresponding discrete series representations.

First case: Suppose that (G,G') = (SO(2m + 1,1),S0(2m, 1)).
Let Tt be a torus in SO(2m+2, C) x SO(2m+1,C), and X*(T¢) the character
group. Fix a basis

X*(TC):Zel@Zeg@---@ZemH@Zfl@ng@---EBme
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such that the standard root basis 4 is given by

61_62762_637"'a€m_€m+17em+€m+17f1_f27f2_f37"'7fm71_fm7fm

if m>1.

We fix 0, € {£} as in Section [T1]

Recall that all representations in a Vogan packet have the same Langlands
parameter. We identify the Langlands parameter of the representations in
the same Vogan packet as

(SO(2m +1,1) x SO(2m, 1), Is(V,\) K J.(W,v))

for a pair (V,W) of irreducible finite-dimensional representations with in-
finitesimal character

(vi+m—1er+ (va+m—2)ea+ -+ (v)em — (A —m)epi

+(u1+m—g)f1+(u2+m— g)f2+---+(um1+%)fm1 — (l/—m—i-%)fm,
see (220). Here (vq,va,...,v,y) is the highest weight of the SO(2m)-module
V, (u1,us, ..., Uy_1) is the highest weight of the SO(2m — 1)-module W and
the continuous parameter A—m and v —m+% are purely imaginary, and thus
I5(V,\) and J.(W,v) are (smooth) tempered principal series representations
of G and G’, respectively.

As discussed before, to determine the pair

(SO(n—2p+1,2p+1),50(n —2p,2p — 1))

it suffices to solve this problem for the Levi subgroups. Hence it suffices to
consider the Langlands parameter

(v +m—2)e; + (vo+m—3)eg + -+ + (V) em
5 7 1
+(ug +m — §)f1 + (ug +m — §)f2 +o At (U + §)fm—1-

Let 9; be the element which is —1 in the i-th factor of A; and equal to 1
everywhere else, and ¢; the element which is —1 in the j-th factor of A4, and

1 everywhere else. Then the algorithm [IH p. 993] determines yx; € ;l\l and
X2 € A3 by

Xl(éi) — (_1)#m—i+1> and X2(5j) _ (_1)#m—j+%<’
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where #m — ¢ + 1 > is the cardinality of the set
{j : v; + m — i > the coefficients of f;},

and #m — j + % < is the cardinality of the set
: : 1 :
{i:vi+m—j—1+ 5 < the coefficients of e; }.

If Homso(u—1)(Vlsowm-1), W) # {0}, then vy < up < vp <+ < gy <
[um|. Hence we deduce that both characters are alternating characters if and
only if Homso(m-1)(V]som-1), W) # {0}.

Second case: Suppose that (G,G’) = (SO(2m,1),SO(2m — 1,1)).
We use the same arguments for the pair

(G,G") = (SO(2m, 1),S0(2m — 1,1)).

We normalize the quasisplit forms by

SO(m+1,m) x SO(m,m) if m is even,
SO(m,m+1) x SO(m —1,m+1) if mis odd.

Applying the formulee in [I3, (12.21)], we define the integers p and ¢ with
0<p<mand0<qg<mby

b= #{2 : X1(5i) = (—1)i} and ¢ = #{] : X2(5j) - (_1)m+j}7
and we get the pure forms

SO(2m — 2p+ 1,2p) x SO(2q,2m — 2q) if m is even,
SO(2p+1,2m —2p+1) x SO(2m —2¢,2q + 1) if m is odd.
In our setting, we get the pair of integers (p, q) = (0, m) for m even; (p,q) =
(m,0) for m odd. Applying [I5 (12.22)] with correction by changing n by

m loc. cit., we deduce that the alternating character y defines the pure inner
form

SO(2m +1,0) x SO(2m,0) for m is even and odd.
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Hence

G =S0(2m,1) and G’ = SO(2m — 1,1).

The only representation in V P(I5(V,\)) x V P(J.(W,v)) for this pair of pure
inner forms is

T5(V, \) R 7.(W, v).

If x is not the alternating character, the calculation shows that we obtain a
different pair of groups. Thus we can rephrase the conjecture by B. Gross
and D. Prasad as follows:

Conjecture 11.4 (Gross—Prasad conjecture I). Suppose that I5(V, )X
J(W,v) are tempered principal series representations of SO(n + 1,1) x
SO(n,1). Then

Homgo(njl) (75(7, )\) X 7€(W, l/), C) =C

— —

if and only if V € SO(n) and W € SO(n — 1) satisfies
[Vl]sowm-1) : W] # 0.

Theorem 11.5 (see Theorem [[5.14). The Gross—Prasad conjecture I holds.

We can deduce Theorem from the corresponding results (Theorem
B30) for the orthogonal groups O(n + 1,1) x O(n, 1) by using results about
the reduction from O(N, 1) to the special orthogonal group SO(N,1). See
the proof of Theorem [[5.14] in Section of Appendix II for details.

11.5 The Gross—Prasad conjecture 1I: Tempered rep-
resentations with trivial infinitesimal character p

For completeness, we include the discussion of the Gross—Prasad conjectures
for tempered representations with trivial infinitesimal character p which we
also discussed in detail in [45].

We modify here the notation from 3] by denoting the restriction of a
representation I of O(n + 1,1) to the subgroup SO(n + 1,1) by II.

The Gross—Prasad conjecture I in the previous section treated the case
where both II and 7 are tempered principal series representations of the
group G = SO(n+ 1,1) and G’ = SO(n, 1), respectively.
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Thus the remaining cases are when II or 7 are discrete series representa-
tions. We note that both II and 7 cannot be discrete series representations
in our setting because G admit discrete series representations if and only if
n is odd and G’ admit those if and only if n is even. Thus we discuss the
Gross—Prasad conjecture in this case separately depending on the parity of
n, with the following notation.

Consider symmetry breaking operators for tempered representations with
trivial infinitesimal character p of the group SO(n+1,1) for n = 2m, 2m—1,
and 2m — 2. We denote the corresponding representations by II, 7, and o,
respectively, using the subscripts defined in Section in Appendix II.
We thus consider symmetry breaking from SO(2m + 1,1) to SO(2m, 1) and
further to SO(2m — 1,1):

Wy cryymet = T = Wpo1,(—1)m-

Here ﬁm’(_l)m+1 and ©0,,_1(—1y» are tempered principal series represen-
tations which are nontrivial on the center of SO(2m + 1,1), respectively
SO(2m—1,1), and thus are genuine representations of the special orthogonal
groups, see Proposition I5.11] (6). Since Ty, + =~ Ty — as SO(2m, 1)-modules,
we simply write 7, for 7,, +, which is a discrete series representation of
SO(2m,1). All representations have the trivial infinitesimal character p.

11.5.1 The Gross—Prasad conjecture II: Symmetry breaking from
1L, (~1ym+1 to the discrete series representation 7,

We consider first the Vogan packet of tempered representations which con-

tains the pair (SO(2m +1,1) x SO(2m, 1),1,, s W 7,,) or the Vogan packet
which contains the pair (SO(1,1+ 2m) x SO(1,2m),11,, s ¥ 7,,). The rep-
resentations in these packets are parametrized by characters of

AL X Ay ~ (Z)27)™ x (Z.)]27)™ ~ (Z.]27)*™.

We recall the algorithm proposed by B. Gross and D. Prasad which deter-
mines a pair (x1, x2) € A1 X Aj, hence representations

(I(x1), 7(x2)) € VP s) X VP(Tpn)

so that B
Homg, ) (L(X1)[5(y) T(X2)) # {0},
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where G/(x2) is the pure inner form determined by .

Let Tt be a torus in SO(2m + 2,C) x SO(2m + 1,C), and X*(7¢) the
character group. As before the standard root basis A is given by

61_62762_637‘-'76771_em+17€m+em+17fl_f27f2_f3a"'7fm—l_fmafm

ifm>1.
We fix § = (—1)™*! so that II,,,  is a genuine representation of SO(2m +
1,1). We can identify the Langlands parameter of the Vogan packet contain-

ing B

(SO(2m+1,1) x SO(2m,1),11,, s X 7T,,)
with
3

1 1
mel+(m—1)62+---+6m+06m+1—|—(m—§)f1+(m—§)f2+---+§fm.
Let 0; be the character in .,/4\1 which is —1 in the i-th factor of A; and
equal to 1 everywhere else, and €; be the character which is —1 in the j-th

factor of Ay and 1 everywhere else.
Then the algorithm by B. Gross and D. Prasad [I3 p. 993] determines

characters y; € A; and x, € .//4\2 by
i(8) = (P and xa(e) = (<1
where #m — ¢ + 1 > is the cardinality of the set
{j : m — i+ 1 > the coefficients of f;},

and #m — 7 + % < is the cardinality of the set
. o1 .
{i:m—j+ 3 < the coefficients of e;}.

As discussed before we normalize the quasisplit form by

SO(m+1,m+1) x SO(m,m+1) if m is even,
SO(m+2,m) x SO(m+ 1,m) if m is odd.

Applying the formulee in [I5, (12.21)] we define the integers p and ¢ with
0<p<mand0<qg<mby

p=#{i:x1(6) = (-1} and g=#{j: x(e;) = (-1)""}
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and we get the pure forms

SO(2m —2p+1,2p+1) x SO(2¢q,2m —2q + 1) if miseven, (11.1)
SO(2p+1,2m —2p+1) x SO(2m —2q,2q + 1) if m is odd. (11.2)
In our setting, we get the pair of integers (p, q) = (0, m) for m even; (p,q) =

(m,0) for m odd. Applying [IH (12.22)] with correction by changing n by
m loc.cit., we deduce that this character defines the pure inner form

SO(2m+1,1) x SO(2m, 1) for m even and odd.

The only representation in V P(Il,,5) x VP(7,,) for this pair of pure

inner forms is 11, s ¥ 7,,. Hence Theorem [I5.19 implies the Gross—Prasad
conjecture in that case.

11.5.2 The Gross—Prasad conjecture II: Symmetry breaking from
the discrete series representation m,, to @,,_1 )=

We now consider the Vogan packet of tempered representations containing
the pair (SO(2m, 1) xSO(2m—1,1), 7, X% ,,,_1 (_1)m ), i.¢€., the Vogan packet

VP(Tm X1, (—1ym) C VP(Tm) X VP(Tp1,(-1)m).

The packet V P(7,,) x VP(%,—1y=) is parametrized by characters of the
finite group

Ay x Ay ~ (Z)2Z)™ x (Z)2Z)"" ~ (Z/2Z)*.

Again the algorithm by B. Gross and D. Prasad determines a pair (x2, x3) €
As x Az and hence representations

(T(x2), @(xs)) € VP(@m) X VP (T, (-1ym)

so that
Honlé()@)(%(XQ)lé(Xg,)aﬁ(X?))) 7é {0}7
where G(3) is the pure inner form determined by ys.

Let Tt be a torus in SO(2m+1, C) x SO(2m, C) and X*(T¢) the character
group. Fix a basis

X'Tc) =2 ®Lfr®  PLfn ®LG LG ® - -+ B Lgm,
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such that the standard root basis 4 is given by

hi=fo, fo—=fa s fmer = foo f 91— 92,92 — 93, s Gm—1 — Gm> Gm-1+ Im

for m > 2. Take ¢ = (—1)™ as before.
We identify the Langlands parameter of the Vogan packet

VP(fm) X VP(Em’(_l)m)

with

1 3 1
(m—g)f1+(m—§)f2+"'+§fm+(m_1)91+(m_2)92+'"+gm—1+09m-

Again applying [I3, Prop. 12.18] we define characters x, € As, X3 € A; as
follows: Let ¢; € Ay >~ (Z/2Z)™ be the element which is —1 in the j-th factor
and equal to 1 everywhere else as in Section [T& v € Az ~ (Z/2Z)™ " the

element which is —1 in the k-th factor and 1 everywhere else. Then x» € 24\2
and y3 € Ajz are determined by

X2(€j) = (—1)#m7]’+1/2< and X3<fyk) _ (_1)#mfk>’

where #m — j + % < is the cardinality of the set

1
{k:m—j+ 5 < the coeflicients of g},

and #m — k > is the cardinality of the set
{j : m — k > the coefficients of f;}.
As discussed we normalize the quasisplit form by

SO(m +1,m) x SO(m+1,m —1) if mis even,
SO(m,m+ 1) x SO(m,m) if m is odd.

We define the integers p and ¢ with 0 < p<mand 0 < ¢ <m —1 by
p=#{j:xa(e;) = (=1)'}  and g =#{k:xs(m) = (=)™},
and we get

SO(2m —2p +1,2p) x SO(2¢+ 1,2m —2q — 1) if m is even,
SO(2p+1,2m —2p) x SO(2m —2q — 1,2¢+ 1) if m is odd.
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In our setting, the pair of integers (p, q) is given by (p, q) = (m,0) for m
even; (p,q) = (0,m — 1) for m odd. We deduce that this character defines
the pure inner form

SO(1,2m) x SO(1,2m — 1) for m even and odd.
The only representation in VP (7,,) x V P(@,_1,-1)m) with this pair of
pure inner forms is (T, @Win—1,(—1)m)-

In Chapter @l we have determined
Home (IIX 7, C) for all IT € Irr(G), and 7 € Irr(G),,,
see Theorems [l and and also Theorem [5.4] for orthogonal groups
GxG =0(n+1,1) x O(n, 1),
from which we deduce analogous results about
Homg(IIX7,C) for all I € Irr(G), and 7 € Irr(G'),,,
for the special orthogonal groups
G x G =S50(n+1,1) x SO(n,1),

in Theorem [[0.191 By the aforementioned argument, Theorem [I5.19 implies
the following.

Theorem 11.6. The conjectures by B. Gross and D. Prasad [I3] for tempered
representations of special orthogonal groups SO(n + 1,1) x SO(n, 1) with
trivial infinitesimal character p hold.

Remark 11.7. The Gross—Prasad conjectures concern tempered representa-
tions with trivial infinitesimal character p, but one may expect similar re-
sults for unitary representations of orthogonal groups with integral infinites-
imal character. Considering “Arthur—Vogan packets” instead of the Vo-
gan packets will include other unitary representations which are of interest
to number theory for example to the representation Ay()\). Low dimen-
sional examples and our results suggest that there exists pairs of groups
G x G = SO(p+1,q) x SO(p,q) and of representations U; X U, in this
“Arthur-Vogan packet” so that Homg(Ur |z X Uy, C) # {0}. The exam-
ples also suggest an algorithm to determine pairs of groups and the pairs of
representations with nontrivial multiplicity.
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12 Application II: Periods, distinguished rep-
resentations and (g, K')-cohomologies

Let H be a subgroup of G. Following the terminology used in automorphic
forms and the relative trace formula, we say that a smooth representation U of
G is H-distinguished if there exists a nontrivial H-invariant linear functional

F1.U >,

i.e., if U has a nontrivial H-period F'. We consider first irreducible rep-
resentations of G with infinitesimal character p which are H-distinguished
for the pair (G,H) = (O(n + 1,1),0(m + 1,1)) or for the pair (G,H) =
(O(n,1) x O(m, 1),0(m, 1)) with m < n. We then discuss a bilinear form on
the (g, K')-cohomology of the representations of (O(n+1,1) x O(n, 1)) with
infinitesimal character p which is induced by a symmetry breaking operator.

12.1 Periods and O(n, 1)-distinguished representations
12.1.1 Periods

Let K be a number field, A its adels and let G; x G5 be a direct product of
semisimple groups over a number field K. We assume that Gy C G;. If the
outer tensor product representation 11, X7, is an automorphic representation
of the direct product group G;1(A) x G5(A), then the Gy-period integral is

defined as
/ @1(h) o () dh.
G2(K)\G2(A)

Here ®; and ¢5 are smooth vectors for the representation ITy Xy, If I1, Xy
is cuspidal, then the integral converges and it defines a Go(A)-invariant linear
functional on the smooth vectors of II, X . If this linear functional is not
zero, then 11y Xy is called Go-distinguished. Conjecturally for certain pairs
of groups the value of this integral is a multiple of the central value of an
L-function, see [13] 20, 21].

Often this period integral factors into a product of local integrals. Follow-
ing the global terminology we say that an admissible smooth representation
IT X 7 of the direct product group G1(R) x G2(R) is Go(R)-distinguished if

there is a nontrivial continuous linear functional

Fe® IR - C
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which is invariant by G»(R) under the diagonal action. Here we recall Section
for the topology on the tensor product. If IIX7 is Go(R)-distinguished,
we say that F¢2®) is a period of Il X 7. We say that the period is nontrivial
on a vector @ ¢ € X if ®® ¢ is not in the kernel of F“2®) If the period
is nontrivial on a unit function ® ® ¢, we refer to its image as the value of
the period on ® ® ¢.

Remark 12.1. The integral

/G s

converges for some smooth vectors of discrete series representations II X 7
for some symmetric pairs (G1(R), G3(R)). This was used by J. Vargas [62] to
determine some subrepresentations in the restriction of some discrete series
representations II of G (R) to the subgroup Ga(R).

We recall from Theorem [£.4] that the space of symmetry breaking opera-
tors

Homg, g (IT|gym), )

and the space of G3(R)-invariant continuous linear functionals
HOHIGQ(]R) (H X T, (C)

are naturally isomorphic to each other. Thus, instead of considering a Go(R)-
equivariant continuous linear functional defined by an integral, we may use
symmetry breaking operators to construct G(R)-invariant continuous linear
functionals. This technique allows us to obtain G3(R)-invariant continuous
linear functionals not only for discrete series representations but also for
nontempered representations. Thus we can determine for the pair (G,G’) =
(O(n + 1,1),0(n, 1)) the dimension of the space Home (II X 7, C) for all
II € Irr(G), and 7 € Irr(G”),, as follows.

Corollary 12.2. Suppose 0 <i<n+1,0<j<n,andd, c € {£}. Letll;;
and ;. be irreducible admissible smooth representations of G = O(n +1,1)
and G' = O(n, 1), respectively, that have the trivial infinitesimal character p
as in 230). Then the following three conditions on (i, j,d,€) are equivalent:

(i) HomG/(Hi,g X Tjes (C) 7é {0}?
(ii) dime Home (I s ® 7., C) = 1;
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(iii) j € {i,i — 1} and & = ¢.

Proof. Owing to Theorem (4] this is a restatement of Theorems ] and
42 O
12.1.2 Distinguished representations

Let G be a reductive group, and H a reductive subgroup. We regard H as
a subgroup of the direct product group G x H via the diagonal embedding
H—GxH.

Definition 12.3. Let ¢ be a one-dimensional representation of H. We say
an admissible smooth representation Il of G is (H,)-distinguished if

Homp (I X ", C) ~ Homp (11|, ) # {0}.

If the character v is trivial, we say Il is H-distinguished.

In what follows, we deal mainly with the pair
(G,H)=(0(n+1,1),0(m+1,1)) for m <n.

Theorem 12.4. Let 0 <i < n+1. Then the representations I1; 5 (6 € {£})
of G=0(n+1,1) are O(n+ 1 — i, 1)-distinguished.

The period is given by the composition of the symmetry breaking opera-
tors that we constructed in Chapter [0 with respect to the chain of subgroups

G=0(n+11)>0MNn,1)>D0n—-1,1)D--->0m+1,1)=H, (12.1)

as we shall see in the proof in Section [2.21 Without loss of generality,
we consider the case 6 = +, and write simply II; for II, ;. We recall from
Theorem 20 (3) that IT; = II; ; has a minimal K-type 1°(i, +) = A*(C"™)X
1.

Let v € AY(C""!) be the image of 1 € C via the following successive
inclusions:

/\i((CnJrl) B /\zfl((cn) SRS /\i*l(cn+1*l> SRS /\O(CTHrlfi) ~C> 1’

and we regard v as an element of the minimal K-type .’ (i, +) of II;.
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Theorem 12.5. Let 11; be the irreducible representation of G = O(n+1,1),
and v be the normalized element of its minimal K-type as above. For 0 <
i <mn, the value F(v) of the O(n+ 1 —1i,1)-period F' on v € 11, is
W%i(?n—i—ll) y = if 26 <n+1,
((n =)yt (=12 —n—1)  if2i>n+1.

12.1.3 Symmetry breaking operators from II,; s to 7,5 (j € {i—1,i})
Let (G,G") = (O(n+1,1),0(n,1)). We recall from Theorem 2201 (2) that

Irr(G), ={ILis : 0<i<n+1,6==},
Irr(G"), ={mj.: 0<j<n,e==%}

In Chapter [[0, we constructed nontrivial symmetry breaking operators
A s — mje
for j € {i — 1,i} and 0 = ¢, and investigated their (K, K’)-spectrum for
minimal K- and K’'-types,
(1, 1) = (12(6,0), 1°(5,0)),

see Proposition [10.30in the case j = ¢ — 1 and Proposition [[0.12in the case
j =i

For the proofs of Theorems (2.4 and 23] we use these operators A, ; in
the case j = i— 1. For the study of the bilinear forms on (g, K)-cohomologies
(see Section [[24] below), we shall use them in the case j = i.

12.2 Proofs of Theorems 12.4] and

We are ready to prove Theorems [2.4] and [[2.5] by using Proposition [0.30
successively.

Proof of Theorem [127 Consider the chain (I2]) of orthogonal subgroups
with m =n — 4. For 1 </ <1, we denote by

 O(n—t+2,1) O(n—t+1,1)
A1t 17,5 — 17,

the symmetry breaking operator given in Proposition [0.30 for the pair
(On—0+2,1),0(n— ¢+ 1,1)) of groups. Here “Hg?_”l’l)” stands for
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the irreducible representation “Il;_, " of the group O(n — ¢+ 1,1) as given
in Theorem 2.20) by a little abuse of notation. Then the composition

F = Al,O O-:-0 Ai—l,i—Q e} Ai,i—l (122)
defines a nonzero O(n + 1 — i, 1)-invariant functional on the irreducible rep-
resentation II; =11, , of G = O(n+1,1). O
Proof of Theorem [IZ23. The irreducible representation HO(nJrl — 1), namely,
“TII;_¢4” of the group O(n + 1 —¢,1) has a minimal K-type

Wi — 0, 1)0 = NC™ "1 € O(n + 1 - ) x O(1).
The (K, K')-spectrum of the symmetry breaking operator A1 : H?(?+f+2 Do
HZ.O_(?_ZHJ for the minimal K-types p’(i — £+ 1,+)D <= (i — £, +)©
given by
I L n—2ive if n £ 2i —
(n —1)! 1 ifn=2i—1¢,

by Proposition [0.300 Applying this formula successively to the sequence of
minimal K-types:

pli, )= 1064+) " e (= 6 )O == 20,0 = C

we get
qii(2n—i=1)

li[7r " n—21—|—€)
yoie (n—1) ~ ((n—9))i1(n — 2i0)!
ifn>2i—1.
On the other hand, if n < 2¢ — 1 < 2n — 1, then

B 2izn—1_nt (n—2+10) i | i 7T (n— 20+ 0)
Flo) = ( 61;[1 (n—1)! ) (n —1)! (@:2!1#1 (n =) >

qii(2n—i=1) '
e A A B R N (CEP)
( )n+1 17, 2n—i— 1)(21—71—]_)'
((n— @)=
The cases i = n+1 (n: odd) or i = n are treated separately, and it turns out

that the formula of F'(v) coincides with the one for ¢ < 20 —1 < 2n—1. Thus
we have completed the proof of Theorem 2. ]
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In the next theorem, we consider the pair
(G,H)=(0(n+1,1),0(m+1,1)) with m < n.

We write II¥ (0 < i < n+ 1) for the irreducible representation II; ; of G
(see ([Z3T)), and write 7/’ for the irreducible representation “II; ;" of the
subgroup H for 0 < j < m + 1. Theorem below generalizes Theorem
24 which corresponds to the case j = 0.

Theorem 12.6. Let0<i:<n+1and0<j7<m+1.

(1) The outer tensor product representation 11¢ X 7er of the direct product
group G x H has an H-period if 0 <i— 7 <n—m.

(2) The period constructed by the composition of the symmetry breaking
operators via the sequence ([IZ1]) is nontrivial on the minimal K -type.

Proof of Theorem [IZ.d. The proof is essentially the same with the one for
Theorem [M2.4] except that we use not only the surjective symmetry breaking
operator A;; 1: II; 4 — m_1 4 for the pair (G,G') = (O(n + 1,1),0(n, 1))
but also the one

Aji: i g — iy

for which the (K, K')-spectrum on minimal K-types u’(i, +) < p’(i,+)" is
nonzero by Proposition

Composing the symmetry breaking operators Ay ;1 or Ay successively
to the sequence (IZJ]) of orthogonal groups, we get a nonzero continuous
H-homomorphism I1¢ — 7TJH if 0 <7—7 <n—m. Then the first state-
ment follows because 7T]H is self-dual. The second statement is clear by the

construction and by the (K, K')-spectrum. O

12.3 Bilinear forms on (g, K')-cohomologies via symme-
try breaking: General theory for nonvanishing

For the rest of this chapter, we discuss (g, K)-cohomologies via symmetry
breaking. In this section, we deal with a general setting where G D G’ is a
pair of real reductive Lie groups. We shall define natural bilinear forms on
(g, K)-cohomologies and (g’, K')-cohomologies via symmetry breaking G |
G’, and prove a nonvanishing result (Theorem [[211]) in the general setting
generalizing a theorem of B. Sun [B5].
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12.3.1 Pull-back of (g, K)-cohomologies via symmetry breaking

Let G be a real reductive Lie group, and K a maximal compact subgroup.
We recall that the (g, K)-cohomology groups are the right derived functor of

Homyg  (C, )

from the category of (g, K)-modules. Suppose further that G’ is a real re-
ductive subgroup such that K’ := K NG’ is a maximal compact subgroup of
G'. We write gc = ¢ + pc and g = € + pi for the complexifications of the
corresponding Cartan decompositions. In what follows, we set

d:=dimG'/K' = dimc¢ pg..

We shall use the Poincaré duality for the subgroup G’, which may be discon-
nected. In order to deal with disconnected groups, we consider the natural
one-dimensional representation of K’ defined by

x: K" = GLc(N\%g) ~ C*. (12.3)

The differential dy is trivial on the Lie algebra €. We extend x to a (g’, K')-
module by letting g’ act trivially. Then we have

H%g' K';x) ~C. (12.4)
Example 12.7. For G’ = O(n, 1), the adjoint action of K’ ~ O(n) x O(1)
on pe =~ C™ gives rise to the one-dimensional representation
A" (pe) = A"(C) B (=1)".
Hence, in terms of the one-dimensional character xq, of O(n, 1) defined in

Z13), the (¢’, K')-module x defined in (I2.3)) is isomorphic to x_ (—1j». See
also Example below.

Now we recall the Poincaré duality for (g, K)-cohomologies of (g, K)-
modules when G is not necessarily connected:

Lemma 12.8 (Poincaré duality). Let x be the one-dimensional (g, K')-
module as in (I2Z3)). Then for any irreducible (g', K')-module Y, there is
a canonical perfect pairing

H (g, K Y) x H (g, K'YV ® x) = H(g, K'; x) = C (12.5)
for all j € N.
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Proof. See [26] Cor. 3.6] (see also [ Chap. I, Sect. 1] when K is connected).
[l

We use the terminology “symmetry breaking operator” also in the cat-
egory of (g, K)-modules, when we are given a pair (g, K) and (g, K’) such
that g D ¢’ and K D K’. We prove the following.

Proposition 12.9. Let X be a (g, K)-module, Y a (¢, K')-module, and Y
the contragredient (g', K')-module of Y. Suppose T: X — Y is a (¢/, K')-
homomorphism, where we regard the (g, K)-module X as a (g', K') by re-
striction. Then the symmetry breaking operator T induces a canonical ho-

momorphism ' '
T.: H (g, K;X) — H (¢, K';Y) (12.6)

and a canonical bilinear form
Br: Hi(g,K; X) x H* (¢, K'; YV @ x) = C (12.7)
for all 3 € N.

Proof. The (g, K)-module X is viewed as a (g’, K’)-module by restriction.
Then the map of pairs (g, K’) < (g, K) induces natural homomorphisms

H(g,K;X)— H'(¢',K'; X) forall j € N.

On the other hand, since T: X — Y is a (¢, K')-homomorphism, it
induces natural homomorphisms

Hi(g,K';X)— H' (¢, K';Y) forall j €N.

Composing these two maps, we get the homomorphisms (2.6
In turn, combining the morphism ([[26]) with the Poincaré duality in
(23) in Lemma 28 we get the bilinear map By as desired. O

12.3.2 Nonvanishing of pull-back of (g, K')-cohomologies of A, via
symmetry breaking

Retain the setting where (G,G") is a pair of real reductive Lie groups. In
this subsection, we discuss a nonvanishing result for morphisms between
(g, K)-cohomologies and (g’, K')-cohomologies under certain assumption on
the (K, K')-spectrum of the symmetry breaking operator, see Theorem [2.T7]
and Remark below.
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In order to formulate a nonvanishing theorem, we begin with a setup
for finite-dimensional representations of compact Lie groups. Let U be a
K-module, U" a K'-module, and ¢: U — U’ a K’-homomorphism. Via the
inclusion map p’ < p, the composition of the following two morphisms

Homg (Ape, U) — Homg: (Npe, U') — Homp (N pe, U')
induces natural homomorphisms
¢.: Homg (Apc, U) — Homp (N pg, U') (12.8)

for all 7 € N.

Definition 12.10. A K’-homomorphism ¢ is said to be p-nonvanishing at
degree j if the induced morphism ¢, in ([I2.8]) is nonzero.

By a theorem of Vogan—Zuckerman [65] every irreducible representation
of G with nontrivial (g, K')-cohomology is equivalent to the representation, to
be denoted usually by A, for some 6-stable parabolic subalgebra q. Here A,
is a (g, K)-module cohomologically induced from the trivial one-dimensional
representation of the Levi subgroup L = Ng(q) := {g € G : Ad(9)q = q}.
Suppose q = Ic +u and g’ = [ + 1’ be f-stable parabolic subalgebras of g¢
and ge, respectively. In general, we do not assume an inclusive relation of
q and q’. We shall work with a symmetry breaking operator T: X — Y,
where X is a (g, K)-module A; and Y is a (g’, K’)-module Ay. We note that
Y contains a unique minimal K’-type, say p/. Let Y’ be the K’-submodule
containing all the remaining K’-types in Y, and

pr: Y — i

be the first projection of the direct sum decomposition Y =/ &Y.

Theorem 12.11. LetT: X — Y be a (¢, K')-homomorphism, where X is a
(g, K)-module Aq andY is a (¢, K')-module Ay. Let U be the representation
space of the minimal K-type p in X, and U’ that of the minimal K'-type '
inY. We define a K'-homomorphism by

or:=proT|y: U —=U" (12.9)

(1) If or is zero, then the homomorphisms T,: H' (g, K; X) — H'(g', K';Y)
(see ([I2.6]) ) and the bilinear form By (see (I2.1) ) vanish for all degrees
JjEeN.
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(2) If pr is p-nonvanishing at degree j, then T, and the bilinear forms By
are nonzero for this degree j.

Proof of Theorem [IZ11 By Vogan—Zuckerman [68] Cor. 3.7 and Prop. 3.2,

we have natural isomorphisms:
Homy (Apc, U) = Homg (Npe, X) = HY (g, K; Ay). (12.10)
By the definition (I2.6]) of 7. in Proposition and @, (see (I28)), the

following diagram commutes:
Homg (A'pe,U) = Homg(Npe, X) SH (g, K; X)
(Tfv)s 4 O LT,
Homyg (A'pe, T(U)) € Homp (Npe, Y) SH (g, K';Y).

Since Hompg: (A’pe,Y') = {0} for all j where Y = ¢/ & Y’ is the de-
composition as a K’-module as before, we obtain the following commutative
diagram by replacing (T'|y). with (¢r).:

Hompg (Apc,U) = Homg(Apc, X) SH (g, K; X)
(o)« 4 O 1T,
Hom (Ape, U') = Homp (Np, Y) SH (g, K';Y).

Hence T, is a nonzero map if and only if (¢r). is nonzero. Since the bilinear
map ([[23) is a perfect pairing, we conclude Theorem 21T} ]

Remark 12.12. (1) The nonvanishing assumption of ¢r in the first state-
ment of Theorem [[2.17] can be reformulated as the nonvanishing of the
(K, K')-spectrum (see Section [0.3]) of the symmetry breaking operator

T at (p, pt').

(2) The verification of the p-vanishing assumption of ¢ in the second state-
ment of Theorem [2.17] reduces to a computation of finite-dimensional
representations of compact Lie groups K and K.

(3) If we set R := dim¢c(uNpe) and R := dime(uw' N pg), then the isomor-
phisms [65], Cor. 3.7] show

Homp (A'pe, p) =~ Hompar (A" (I Npe), C),
Homy: (A'pe, 1) =~ Hompnw (N7 (I N p), ©).
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12.4 Nonvanishing bilinear forms on (g, K')-cohomologies
via symmetry breaking for (G,G’') = (O(n+1,1),0(n, 1))

12.4.1 Nonvanishing theorem for O(n+1,1) | O(n, 1)

In this section, we apply the general result (Theorem [[2TT]) to the pair
(G,G")=(0(n+1,1),0(n,1)).

In Proposition [4.45in Appendix I, we shall see that if IT is an irreducible
unitary representation of G = O(n+1,1) with H*(g, K; I1x) # {0}, then the
smooth representation II* must be isomorphic to Iy 5 defined in ([2.35]) for
some 0 < ¢ <n-+1andd € {£}. Thus, we shall apply Theorem [2ZTT] to the
representations Il 5 of G and similar representations 7, . of the subgroup
G'=0(n,1).

In what follows, by abuse of notation, we denote an admissible smooth
representation and its underlying (g, K )-module by the same letter when we
discuss their (g, K')-cohomologies.

Theorem 12.13. Let (G,G') = (O(n + 1,1),0(n,1)), 0 < i < n, and
§ € {x£}. Let T := A;; be the symmetry breaking operator 1I; s — m; 5 given
in Proposition [I012

(1) T induces bilinear forms

Br: Hj(QuK§Hz‘,6) X Hn_j(gluK,;Wn—i,(—nnJ) — C  forall j.

(2) The bilinear form By is nonzero if and only if j =1 and § = (—1)".

Remark 12.14. A similar theorem was proved by B. Sun [58] for the (g, K)-
cohomology with nontrivial coefficients of a tempered representation of the
pair (GL(n,R), GL(n — 1,R)).

We begin with the computation of the (g, K)-cohomologies of the irre-
ducible representation II, 5 of G = O(n + 1,1).

Lemma 12.15. Suppose 0 <{<n+1, €N, and 6 € {£}. Then

C if j =4{ and § = (—1)¢,

Hi(g K:Tl,;) =
(s 2 {{O} otherwise.

In view of Theorem (4), we have:
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Example 12.16. For ' = O(n, 1), we have m, (_1y» =~ x_ (—1)» from The-
orem 2200 (4). In turn, the assertion H"(g', K'; x— (—1)») ~ C from Lemma
12,19 corresponds to the equation (IZ4]) by Example TZ7

By Proposition [4£.44] in Appendix I, Lemma 215 may be reformulated
in terms of the cohomologically induced representations

(ACIi)ab = Aqi X Xab = R%(Xab ® (Cp(uz))

(see Section [Z.9.1] for notation) as follows:
Lemma 12.17. Suppose 0 < i < ["TH] and j € N. Then we have

H (g, K; (Aq)14) =C ifj=1i € 2N; = {0} otherwise,
H (g, K;(Ag)1-) =C if j =i € 2N+ 1; = {0} otherwise,
H'(g,K;(Ag)-1)=C ifj=n+1—1i€2N; = {0} otherwise,
H(g,K;(Ay,)-_)=C ifj=n+1-i€2N+1;={0} otherwise.

Proof of Lemma[I2.17 We recall from Theorem (3) (see also Propo-
sition [444] in Appendix I) that the irreducible G-module II; s contains
(i, 6) ~ AY(C"1) K § as its minimal K-type. By [63], we have then a
natural isomorphism

HOHlK(/\jPC, Mb(i> d)) ~ Hj(gv K11, 5).

On the other hand, the adjoint action of K = O(n + 1) x O(1) on p¢ =~
C"*+! gives rise to the j-th exterior tensor representation

N (pc) ~ N(CH) K (1)
Now the lemma follows. O]

Lemma 12.18. Let o7 be the K'-homomorphism defined in (IZ9) for the
symmetry breaking operator T': 11,5 — w5 in Theorem [I213 Then @r
is p-nonvanishing at degree j (Definition [IZ104) if and only if j = i and
§=(-1)".

Proof. Similarly to the G-module II; 5, the G'-module 7; 5 contains ub(i, 5) ~

A(C") X4 as its minimal K-type. Then ¢z in Theorem [ZT1 amounts to a
nonzero multiple of the projection (see (Z2)),

pr; ;- /\i(CnH) X§— /\i(C”) X 9.
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Then (¢7). is a nonzero multiple of the natural map from

HomO(n+1 xO(1 (/\] (Cn+1) ( )jv /\Z(Cn—H) X 5)

to
Homogm)xo) (A’ (C") B (=1), AY(C") K §)

induced by the projection pr; ... Now the lemma is clear. O

T—1°

We are ready to apply the general result (Theorem [2.1T]) to prove The-
orem (12,15

Proof of Theorem 1213 By Example [2.7] we have an isomorphism y =~
X—, (-1 as (g, K')-modules. Then it follows from Theorem (5) and (6)
that there are natural G’-isomorphisms:

15®X (1)”—7T15®X (=) = g (~1)ns-

Thus Theorem 1 (1) follows from Proposition [2Z9 It then follows from
Lemma 3 that Theorem 213 (2) holds as a spemal case of Theorem
02111 O

In Proposition [444] we shall see that the underlying (g’, K’)-module
of i, (—1yns 18 isomorphic to (Ag)_ (—1ns if 0 < @ < [§]. The symme-
try breaking operator A;;: II; 5 — m; 5 given in Proposition induces a
(¢, K')-homomorphism (A, )15 — (Ag)+ s

Corollary 12.19. If 0 < 2i < n, then the symmetry breaking operator
A; i 1 5 = m 5 induces bilinear forms

H(g, K; (Aq)1.6) x H" (g, K5 (Agy)— (-1yns) = C
and linear maps
H (g, K (Aq,)+6) = H (¢, K's (Agp) +.5)

for all j. They are nontrivial if and only if j =i and § = (—1)".

Composing the symmetry breaking operators we deduce the following.

235



Corollary 12.20. If0 < 2i < n and H = O(n+1—1i, 1), then the composition
of the symmetry breaking operators induces a linear map

Hj(ga K; (Aqi)+,5) - Hj(hv Kn Hl; (quﬂf))Jrﬁ) fOT all J

It is nontrivial if and only if j =i and § = (—1)"T1%,

Remark 12.21. Y. Tong and S. P. Wang [60] considered representations of
SO(n+1,1) with nontrivial (g, K)-cohomology which are SO(n—1i) x SO(n—+
1 — i, 1)-distinguished. Independently S. Kudla and J. Millson H8] consid-
ered representations of O(n + 1,1) with nontrivial (g, K)-cohomology which
are O(n — i) x O(n + 1 — i, 1)-distinguished. Since O(n — i) commutes with
O(n —i+1,1), we have an action of O(n — i) on Homo(,—i+1,1)(ILi 5, C) and
Homo(n—it1,1) (5, C) 0(n=1) is isomorphic to Homon—iyxom—i+1,1)(ILis, C). By
results in 48] this induces a nontrivial linear map on the (g, K')-cohomology.

12.4.2 Special Cycles

Geometric, topological and arithmetic properties of hyperbolic symmetric
spaces Xr = ['\O(n+1,1)/K for a discrete subgroup I" have been studied ex-
tensively using representation theoretic and geometric techniques. See for ex-
ample [B [@ and references therein. If Xt is compact, then the Matsushima—
Murakami formula ([@ Chap. VII, Thm. 3.2]) shows

e

where G is the set of equivalence classes of irreducible unitary representations
of G (i.e., the unitary dual of G), and we set for Il € G

m(T, ) := dimg Homg(I1, L*(T\G)).

By abuse of notation, we shall omit the subscript K in the underlying (g, K)-
module IIx of IT when we discuss its (g, K')-cohomologies.

In Proposition in Appendix I, we shall show that every irreducible
unitary representations with nontrivial (g, K)-cohomology is isomorphic to a
representations I1; 5 for some ¢ and § € {£}, see also Theorem 2201 (9). Thus

H*(Xr,C @m D, 1L ) H (g, K 11, ).
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To obtain arithmetic information about the cohomology and the homol-
ogy of Xr, special cycles, i.e., orbits of subgroups H C G on Xr, and their
homology classes are frequently used. Suppose 0 < 2¢ < n + 1. We let

Gi=0n+1-1i,1), K;:=KNG; ~0(Mn+1-1)x0(1),

and X; be the Riemannian symmetric space G;/K;. Let b; :==n + 1 — i, the
dimension of X;. We set § = (—1)""~*. By Corollary [2Z20 there exists a
nontrivial linear map A"+1-én+i=i.

Hn—H_i(gv K; (Aqn+1—i)+,5) — Hn—H_i(gia Ki; (Aqn+1—iﬁ(gi)c>+,5)‘

Note that (Aqg,,, .n(g)e)+.0 18 one-dimensional and the image of A™F1-tn+l=
is isomorphic to

Hom, (A" (pc N (gi)c)s X+.5) = Homp, (A" H(C™ ) K1, 1).

Since the nonzero element of
HomKi(/\n-l-l—i(Cn-i-l—i) X 1’ 1)

gives a volume form on the symmetric space X; = G;/K;, this suggests that
the homology classes defined by the orbits of O(n+1—1,1) for 0 < 2i < n+1
on Xt are related to the contribution of H"*1~(g, K; 11, 5) to the cohomology
of Xt. The work of S. Kudla and J. Millson confirms this. We sketch their
results following the exposition in A8 E9 B

We have an embedding

LXlXZ;)X:G/K

We fix an orientation of X and X; which is invariant under the connected
component of G respectively G;. Let A be the adels of the real number field
K. Then

X A — X ® G(A f)

is the adelic symmetric space. We set G* := [[ SOy(p, q) where we take the
product over all real places of K and G7(K) := G(K) N GTG(Ayf). Then

HY(G(K)N\G(A);C) = H'(g, I; C=(G(Q)\G(A)))

and

H*(GT(K)\G(A)/KK;;C) = H*(X,; C)*r.
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The cohomology here is the de Rham cohomology if X, is compact, otherwise
the cohomology with compact support.
Following the exposition and notation in [B0 Sect. 2] we have an inclusion

which is equivariant under the right action of G(Ay). For g € G(Ay) we
obtain a special cycle

Xig = XiGi(Af)/ (9K 97" N Gi(Ay)).

Consider the subspace SX;(X,) spanned by special cycles in the homology
group H;(Xy).

We now assume that all but one factor of G, is compact and thus that
Xa/Kjy is compact. Using the theta correspondence, S. Kudla and J. Millson
show that there exist a subgroup Ky and nontrivial homomorphisms

U: HY(g, K T0) — HY(X,/Ky;C) C HY(X,)

for some irreducible representation II of G.

Using integration, S. Kudla and J. Millson (8], [50, Thm. 7.1] prove the
following;:

Theorem 12.22. There exists a nontrivial pairing
U(H"™ (g, K;1I)) x SX;(X,) — C.

Remark 12.23. (1) Aswe see in Theorem 2201 (9), Lemma[I2ZTI7and Propo-
sition[Z44], the irreducible representation IT of G with H"™1~(g, K1) #
{0} must be of the form

H ~ Hn+1,i,(,1)n+l—i,
namely, IIg ~ (Ag,) - (—1ynt1-i.

(2) The nontrivial pairing in Theorem [222] defines an O(n + 1 — i, 1)-
invariant linear functional on the irreducible G-module IT,, 1 _; (_1yn+1-
which is nontrivial on the minimal K-type.
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13 A conjecture: Symmetry breaking for ir-
reducible representations with regular in-
tegral infinitesimal character

We conjecture that Theorems 1] and hold in more generality. We will

formalize and explain this conjecture in this chapter more precisely and pro-

vide some supporting evidence.
As before we assume that G = O(n + 1,1) and G’ = O(n, 1).

13.1 Hasse sequences and standard sequences of irre-
ducible representations with regular integral in-
finitesimal character and their Langlands param-
eters

Before stating the conjecture we define Hasse sequences and standard se-
quences of irreducible representations, and collect more information about
the representations which occur in the Hasse and standard sequences. In
Chapter [[4] (Appendix I) we determine their f-stable parameters.

13.1.1 Definition of Hasse sequence and standard sequence

Definition-Theorem 13.1 (Hasse sequence). Let n = 2m or 2m — 1. For
every irreducible finite-dimensional representation F' of the group G = O(n+
1,1), there exists uniquely a sequence

UO g e ; Um—l ) Um
of irreducible admissible smooth representations U; = U;(F) of G such that

1. Uy~ F,

2. consecutive representations are composition factors of a principal series
representation;

3. U; (0 <i < m) are pairwise inequivalent as G-modules.

We refer to the sequence

U() s e y Um—l ) Um



as the Hasse sequence of irreducible representations starting with the finite-
dimensional representation Uy = F. We shall write U;(F) for U; if we em-
phasize the sequence {U;(F)} starts with Uy = F.

Sketch of the proof. D. Collingwood [[Il Chap. 6] computed embeddings of
irreducible Harish-Chandra modules into principal series representations for
all connected simple groups of real rank one, which allowed him to define a
diagrammatic description of irreducible representations with regular integral
infinitesimal character of the connected group Gy = SOg(n + 1,1). For the
disconnected group G = O(n+1, 1), we can determine similarly the composi-
tion factors of principal series representations, as in Theorems [[3.7] and
below (see Sections in Appendix II for the relationship between ir-
reducible representations of the disconnected group G = O(n+1, 1) and those
of a normal subgroup of finite index). To show the existence and the unique-
ness of the Hasse sequence, we note that there exists uniquely a principal
series representation that contains a given irreducible finite-dimensional rep-
resentation F' as a subrepresentation. Then there exists only one irreducible
composition factor other than F', which is defined to be U;. Repeating this

procedure, we can find irreducible representations U, Us, ---, whence the
existence and the uniqueness of the Hasse sequence is shown for the discon-
nected group G = O(n+ 1,1). O

As we have seen in Theorem 2201 (1) when F is the trivial one-dimensional
representation 1, the representations U; and U, in this sequence have differ-
ent signatures. The standard sequence (Definition 2.21]) starting with 1 has
given an adjustment for the different signatures. Extending this definition
for the sequence starting with an arbitrary irreducible finite-dimensional rep-
resentation F', we define the standard sequence of irreducible representations
starting with F' as follows:

Definition 13.2 (standard sequence). If
U , oo Upa , Uy

is the Hasse sequence starting with an irreducible finite-dimensional repre-
sentation F' of GG, then we refer to

H() = UO y e ) Hm—l = Um—l ® (X-i-—)mil ) H’m = Um ® (X+—)m
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as the standard sequence of irreducible representations II; = II;(F') starting
with Iy = Uy = F, where x,_ is the one-dimensional representation of G

defined in (2ZI3).

Remark 13.3. Clearly, any U;(F') in the Hasse sequence (or any II;(F) in the
standard sequence) starting with an irreducible finite-dimensional represen-
tation F' of G has a regular integral 34(g)-infinitesimal character (Definition
2.1).

The next proposition follows readily from the definition.

Proposition 13.4 (tensor product with characters). Let F' be an irreducible
finite-dimensional representation of G, and x a one-dimensional represen-
tation of G. Then the representations in the Hasse sequences (and in the
standard sequence) starting with F' and F ® x have the following relations:

(Hasse sequence) Ui(F)® x ~U;(F ® x),
(standard sequence) IL(F)® x ~IL(F ® ).

The Hasse sequences and the standard sequences starting with one-dimensional
representations of G are described as follows.

Example 13.5. We recall from Theorem that IIps (0 < ¢ < n+1,
0 € {£}) are irreducible representations of G = O(n + 1,1) with 35(g)-
infinitesimal character pg. Then for each one-dimensional representation
F ~ xiy of G (see [ZI3)), the Hasse sequence U;(F) (0 < i < [%H]) that
starts with Uy(F) ~ F, and the standard sequence IT;(F') := U;(F) @ (x4+_)"
are given as follows.

Ui(1) = I -1y, IL(1) =1L,
Ui(x—) = i e, I(x1—) =1L _,
Ui(x—+) = Mo p1i -y ILi(x—+) = Wpg1—i s
Ui(x—-) = W1 (—1yiet, IL(x——) =i -

13.1.2 Existence of Hasse sequence

In Section [3.2] we formalize a conjecture about when
Homg (I|gr, 7) # {0}

for Il € Irr(G) and 7 € Irr(G’) that have regular integral infinitesimal char-
acters by using the standard sequence (Definition [3.2]). The formulation is
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based on the following theorem which asserts that the converse statement to
Remark [[3.3]is also true.

Theorem 13.6. Any irreducible admissible representation of G' of moderate
growth with reqular integral 3¢ (g)-infinitesimal character is of the form U;(F')
in the Hasse sequence for some j (0 < j < [%}]) and for some irreducible
finite-dimensional representation F' of G.

Simalarly, any irreducible admissible representation of G of moderate growth
with regular 3¢(g)-infinitesimal character is of the form I1;(F') in the stan-
dard sequence for some j (0 < j < [%2]) and for some irreducible finite-
dimensional representation F' of G.

The proof of Theorem follows from the classification of Irr(G) (Theo-
rem [[4.30in Appendix I) and the Langlands parameter of the representations
in the Hasse sequence below (see also Theorem [I4.37)).

13.1.3 Langlands parameter of the representations in the Hasse
sequence

Let F' be an irreducible finite-dimensional representation of G = O(n+ 1, 1).
We now determine the Langlands parameter of the representations in the
Hasse sequence {U;(F)} (and the standard sequence {IL;(£)}) for 0 < i <
[2£1] and their K-types.

We use the parametrization of the finite-dimensional representation of
O(n, 1) introduced in Section [[41]in Appendix I.

We begin with the case where F' is obtained from an irreducible repre-
sentation of O(n + 2) of type I (Definition 24]) via the unitary trick. The
description of U;(F) and II;(F') for more general F' can be derived from this
case by taking the tensor product with one-dimensional representations y 44

of G, see Theorem [I3.11] below.

Case 1. n=2mand G =0(2m+ 1,1).

o — —

For F' € O(n + 2) of type I, we define ¢ = ¢ (F) € O(n) of type I for
0<i<m=21as follows. We write F' = FO"+20)(s) with

s=(50,"",8m, 0" €AT(n+2) = AT(2m +2)

as in (Z20), and regard it as an irreducible finite-dimensional representation
of G=0(n+1,1). We set

—

ol .= FOM () € O(n) for 0<i<m,

242



where s € AT (n) = A*(2m) is given for 0 < i < m as follows:
8(7,) = (SO + ]-7 Ty 8-+ ]-7 '§\7ﬁ7 Sit1y, " ) Smy Om) (131)

It is convenient to introduce the extended Hasse sequence {U; = U;(F)}
(0 <i<2m+ 1) by defining

Ui(F) =Upp1i(F)@x—— form+1<i<n+1=2m+ L. (13.2)

Theorem 13.7 (n = 2m). Given an irreducible finite-dimensional represen-
tation FO+20) (s)of G = O(n + 1,1) with

s = (807517"' 75m70>"' 70) € A+(Tl—|—2>(: A+(2m+2))7

there exists uniquely an extended Hasse sequence Uy, Uy, -+, Uspyq Start-
ing with the irreducible finite-dimensional representation Uy = FOM+2C) ().
Moreover, the extended Hasse sequence Uy, - - -, Uymi1 Satisfies the following
properties.

(1) There exist exact sequences of G-modules:

0—>UZ’—>](_1)ifsi(0'(i),i—8i>—>U2‘+1—>0 <0§Z§m),
0—-U;, — ](_1)7,,_1-—5”_1- (0(”_i) ®det, i+ S$p—i) = Uiz1 =0 (m < i< 2m).
(2) The K-type formula of the irreducible G-module U; (0 < ¢ < m) is

given by
B PO 8 (1S
b

where b = (bo, by, ,bm, 0, ,0) runs over At (n+1) = AT(2m + 1)
subject to

bp>so+1>by>s1+1>--->biy > 51 +1,
S > b; > 841 2 b1 > 2 8y 2 by >0,
b, € {0,1}.

In particular, the minimal K-type(s) of the G-module U; (0 < i < m)
are given as follows:
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for s, =0,

]_70(71-1-1)(8(1‘)7 0) X (_1)i—si
= FOUtD (5o 41, 8ic1 4 1,8, Sia1s -+ 8, 07T K (—=1)17%;

for s, >0,

FOrD (O 0) R (—=1)% and (FO"V (s 0) @ det) & (—1)" =+,

Sketch of the proof. (1) By the translation principle, the first exact se-
quence follows from Theorem 2201 (1) which corresponds to the case
F ~ 1. Taking its dual, we obtain another exact sequence

0= U1 = L_qyi-ss (D n—i4+s)—=U —0 for0<i<m,

because Uj is self-dual. Taking the tensor product with the one-dimensional
representation y__ of GG, we obtain by (I3.2) and by Lemma 214 an-
other exact sequence of G-modules:

0= Unoi = I(_yyisi (0D @ det,n — i+ 8;) = Uny1- — 0.

Replacing i (0 <i<m) byn—i(m <n—1i<2m), we have shown
the second exact sequence.

(2) The K-type formula of the irreducible finite-dimensional representation
Uy = FO+L1(s) of G is known by the classical branching law (see Fact
2I2). Since the K-type formula of the principal series representation
is given by the Frobenius reciprocity which we can compute by using
Fact again, the K-type formula of U;,; follows inductively from
that of U; by the exact sequence in the first statement.

0

See also Theorem [I4.50 in Appendix I for another description of the
irreducible representation U;(F) in terms of 6-stable parameters.

Remark 13.8. When i = m and n = 2m, s is of the form
s = (sg+ 1, ,8m_1 +1,0m) € AT (2m),

and therefore the irreducible O(n)-module o™ = FOCm)(5(M) is of type Y
(Definition [2.6]). Hence we have an isomorphism

o™ ~ ™ @ det (13.3)
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as O(2m)-modules by Lemma [Z9 We recall from Theorem [I3.7] (1) that
there is an exact sequence of G-modules as follows:

0= Up = L_1ym—sm (6™, m — 5,,) = Uppys — 0.

Taking the tensor product with the character y__ ~ det, we obtain from
[@32]) and Lemma T4 another exact sequence of G-modules:

0= Uni1 = L_1ym—sm (0™ @ det,m — s,,) = Uy, — 0.
By ([I33]), the principal series representations
I pym—sm (FOC™ (M) ' — 5,) = I pymsm (FOP™ (s0™)) @ det, m — s,,)

split into a direct sum of two irreducible G-modules U,, and U,, ;1 (see also
Theorem (3) in Appendix I).

Case 2. n=2m —1and G = 0O(2m,1).
For F € O(n + 2) of type I, we define 0¥ = ¢@(F) € O(n) for 0 < i <
m—1=1(n—1) as follows. We write F' = FO"*2)(s) with

5= (50,81, " ,8m_1,0") € AT (n+2) = AT(2m + 1),
as in (Z20). Then we define s®) € AT(n) = AT(2m —1) (0<i<m —1) by
s .= (so+1,--,sic1+ 1,8, 81, 5 Sm_1,0"), (13.4)

and define irreducible finite-dimensional representations by

o® .= FOM () ¢ O/(;) for 0 <i<m-—1.
For later purpose, we set

st = (sg+ 1, - ,8m o+ 1,1,0m) € At(n).
Then there is an isomorphism as O(n)-modules:

o™V @ det o~ FOMW (5m),

It is convenient to introduce the extended Hasse sequence {U; = U;(F)}
(0 <i < 2m) by defining for m +1 <i < 2m

Ui(F) == Upt1-i(F) ® X—+- (13.5)
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Implicitly, the definition (I3.3]) includes a claim that there is an isomorphism
of discrete series representations (cf. Remark [[3.10 below):

Un(F) = Un(F) ® x_4 (13.6)

when G = O(n +1,1) with n = 2m — 1.

We note that the one-dimensional representations x__ and y_, in (I32)
and (I33) are chosen differently according to the parity of n.

The proof of the following theorem goes similarly to that of Theorem
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Theorem 13.9 (n = 2m — 1). Given an irreducible finite-dimensional rep-
resentation FO+20)(s) of G = O(n + 1,1) with

5= (50,51, " ,8m_1,0™) € AT(n+2)(= AT (2m + 1)),

there exists uniquely an extended Hasse sequence Uy, Uy, -+, Uspy of G =
O(2m, 1) starting with the irreducible finite-dimensional representation Uy =
FOW+20) (). Moreover, the extended Hasse sequence Uy, Uy, - -+, Us,, satis-

fies the following properties.
(1) There exist exact sequences of G-modules:
0= Ui = I_yysi(0Wi— 5;) = Uipr = 0 (0<i<m—1),
0—-U, — ](_1)n—i—sn_i (J(”_i) ®det, i+ $,—) = Uiz1 — 0 (m<i<2m-—1).
(2) The K-type formula of the irreducible G-module U; (0 < ¢ < m) is

given by
B PO )3 (RS
b

where b = (bo, b1, ,bym_1,0,-+-,0) Tuns over AT(n+1) = AT (2m)
subject to the following conditions:

bp>sg+1>by>s1+1>--->b; 1 >s,.1+1,
Si > b > 841 2 b1 >0 2 81 2 by 2 0.

In particular, the minimal K-type of the G-module U; (0 < i < m) is
given by

FO(n-l—l)(s(i)7 0) % (_1)1‘
= FOM (g0 41, 5,21 + 1,8, Siq1, -+ 5 Sm1, 0™ R (—=1)77%%,
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Remark 13.10. U, is a discrete series representation of G = O(2m, 1).

See also Theorem 451l in Appendix I for another description of the
irreducible representation U;(F') in terms of f-stable parameters.

By applying Proposition [3.4] and Lemma B.14] we may unify the first
statement of Theorems [[3.7 and as follows.

Theorem 13.11. Let F' be an irreducible finite-dimensional representation of
G =0(n+1,1) of type I (see Definition[T].3 in Appendiz 1), and a,b € {£}.
Then for F,p := F & Xap, there ezists uniquely a Hasse sequence U;(F,p)
(0 <@ < [=]) starting with Uy(Fup) = Fap. Moreover, the irreducible
G-modules U;(Fyp) occur in the following exact sequence of G-modules

0— Uz’(Fa,b) — [ab(fl)i_si (O'(gi),i — SZ') — Ui+1(Fa7b) — 0
for 0 <i < [22]. Here o) =6 ifa=+; 0@ @det ifa = —.
Remark 13.12. By ([B.22)), we have linear bijections for all 7, j:

Hotg (Us(F)|or, U(F")) = Hotg (Uns1i(F)lar Up; (F) ® o).

Remark 13.13. Using the definition of the extended Hasse sequence we also
define an extended standard sequence.

By abuse of notation we will from now on not distinguish between Hasse
sequences and extended Hasse sequences and refer to both as Hasse se-
quences. A similar convention applies to standard sequences.

The following observation will be used in Section [3.3.4] for the proof of
Evidence E.4 of Conjecture below.

Proposition 13.14. Suppose F and F’' are irreducible finite-dimensional
representations of G = O(n+ 1,1) and G' = O(n, 1), respectively, such that
Home (F|gr, F') # {0}. Suppose the principal series representations Is(V, \)
of G and J.(W,v) of G’ contain F' and F’, respectively, as subrepresentations.
Then the following hold.

(1) [V W] =1,
(2) (N, v,6,¢) € Uy, (see (L3)), namely, the quadruple (\,v,6,e) does not
satisfy the generic parameter condition (3.2).
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Proof. For the proof, we use a description of irreducible finite-dimensional
representations of the disconnected group G = O(n+ 1, 1) in Section [4.1] of
Appendix I. In particular, using Lemma [[4.3] we may write

F— Fo(n+1,1)()\0’ . 7/\[%])M

for some (Ao, -, Arz)) € A*([5] + 1) and a,b € {£}. By the branching rule
for O(n+1,1) | O(n, 1) (see Theorem [[47), an irreducible summand F’ of
Fl|om,) is of the form

F/ = FO(n’l)(V(), et I/[nfl])a,b

for some (g, - - - ,V[anl]) € AT([%H]) such that

A02u02A12~--2V[nT—1]20 for n odd,

N>V AN >e > Yino1 > )\[%] for n even.
We recall that for every irreducible finite-dimensional representation F' of a
real reductive Lie group there exists only one principal series representation

that contains F' as a subrepresentation. By Theorem [I3.11] with ¢ = 0, the
unique parameter (V,4J, \) is given by

V=Fo"(A, - Az)) (@det if a = —), A= —Xg and § = ab(—1) .
Likewise, the unique parameter (W, e, v) for F” is given by
W =Fom=b(y ... ,V[anl]) (@det if a=—), v =—1y, and € = ab(—1)"".

Hence [V : W] # 0, or equivalently, [V : W] = 1 by the branching rule for
O(n) } O(n —1). Moreover, de = (—1)*" and v — X\ = A\g — 14y € N. Hence
the generic parameter condition (B.2) fails, or equivalently, (A, v, d,¢) € Wg,.

]

13.2 The Conjecture
We propose a conjecture about when
Home (|, ) = C

where II € Irr(G) and 7 € Irr(G”) have regular integral infinitesimal charac-
ters (Definition 2.1]). We give two formulations of the conjecture, see Con-
jectures [3.10 and [[3.17 below. Supporting evidence is given in Section [[3.3]
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13.2.1 Conjecture: Version 1

We begin with a formulation of the conjecture in terms of a standard sequence
(Definition-Theorem [[3.T]) of irreducible representations IT; of G = O(n+1, 1)
and that of irreducible representations 7; of the subgroup G’ = O(n,1). We
note that both II; and 7; have regular integral infinitesimal characters be-
cause both F' := Il and F’ := 7y are irreducible finite-dimensional represen-
tations of G and G’, respectively.

Conjecture 13.15. Let F' be an irreducible finite-dimensional representa-
tions of G = O(n + 1,1), and {IL;(F)} be the standard sequence starting at
IIy(F) = F. Let F' be an irreducible finite-dimensional representation of
the subgroup G' = O(n, 1), and {m;(F')} the standard sequence starting at
mo(F') = F'. Assume that

HOHIGV(F|G/, F,) 7& {0}

Then the symmetry breaking for representations IL;(F), m;(F') in the stan-
dard sequences is represented graphically in Diagrams 131 and 133 In the
first row are representations of G, in the second row are representations of
G'. Symmetry breaking operators are represented by arrows, namely, there
exist nonzero symmetry breaking operators if and only if there are arrows in
the diagram.

Diagram 13.1: Symmetry breaking for O(2m + 1,1) | O(2m, 1)
Mo(F)  ILh(F) ... Ihpa(F)  I(F)
N A e
mo(F)  mF) ... mpa(F) m(FY)

Diagram 13.2: Symmetry breaking for O(2m +2,1) | O(2m + 1,1)

W(F) IL(F) . Tao(F)  T(F) o (F)
N R Y N R S
mo(F')  m(F) Tm—1(F") 7w (F")
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Remark 13.16. Instead of using standard sequences to state the conjecture it
may be also useful to rephrase it using extended Hasse sequences.

13.2.2 Conjecture: Version 2

We rephrase the conjecture using 6-stable parameters, which will be intro-
duced in Section of Appendix I, and restate Conjecture as an
algorithm in this notation.

In Theorems and [[4.5T] of Appendix I, we shall give the #-stable
parameters of the representations of the standard sequence starting with an
irreducible finite-dimensional representation F' summarized as follows.

1. Suppose that n = 2m. Let
I = FO(2m+1,1)(M)ab — FO(2m+1,1)(Iu) ® Xab

)

for w € At(m+ 1) and a,b € {£} be an irreducible finite-dimensional
representation of O(2m + 1,1), see Section [4.]] in Appendix I. Its 6-
stable parameter is

( H M1y 125 - -y m, ,Um-i-l)a,b

and we have the #-stable parameters of the representations in the stan-
dard sequence (written in column).

HO(F) = ( H My 2, - numalum—i-l)mb
Hl(F) = (/‘Ll || M2, ey om, /'Lm-i—l)a,b

Hm(F) = (ljllv/t?a sy Mm || ﬂm+1)a,b-
2. Suppose that n = 2m + 1. Let
F = FO(2m+2,1)('u)a b= FO(nJrl,l)('u) ® Yab

for e AT(m+1) and a,b € {£} be an irreducible finite-dimensional
representation of O(2m + 2,1). Its f-stable parameter is

(|| By 25 - -y P, ,um-i-l)a,b
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and we have the #-stable parameters of the representations in standard
sequence (written in column).

HO(F) = (|| Mlaﬂ27"'7um+1)a,b
IL(E) = (pa ] g2, mt1)ap

Hm+1<F) = (M17M2a"'7um+1 ||)a,b'

We refer to the finite-dimensional representation IIy(F') = F as the start-
ing representation of the standard sequence and to the tempered represen-
tation 11,,,(F') (when n = 2m) or the discrete series representation I1,,,1(F)
(when n = 2m + 1) as the last representation of the standard sequence (see

Remarks and [[3.10).

Conjecture 13.17. Let F¢(u)ap be an irreducible finite-dimensional repre-
sentation of G = O(n+1,1), and FE ()4 be an irreducible finite-dimensional
representation of the subgroup G' = O(n,1), where p € A+(["T+2D, v €
A ([®H]), and a,b, ¢, d € {£}, see ([AD) and [(ZF) in Appendiz I. Assume
that

HOIIlG/(FGQu)a,b e FG/(V)Qd) 7é {0} (137)

In (1) and (2) below, nontrivial symmetry breaking operators are repre-
sented by arrows connecting the 0-stable parameters of the representations.

(1) Suppose that n = 2m. Then p = (1, , fimy1) € AT(m + 1) and
v=(v1, - ,Vm) € AT(m). Then two representations in the standard
sequences have a nontrivial symmetry breaking operator if and only if
the 0-stable parameters of the representations satisfy one of the follow-
g conditions.

(,ula Y ] H ity - - 7um+1)a7b
U

Wi, vi | Vit - Ve
or
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(s oot ] fins o5 B 1) agh
4
(v, Vi | Vis Vigts s Vi)
(2) Suppose that n = 2m + 1. Then two infinite-dimensional representa-
tions in the standard sequences have a nontrivial symmetry breaking

operator if and only if the 0-stable parameters of the representations
satisfy one of the following conditions:

(Nl, Y 27 || Hit1y - - ,Nm+1)a,b
|3

(Vh NN H Vit .- -an+1)c,d

or

(Mla Ry 27} || Hit1y - - aMm+1)a,b
U

(l/l, eV || Viy.oooy Vm+1)c,d

Remark 13.18. See Theorem [I4.7 in Appendix I for the condition on the
parameters u, v, and a, b, ¢, d such that (I37) holds. In particular, (I371)
implies either (a,b) = (¢,d) or (a,b) = (—¢, —d). See also Lemma[IZ4] (2) for
the description of overlaps in the expressions of irreducible finite-dimensional
representations of O(N — 1,1) when N is even.

13.3 Supporting evidence

In this section, we provide some evidence supporting our conjecture.

E.1 If F € Iir(G), and F' € Irr(G’),, the Conjecture I3THis true. (Equiv-
alently, if FO" 1D (1),  and FO™V(v), | are both the trivial one-
dimensional representations, Conjecture [3.17] is true.)

E.2 Some vanishing results for symmetry breaking operators.

E.3 Our conjecture is consistent with the Gross—Prasad conjecture for tem-
pered representations of the special orthogonal group.

E.4 There exists a nontrivial symmetry breaking operator II; — 7.
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13.3.1 Evidence E.1
This was proved in Theorems E1] and E21

13.3.2 Evidence E.2

Detailed proofs of the following propositions will be published in a sequel to
this monograph.

Recall from Definition-Theorem [[3.1] that U;(F, ) refers to the i-th term
in the Hasse sequence starting with the finite-dimensional representation
Fop = F ® Xap of G and U;(F] ;) to the j-th term in the Hasse sequence
starting with the finite-dimensional representation Fy ; = F' ® xca of G'.

Proposition 13.19. Let a,b,c,d € {£}, 0 < i < [®H] and 0 < j < [2].
Then
Home (Ui(Fap)ler, Uj(Feq)) = {0} if j#i—1, 4.

If one of the representations of G = O(n + 1,1) respectively of G =
O(n, 1) is tempered then the following vanishing theorems hold.

e Assume first (G,G’) = (O(2m,1),0(2m — 1,1)).
Let s = (S0, " ,8m_1,0™) € AT2m + 1) and t = (to, *+ ,tm_1,0™) €
At (2m) satisfy t < s (see Definition 221] for the notation).

Proposition 13.20. Let Uy, ---, U, Uyiq be the Hasse sequence of G =
O(2m 1) with Uy = FOCm+LO) (s ), and U}, -+ ,U! | be that of G' = O(2m—
1) with Uy = FOC™O\(t). Then

HOHIG/(U ’G/ ) = {0} z’fO < j <m —2.

e Assume now (G,G') = (O(2m + 1,1),0(2m,1)).
Let s = (S0, ,8m, 0™T) € AT (2m +2) and t = (to, -+, tpm—1,0"T) €
AT(2m + 1) satisfy ¢ < s.

Proposition 13.21. Let Uy, - -+ ,U,, be the Hasse sequence of G = O(2m +
1) with Uy = FOC™20)(s) and Uy, --- U’ be that of G' = O(2m, 1) with
U = FOCm+LO)(#), Then
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Remark 13.22. These propositions prove only part of the vanishing statement
of symmetry breaking operators formulated in Conjecture I3.17

13.3.3 Evidence E.3

We use the notations and assumptions of the previous section, and show
that our conjecture is consistent with the original Gross—Prasad conjec-
ture on tempered representations [[0]. For simplicity, we treat here only
for (G,G") = (O(n + 1,1),0(n,1)) with n = 2m. We shall see that a spe-
cial case of Conjecture [[3.17 (i.e., the conjecture for the last representation
of the standard sequence) implies some results (see (I3.9) below) that were
predicted by the original conjecture of Gross and Prasad for tempered rep-
resentations of special orthogonal groups.

Assume that the irreducible finite-dimensional representations Il of G
and m of G" are of type I (Definition [4.2)) and that (p, ..., fm, m+1) and
(v1,...,Um) are their highest weights.

By the branching law for finite-dimensional representations with respect
to G D G’ (see Theorem 47 in Appendix I), the condition

Homo 1) (Io|cr, m0) # {0}
is equivalent to
f > V1> iy > 2 Uy 2 g > 0. (13.8)

Let Uy, (resp. 1I,, = Uy, @ (x4+-)™) be the m-th term of the Hasse sequence
(resp. the standard sequence) starting with the irreducible finite-dimensional
representation Iy = Uy (see Definitions[[3Tland [32]). Then we have a direct
sum decomposition of the principal series representation

I(_1)7n7um+1 (FO(Qm) (ILLI “I'_ ]_, R ,/Jm + 1, Om), m — Mm+1) ~ Um @ (Um ® det)

by Theorem [[3.7] (1) and Remark Assume that II,, is tempered. Then
U,, is also tempered, and the continuous parameter of the principal series
representation must lie on the unitary axis, that is, m — 41 € m+ v/ —1R.
Hence p, 41 = 0.

Since pi,+1 = 0, the f-stable parameters of the tempered representations
IL,,, I1,, ® det are given by

(s ] 10) 4y (pns o i [ 0) - -,
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whereas the f-stable parameter of the discrete series representation of G =
O(2m, 1) is given by
(V17 s VUm H)+,+'

In view of the K-type formula in Theorem [[3.7 (2), we see
Uy, 2 Uy, ® det

as G-modules, and thus IL,, 2 1I,, ® det. Therefore, the restriction of the
principal series representation II,, of G = O(2m + 1,1) to the subgroup
G = SO(2m + 1,1) is irreducible by Lemma [[5.2 (1) in Appendix II. We set

ﬁm = Hm|§,

which is an irreducible tempered representation of G.

We now consider representations of the subgroups G' = O(2m, 1) and
G’ = SO(2m, 1). We observe that there is at most one discrete series repre-
sentation of G = SO(n, 1) for each infinitesimal character (see Proposition
[4 I in Appendix I). Therefore the restriction of the discrete series represen-
tation m,, of G’ = O(2m, 1) to the subgroup G’ = SO(2m, 1) is irreducible,
which is denoted by 7,,.

With these notations, Proposition in Appendix II yields a natural
linear isomorphism:

Homg/(Hm|G/, 7Tm) D HOIIlgl((Hm X det)|G/, 7Tm) ~ Hom@(ﬁm|@, ﬂ)

Conjecture [3I7 for the pair (G,G’) = (O(n + 1,1),0(n, 1)) is applied to
this specific situation; the first term in the left-hand side equals C and the
second term vanishes. Thus Conjecture [[3.17 in this case implies the fol-
lowing statement for the pair (G,G’) = (SO(n + 1,1),50(n, 1)) of special
orthogonal groups:

Homg(IL, g7, Tm) = C  if ptyp = 0 and ([3.8) is satisfied. (13.9)

We now assume that the representation II,, is nontrivial on the center.
This determines the Langlands parameters of the Vogan packets V P(IL,,)
and V P(%,,) of G respectively G/, and we follow exactly the steps of the
algorithm by Gross and Prasad outlined in Chapter Il We conclude again
that the Gross-Prasad conjecture predicts that {Il,,, 7, } is the unique pair

of representation in V P(Il,,) x V P(7,,) with a nontrivial symmetry breaking
operator.
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13.3.4 Evidence E.4

We will prove the existence of a nontrivial symmetry breaking operator
Hl — 1.

We first introduce graphs to encode information about the images and
kernels of symmetry breaking operators between reducible principal series
representations as well as information about the images of the subrepresen-
tation under the symmetry breaking operators. This will be helpful to visu-
alize the composition of an symmetry breaking operator with a Knapp—Stein
operator.

Admissible graphs
Consider the vertices of a square. We call the following set of directed graphs
admissible:

O — O O O O — O O O
/! /! N\
O — O O — O O —= O O — O
O — O O O O O
N\ N\
@) @) O O O —= O
and the zero graph without arrows:
O O
O O

Admissible graphs will encode information about the images and kernels of
symmetry breaking operators. In the setting we shall use later, it is conve-

nient to define the following equivalence relation among graphs, see Lemma
[13.28

Convention 13.23. We identify two graphs G; and Go if
G =G U{l}

where  is an arrow ending at the lower right vertex and Gy already contains
an arrow which starts from the same vertex as ¢ and which ends at the upper
right vertex.
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Example 13.24. The following graphs are pairwise equivalent.

O —- 0O O —- 0O
N\ = ,
0] 0] 0] 0]
O —- 0O 0O —- 0O
= N
O —- 0O 0O —- 0O
O —- 0O O —- 0O 0O — 0O
a = X = AN
O — O O — O 0] 0]
O @) @) @)
/! = S
O — O @) O

We obtain a colored graph by coloring the vertices of the graph by 4
different colors, each with a different color. We typically use the colors blue
and red for the vertices in the left column and and magenta for the
vertices in the right column.

Mutation of admissible graphs
We obtain a new colored graph G; from a graph G; by “mutation”. The rules
of the mutation are given as follows.

Rule 1. Consider the colored vertices on the right. Remove any arrow which
ends at the lower right vertex. Interchange the two colored vertices on
the right. The arrows which used to end at the upper right vertex now
end at the lower right vertex.

Rule 2. Consider the colored vertices on the left. Remove any arrow which
starts at the upper left corner. Interchange the two colored vertices on
the left. The arrows which used to start at the lower left vertex now
start at the upper left vertex.

Rule 3. If the mutated graph G, has no arrows, i.e., G is the zero graph, the
mutation is not allowed.
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We write R for the mutation on the right column and L for the mutation
on the left column. We sometimes refer to R and L as mutation rules.
It is easy to see the following.

Lemma 13.25. (1) The mutated graph is again admissible.

(2) Mutation is well-defined for the equivalence relations given in Conven-
tion LL5. 25

(3) Admissible graphs for which no mutation is allowed do mot have an
arrow except for the one from the upper left vertex to the lower right
vertex.

(4) RoR and L oL are not allowed mutations.

(5) RoL=LoR.

Definition 13.26 (source and sink). We call an admissible graph G a source
of a set of graphs if all other graphs of the set are obtained through mutations
of G. We call a graph G a sink in a set of admissible graphs if neither R nor
L is an allowed mutation of G.

Applying these rules, we obtain the following families of mutated graphs
with one source. The source for the first, second, and third types is at the top
right corner, applying R changes the right column and applying L changes
the left column.

First type
O O L O — O
N\ —
O 0O —
HR
O
¢
O O

Second type
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o o o o
NSRS
o o o o
L¢ ¢L
o o o o
T /!

o © o ©

Third type

Type A

Type B

Type C
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This proves the following.

Lemma 13.27. Let F be the family of admissible graphs that are obtained
through mutations of a nonzero admissible graph.

(1) If F is not a singleton, it is one of the above six types.

(2) If F is a singleton, it is a coloring of the following graph.

0 0

pN
o 0

From symmetry breaking operators to admissible graphs

Assume that a principal series representation I5(V,\) of G has exactly
two composition factors II' and II?, which are not equivalent to each other.
(The assumption is indeed satisfied for G = O(n + 1, 1) whenever I5(V, \) is
reducible.) Thus there is an exact sequence of G-modules:

0 — II" — I5(V,\) = II* — 0. (13.10)

Graphically, the irreducible inequivalent composition factors are represented
by circles with different colors. The bottom circle represents the socle as
follows.

O

O

Later we shall assume in addition that the exact sequence (I3.I0) does not
split. (The assumption is satisfied if one of II' or IT? is finite-dimensional.
More generally, the assumption is indeed satisfied for most of the pairs of the
composition factors of the principal series representations of G = O(n+1,1)
with regular integral infinitesimal characters, see Theorem for example.)
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An analogous notation will be applied to principal series representations
J-(W,v) of the subgroup G’ = O(n, 1) with two composition factors. Thus
we represent the two composition factors of the reducible principal series
representations Is(V, \) and of J.(W,v) by four differently colored circles in
a square; both the composition factors of a principal series representation are
represented by circles vertically.

We have the convention that the composition factors of the representation
Is(V,\) of G are represented by the circles on the left, those of J.(W,v) of
the subgroup on the right. Using this convention we get four squares with
colored circles which are obtained by changing the colors in each vertical
column.

To a symmetry breaking operator
By 1 Is(V, M) = J.(W,v)

we associate a graph which encodes information about the image and kernel
of the symmetry breaking operator BE\/XV as well as information about the im-
age of the irreducible subrepresentation of the principal series representation
Is5(V, \) of G under the symmetry breaking operator. We proceed as follows:
we obtain the arrows of the graph by considering the action of symmetry
breaking operator IB%;/XV on the composition factors. If no arrow starts at a
circle, then this means that the corresponding composition factor is in the
kernel of the symmetry breaking operator. If no arrow ends at a circle, then
this means that the G’-submodule of J.(W,v) corresponding to the circle is
not in the image of the symmetry breaking operator. Then we have:

Lemma 13.28. Assume that both principal series representations I1s(V, \)
and J.(W,v) have exactly two inequivalent composition factors with nontriv-
ial extensions. Then with Convention[I3.23 the graph associated to our sym-
metry breaking operator BE\/XV € Home (I5(V, N)|gr, J-(W,v)) is an admissible
graph.

The proof of Lemmal[[3.28is straightforward. We illustrate it by examples
as below.

Example 13.29 (Graph of symmetry breaking operators). (1) Suppose that
the symmetry breaking operator is surjective and its restriction to the socle
O is also surjective. Then the associated graph is given by
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X
0O —

by definition. With Convention [3.23] we have
0O — O O — O
e Xi ;

0O — 0O —

see Example [3.24] Then the graph in the left-hand side is admissible.
(2) Suppose that the symmetry breaking operator is zero. Then it is depicted
by the zero graph.

O )

0]

To reduce the clutter in a digram representing a set of mutated graphs
we often omit the zero graph, i.e., the zero symmetry breaking operator.

We would like to encode information about a symmetry breaking oper-
ator and all its compositions with the Knapp—Stein operators at the same
time. Composing symmetry breaking operators BE\/ZV with a Knapp—Stein
intertwining operator

TV, x: Is(V,A) = I5(V,n — \)
for the group G (see ([812)), respectively
™ o J(W,v) = J.(W,n—1—v)

vn—1—v-*

for the subgroup G’, we obtain another symmetry breaking operator. If this
new operator is not zero then it can be represented again by an admissi-
ble graph. The graphs of these operators are arranged compatible with our
previous article 44l Figs. 2.1-2.5] where we draw v-value on the z-axis and
the A-value on the y-axis. We place the corresponding symmetry breaking
operator in the corresponding quadrant. For example, if A > 2 and v > ”T_l,
then the parameters are arranged as

(n—1—-v,\) (v, \)
(n—1—-v,n—\) (v,n—A)
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in the (v, \)-plane, and accordingly these symmetry breaking operators are
arranged as follows.

W V.W V.W
Tl/,nflfu © B)\,V B)\,V

W VW v VW v
Ty,n—l—u © B)\,V © Tn—k,)\ B)\,u © Tn—A,A

Accordingly, we shall consider four graphs of these four symmetry break-
ing operators.
By the definition of the mutation rule, we obtain:

Lemma 13.30. Assume that a principal series representation I5(V,\) has
two irreducible composition factors II' and 112 with nonsplitting eract se-
quence (I310) and that the Knapp-Stein operator Ty, _\: Is(V,\) — Is(V,n—
\) is nonzero but vanishes on the subrepresentation II'. Then the graph as-
sociated to a symmetry breaking operator composed with ﬁ‘x_ o Jor the group
G 1s obtained by using the mutation rule L for graphs. Similarly, the graph
associated to a symmetry breaking operator composed with a nonzero Knapp—
Stein operator T)), ,_,: J.(W,v) = J.(W,n—1—v) for the subgroup G’ (with
an analogous assumption on J.(W,v)) is obtained by using the mutation rule
R for graphs.

Example 13.31. In the Memoirs article 4] we considered the case of two
spherical principal series representations I(\) and J(v) for integral parame-
ters i, j. If (=i, —j) € Loyen, namely, if i > j > 0 and ¢ = j mod 2, then the
normalized regular symmetry breaking operator I(—i) — J(—j) is zero 4]
Thm. 8.1]. The other symmetry breaking operators for spherical principal se-
ries representations with the same infinitesimal character are nonzero and we
have functional equations with nonvanishing coefficients [} Thm. 8.5]. Thus
the family of mutated graphs associated to the regular symmetry breaking
operators is given as follows.
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O 0

We recall from [44] Chap. 1] (or from Theorem in a more general
setting) that both the G-module I(—i) and the G’-module J(—j) contain
irreducible finite-dimensional representations as their subrepresentations (red
and magenta circles) and irreducible infinite-dimensional representations 7°(7)
and T'(j) (blue and ) as their quotients, respectively. The corresponding
socle filtrations are given graphically as follows.

O
I(~i)= J(~j) =
O O

Note that, under the assumption ¢ > 57 > 0 and ¢« = j mod 2, we have a
nontrivial symmetry breaking operator between the two finite-dimensional
representations (red and magenta circles) and as well as between the non-

trivial composition factors 7'(i) — T'(j) (blue and circles), see [l
Thm 1.2 (1-a)].
Example 13.32. More generally in Corollary [3.18 we proved that
VW
AOJ/O?’Y - 0

for negative integers Ao, vy implies that

VW
A n1-vyny 7 0-

n—>Ao,

Since (n — 1 —vp,n — X) € N?, we may place the graph associated to
the regular symmetry breaking operator Axﬂomflfm in the NE corner ac-
cording to the position in the (v, A)-plane as in 4] Fig. 2.1, IIT.A or IIL.B].

On the other hand, since (1, \g) € (—N)?, we may place a zero graph
associated to the zero operator &KOVZO,Y in the SW corner according to the

position in the (v, A)-plane as in {4 Fig. 2.1, [.A. or L.B.].
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Example 13.33. In the Memoirs article [44] Thm. 11.1] we prove that there
is a differential symmetry breaking operator in the SW corner if the regular
symmetry breaking operator is zero. To this operator and its composition
with the Knapp—Stein operators the assigned graph is given as follows.

0 0 0 O
N L,
O 0
Rﬂ ﬂR
0O — O
= N

o0 L o o

Note that the differential operator gives a source in the mutation graphs in
the SW corner in this setting.

Existence of a nontrivial symmetry breaking operators II; — ;.
Recall that we assume that

m(Ily, mp) =1

for the irreducible finite-dimensional representations Ily of G and 7y of the
subgroup G’. We consider now a pair of reducible principal series represen-
tations I5(V, A) of G and J.(W,v) of G' with finite-dimensional composition
factors Ily, my, respectively.

Lemma 13.34. Suppose that both O and O are representing irreducible
finite-dimensional representations of G and G'. We assume that O and O
respectively O and O are representing the composition factors of a principal
series representation of G, respectively G'. Then the following graphs are not
associated to a symmetry breaking operator.

0O 0 0O 0 0 0 —
pN pN / /!
0 0 — 0= 0 0O — 0

Proof. The representations O and O are finite-dimensional. The image of a
finite-dimensional representation by a symmetry breaking operator is finite-
dimensional. O]
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Lemma 13.35. We keep Convention [[3.23 and the assumptions of Lemma

(2374

(1) Suppose that O and O stand for both irreducible subrepresentations of
the principal series representations of G and G', respectively. The graph
associated to a nontrivial symmetry breaking operator is one of the
following.

O 0 0 —
Va a
0O — 0O —

@) 0O — O

0O —

(2) Suppose that O and O stand for both irreducible finite-dimensional sub-
representations of the principal series representations. The graph asso-
ciated to a nontrivial symmetry breaking operator is one of the follow-
mng.

0O — 0O — 0] 0]
N N\ N
0O —= O 0] ) 0O —= O 0] 0]

Using the composition with the Knapp—Stein operators we obtain an ac-
tion of the (little) Weyl group of O(n + 1,1) x O(n,1) on the continuous
parameters of the symmetry breaking operators, hence on the symmetry
breaking operators and also on their associated admissible graphs through
the mutation rules.

Example 13.36. Let F be a family of mutated graphs such that the graph
associated to the symmetry breaking operator A:ﬁzo’nflfwﬁ is a source. If

F is of first type, then the graph in the SE corner shows that there is a
nontrivial symmetry breaking operator II; — 7.

Using functional equations and the information about (K, K')-spectrum
of regular symmetry breaking operators it is in some cases possible (see for
example [4]) to show that the associated graph is of first type, but in gen-
eral we do not have such explicit information about the regular symmetry
breaking operators and so we have to proceed differently.
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Suppose that 11, and 7y are irreducible finite-dimensional subrepresenta-
tions of I5(V, \) and J.(W,v) with Home (Ilo|er, m0) # {0}. By Proposition
O3T4 [V : W] # 0 and (A, v,0,e) € Ve, namely, the quadruple (A, v,9,¢)
does not satisfy the generic parameter condition ([B2). By Theorem B (see
also Theorem [6.1] (1)), there exists a nonzero differential symmetry breaking
operator

D : I5(V,)\) = J.(W,v),

which we denote by D. The image of D is infinite-dimensional by Theorem
6.8 Thus by Lemma [I3.37] (2), we obtain the following.

Lemma 13.37. The graph associated to D is one of the following.

0 — 0O —

N
0O — O 0O 0

Mutating the graph of D by R we get the following.

O )

pN
O

Thus composing the differential symmetry breaking operator with a Knapp—
Stein operator on the right we obtain a nontrivial symmetry breaking oper-
ator with this diagram and thus a symmetry breaking operator U;(F) —
Uy (F"). We are ready to prove the following theorem, which gives evidence
of our conjecture.

Theorem 13.38. Suppose that F' and F' are irreducible finite-dimensional
representations of G and G', respectively. Let 11;, m; be the standard se-
quences starting at F, F', respectively. Then there exists a nontrivial sym-
metry breaking operator

H1 — M

Zf HOHIGr(F|G/, F,) % {0}

Proof. Recall from Definition that Ilp = F', mo = F" and II; = Uy(F) ®
X+ M = Ui(F') ® x4 and so

HOII]G/(H1|G/, 7T1) ~ HomG/(Ul(F)|G/, Ul(F,))
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14 Appendix I: Irreducible representations of
G = O(n + 1,1), #-stable parameters, and
cohomological induction

In Appendix I, we give a classification of irreducible admissible representa-
tions of G = O(n+1,1) in Theorem [430 In particular, we give a number of
equivalent descriptions of irreducible representations with integral infinites-
imal character (Definition ) by means of Langlands quotients (or sub-
representations), coherent continuation starting at I1; 5, and cohomologically
induced representations from finite-dimensional representations of #-stable
parabolic subalgebras, see Theorem Our results include a description
of the following irreducible representations:

e “Hasse sequence” starting with arbitrary finite-dimensional irreducible
representations (Theorems [[Z.50 and [Z51]);

e complementary series representations with singular integral infinitesi-
mal character (Theorem [[Z53).

Since the Lorentz group G = O(n+ 1, 1) has four connected components, we
need a careful treatment even in dealing with finite-dimensional representa-
tions because not all of them extend holomophically to O(n + 2,C). Thus
Appendix T starts with irreducible finite-dimensional representations (Sec-
tion [[4.7]), and then discuss infinite-dimensional admissible representations
for the rest of the chapter.

14.1 Finite-dimensional representations of O(N —1,1)

In this section we give a parametrization of irreducible finite-dimensional
representations of the disconnected groups O(N — 1,1) and O(N). The de-
scription here fits well with the 6-stable parameters (Definition [4.42]) for the
Hasse sequence, see Theorem We note that the parametrization here
for irreducible finite-dimensional representations of O(N) is different from
what was defined in Section Z22ZT] although the “dictionary” is fairly simple,
see Remark [[4.1]

There are two connected components in the compact Lie group O(N).
We recall from Definition [Z.4] that the set of equivalence classes of irreducible
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finite-dimensional representations of the orthogonal group O(N) can be di-
vided into two types, namely, type I and II. On the other hand, there are
four connected components in the noncompact Lie group O(N — 1,1), and
the division into two types is not sufficient for the classification of irreducible
finite-dimensional representations of O(N — 1,1). We observe that some of
the irreducible finite-dimensional representations of O(/N — 1,1) cannot be
extended to holomorphic representations of O(N,C). For example, neither
the one-dimensional representation x,_ nor y_, of O(N — 1, 1) (see (ZI3))
comes from a holomorphic character of O(NN, C). We shall use only represen-
tations of “type I” and tensoring them with four characters y. (a,b € {£+})
to describe all irreducible finite-dimensional representations of O(N — 1,1).

First of all, we recall from (2I7) that AT (k) is the set of A € Z* with
A > 2> >N >0,

Let N > 2. For A € AT([§]), we extend it to

N o= ()\1,---7/\[ﬁ],0,---,0)eZN, (14.1)
2 N e’
(23]
and define ~
FO(N,C)()\)+ = FO(N@)()\)’ (14.2)

to be the unique irreducible summand of O(N,C) in the irreducible finite-
dimensional representation F¢XN-C()\) of GL(N, C) that contains a highest
weight vector corresponding to A, see ([220)). Its restriction to the real forms

O(N) and O(N —1,1) will be denoted by FOW)()\), and FON-LD(X), | re-
spectively. Then the irreducible O(N)-module FON)()\), is a representation
of type I. We may summarize these notations as follows.

FOMNI(\), & FONO(X) X pON-LL()), .. (14.3)

resto () resto(n—1,1)
Remark 14.1. With the notation as in ([2.20)), we have
FOMO), = FOM()

for A € A*([5]). This is a general form of representations of O(N) of type
I (Definition 2Z4]). Then other representations of O(N), i.e., representations
of type II are obtained from the tensor product of those of type I with the
one-dimensional representation, det, as we recall now.
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Suppose 0 < 2¢ < N. If A € AT([4]) is of the form

)\:<)\17"' 7)\5707"’ 70)
———

(31—

with A\, > 0, then by ([Z23]), we have an isomorphism as representations of
O(N):

FOM(N); ®@det 2 FOM (A, A, 1,-++,1,0,---,0),
N e N e N —

14 N—-2¢ L

which is of type II if N # 2¢. We shall denote this representation by
FOMN(\)_ as (IZ3) below.

Analogously, FOW *1’1)()\)+7+ is a general form of representations of the
Lorentz group O(N — 1,1) of type I in the following sense.

Definition 14.2 (representation of type I for O(N — 1,1)). An irreducible
finite-dimensional representation of O(N — 1, 1) is said to be of type I if it is

obtained as the holomorphic continuation of an irreducible representation of
O(N) of type I (see Definition 2.4]).

We define for \ € A*([%D

FOM(N)_ :=FOM(\), @ det, (14.4)
FON=EI(N) gy :=FONON) L @ xa (a,b € {£}). (14.5)

These are irreducible representations of O(N) and O(N — 1, 1), respectively.
With the notation (IZ4) and ([I43]), irreducible finite-dimensional repre-
sentations of O(N) and of O(N —1, 1), respectively, are described as follows:

Lemma 14.3. (1) Any irreducible finite-dimensional representation of O(N)
is of the form FON)(X) . or FOWN)(X\)_ for some \ € A*([%])

(2) Suppose N > 3. Any irreducible finite-dimensional representation of
O(N — 1,1) is of the form FON=LD(X),, for some X € AT ([F]) and
a,b e {£}.

The point of Lemma (2) is that an analogous statement of Weyl’s
unitary trick may fail for the disconnected group O(N —1, 1), that is, not all
irreducible finite-dimensional representations of O(N — 1, 1) cannot extend
to holomorphic representations of O(N, C).
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Proof of Lemma[I4.3 (1) This is a restatement of Weyl’s description (2.20)
of O/(-]V)

(2) Take any irreducible finite-dimensional representation o of O(N — 1, 1).
By the Frobenius reciprocit%/, o occurs as an irreducible summand of the
induced representation Indgojz&vl’_lil)(ﬂ SOo(N—1,1))- Since N > 3, the funda-
mental group of SO(N,C)/SOy(N — 1,1) is trivial because it is homotopic
to SO(N)/SO(N — 1) ~ S¥~1 see 28 Lem. 6.1]. Hence the irreducible
finite-dimensional representation 7 of SOg(N — 1,1) extends to a holomor-
phic representation of SO(N, C), which we shall denote by 7¢.

Let A € AT([4]) be the highest weight of the irreducible SO(N,C)-
module 7¢. Then 7¢ occurs in the restriction FOM-C)(}))| so(,c), and therefore
the SOo(N—1, 1)-module 7 occurs in the restriction FON=LD(X) | [sov-1,1).
Hence o occurs as an irreducible summand of the induced representation

O(N-1,1 _
Inds(oou\r_f;)(FO(N 1’1)(/\)+,+|SOO(N—1,1))- (14.6)

In light that FON=1Y(X), | is a representation of O(N —1,1), we can com-
pute the induced representation ([I4.6]) as follows.

- O(N-1,1
D) =~ FONII(N), L @ Indgh) (1)
~ OO0, o (D xw)

a,be{+}
~ @@ FONTIIW),,.
a,be{x} 7
Thus Lemma is proved. O

There are a few overlaps in the expressions ([[Z4]) for O(N)-modules and
(@A) for O(N — 1, 1)-modules. We give a necessary and sufficient condition
for two expressions, which give the same irreducible representation as follows.

Lemma 14.4. (1) The following two conditions on \,u € AT([F]) and
a,b € {£} are equivalent:

(i) FONI(N), ~ FON) (1), as O(N)-modules;
(ii) “A=p and a =0b" or the following condition holds:

A= u, N is even, )\% >0, and a = —b. (14.7)
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(2) Suppose N > 2. Then the following two conditions on A\, u € AT([F])
and a,b,c,d € {£} are equivalent:

(1) FOW=LD(N\),, =~ FON=LD() 4 as O(N — 1,1)-modules;
(ii)) “N = p and (a,b) = (¢,d)” or the following condition holds:

A=, N is even, /\% >0, and (a,b) = —(c,d). (14.8)

Proof. (1) The O(N)-isomorphism FO™()\), ~ FOW) (), implies an ob-
vious isomorphism FOM(X),|son) =~ FOM (1)y|sov) as SO(N)-modules,
whence A = p by the classical branching law (Lemma [Z7]) for the restriction
O(N) } SO(N). Then the equivalence (i) < (ii) follows from the equivalence
(i) < (iii) in Lemma 213

(2) Similarly to the proof for the first statement, we may and do assume
A = p by considering of the restriction O(N — 1,1) { SO(N — 1,1). Then
the proof of the equivalence (i) < (ii) for O(N — 1, 1) reduces to the case for
O(N, 1) and the following lemma. O

Lemma 14.5. Suppose o is an irreducible finite-dimensional representation

of O(N —1,1).

(1) Suppose N > 2. If o is extended to a holomorphic representation of
O(N,C), then neither o ® x+_ nor o ® x_1 can be extended to a holo-
morphic representation of O(N,C).

(2) Suppose N > 3. If o cannot be extended to a holomorphic representa-
tion of O(N,C), then both 0 @ x4+_ and 0 ® x_ can be extended to a
holomorphic representation of O(N,C).

Proof. (1) If 0 ® xa extends to a holomorphic representation of O(N,C),
then so does the subrepresentation g in the tensor product (o ® xu) ® 0,
where oV stands for the contragredient representation of o. Since yg, is the
restriction of some holomorphic character of O(N,C) if and only if (a,b) =
(+,4) or (—,—), the first statement is proved.

(2) As in the proof of Lemma (2), we see that at least one element in
{0 ® Xap : a,b € {£}} can be extended to a holomorphic representation of
O(N, C). Then the second statement follows from the first one. O
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Example 14.6. The natural action of O(NN) on i-th exterior algebra A{(CY)
is given as

FOM) (17 lzl=i),

/\i(CN) = {FO( )(1N i (i- [L})_

ifi <%,
ifi >4
with the notation in this section, whereas the same representation was de-
scribed as

/\Z(CN) = FO(N)(L' o a1707' o aO)

—— N——
i N—i

with the notation ([Z20) in Section

As in the classical branching rule for O(N) | O(N —1) given in Fact
we give the irreducible decomposition of finite-dimensional representations of
O(N, 1) when restricted to the subgroup O(N — 1,1) as follows:

Theorem 14.7 (branching rule for O(N,1) | O(N —1,1)). Let N > 2. Sup-
pose that (A, - - ,)\[%1) € AT ([M5]) and a,b € {£}. Then the irreducible
finite-dimensional representation FONY (X .- Aty of O(N, 1) decom-
poses into a multiplicity-free sum of irreducible representations of O(N —1,1)
as follows:

FOOD( o Awas haslogv1 = @) FOS (01, v s
where the summation is taken over (vq,- - - ,1/[%}) € 7!3] subject to
M > > A > >v vy > >0 for N even,
)\1>V1_)\22 Z NT ZATl fOT’N odd.

Proof. The assertion follows in the case (a,b) = (+,+) from Fact 2212 The
general case follows from the definition (I4.3]) and from the observation that
the restriction X, p|e of the G-character y,;, gives the same type of a char-

acter for G’ = O(N — 1, 1), see (323). O

14.2 Singular parameters for V' € O/(E) S(V) and Sy (V)

In this section we prepare some notation that describes the parameters of
reducible principal series representations I5(V, \) of G = O(n+ 1,1).
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We recall from Lemma 2.14] that both of the following subsets

{(8,V, A) : I5(V, \) has regular integral 34(g)-infinitesimal character},
{(6,V,X) : I5(V, \) is reducible}

—

of {£} x O(n) x C are preserved under the following transforms:

(57 ‘/7 >‘) = (_67 ‘/7 >‘)a
(5, V. ) = (6,V @ det, \).

Thus we omit the signature ¢ in our notation, and focus on the second and
third components.

— —

Definition 14.8. We define two subsets of O(n) x C (actually, of O(n) x Z)
by

RInt:={(V,\): I5(V,\) has regular integral 35(g)-infinitesimal character},
Red := {(V,\) : I5(V, \) is reducible}. (14.9)

Both the sets RZnt and Red are preserved by the transformations

(V. A) =(V @ det, A),
(V,A) =(Vin —\).

This is clear for RZnt, whereas the assertions for Red follows from the G-
isomorphism I5(V,;\) ® xy__ ~ I5(V ® det, \) by Lemma T4 and from the
fact that Is(V,n — \) is isomorphic to the contragredient representation of

—

I5(V, X). We shall introduce two discrete sets S(V) and Sy (V') for V € O(n)
in Definition below, and prove in Lemma and in Theorem

—

RInt ={(V,\) € O(n) x Z: X & S(V)}
U U

—

Red ={(V,A\)€On)xZ: A& S(V)USy(V)},

see also Convention I4.11]
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14.2.1 Infinitesimal character r(V,\) of I5(V,\)

—

Suppose that V € O(n) is given as
V =F°"(5). for some o € A* ([g}) and € € {£}

with the notation as in Section [ZIl We define an element of h% ~ Cl3/+!
by

n n n n n
V,\) = Z 1 S0 o = — [=, A= =), (14.10
7"( ’ ) (01+2 702+2 ) 70[2]+2 [2}7 2) ( )
The ordering in (IZI0) will play a crucial role in a combinatorial argument in
later sections, whereas, up to the action of the Weyl group We, r(V, \) gives
the 3¢(g)-infinitesimal character of the unnormalized induced representation

Is(V,A) of G =0O(n+1,1), see (220l
Example 14.9. For 0 <i <n, we set £ := min(i,n — i) and

P =r(A(C).0)

n n n n n o n n
(= e ]l S =] )= =
(\272 ) ’2 +J72 ) 72 [2172 2)
7 (2]
((\gv 7g_l+117\2_2_177g_[ﬁ]/72_%) fOI'ZS[g]
M (2] ,
= n n n n n +
o il — e =)= = f
Gy tith—g+i=le g -[Glizg)  for [5—]
\ n—t Zf[nTl}
Here are some elementary properties.
(1) The following equations hold:
p(i) _ p(O) =(1,---,1,0,---,0,4) (14.11)
——— N——
‘ [2]—¢
(1,---,1,0,---,0,4) for 0 <7< [F],
——
B i (2]
(1,---,1,0,---,0,7) for [”TH]SZSTL
n—t (24



(2) Let r(V,\) be defined as in (IZI0). Then for any ¢ (0 < i < n), we
have

T(V7 )‘) :(Jla te 70—[g}7 )‘) + p(O)
:(0-1 - ]-7 yOp — 1ag€+17"' 70[%]7)\_Z)+p(l)7
where we retain the notation ¢ = min(i,n — 7).

(3) Forall i (0 <i<mn),
pe = p? mod We. (14.12)
14.2.2 Singular integral parameter: S(V) and Sy (V)

Retain the setting as in Section TZ2ZTl Let G = O(n +1,1) and m = [3].

Suppose V' € O/(F) is given as V = F°W(¢), with ¢ = (04, ,0,,) and
e € {£}. Since oy, - -, 0, € Z, the following three conditions on A € C are
equivalent:

(i) The 3¢(g)-infinitesimal character of I5(V,\) is integral in the sense of
Definition 2.1}

(i) (r(V,;\),aY) € Z for any a € A(gc, be);
(i) \ € Z.

—_—

For each V' € O(n), we introduce a subset S(V') in Z (and a subset Sy (V)
in Z for V of type Y) as follows.

Definition 14.10 (S(V) and Sy (V)). Let m = [2]. For V = F°" (o). with
o=(01, -+ ,0m) € AT(m) and € € {£}, we define a finite subset of Z by
S(V)y:={j—ojn+o;—7:1<j<m} (14.13)

When the irreducible O(n)-module V' is of type Y (see Definition [20]),
namely, when n is even (= 2m) and o, > 0, we define also the following
finite set

Sy(V)={AN€Z:0<|\=—m| <opn} (14.14)

We note that
S(V)NSy(V) =10

by definition. We shall sometimes adopt the following convention:
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Convention 14.11. When V is of type X (see Definition[2.8), we set
Sy (V) = 0.
The definitions imply the following lemma.

Lemma 14.12. The 3¢(g)-infinitesimal character of I5(V, ) is reqular in-
tegral (see Definition[2Z1)) if and only if A € Z — S(V'). Thus, we have
RInt ={(V,\) € O(n) x Z: A& S(V)}.

We refer to S(V') as the set of singular integral parameters. It should be
noted that I5(V, A) has regular integral infinitesimal character if A € Sy (V),
since Sy (V) C Z - S(V).

We shall see in Theorem below that the principal series represen-
tation I5(V, A) is irreducible if and only if A € (C—Z)U S(V) U Sy (V).

We end this section with a lemma that will be used in Appendix III
(Chapter [[6) when we discuss translation functors.

—_—

Lemma 14.13. Let V € O(n) and A € Z— S(V).

1) Suppose V' is of type efinition . en the - an a-orbits
(1) S V f type X (Defi [2.4). Then the W, d W, b
through r(V,\) € bz ~ Clz1F coincide:

W,r(V,\) = Wer(V, A). (14.15)

(2) Suppose V is of type Y. Then [ILID) holds if and only if X = 3.

Proof. (1) The assertion is obvious when n is odd because Wy, = W in this
case. Suppose n is even, say, n = 2m. It is sufficient to show that (V) \)
contains zero in its entries. Since V' is of type X, we have o0, = 0, and
therefore, the m-th entry of r(V,\) amounts to o, + m — m = 0 by the
definition (IZI0). Thus the lemma is proved.

(2) Since V' is of type Y, n is even (= 2m) and Wg 2 Wy. Since A ¢ S(V),
r(V,A) is Wy-regular. Hence (IZI3]) holds if and only if at least one of the

entries in 7(V, \) equals zero. Since o1 > g9 > -+ > 0, > 0, this happens
only when the (m + 1)-th entry of 7(V, \) vanishes, i.e., A = 5(= m). Hence
Lemma [[4.13] is proved. [

Remark 14.14. For n = 2m (even), if V is of type X or if A = m, then
the 3¢(g)-infinitesimal character (IZI0) is regular for Wy in the sense of
Definition 211 but is “singular” with respect to the Weyl group W for the
disconnected group G = O(n+1, 1) which is not in the Harish-Chandra class.
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14.3 Irreducibility condition of I5(V, \)

We are ready to state a necessary and sufficient condition for the principal
series representation I5(V,A) of G = O(n + 1,1) to be irreducible.
We recall from (I4I3) and (IZI4) the definitions of S(V') and Sy (V),

respectively.

Theorem 14.15 (irreducibility criterion of I5(V;\)). Let G = O(n + 1,1),

—

de{x}, VeO(n), and X € C.

(1) If A € C —Z, then the principal series representation Is(V,\) of G is
wrreducible.

(2) Suppose X\ € Z. Then I5(V,\) is irreducible if and only if

AeS(V) when V' is of type X,
AeS(V)USy(V) whenV is of type Y.

Thus Red (see (I49) is given by

—

Red = {(V,\) € O(n) x Z: A & S(V) U Sy (V)} (14.16)

with Convention [14.1]]

The proof of Theorem [I4.15] will be given in Section [[5.3in Appendix II
by inspecting the restriction of I5(V,A) of G = O(n + 1,1) to its subgroups
G =S0(n+1,1) and Gy = SOg(n + 1,1).

Example 14.16. Let 0 < ¢ < n. The exterior tensor representation on
AY(C™) is of type X if and only if n # 2i (see Example ). A simple
computation shows

S(ND(C) =Z — ({i,n —i} U(=N,)U (n+N,)) for 0 < i < n,
SY(/\(m) (c")) =0 for n = 2m,

see also Example [4.25l Hence I;(i, A) is reducible if and only if
A€ {i,n—i}U (=N )U(n+Ny)

by Theorem [4108 See Theorem for the socle filtration of I5(i, \) for
A=iorn—i.
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For later purpose, we decompose Red into two disjoint subsets as follows:

—

Definition 14.17. We recall from Definition 20l that any V' € O(n) is either

—

of type X or of type Y for O(n). We set

Redp :={(V,\) € Red : V is of type X or A = g},

Redy :={(V,\) € Red : V is of type Y and \ # g}
Then we have a disjoint union
Red = Red; I Redy.
Remark 14.18. If n is odd, then

Redi; =0 and Red = Red;.

14.4 Subquotients of I5(V, \)

By Theorem [[4.17] the principal series representation I5(V, \) of G = O(n +
1,1) is reducible i.e., (V,;\) € Red if and only if

ANEZ—(S(V)USy(V))

with Convention [ZT1l In this section, we explain the socle filtration of
Is(V,A). A number of different characterizations of the subquotients will
be given in later sections, see Theorem for summary. We divide the
arguments into the following two cases:

Case 1. A # 7, see Section [4.4.T}
Case 2. A = 7, see Section [4.4.2

14.4.1 Subquotients of I5(V,\) for V of type X

We begin with the case where A # 7. This means that we treat the following
cases:

e Visof type X, and A € Z — S(V);
e Visoftype Y,and A € Z — (S(V) U Sy (V) U {5}).
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Proposition 14.19. Let G = O(n+1,1), V € O(n), § € {£}, and X €
Z—(S(V)USy(V)). Assume further that X # 5. Then there exists a unique
proper submodule of the principal series representation Is(V, \), to be denoted
by I;(V,\)’. In particular, the quotient G-module

(VA = L(V A (VA

18 1rreducible.

The proof of Proposition will be given in Section [5.4] of Appendix
II1.

Remark 14.20. The K-type formulse and the minimal K-types of the irre-
ducible G-modules I;(V, A)> and I5(V, A\)* will be given in Proposition
and Proposition [4.34] respectively.

14.4.2 Subrepresentations of I5(V, %) for V' of type Y
Next we discuss the case:
e Visof type Y and A = 3.

In this case I5(V, ) is the smooth representation of a tempered unitary
representation.

Proposition 14.21 (reducible tempered principal series representation). Let
G=0Mn+11) withn =2m,V € O(n) be of type Y, and 6 € {x}. Then
the principal series representation I5(V, m) of G is decomposed into the direct

sum of two irreducible representations of G, to be written as:
I;(V,m) ~ Is(V,m)’ & Is(V, m)*.

If we express V = FOW(g), by 0 = (01, -+ ,0m) € AT (m) with o,, > 0
and ¢ € {&}, then the irreducible G-modules I5(V,m)’ and Is(V,m)* are
characterized by their minimal K-types given respectively by the following:
FO(n+1) (017 e 7Um)a IX 5a
FOUtD (g oo o) K (=0).
Proof. This is proved in Proposition (2) except for the assertion on the

K-types. The last assertion on the minimal K-types follow from the K-type
formula of I5(V,m)” and I5(V,m)* in Proposition (2). O
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14.4.3 Socle filtration of I5(V,\)

By Theorem [[Z.T8 together with Propositions I4I9 and [Z.21] we obtain the
following;:

Corollary 14.22. Let G = O(n+1,1) for n > 2. Then the principal series

—

representation Is(V, ) (6 € {£}, V € O(n), A € C) of G is either irreducible

or of composition series of length two.

14.5 Definition of the height i(V, \)

In this section we introduce the “height”
i: RInt —{0,1,...,n}, (V,A)—i(V,\)

which plays an important role in the study of the principal series representa-
tion I5(V, \) of G. For instance, we shall see in Section [4.7 that the K-type
formula for subquotients of I5(V, \) is described by using the height i(V, A)
when (V,\) € Red (Definition [[4.8). Moreover, we shall prove in Theo-
rem that the G-module I5(V, ) is obtained by the translation functor
applied to the principal series representation I (7,7) with the trivial infinites-
imal character pg without “crossing the wall” if we take ¢ to be the height
i(V,\), see Theorem [[6.6] We note that the group G = O(n + 1, 1) is not
in the Harish-Chandra class when n is even, and will discuss carefully a
translation functor in Appendix III (Chapter [IG).
We recall from (IZI0) that
n

n n n
= 51 572 Om T —m A= ),
r(V,\) (01+2 o2t 5 =2 ot 5 —m A 2)

where m := [2]. To specify the Weyl chamber for W, that r(V,\) € (3Z)™"*

belongs to, we label the places where A — % is located with respect to the

2
following inequalities.
Case 1. n =2m:

—o1—m+1< —0o—m+2< - - <=0, L0 < -+ - <0Ogt+m—2 < o1+m—1;

Case 2. n=2m + 1:

1 3 1 1 1
—al—m—i-é < —02—m+§ << —Om—5 <0< 0m+§ << 01+m—§.
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Unifying these inequalities by adding 7 to each term, we may write as

1—01<2—02<---<m—am§g§0m+n—m<---<02+n—2<01+n—1.
Definition 14.23. For 0 < i < n, we define the following subsets R(V;4) of
Z:
. . . o n—1
{NeZ:i—o,<A<i+1—0,41} f0r0§2<T,
1 _
{)\EZ:n2 —O'nT—1<)\<g} for i = (n odd),
n n .n
{AEZ:§—0g<)\<U%+§} forz:§ (n even),
1 1
{)\EZ:g<)\<0n21+n;— } fori:n+ (n odd),
1
{NeEZ :opip1+i—1<A<o,;+1i} forn+ <i1<n.

Here we regard oy = oo.

—_—

Lemma 14.24. Let V € O(n). We recall from [IZI3) that S(V) is the set
of singular integral parameters.

(1) The set of regular integral parameters has the following disjoint decom-

position:
n

Z-S\V)=][Rv:i).

In particular, there exists a map
i(\V,): Z—-S(V)—{0,1,...,n} (14.17)
such that A € R(V;i(V,\)).

(2) The set S(V') is preserved by the transformations A\ — n — X and V +—
V ® det, and we have

i(Vin—=A) =n—i(V,A)
i(V @ det, \) =i(V,\)

for any N e Z - S(V).
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(3) R(V;%5) # 0 if and only if n is even and the irreducible O(n)-module
V is of type Y. In this case, we have

R(V; g) = {g} USy(V) (disjoint union). (14.18)
Example 14.25. Let 0 < i < n. For the i-th exterior tensor representation
V = AY(C") of O(n), we have
S(NHC™) =Z — ({i,n — i} U (-Ny) U (n + Ny)).

Furthermore, we see from Example [4.0] that the set R(V;j) is given as
follows.

(1) For 1 <i<n-—1,

—N+ lfj == O,
P {j} if j=4iorn—i,
R(N(C"); ) = L
n+ N, if j =n,
0 otherwise.
(2) For i =0 or n,
—N it 7 =0,
R(N'(C");j) = q{n+N if j =n,
0 otherwise.

—_—

We recall from Definition [[4.8 that RZnt is a subset of O(n) x Z.

Definition 14.26 (height i(V, \)). By (IZ£I7) in Lemma [4.24] we define a
map
i: RInt — {0,1,...,n},

see Lemma [[4.12 We refer to i(V, \) as the height of (V, X). We also refer it
to as the height of the principal series representation Is(V,\).

Example 14.27. We illustrate the definition of the height i(V, A) € {0,1,...,n}

n

for (V,\) € RInt by a graphic description when m(= [§]) = 1, namely, when
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n = 2 or 3. In this case G = O(n + 1,1) is either O(3,1) or O(4,1), and

—

V € O(n) is given by V = FO®(g,), with 0; € N and ¢ € {£}. Then

{(01,6,\) e Nx {£} XZ: N —1+# +o01} if n =2,

RInt ~
" {{(0178,/\)ENx{i}XZ:/\—Z#ial,)\%ﬂ if n=3.

In the (o1, A)-plane, the height i(V, A) is given as in Figure [4.11
A A

G=0(3,1) G=0(4,1)
(n=2) (n=3)

Figure 14.1: The height ¢ = i(V, A) for (V,\) € RZnt when n = 2, 3.

The red dots stand for (V;\) = (A?(C"),7) when j =0,1,...,n.
The case where the height i(V, A) is equal to § requires a special attention.

Lemma 14.28. Let m := [2]. Suppose that V = FO") (). with o € A*(m)
ande € {£}, and A€ Z — S(V).

(1) The height i(V,\) is equal to § if and only if n is even (= 2m) and
Om > |A—m|.

(2) If X € Sy (V) (see (IZI4)), then n is even (= 2m) and i(V,\) = m.
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(3) Suppose that V' is of type Y (Definition[2.4). Then, for (V,\) € Red,
the following two conditions are equivalent:

(i) iV, A) = 55

(ii) n is even and A =

n
5

14.6 K-type formulee of irreducible G-modules

In this section we provide explicit K-type formulee of irreducible representa-
tions of G = O(n+1,1). The height ¢(V, \) plays a crucial role in describing
the K-type formulae of irreducible subquotients of I5(V, A), see Proposition
12301 (1).

14.6.1 K-type formula of I5(V,\)

We begin with the K-type formula of the principal series representation
I5(V, A\) which generalizes Lemma R.T6 for I5(7,7) in the setting that V =
N'(CT).
Proposition 14.29 (K-type formula of I5(V,\)). Let G = O(n+ 1,1) and
m = [2]. Suppose that V = FO" (o). with o = (01, ,0mm) € AT (m) and
e € {£}.

(1) Forn =2m+ 1, the K-type formula of the principal series representa-

tion Is(V, \) is given by

m

@ FO(n+1) (/“Lh T Mm-‘rl)e X 5(_1)2;’2&1 Mj_zj:l Uj?
o

where = (fi1, -, flms1) Tuns over AT (m + 1) subject to
1 201 2> g 2> 09 2+ 2 [y > Opy > g1 > 0. (14-19)

(2) For n = 2m and V € O(n) of type X (Definition [2.8), the K-type
formula of 15(V,\) is given by

@ FO(TH_I) (Mh T ulum)é‘ D 5(_]‘)27;1 /LJ'_Z;"L:1 Uj)
o

where = (fi1, -+ , fm) Tuns over A (m + 1) subject to
> 01 > > iy > 0 (= 0). (14.20)
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—

(3) Forn=2m andV € O(n) of type Y, the K-type formula of I5(V,\) is

given by
@ @ FOUAD (g v i) e X 55(_1)27:1 Hi=2j=1 %
K=t u

where j1 = (i1, , pm) Tuns over AT (m) subject to

[ > 00> > i > o (> 0). (14.21)

Proof. By the Frobenius reciprocity, Proposition [[4.29] follows from the clas-
sical branching rule for the restriction O(n + 1) | O(n), see Fact ZT2] O

Since the principal series representation I5(V, \) of G is multiplicity-free
as a K-module, any subquotient of I5(V,\) can be characterized by its K-
types. In the next subsection, we provide K-type formulae of subquotients
of Is5(V, \) based on Proposition [4.29

14.6.2 K-types of subquotients I5(V,\)" and I5(V, \)*
We recall from ([I4.9) and Theorem that the following two conditions

—

on (V,\) € O(n) x C are equivalent.
(i) (V,A) € Red, i.e., the G-module I5(V, \) is reducible;
(i) AeZ—(S(V)USy(V)).

We note that A = § belongs to Z — (S(V)) U Sy(V)) when n is even.

In this section, we describe the K-types of the subquotients I5(V )\)b and
I5(V,\)* when the principal series representation I5(V, \) is reducible, i.e.,
when (V,\) € Red, see (IZ10]).

We shall see that the description depends on the height i(V, A) (Definition

—

M4.26) when A = . To be more precise, let m = [5] and V' € O(n). Suppose
A € Z—(S(V)USy(V)) and we define i to be the height i(V, \) € {0,1,...,n}.
We write V = FOW(g), with ¢ = (01, ,0,) € AT (m) and € € {£} as

before. We observe the following:

o ifi < ”T_l, then 1 <i+1 < m and the condition i—0; < A < i1+1—0;11
(Definition [4.23) amounts to

o1 <i—X and i—A+1<oy; (14.22)
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e if i = 251 then n is odd (= 2m + 1) and we have

0<m-—X and m—-A+1<o0,; (14.23)

e if i = 2 then n is odd (= 2m + 1) and we have

0<A—m—1 and A—m <o, (14.24)

° if”T*l <1, then 1 <n —1+1<m and the condition o, ;41 +1—1<
A < 0,—; + 1 amounts to

On_iz1 <A—i and A—i+1<o0,, (14.25)

We recall that the principal series representation I5(V,\) of G = O(n +
1,1) is K-multiplicity-free, and its K-type formula is given explicitly in
Proposition[I4.29 To describe the K-type formula of subquotients of I5(V, A),
we use the inequalities ([422])—({IZ2H]) in Proposition (1) below.
Proposition 14.30 (K-type formule of subquotients). Suppose that (V,\) €
Red, or equivalently, V € O(n) and A € Z — (S(V) U Sy(V)), see Theorem
{13 Leti:=i(V,\) € {0,1,...,n} be the height of (V,\) as in Definition
[Z7.29

(1) Suppose X\ # 5. In this casei # 5. Then the K-types of the submodule
I;(V,\)’ and the quotient I5(V,\)¢ of I5(V,\), see Proposition [T-19
are subsets of the K-types of I5(V, \) (Proposition[I{.29) characterized
by the following additional inequalities:

o fori < "T_l, the condition o1 < piv1 < o; in ([[AI9)-IL2T) s
divided as follows:
(is1 <) pis1 <i—A for I5(V, >‘>b7
P=A+1< piyr (< oy) for Is(V, \)¥;
o for " <, the condition o i1 < pin—iy1 < 0y in ([Z19) 22T
15 divided as follows:
A—1i + 1 S ,unfiJrl( S Unfi) fO’f’ Ié(‘/a >\>b7
(On—it1 <) pn—ivr < A—1 for Is(V, \)*.

Here we regard 0,,41 = 0 (this happens when i = "Til)
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(2) Suppose N\ = 5. In this case n is even (= 2m) and i = m. Then

the K-types of the submodules I5(V, \)’ and I;(V,\)* of the (tempered)
principal series representation I5(V, X), see Proposition[I4.21) are given

by
@ FOUID (g, oo ) e B (—1) 2051 #9221 % for Is(V, A),

I
P ro D (s ) BE(-1)ZR0 S for I(V, M)
w

where = (f11,+ -+, fm) Tuns over At (m) subject to (IZ2).

Proof. The Ky-types for all irreducible subquotients of principal series rep-
resentations of the connected Lie group Gy = SOy(n+ 1, 1) were obtained in
Hirai [I7], from which analogous results for the group G = SO(n + 1,1) are
easily shown. Our concern is with the group G = O(n+ 1,1). Then the first
assertion follows from Proposition on the K-type formula of I5(V, \)
and from the branching rule for the restriction G | G in Propositions [5.1
and in Appendix II. The second assertion follows from the branching
rule of I5(V, %) for the restriction G | G in Proposition m

14.7  (8,V,A) ~ (67, V1, A1) and (6%, V+, M)

In this section, we introduce a correspondence

—_—

§e{x}, VeO(n), and A€Z— (S(V)USy(V))

$
5t e (£}, VI € O(n), and AT € Z — (S(VT) U Sy (V1)

satisfying the following two properties (Proposition [4.33)):

iV =i(V,A) +1
It (VI XY ~ I5(V, M2
We retain the notation that G = O(n +1,1) and m = [3].
Definition 14.31. Suppose that V = FO™(s). with ¢ € A*(m) and € €
{+}, and A € Z — S(V). Let i := i(V,\) € {0,1,...,n} be the height of
(V,\) as in Lemma [[424]
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(1) We assume 0 <i <n — 1, or equivalently, A < o; +n — 1. We define
@, V, N = (6", VT, AN € Z/2Z x O(n) x Z (14.26)
with VT := FO®) (g1, as follows:

e For A < 7, we have 0 <14 < 7 and set
6T i =(—1) 1o
UT ::(017"' 70i7i+ 1— )\70-i+27"' agm)a
)\T =7+ 1— Oj41-

o For ; <A <o;+n—1,wehave 3 <i<n—1and set

6T i=5(—1)A o=,
O-T ::<0-1a 5, On—i—1, A — Z.a On—it+1,""" 7Jm)a

A =0, +1.
(2) Conversely, for 1 < i < n, namely, for 1 — oy < A, we define
(8, V, Y = (6%, V4 \h (14.27)
as the inverse of the correspondence

(6, VoA) = (8, VN

A prototype for Definition [[4.31] appeared implicitly in Theorem .20 for
the principal series representations Is(i, ) having the trivial 3¢(g)-infinitesimal
character pg. We now explain this explicitly as an example for (V,\) =

(AY(C"), i) 1 <i<n):
Example 14.32. For the exterior representations A\‘(C") of O(n), we have
(6, A'(C), 1)
(8, A'(C"),1)*

The proof follows directly from the definition, see Example [14.6]

(=0, ATH(C™),i+1) for0<i<n-—1,
(=0, A1 (C™),i—1) for1<i<n.
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Here are basic properties of the correspondence
(6, V,A) = (6T, VI AT or (6%, VY.

Proposition 14.33. Suppose that (V,\) € RInt, i.e., V € O/(;) and \ €
Z — S(V). In what follows, we assume the height i(V,\) is not equal to n
when we consider (VT, A1), and is nonzero when we consider (V+, \}).

(1) 7“(VT7 /\T),T(Vi,)\i) € War(V,A), see (IAI0). In particular, (VT,)\T),
(VM) € RInt.

(VA —1=4(V, ) =i(VH ) + 1

M= =6(=1)* = o4 (-1)™

(2)
(3) o
(4) (VT AN, (V¥ M) € Red, if (V,)\) € Red, see (TZ3).
()

3

5) Suppose that (V,\) € Red and X # 5. Then the unique submodule of
I_s(VT,X1) is isomorphic to the unique quotient of I5(V, \), that is, we
have the following G-isomorphisms with the notation as in Proposition

{19
Lsn (VT AT = I5(V, M),
L (V4 XD ~I5(V, N

With these notations, we give the formulse for the minimal K-types of
the irreducible subquotients I5(V, )’ and I5(V, A)* in I5(V, \) in the setting
of Proposition

Proposition 14.34. Let G = O(n + 1,1) and m = [3]. Suppose V =
FOM (), with o = (01, ,0m) € A (m) and e € {£}." Let § € {£} and
ANeEZ—(S(V)USy(V)u{s}).

(1) The minimal K-types of I5(V,\)* for X < 2 and of I5(V,\)* for A > 2
are given by

FO)(g). ) § for n=2m and o, =0,
FOrtD(g). RS, FOUY(o)_ R (=8)  forn=2m and o,, >0,
FOUt (5 0). K § forn =2m+ 1.
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(2) The minimal K-types of I5(V,\)* for X < 2 and of I5(V,\)’ for A > 2
are given by

FOOtD (61, = 6" for n=2m and o,, =0,
FOtD (N ", FOMD(eN_ R (=6")  forn=2m and o,, >0,
FOtD (51 0), ® & forn =2m+1.

14.8 Classification of irreducible admissible represen-
tations of G = O(n+1,1)

Irreducible admissible representations of the connected group Gy = SOg(n +
1,1) were classified infinitesimally (i.e., on the level of (g, Ky)-modules) by
Hirai [, see also Borel-Wallach [d and Collingwood [[Il Chap. 5]. How-
ever, we could not find in the literature a classification of irreducible ad-
missible representations of the indefinite orthogonal group G = O(n + 1,1),
which is not in the Harish-Chandra class when n is even. For the sake of
completeness, we give an infinitesimal classification of irreducible admissi-
ble representations of GG, or equivalently, give a classification of irreducible
(g, K)-modules in this section. Moreover we give three characterizations of
the irreducible representations of G when they are neither principal series
representations nor tempered representations, see Theorem [I4.35]

14.8.1 Characterizations of the irreducible subquotients II5(V, \)

We recall from Section 2.4.5] the irreducible representations Il, 5 of G that
have the trivial 34(g)-infinitesimal character pg. Analogously to the notation

Iy 5 in 233) for Irr(G),, we set
I5(V, \) := I5(V, \)’ (14.28)
for 6 € {£} and (V, \) € Red. If i(V,A) # 0, then we have a G-isomorphism
I5(V,\) =~ I (V4 AHE (14.29)
where (0%, V+, \¥) is given in Definition [Z31l We also have a G-isomorphism
I5(V, \) =~ I5(V,n — M) (14.30)

We have already discussed in Proposition [[4.2]] irreducible subquotients of
reducible tempered principal series representations [5(V,A) under the as-
sumption that (V,\) € Red with A = Z. This assumption implies that n is
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even, V is of type Y and A = §. The next theorem discusses the remaining
(and the important) case when the principal series representation I5(V, \) is
reducible, namely, (V,\) € Red with an additional condition A # .

Theorem 14.35 (characterizations of Il5(V,\)). Let G = O(n+ 1,1), and

L

we set m := [5]. Assume that (V,\) € Red. This means that V € O(n) and

Z—S(V) ifn=2m+1,
Z— (S(V)uSy(V)) if n = 2m,
see Theorem [I{.15 We further assume that X # %.

(1) (Langlands subrepresentation of principal series) Ford € {£}, IIs(V, \)
is the unique proper G-submodule of I5(V, \).

(2) (6-stable parameter) Let i :=i(V,\) € {0,1,...,n} be the height of
(V,\) as in (IETD). We write V = FO" (o). with o = (01, -+ ,0p) €
At(m) and e € {x}. Then the underlying (g, K)-module of T5(V, \) is
given by means of 6-stable parameter (see Section[1].9) as

(0-1_17”'7O-i_1|’/i_)\70-i+17"'7Um>6,56 Zf)\

(VA g =~ {

(3) (coherent family starting at II; 5 € Irr(G),) We set

r(V,\) € C™ (~b%) as in (IZI0).
Denote by P, the projection to the primary component with the general-
ized 3(g)-infinitesimal character p € b mod W (see Section 1627
in Appendiz III). Let F(V,\) be the irreducible finite-dimensional rep-
resentation of G = O(n+1, 1), which will be defined in Definition[16.17
in Appendiz III. Then there is a natural G-isomorphism:

(V. A) >~ Prvay(Ilis @ F(V, X)),
(4) (Hasse sequence and standard sequence starting at F'(V, X)) Let IL;(F)
( =0,1,---,n) be the standard sequence starting with an irreducible

finite-dimensional representation F of G (Definition [33), and i =
i(V,\) the height of (V,X). Then there is a natural G-isomorphism.:

5V, A) ~ IL(F(V,\) ® Yas.

See Proposition for (1), Theorem for (2), Theorem for
(3) in Chapter I8 (Appendix IIT), and Theorems and [I4.51] for (4).
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14.8.2 Classification of Irr(G)

We give an infinitesimal classification of irreducible admissible representa-
tions of G = O(n+1,1). One may reduce the proof to the case of connected
groups, by inspecting the restriction to the subgroups G = SO(n + 1,1) or
Go = SOy(n+1,1), see Chapter [[3] (Appendix II).

Theorem 14.36 (classification of Irr(G)). Irreducible admissible represen-
tations of moderate growth of G = O(n + 1,1) are listed as follows:

o L(V,))  Ae(C—Z)USV)USy(V),
o I;(V,)) A€Z—(S(V)USy(V)) and A < g

—

where V€ O(n) and § € {£}.
We note that there is an isomorphism of irreducible G-modules:
Is(V,A) ~ Is(V,n — \)
when A € (C—-Z)uUS(V)U Sy (V).

14.9 (0-stable parameters and cohomological parabolic
induction

In this section we give a parametrization of irreducible subquotients of the
principal series representations

L(V,\) =Ind$(V @8 @ Cy)

of the group G = O(n + 1,1) in terms of cohomological parabolic induction.

14.9.1 Cohomological parabolic induction Ay(\) = RY(Cyipw))

We fix some notation of cohomological parabolic induction. A basic refer-
ence is Vogan [63] and Knapp—Vogan [26]. We begin with a connected real
reductive Lie group G. Let K be a maximal compact subgroup, and 6 the
corresponding Cartan involution. Given an element X € £ the complexi-
fied Lie algebra gc = Lie(G) ®g C is decomposed into the eigenspaces of
v—1ad(X), and we write

gc=u_—+Ilc+u
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for the sum of the eigenspaces with negative, zero, and positive eigenvalues.
Then q := [¢ + u is a f-stable parabolic subalgebra with Levi subgroup

L={geG:Ad(g9)q=q}. (14.31)

The homogeneous space G/ L is endowed with a G-invariant complex mani-
fold structure with holomorphic cotangent bundle G x u. As an algebraic
analogue of Dolbeault cohomology groups for G-equivariant holomorphic vec-
tor bundle over G/L, Zuckerman introduced a cohomological parabolic in-
duction functor R (- @ C,)) (j € N) from the category of (I, LN K)-modules
to the category of (g, K)-modules. We adopt here the normalization of the
cohomological parabolic induction Ra from a f-stable parabolic subalgebra
q = lc+uso that the 3(g)-infinitesimal character of the (g, K')-module R} (F)
equals
the 3([)-infinitesimal character of the [-module F

modulo the Weyl group via the Harish-Chandra isomorphism.

We note that if /" is an (I, L N K)-module then F' := F' ® C,,) may
not be defined as an (I, L N K)-module, but can be defined as a module of
the metaplectic covering group of L. When F' satisfies a positivity condition
called “good range of parameters”, the cohomology Ré(F ) concentrates on
the degree

S = dim@(u N E(c)

For a one-dimensional representation F', we also use another convention
“Aq(N)”. Following the normalization of Vogan-Zuckerman [G3], we set

Aq(N) =Ry (Caip)
for a one-dimensional representation C, of L. In particular, we set
Ag = 44(0) = RJ(Cpp),

which is an irreducible (g, K)-module with the same 3(g)-infinitesimal char-
acter p as that of the trivial one-dimensional representation 1 of G.

Similar notation will be used for disconnected groups G. For a character
x of the component group G/Gj, we have an isomorphism of (g, K')-modules:

(Ag)y == Ag @ x ~ RqS(X ® Cp(u))'
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14.9.2 #-stable parabolic subalgebra g; for G = O(n +1,1)

We apply the general theory reviewed in Section [4.9.1] to the group G =
O(n + 1,1). For this, we set up some notation for #-stable parabolic subal-
gebra q; and q%,, of gc = Lie(G) ®r C ~ o(n + 2,C) as follows.

We take a Cartan subalgebra t° of €, and extend it to a fundamental
Cartan subalgebra h = t© + a®. If n is odd then a® = {0}. Choose the
standard coordinates {f; : 1 < k < [§] + 1} on bg such that the root system
of g and ¢ are given by

Alge,be) ={x(fit f) s 1<i<j < [5]+1}

<U{:|:fg 1<0< [g] +1}  (n 0dd)> :

Alte,te) ={(fi+ f) 150 < <[]}

]}(memm)

n+1

<u{if,g:1§€§[

For 1 <i < [®H], we define elements of ¢} by

! n
,ui 222(5 —|- 1 — k’)fk,
k=1

pr =g — (n 42— 24) f;.

It is convenient to set py = g = 0. (We shall use u; only when we consider
the identity component group Gy = SOg(n + 1,1) with n odd and when
n + 1 = 2¢ for later arguments.) Let (, ) be the standard bilinear form on
b ~ Cl31+.

Definition 14.37 (f-stable parabolic subalgebra g;). For 0 <1 < [*E], we
define f-stable parabolic subalgebras q; = q = (I;)c +u; and q; = ([;)c+u;
in gc = Lie(G) ®r C by the condition that g; and q; contain the fundamental
Cartan subalgebra h and that their nilradicals u; and u;” are given respectively
by

A(u;, be) ={a € Alge, be) : (o, i) > 0},
A(u;, be) ={a € Age, be) « (o, py ) > 0}
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Then the Levi subgroup of q = q; and q; is given by
Li:==Ng(q) ={g € G:Ad(9)g=q} ~ SO(2)" x O(n — 2 +1,1). (14.32)

We note that L; is not in the Harish-Chandra class if n is even, as is the case

G=0(n+11).

If we write p(u;) and p(u; ) for half the sum of roots in u; and u; , respec-
tively, then

p(wi) = p; and  p(u;) = gy .
We suppress the superscript + for q; except for the case n+1 = 2i. For later
purpose, we compare the following three groups with the same Lie algebras:

Go=S0y(n+1,1) - G=950n+1,1) = G=0(n+1,1)  (14.33)
with maximal compact subgroups
Ky=50(n+1) —=K=0n+1) < K=0(n+1)xO0(1).

Lemma 14.38. (1) A complete system of the Ky-conjugacy classes of -
stable parabolic subalgebras of gc with Levi subgroup L; (I432) is given

by
) n—+1
{ai} for0<i< [TL
_ oon+1
{0 qun} fori= (n:odd).

(2) The 0-stable parabolic subalgebra q; with the property (I4.32)) is unique
up to conjugation by the disconnected group K (and therefore, also by
K) for alli (0 <4 < [%H]).

We also make the following two observations:

Lemma 14.39. L; is compact if and only if n is odd and 20 = n+1. In this
n+1

case, L; ~ SO(2)2 x O(1).

Lemma 14.40. The inclusion maps ([I4Z33) induce the following inclusion
and bijection:

Go/Ne,(a:) = G/Ng(a:) = G/Ne(a;) = G/ L

foralli (0 <i< [”T“]) The first inclusion is bijective if n + 1 # 2i.
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The second bijection is reflected by the irreducibility of the G-module
II, 5 when restricted to the subgroup G = SO(n+1,1), see Proposition [5.11]
(1) in Appendix II.

Lemmas and yield the following (well-known) representation
theoretic results:

Proposition 14.41. (1) G (or G, Gy) admits a discrete series represen-
tation if and only if n is odd.

(2) Suppose n is odd. Then there exists only one discrete series represen-
tation of G for each regular integral infinitesimal character; there exist
exactly two discrete series representations of G (also of Go) for each
reqular integral infinitesimal character.

For n = 2m — 1 in the second statement of Proposition [4.4I] we note
the following properties for the three groups G D G D G:

o L, ~SO(2)"™ x O(1) has two connected components;

e L,NG = L,, NGy are connected;

e g/ and q;, are not conjugate by Go; they are conjugate by G or G.

See 29, Thm. 3 (0)] for results in a more general setting of the indefinite
orthogonal group O(p, q).

Forv = (v, -+ ,15) € Z', p € AT([3]—i+1), and a,b € {£}, we consider
an irreducible finite-dimensional L;-module

FO(n—2i+1,1) (,u)a @ (CV

and define an admissible smooth representation of G of moderate growth, to
be denoted by

(1/1, SRR 7 || My oo 7M[g]—z‘+1)a,b,
whose underlying (g, K')-module is given by the cohomological parabolic in-
duction

Rt (28D (1) 14 @ Co i) (14.34)
of degree S;, where we set
S; = dimc(w; N Ec) =i(n — ). (14.35)
We note that if i = 0 then ([| g1, -+, fi2]41)q, is finite-dimensional.
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Definition 14.42 (¢-stable parameter). We call (vy, -+, v [| g, -+ 5 frp2)-ig1)ap
the 0-stable parameter of the representation (I4.34]).

If the O-stable parameter of a representation II of G is given by

(1/17 Y <) H M1y 7“[2]—i+1)a,b7
2

then that of I ® y.q for ¢,d € {£} is given by

(i, vl >M[g]—z‘+1)ac,bd- (14.36)
The 3¢(g)-infinitesimal character of (v1,- -« ,v; || g1, , yz)—it1)ap 18 given
by
n n n .n
e Ui e —— =1, = —[=]).
(1, v pig-i) + (50 5 5~ 5D

In particular, the G-module

((),... ,OHO’... 7O>a,b
—— N——
i [2]—i+1

has the trivial infinitesimal character pg. In this case we shall write
(qu')a,b = Rqsz (Xab ® Cp(u,-)) (1437)

for its underlying (g, K')-module, see Proposition [£44] below.
Sometimes we suppress the subscript +, 4 and write simply A,, to denote
the (g, K)-module (Ag,)+ -
Remark 14.43. (1) (good range) The irreducible finite-dimensional repre-
sentation FON=2H1D (1) @ C, 4y of the metaplectic cover of L; is

in the good range with respect to the f-stable parabolic subalgebra g;
(see 26, Def. 0.49] for the definition) if and only if

V2V 2 2V 2

juiy [

In this case, the (g, K)-module (IZ34) is nonzero and irreducible, and
therefore (v, v || 1, ,u[%]_iﬂ)a’b is a nonzero irreducible G-
module. For the description of the Hasse sequence (Theorem
below), we need only the parameter in the good range.
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(2) (weakly fair range) If p = (0,---,0), then the (g, K)-module (I4.34)
reduces to
Aﬂz’(V)a,b = IR’qSZ (Xab ® CV+P(ui))

cohomologically induced from the one-dimensional representation y, ®
Coipw). We note that xa ® Coqpy is in the weakly fair range with
respect to q; (see [20, Def. 0.52] for the definition) if and only if

Vl—l—g21/2+g—12-~21/i+g—i+120. (14.38)
In this case the (g, K)-module Ay, (), may or may not vanish. See
29 Thm. 3] for the conditions on v € Z' in the weakly fair range
that assure the nonvanishing and the irreducibility of Aqsl (C))ap- We
shall see in Section [ZITlthat the underlying (g, K')-modules of singular
complementary series representations are isomorphic to these modules.

14.9.3 Irreducible representations 1,5 and (A, )1 +

In this subsection, we give a description of the underlying (g, K )-modules of
the subquotients 11, 5 of the principal series representation of the disconnected
group G = O(n + 1,1) in terms of the cohomologically parabolic induced
modules (Ag, )1 +.

We recall from (235]) the definition of the irreducible representations Iy s
(0<l<n+1,§==%)of G=0(n+1,1). The set

{H&(;OSESH—FL(S::E}

exhausts irreducible admissible representations of moderate growth having
3¢ (g)-infinitesimal character pg, see Theorem (2). Their underlying
(g, K)-modules (II;5)x can be given by cohomologically parabolic induced
modules as follows.

Proposition 14.44. For 0 <i < [”T“], let q; be the O-stable parabolic subal-
gebras with the Levi subgroup L; ~ SO(2)" x O(n—2i+1,1) as in Definition

[2£-57

(1) The underlying (g, K)-modules of the irreducible G-modules 11,5 (0 <
(<n+1,6¢€{x}) are given by the cohomological parabolic induction
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as follows:

(M4 )k ~=(Ag,) 4+ D A(CTTH KT,

(I )i =(Ag,)+,— D A'(C") Risgn,
)k ~(Ag)—+ D ANTTH(CTT KT,
)i ~(Ag) -~ D ANTTTH(CT) Ksgn.

( n+1—i,+ K

(n+lz K

For later purpose, we also indicated their minimal K -types in the right
column (see Theorem[2.20 (3)).

(2) If nis even or if 2i # n + 1, then the four (g, K)-modules (Ag,)ap
(a,b € {£}) are not isomorphic to each other.

If 2i = n + 1, then there are isomorphisms
(Aq n+1 )+7+ = (Aq n+1 )_7+ and (Aq n+1 )“1‘7_ = (Aq n+1 )_,_
2 2 2 2

as (g, K)-modules for the disconnected group O(n+1,1).

Thus the left-hand sides of the formulse in Proposition [4.44] (1) have

overlaps when n is odd and ¢ = ”TH In fact, the Levi part in this case is
n+1

of the form Lun ~ SO(2)72 x 0(0,1), and y_, ~ 1 and y,_ =~ xy__ as
0O(0, 1)-modules.

14.9.4 TIrreducible representations with nonzero (g, K')-cohomologies

In this section, we prove Theorem (9) on the classification of irreducible
unitary representations of G = O(n+1, 1) with nonzero (g, K')-cohomologies.
We have already seen in Lemma that H*(g, K; (Iys)k) # {0} for all
0<?¢<n+1andd € {+}. Hence the proof of Theorem (9) will be
completed by showing the following.

Proposition 14.45. Let II be an irreducible unitary representation of G =
O(n + 1,1) such that H*(g, K;1x) # {0}. Then the smooth representation
1% is isomorphic to 5 (see [230)) for some 0 < <n+1 and € {£}.

Proof. We begin with representations of the identity component Gy = SOg(n+
1,1). In this case, we write Ag by putting superscript 0 to denote the (g, Ky)-
module which is cohomologically induced from the trivial one-dimensional
representation of a #-stable parabolic subalgabra q.
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By a theorem of Vogan and Zuckerman [63], any irreducible unitary repre-
sentation I of Gy with H*(g, Ko; (11)k,) # {0} is of the form (IT°)x, ~ A}
for some f-stable parabolic subalgebra ¢ in gc. We recall from Definition

237 that q; (0 < i < ™) and qf (i = %) are f-stable parabolic subal-
gebras such that the Levi subgroup N, (q;) (or Ng,(qi)) are isomorphic to
SO(2)" x SOg(n—2i+1,1). They exhaust all f-stable parabolic subalgebras
up to inner automorphisms and up to cocompact Levi factors, namely, there

exists 0 < 1 < ["TH] such that

q: Cq and Ng,(q)/Ng,(q:) is compact

if we take a conjugation of q by an element of Gy. (For ¢ = ”T“, q; is

considered as either g or q;.) Then we have a (g, Ky)-isomorphism

A° if 20 <n+1,

(HO)KO ~ Ag ~ { i

A or A if2i—ne L (14.39)

Now we consider an irreducible unitary representation II of the disconnected
group G = O(n + 1,1) such that H*(g, K;1Ix) # {0}. The assumption
implies H*(g, Ko;Ilx) # {0}, and therefore there exists a Go-irreducible
submodule TI° of the restriction II|g, such that H*(g, Ko; (I1°)g,) # {0}.
By the reciprocity, the underlying (g, K )-module ITx must be an irreducible
summand in the induced representation

indgzgo ((H())Ko )

It follows from (IZ39) and from Proposition [4.44] (2) that

D (Ag)ap if 2 < n 4 1,
. K u
mdg,KO((HO)KO) ~ J ape{+} o
(AanH)Jr,Jr@(AanH)_,_ if 20 =n+1.
Thus Proposition follows from Proposition T4.44] (1). O

14.9.5 Description of subquotients in I5(V, \)

We use the 6-stable parameter for the description of irreducible subquotients
of the principal series representations I5(V, A) of G = O(n+1, 1) with regular
integral infinitesimal character.
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Theorem 14.46. Suppose V € O(n) and A € Z — S(V). Let i :=i(\,V)
be the height as in Lemma [TL29 We write V. = FO™ (o). with 0 =

(017 :

(1)

c,o2) € A([2]) and e € {£}. Let 6 € {£}.

Suppose A > 5. Then 5 < i <n.

If i # %, then we have the following nonsplit exact sequence of G-
modules of moderate growth:

0 %(0-1 - 17 5y O0n—g — 17)\ —1 H On—it1," " 70[%})6,*55
_>I(5(V7 )‘)
—>(0'1 — 17 s, Op—j — 1 || A — i,Un_i+1, s ,U[%})‘g’& — 0. (1440)

Suppose A < 5. Then 0 <14 < 3.
If i # 5, then we have the following nonsplit exact sequence of G-
modules of moderate growth:

0 _>(0-1 - 17 y O — 1 ||Z_ )\70’7;—&-17"' 70[%])27(58

_>I§<V7 )‘)

—)(01 — 1, e, 0 — 1,Z —A H Oitl, " ,0’[%])57_55 — 0. (1441)
oL
If X\ # 5, then A € Sy(V) (see [4I8)). In this case, I5(V, ) is
wrreducible and we have a G-isomorphism:

Suppose 1 = %, or equivalently, suppose that n is even and o > IA—=5].

n
[é(va)‘) = (01_17"' 70% _1‘“)‘_5')@71’

whenever a,b € {£+} satisfies ab = 9.

If X = 5, then I5(V,\) splits into the direct sum of two irreducible

representations of G:

LV~ @ (o1-1,--,02 —1]]0)a (14.42)
a,be{t},ab=5

Remark 14.47. In Theorem (3), we have a G-isomorphism

Is(FO™(0),  \) ~ I;(F°™(g)_,\) for each § = +.

+
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In fact, by Lemma[4.28, i(A, V') = § implies that V" is of type Y, hence there
is an O(N)-isomorphism FOWM)(g), ~ FOW)(5)_ by Lemma 2.9

Moreover, the restriction of each irreducible summand in (IZ42) to the
special orthogonal group SO(n + 1,1) is irreducible (see Lemma (1) in
Appendix II).

14.9.6 Proof of Theorem

Sketch of the proof of Theorem [T].70. If the 3¢ (g)-infinitesimal character of
the principal series representation I;(F™ (a)., \) is pg, then Theorem [TZ40
is a reformulation of Theorem in terms of #-stable parameters. This is
done in Proposition below.

The general case is derived from the above case by the translation princi-
ple, see Theorems[I6.22 and [[6:24], and also the argument there (e.g., Lemma

[6.12) in Appendix III. ]

Suppose V = AY(C"). By Example [[Z8], the principal series representa-
tion I5(i, \) = IndS(A\(C") ® 0 @ C,) is expressed as follows.

Lemma 14.48. There are natural G-isomorphisms:

Ié(& 6) 216<F0(n)<1f’0[%]—€)+’€) ng

IN
N So] S

I5(0,0) =I(FOM (1=t ot h_ o) ife >
Proposition 14.49. Suppose 0 < ¢ < 5. Then Theorem [I{.4@ holds for
A ="{ and o = (1°,0121%) € A*+([2]).

Proof. By Theorem (1), we have an exact sequence of G-modules
0— Hg,g — [5(£, E) — Hg.,.l’_(s — O,

which does not split as far as £ # 5. By Proposition [4.44] this yields an
exact sequence of (g, K)-modules:

0—= (Ag)+s = L6, 0k = (Aqy)+,—6 — O.

Ge41

By Lemma [[4.4§ and the definition of f-stable parameters, this exact se-
quence can be written as

0 — (0°]| 01214, 5 — L (FO™ (o)., 0) — (0] 012175 _5 — 0.
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Since the height of (FO™ (a),,£) = (A*(C"), ) is given by i(A*(C"),¢) = ¢.
i(¢,0) = ¢ by Example [4.28 we get Proposition from Lemma 214

and ([[Z30]). O

14.10 Hasse sequence in terms of #-stable parameters

This section gives a description of the Hasse sequence (Definition-Theorem
[37) and the standard sequence (Definition [3.2]) in terms of f-stable pa-

rameters.
n+1

We set m := [*=], namely n = 2m — 1 or 2m. Let I’ be an irreducible

finite-dimensional representation of G = O(n + 1,1), and U; = U;(F) (0 <
i < [*H]) be the Hasse sequence with Uy ~ F. We write

_ 170(n+1,1) . n
F=F (507 75[5])a,b
as in Lemma [[43] (2).
Theorem 14.50. Let n=2m and 0 <1 < m.
(1) (Hasse sequence) U;(F') == (S0, ,8i—1|| S, Sm)a,(—1)i-sib-
(2) (standard sequence) U;(F) ® x*_ 2 (S0, 5 Si—1 || Sis= s Sm)a,(—1)%ib-

Proof. (1) We begin with the case a = b= +. Let s:= (g, , 8, 0™) €
AT(2m + 2). As in ([3J) of Section I3 we define s € A+(2m) for
0 < ¢ <m. Then by Theorem [[3.7 there is an injective G-homomorphism

Un(F) < I(_yye-sg (FOM(s9), 0 = sy).
The O(n)-module FO™ (50) is of type I (Definition 24, and we have
i(FOM™ (D), 0 —s))) =1

with the notation of Lemma

By Theorem [[4.46] we get the theorem for a = b = + case. The general
case follows from the case (a,b) = (+, +) by the tensoring argument given in
Proposition [3.41
(2) The second statement follows from Definition and (IZ£30]). O

The case n odd is given similarly as follows.

Theorem 14.51. Letn=2m —1, and 0 <7 <m — 1.
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(1) (Hasse sequence) U;(F) = (S0, ,8i—1|[ 86, s Sm—1)a,(—1)i-sib-
(2) (standard sequence) U;(F)®x%_ =~ (So, -, Si—1 || Si, -, Sm—1)a,(—1)sib-

Proof. (1) We begin with the casea = b = +. Let s := (sg, +* , $;n_1,0™T) €
AT (2m+1). Asin (34), we define s) € A*(2m—1)for0 </ < m—1.
Then by Theorem [[3.9,

Un(F) C Iy (FOU (), 0 — 5).
The O(n)-module FO™ (5) is of type I, and we obtain
i(FO™ (s0) 0 —s)) =1

with the notation of Lemma [14.24

By Theorem [[446, we get the theorem for a = b = + case. The general
case follows from the case (a,b) = (4,+) by the tensoring argument
given in Proposition [3.4]

(2) The second statement follows from Definition and (430l

14.11 Singular integral case

We end this chapter with cohomologically induced representations with sin-
gular parameter, and give a description of complementary series representa-
tions with integral parameter (see Section B.G.3) in terms of #-stable param-
eters.

For 0 <r < ["TH], we define g, = (I)c + u, to be the f-stable parabolic
subalgebra with Levi subgroups L, ~ SO(2)" x O(n +1 — 2r,1) in G =
O(n + 1,1) as in Definition [437 We set S, = r(n —r).

For v = (v, - ,1p) € Z" ~ (SO(2)")" and a,b € {£}, we consider the
underlying (g, K)-modules of the admissible smooth representations of G:

(,/17... ’VTH()’... 70)(1,1”
——

[2]—r+1
namely, the following (g, K)-modules
Aqr(’/)a,b = Rf: (Xab ® Cu+p(u)) = RqS: (erp(ur)) & Xab;
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which are cohomologically induced from the one-dimensional representations
C, X xga of the Levi subgroup L,, see Remark for our normalization
about “p-shift”.

Sometimes we suppress the subscript +, 4+ and write simply A, (v) for
Aq (V)44

For a description of singular integral complementary series representations
I5(i,s) in terms of f-stable parameters, we need to treat the parameter v
outside the good range (26 Def. 0.49]) relative to the #-stable parabolic
subalgebra q, with r = 41 (see Theorem [Z.53 below), for which the general
theory about the nonvanishing and irreducibility (e.g. 28] Thm. 0.50]) does
not apply. For instance, the condition on the parameter v for which A, (v) #
0 is usually very complicated when v wanders outside the good range. In our
setting, we use the following results from [29]:

Fact 14.52. Let 0 < r < [”T“], and q, be the 0-stable parabolic subalgebra
as defined in Definition [T1.537. Suppose that v = (v1,--- ,v,.) € Z" satisfies
the weakly fair condition (IL38) relative to q,.. Let a,b € {£}.

(1) The G-module (v1,--- ,v,||0,---,0)ap is nonzero if and only if r =1
or v, > —1.

(2) If the condition (1) is fulfilled, then (v1,--- v || 0, -+ ,0)qp is irre-
ducible and unitarizable.

Proof. This is a special case of 29 Thm. 3] for the indefinite orthogonal

group O(p, q) with (p,q) = (n+ 1,1) with the notation there. ]
Assume now vy = --- = v,_; = 0. Then the necessary and sufficient
condition for the parameter v = (0,---,0,1,) € Z" to be in the weakly fair

range but outside the good range is given by

vy €{-1,-2, - ,r—l—[g]}.

In this case, the G-module (0,---,0,v,0,---,0),, is nonzero, irreducible,
and unitarizable for a,b € {£} as is seen in Fact [Z52 It turns out that
these very parameters give rise to the complementary series representations
with integral parameter stated in Section as follows:
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Theorem 14.53. Let 0 < i < [§] — 1. Then the underlying (g, K')-modules
of the complementary series representations 1y (i,s) and I+(n — i,s) with

integral parameter s € {i +1,i+42,--- ,[5]} are given by
I (i, s)k ~ Aq, (0,2 ,0,8 —4)4 45
]—(ivs)K = AQi+1(Oa ,0,8 _i)-&-,—;
Iy(n—1i,8)k ~ Aq,,(0,---,0,8 —1)_ _;

I_(n—1i,8)k ~ Aq,(0,---,0,8 —1)_ 4

Hence, their smooth globalizations are described by 6-stable parameters as
follows:

i+1 [2]—i

I _(i,s) ~ (0,---,0,s—4[]0,--,0)4_;
I.(n—1i,s)~(0,---,0,s—4|]0,---,0)_ _;
I (n—i,s)~(0,---,0,s—4|]0,---,0)_ 4.
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15 Appendix II: Restriction to G = SO(n+1,1)

So far we have been working with symmetry breaking for a pair of the or-
thogonal groups (O(n+1,1),0(n,1)). On the other hand, the Gross—Prasad
conjectures (Chapters[[Tland[[3)) are formulated for special orthogonal groups
rather than orthogonal groups. In this chapter, we explain how to translate
the results for (G,G") = (O(n+1,1),0(n, 1)) to those for the pair of special
orthogonal groups (G,G’) = (SO(n + 1,1),S0(n, 1)). A part of the results
here (e.g., Theorem [I5.10) was announced in [A3].

In what follows, we use a bar over representations of special orthogonal
groups to distinguish them from those of orthogonal groups.

15.1 Restriction of representations of G = O(n+1,1) to
G=S0(n+1,1)
It is well-known that any irreducible admissible representation II of a real
reductive group G is decomposed into the direct sum of finitely many irre-
ducible admissible representations of G if G is an open normal subgroup of
G (see [ Chap. II, Lem. 5.5]). In order to understand how the restriction
II| decomposes, we use the action of the quotient group G/G on the ring
Endg(Il|z) = Homg(Il|g, ).
We apply this general observation to our setting where

(G,G) = (O(n+1,1),S0(n + 1,1)).
In this case, the quotient group G/G =~ 7Z/27. With the notation ([I3) of
the characters x., of G,
{X++7 X——} = {17 det}

is the set of irreducible representations of G = O(n + 1, 1) which are trivial
on G = SO(n +1,1). In other words, we have a direct sum decomposition
as G-modules:

Ind%T ~ 1 @ det.

Then we have the following;:

Lemma 15.1. Let 11 be a continuous representation of G = O(n + 1,1).
Then there is a natural linear bijection:

Endg(Il]z) ~ Homg(I1, IT) & Homg(I1, IT @ det).
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Proof. Clear from the following linear bijections:
Endg(I|g) ~ Homg(11, Indg(m@)) ~ Homg (I, T ® Ind%T).
O

We examine the restriction of irreducible representations of G to the
subgroup G:

Lemma 15.2. Suppose that 11 is an irreducible admissible representation of
G=0(n+11).
(1) If I £ 11 ® det as G-modules, then the restriction 11| is irreducible.

(2) If I = Il ® det as G-modules, then the restriction Il|g is the direct
sum of two irreducible admissible representations of G that are not
isomorphic to each other.

Proof. By Lemma [I5.1] we have

dime Homg (1|4, I|5) = dime Homg (11, IT) 4 dime Homeg (11, IT ® det)

)1 if 1T 22 11 ® det,
)2 i I~ T ® det.

Since the restriction Il| is the direct sum of irreducible admissible represen-
tations of GG, we may write the decomposition as

N
H|§ ~ @ ijja
J=1

where II; are (mutually inequivalent) irreducible admissible representations
of G and m; € N denote the multiplicity of 1I; in Il|5 for 1 < 57 < N. By

Schur’s lemma,
N

dim(c EHda(f”@) = Z m?

j=1
Thisis equal to 1 or 2 ifand only if N =m; =1or N =2 and m; = my =1,
respectively. Hence we get the conclusion. O]
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15.2 Restriction of principal series representation of

G=0(n+1,1) to G=S0(n+1,1)

This section discusses the restriction of the principal series representation
I;(V,\) of G = O(n+1,1) to the normal subgroup G = SO(n+1,1) of index
two. First of all, we fix some notation for principal series representations of
G. We set P:= PNG. Then P is a minimal parabolic subgroup of G, and
its Langlands decomposition is given by P = M AN, , where

M:=MnG=/{ ) B : B € SO(n),e =+1} =~ SO(n) x O(1)
€

is a subgroup of M of index two. For an irreducible representation (7, V)
of SO(n), § € {£}, and A € C, we denote by I5(V,\) the (unnormalized)
induced representation Ind%(V ® d ® C,) of G = SO(n + 1,1).

Let us compare principal series representations of G regarded as G-modules
by restriction with principal series representations of G. For this, we suppose
V' is an irreducible representation of O(n), 6 € {£+}, and A € C, and form a
principal series representation I5(V,\) of G = O(n + 1,1). Then its restric-
tion to the subgroup G = SO(n+1, 1) is isomorphic to Ind%(V|som) @@ Cy)
as a G-module, because the inclusion G < G induces an isomorphism
G/P > G/P.

Concerning the SO(n)-module V|go(n), we recall from Definition 2.6] that

—

V € O(n) is said to be of type X or of type Y according to whether V' is
irreducible or reducible when restricted to SO(n). In the latter case, n is even
(see Lemma[27]) and V is decomposed into the direct sum of two irreducible
representations of SO(n):

V=vVHaovH) (15.1)

where V() is isomorphic to the contragredient representation of V(). Ac-
cordingly, we have an isomorphism as G-modules:

I5(V, \) if V' is of type X,

_ - 15.2
TIs(VE N @ I;(V) N if V' is of type Y. (15.2)

Is(V, N)|g = {
By using (I5.2), we obtain the structural results of the restriction of the
principal series representation I5(V, ) of G = O(n+1, 1) to the subgroup G =
SO(n+1,1) and further to the identity component group Gy = SOy(n+1,1).
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15.2.1 Restriction I5(V, \)|z when I5(V, \) is irreducible
We begin with the case where I5(V, ) is irreducible as a G-module.

—

Lemma 15.3. Let (0,V) € O(n), 6 € {£} and A € C. Suppose I5(V, \) is
irreducible as a module of G = O(n +1,1).

(1) Suppose V' is of type X. Then the following three conditions on (3, V,\)
are equivalent:

(i) Is(V,A) is irreducible as a G-module;
(ii) The restriction I;(V, )|z is irreducible as a G-module;
(iii) The restriction Is(V, \)|q, is irreducible as a Go-module.

(2) Suppose V is of type Y. If I5(V, ) is irreducible as a G-module, then
I;(V,\)|g splits into the direct sum of two irreducible G-modules that are
not isomorphic to each other. In this case, n is even and we may write the
irreducible decomposition of V|sow) as in (II). Then there is a natural
1somorphism

L(V,Ng~T;(VP N @ ;[ VN

as G-modules. Moreover, both I5(V ) X) and I5(V D) X\) stay irreducible
when restricted to Gy, and they are not isomorphic to each other also as
Go-modules.

Proof. We observe that the first factor of M is isomorphic to O(n), whereas
that of M NG (= M) and of M N Gy is isomorphic to SO(n). Since the
crucial part is the restriction from the Levi subgroup M A of G to that of G
or of Gy, we focus on the restriction G' | G, which involves the restriction of
V' with respect to the inclusion O(n) D SO(n). The restriction G | G can
be analyzed similarly by using the four characters . (a,b € {£}) instead
of x__ =det as in [B1 Chap. 2, Sect. 5].

From now on, we consider the restriction G | G. We recall from Lemma
.14 the following isomorphism of G-modules:

Ig(‘/, )\) QX [5(V ® det, )\)

(1) If V is of type X, then V 2 V ® det as O(n)-modules. In turn, the
G-modules I5(V,\) and I5(V ® det, \) are not isomorphic to each other,
because their K-structures are different by the Frobenius reciprocity and the
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branching rule for O(n) | O(n — 1) (Fact 212). Therefore, I5(V,\)|s is
irreducible by Lemma (1).

(2) If V is of type Y, then V ® det ~ V by Lemma [Z0 and therefore
Lemma (2) concludes the first assertion. The remaining assertions are
now clear. O

15.2.2 Restriction I5(V,\)|z when V is of type Y

We take a closer look at the case where V' € O(n) is of type Y (Definition
20). This means that n is even, say n = 2m, and the representation V is of

the form
V=FC (g, 0y).

with o9 > -+ > 0, > 1 and € € {£}, see Section [[41] for the notation.
Then the restriction V|so(,) decomposes as

VlSO(n) -V gy

as in (I50)), where the highest weights of the irreducible SO(2m)-modules
V&) are given by (01, ,0m_1,+0,). We recall from Definition for
the subsets S(V) and Sy (V) of Z.

—

Proposition 15.4. Suppose G = O(n+1,1) withn = 2m and (o,V) € O(n)
is of type Y. Let § € {£}.

(1) The following four conditions on A € C are equivalent.

(1) Is(V ), ) is reducible as a representation of G = SO(n + 1,1);
(ii) I5(V),N) is reducible as a G-module;
(iii) :I:( m) € Z—({oj+m—j:j=1,--- ,mpU{0,1,2,--- o, —1});
(iv) A€ Z = (S(V)USy(V)U{m}).
(2) Suppose that X satisfies one of (therefore any of) the above equivalent
conditions Then, for e € {j:} the principal series representation

I5(VE X)) of G has a unique G-submodule, to be denoted by I5(V ) \),
such that the quotient G-module

Is(VE N =T;(VE N /Ts(VE, N
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18 1rreducible. Moreover we have

Tg(V(+), )\)" %~ Tg(V(_), )\)",
Ls(VE 0)F £ T5(V ), M)
as G-modules.

Proof. Since G = SO(2m + 1,1) is generated by the identity component
Gy = SOy(2m + 1,1) and a central element —Iy,.5, any irreducible G-
module remains irreducible when restricted to the connected subgroup Gy.
Then the equivalence (i) < (iii) (also (ii) < (iii)) and the last assertion in
Proposition [[5.4 follows from Hirai [IT7]. See also Collingwood [II], Lem. 4.4.1
and Thm. 5.2.1] for the computation of 7-invariants of irreducible represen-
tations and a graphic description of the socle filtrations of principal series
representations. Finally the equivalence (iii) < (iv) is immediate from the
definitions (IZ13) and (IZI4) of S(V) and Sy (V), respectively.

The last assertion about the G-inequivalence follows from the Langlands
theory [52] because Re A # m and V() % V() as SO(2m)-modules. O

In the following proposition, we treat the set of the parameters A\ com-
plementary to the one in Proposition 5.4

—

Proposition 15.5. Suppose G = O(n+1,1) withn = 2m and V' € O(n) is of
type Y. Let § € {&}. Assume that Is(V&E)\) are irreducible representations
of G =S012m+ 1,1), or equivalently, assume that

Ae(C—Z)uS(V)USy(V)u{m}.
(1) The following two conditions on A € C are equivalent:

(i) The two G-modules T5(V ), X) and I5(V ), \) are isomorphic to
each other;

(ii)) A =m.

(2) If X = m then the principal series representation I5(V,\) of G is de-
composed into the direct sum of two irreducible representations of G.

(3) If X # m, then I5(V,\) is irreducible as a representation of G.
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Proof. (1) As in the proof of Proposition 54 (2), if ReA # m, then the
Langlands theory [52] implies I5(V ()| \) 2 I5(V(7) X) because V() £ V()
as SO(2m)-modules.

If ReA = m, then I5(V®) \) are (smooth) irreducible tempered repre-
sentations, and the equivalence (i) < (ii) follows from Hirai [I7]. This would
follow also from the general theory of the “R-group” (Knapp—Zuckerman
E7).

(2) Since Re A = m is the unitary axis of the principal series representation
I5(V, \) in our normalization (Section 223.0]), the G-module I5(V, \) decom-
poses into the direct sum of irreducible G-modules, say, 11"V, ..., II%) and
then decomposes further into irreducible G-modules when restricted to the
subgroup G = SO(2m + 1,1). Therefore the cardinality k of irreducible
G-summands satisfies either £ = 1 (i.e., I5(V,\) is G-irreducible) or k = 2
because the summands I;(V® )\) in (I53J) are irreducible as G-modules
by assumption. Since I;(V ) m) ~ I5(V{=),m) by the first statement, we
conclude k # 1 by Lemma (2). Thus the second statement is proved.

(3) We prove that I5(V,\) is irreducible by reductio ad absurdum. Suppose
there were an irreducible proper submodule II of I5(V, A). Then IT would re-
main irreducible when restricted to the subgroup G = SO(2m+1, 1) because
the restriction Iz must be isomorphic to one of the G-irreducible summands
Is(V® X\) in (5J). Then IT % I ® det as G-modules by Lemma [5.1]
Therefore the direct sum II & (Il ® det) would be a G-submodule of I5(V, \)
because I5(V,A) =~ I5(V, A) @ det when V' is of type Y. In turn, its restriction
to the subgroup G would yield an isomorphism I5(V ™) \) ~ T5(V(),\)
of G-modules, contradicting the statement (1) of the proposition. Hence
Is5(V, \) must be irreducible. O

Applying Propositions[I5.4land I5.5 to the middle exterior representation
A" (C") of O(n) when n = 2m, we obtain the following.

Example 15.6. Let G = O(n+1, 1) withn = 2m, and § € {£}. Asin (I5H),

we write 7((51) (m, \) for the G-modules I5(V®*), \) when V = A™(C?™).

(1) The G-modules Ygi) (m, A\) are reducible if and only if A € (=N, )U(n+
N;).

(2) The G-module I5(m, m) decomposes into a direct sum of two irreducible
G-modules (see also Theorem (1)).
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(3) Is(m, A) is irreducible if A € Z satisfies 0 < A < n (=2m) and X # m.

We refer to Theorem (also to Example [Z1I6)) for the irreducibility
condition of I5(i, \) for general i (0 < i < n); to Theorem for that of
I5(V, \), which will be proved in the next section.

15.3 Proof of Theorem [14.15 Irreducibility criterion
of I;(V, )

As an application of the results in the previous sections, we give a proof of
Theorem [I4.18] on the necessary and sufficient condition for the principal
series representation I5(V,\) of G = O(n + 1,1) to be irreducible.

Proof of Theorem [I4.15 Suppose first that V' is of type X (Definition 2.6)).
Then the restriction V|so() is irreducible as an SO(n)-module, and I5(V, )
is G-irreducible if and only if the restriction I5(V,\)|q, is Go-irreducible by
Lemma (1). The latter condition was classified in Hirai [I7], which
amounts to the condition that A\ € Z or A € S(V'). Thus Theorem for
V of type X is proved.

Next suppose V is of type Y. As in ([[5d]), we write V]som) =~ VP &
V=) for the irreducible decomposition as SO(n)-modules. If I5(V,\) is G-
irreducible, then 75(V*) \) are G-irreducible by Lemma 5.3 (2). Then the
condition (iv) in Proposition [[5.4] (1) implies that

ANgZor e S(V)USy(V)U{m}. (15.3)

Conversely, under the condition (I53]), Proposition 50l tells that I5(V, A) is
irreducible if and only if A € Z or A € S(V) U Sy (V). Thus Theorem
is proved also for V' of type Y. O]

15.4 Socle filtration of I5(V,\): Proof of Proposition
14.19

In this section, we complete the proof of Proposition about the socle
filtration of the principal series representation I5(V,A) of G = O(n + 1,1)
when it is reducible and A # % by using the restriction to the subgroups
G =S80(n+1,1)or Gy =SO(n+1,1).

—

We begin with the case that V' € O(n) is of type X (Definition 2.6)).
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Proof of Proposition[I.19 when V is of type X. In this case, for any nonzero
subquotient II of the principal series representation I5(V,\) of G = O(n +
1,1), we have

IT 2 [T ® det

as G-modules because their K-types are different by Proposition [4£291 In
turn, Lemma [[5.2 implies that II is irreducible as a G-module if and only if
the restriction Il is irreducible.

For n even, the restriction II|g, further to the identity component Gy =
SOp(n + 1,1) is still irreducible because G = SO(n + 1,1) is generated by
G and a central element —1I,,. 5. Thus the assertion follows from the socle
filtration of the principal series representation of Gy in Hirai [I].

For n odd, since the restriction V|so@) stays irreducible, I5(V, \)|q, is a
principal series representation of Gy = SOy(n + 1,1). Therefore the restric-
tion II|g, is a Go-subquotient of a principal series representation of Gy, of
which the length of composition series is either 2 or 3 by Hirai [I1]. Inspecting
the K-structure of I5(V, \) from Proposition[I4.29again and the Ky-structure
of subquotients of the principal series representation of Go = SOg(n + 1, 1)
in [IT], we see that the restriction II|g, is irreducible as a Go-module if 1T is
not (the smooth representation of) a discrete series representation, whereas
it is a sum of two (holomorphic and anti-holomorphic) discrete series repre-
sentations of Gy if 11 is a discrete series representation. O

Alternatively, one may reduce the proof for type X to the case (V,\) =
(AY(C™),4) by using the translation functor, see Theorems and (1)
in Appendix III.

As the above proof shows, we obtain the restriction formula of irreducible
subquotients I5(V,A)> and I5(V, \)? of the G-module I5(V,\) (Proposition
MZT19) to the normal subgroup G = SO(n + 1,1) as follows.

—_—

Proposition 15.7. Suppose V € O(n) is of type X and A € Z — S(V'). Let
Je{£}.

(1) The principal series representation I5(V,\) of G has a unique proper
submodule, to be denoted by_[(;(V, A\, In particular, the quotient G-
module T5(V,\)* := I5(V,\)/I5(V,\)’ is irreducible.

(2) The restriction of the irreducible G-modules I5(V,\)* and I;(V,\)* to
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the normal subgroup G is given by

(

I;(V,A) 5
A s(

b|7N
el
I(V,\)g ~

~l ~l

V? A)b7
V, M)A

We end this section with the restriction of I;(V, )" and I5(V, M)* to the
subgroup GG when V' is of type Y:
Proposition 15.8. Suppose G = O(n + 1,1) with n = 2m. Assume that
V € O(n) is of type Y, 6 € {£}, and A € Z—(S(V)USy(V)U{m}). Then the
restriction of Is(V, \)’ and I5(V, \)* to the normal subgroup G = SO(n+1,1)
decomposes into the direct sum of two irreducible G-modules:

s(VE N & Ts(V) Ay,
6(V(+)7 )‘)ﬁ ) T§<V(7)7 )‘)ﬂa

where we recall from Proposition for the definition of the irreducible
G-modules I5(VE) N\ and I5(VE) | \)E,

Proof of Proposition[I£.19 for V' of type Y. By Lemmall5.2land by the struc-
tural results on G-modules 75(V*) \) in Proposition 054} the proof is re-
duced to the following lemma. O

Lemma 15.9. Under the assumption of Proposition[I2.8, any G-submodule
IT of Is(V, \) satisfies
II ~ I ® det (15.4)

as G-modules.

Proof. Since V is of type Y, V ~ V ® det as O(n)-modules, hence we have
natural G-isomorphisms

Lg(‘/, )\) ~ L;(V, )\) ® det

by Lemma T4l We prove (54l by reductio ad absurdum. Suppose that
the G-module II were not isomorphic to II ® det. Then the direct sum
representation IT @ (IT ® det) would be a G-submodule of I5(V, \). In turn,
the G-module T|5 would occur in I5(V, )|z ~ Is(VF \) @ I;(V),N) at
least twice. But this is impossible by Proposition [5.4l Thus Lemma is
proved. O
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15.5 Restriction of II;5 to SO(n+1,1)

In this section we treat the case where Is(V, ) is not irreducible as a G-
module. We discuss the restriction of G-irreducible subquotients of I5(V, \)
to the subgroup G = SO(n + 1,1).

We focus on the case when (o, V) is the exterior representation on V' =
A'(C™). In particular, irreducible representations that have the 34(g)-infinitesimal
character p, namely, the irreducible G-modules I, 5 (0 < ¢ <n+1, € {£})
arise as G-irreducible subquotients of I5(V,A). To be more precise, we re-
call from (237) that II, s are the irreducible subrepresentations of I5(¢, ¢) for
0 < ¢ < n and coincidently those of I_5(¢ —1,{ —1) for 1 </ <n+ 1.

Lemma 15.1_(). For all0 < <n+1 and § = %, the restriction of ll;5 to
the subgroup G = SO(n + 1, 1) stays irreducible.

Proof. The restriction I, s[5 is irreducible by the criterion in Lemma [5.2]
(1) because I, s @ det >~ 11,4145 % I, 5 by Theorem 2.201 (5). O

We denote by ﬁm the restriction of the irreducible G-module I, 5 (0 <
¢ <n+1,6 = =) to the subgroup G = SO(n + 1,1). By a little abuse of
notation, we write I5(7,\) for the restriction of I5(i, \), to the subgroup G.
Then the SO(n)-isomorphism A*(C") ~ A""%(C") induces a G-isomorphism

Tg(i, )\) >~ Ta(ﬂ — i, )\)

Special attention is needed in the case when n is even and n = 2i. In this
case, the O(n)-module A\*(C") is of type Y (see Example Z§)), and it splits
into the direct sum of two irreducible SO(n)-modules:

AB(C) = AFC)H @ AFEC),
We set

F() 1
I —
1 (27

As in [I52), the restriction I5(2,\)|z is the direct sum of two G-modules:

A) == IndS(AZ (CMH @6 @ C)).

75(3, A) 7§”(§,A) @Tfﬁ(g, \) forall A e C. (15.5)
If I5(%5, A) is G-irreducible, then Lemma (2) tells that the represen-
tations Tf;i)(g, A) of the subgroup G are irreducible, and that they are not
isomorphic to each other.
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On the other hand, if A = ¢ (= %), then the principal series representation
I5(i, A) is not irreducible as a G-module but splits into the direct sum of two
irreducible G-modules (see Theorem 220 (1)):

n n
15(5, §) ~ 1oy 5 @z,
which are not isomorphic to each other. Moreover, the tensor product with

X—— switches IIn 4y 5 and Iz 5 (Theorem 20 (5)). Hence we have a G-
isomorphism ﬁ%+17,§ ~ ﬁ%,g, which are G-irreducible by Lemma 052 (1).
Therefore, for n even, we have the following isomorphisms as G-modules:

— n n —(=),n n
s = IOE T T 3) ford=z, (15.6)

ﬁﬂ(;ﬁﬁ y =
2’ 2°2

|3

Similarly to Theorem 2.201about the O(n+ 1, 1)-modules Il 5, we summarize
the properties of the restriction I, 5 = I, 5|7 as follows.

Proposition 15.11. Let G = SO(n +1,1) with n > 1.
(1) ﬁﬁ,é is irreducible as a G-module for all0 < ¢ <n+1 and § = +.
(2) Tys ~ 1 ¢_5 as G-modules for all0 < <n+1 and § = +.

(3) Irreducible representations of G with 3(g)-infinitesimal character pg
can be classified as

_ —1 _
(Ms:0<0< ”T,d = £} U{Mun ) ifn s odd,

{Ms:0< (< =4} if n is even.

(4) Bvery ;s (0 < ¢ <n+1,0 =) is unitarizable.

In the next statement, we use the same symbol ﬁg’g to denote the irreducible
unitary representation obtained by the Hilbert completion of 11, 5 with respect
to a G-invariant inner product.

(5) For n odd, ﬁnTJrlH'_ is a discrete series representation of G = SO(n +

1,1). Forn even, ﬁgjg (0 = +£) are tempered representations. All the
other representations in the list (2) are nontempered representations of

G.
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(6) Forn even, the center of G = SO(n 4+ 1,1) acts nontrivially on s if
and only if 6 = (:1)”1. Forn odd, the center of G is trivial, and thus
acts trivially on I, s for any ¢ and 9.

In Proposition [444] we gave a description of the underlying (g, K)-
module of the irreducible G-module II; 5 in terms of cohomological parabolic
induction. We end this section with analogous results for the irreducible

G-module Tl 5 = I 5|7 (see Proposition IEIT] (1)).

Proposition 15.12. For (0 <i < ["T“], let q; be the B-stable parabolic subal-
gebras with the Levi subgroup L; ~ SO(2)' x SO(n—2i+1,1) as in Definition

[Z£.37 and write S; = i(n — i), see ([L30). Then the underlying (g, K)-
modules of the irreducible G-modules 115 (0 < £ <n+1, § € {£}) are given
by the cohomological parabolic induction as follows:

(UL )z = M- )% ﬁRii(Cp(u)) = (Aqi)+,+|(gf) = (Aqi)—,—|(gf)7
(L) =~ (Hng1-i )7 ﬁRii(Cp(u) ® X4-) (Aqi)+,—|(gf) = (Aqi)—,+|(gf)-

We notice that the four characters y++ of O(n+1, 1) induce the following
isomorphisms y__ ~ 1 and x,_ ~ x_, when restricted to the last factor
SO(n — 2i + 1,1) of the Levi subgroup L;, whence Proposition gives
an alternative proof for the isomorphism

Hi,(S = Hn+17i,76

as G-modules for 0 <i<n-+1and § = +.

15.6 Symmetry breaking for tempered principal series
representations

In this section, we deduce a multiplicity-one theorem for tempered principal
series representations I5(V,\) and J.(W,v) of G = SO(n + 1,1) and G’ =
SO(n, 1), respectively, from the corresponding result (see Theorem B.30) for
the pair (G,G’") = (O(n+1,1),0(n,1)).

In B0 Chap. 2, Sect. 5], a trick analogous to Lemma [I5.1] was used to
deduce symmetry breaking for the pair (Go, Gj) = (SOo(n+1,1),SO0(n, 1))
from that for the pair (G,G’) by using an observation that Gy and Gj, are
normal subgroups of G and G, respectively (cf. [B1, page 26]). This is for-
mulated in our setting as follows:
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Proposition 15.13. Let Il and m be continuous representations of G =
O(n+1,1) and G' = O(n, 1), respectively. Let (G,G") = (SO(n+1,1),50(n,1)).
Then we have natural isomorphisms:

HOHI@(H|@, 7T|@) ~ Homg (H|Gl, 7T> ©® HOHIG/(H|G/, X—— & 7T)
~ HOIHG/(H|G/, 7'(') D HomG/((H ® X__)|G/, 7T).

— —

For V € SO(n) and W € SO(n — 1), we set
[V]som-1) : W] := dime Homgom-1)(V|som-1), W).

The main result of this section is the following.

Theorem 15.14 (tempered principal series representation). Let V € SO(n),
W € SO@\—l), b,e € {£}, and (\,v) € (V-IR+ 2,V=1IR + i(n —
1)) so that I5(V,)\) and J.(W,v) are irreducible tempered principal series
representations of G = SO(n + 1,1) and G’ = SO(n, 1), respectively. Then
the following conditions are equivalent:

(i) [Vlsom-1) : W] #0.
(ii) Homgogm,1)(Is(V, N)|sowm), J-(W,v)) # {0}.
(iii) dime Homgom,1)(Is(V, N)|sowm.1), J-(W,v)) = 1.

For the proof, we use the following elementary lemma on branching rules
of finite-dimensional representations of O(n).

—

Lemma 15.15. Suppose o0 € O(n) and 7 € O(/nfl) are of both type X
(Definition[28). If [0|om-1) : 7] # 0, then [o|om-1) : T ® det] = 0.

Proof of LemmalI5 13 Easy from Fact and from the characterization
in Lemma .7 of representations of type X by means of the Cartan—Weyl
bijection (2.20). O
Proof of Theorem[I5.14 There exist unique V' € O/(\n) and W € O(/ntl)
such that [V]sowm) : V] # 0 and [W|som-1) : W] # 0. We divide the argument
into the following three cases:

Case XX: Both V and W are of type X.

Case XY: V is of type X and W is of type Y.

Case YX: V is of type Y and W is of type X.

321



Then we have from ([I5.2)

. I5(V,\) if V' is of type X,
V. eIV if V is of type Y,

and similarly for the restriction J.(W,v)|a.
By Proposition [5.13, we have

Homg: (I5(V, Nlgr, J-(W,v)lg) ~ €D  Homa (Is(V, N)|ar, J-(W,v) @ x).

x€{1,det}

Applying the multiplicity-one theorem (Theorem B30) for tempered repre-
sentations of the pair (G,G’) = (O(n+1,1),0(n, 1)) to the right-hand side,
we get the following multiplicity formula:

diHl(C HOHI@(L;(V, )\)‘@, JE(W, Z/) |@)
= [V|o(n,1) : W] + [V|o(n,1) W ® det]. (157)

The right-hand side of (I5.7)) does not vanish if and only if [V| som-1) : W] #
0. In this case, we have

@51 =

1 Case XX,
2 Case XY or Case YX,

by Lemmas and Thus the conclusion holds in Case XX.

If V is of type Y, then the two G-irreducible summands I5(V,\) and
Ta(VV,A) in the restriction I5(V, \)|e are switched if we apply the outer
automorphism of G by an element gy := diag(1,---,1,-1,1) € G = O(n +
1,1). Since gy commutes with G’, we obtain an isomorphism

Homgr (15(V, A)|gr, Je(W, 1)) ~ Homgr (T5(V", N |gr, T-(W, v)).

Hence the conclusion holds for Case YX.
Similar argument holds for Case XY where W is of type Y. Therefore
Theorem [I5.14] is proved. m
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15.7 Symmetry breaking from I5(i, \) to J.(j,v)

In tlis, section, we give a closed formula of the multiplicity for the restriction
G | G when (0, V) is the exterior tensor A*(C"). For the admissible smooth
representations Is(i, A) of G = SO(n + 1,1) and J.(j,v) of G' = SO(n, 1),

we set
m(i,j) = m(i;(i, A),ja(j, v)) := dim¢ Hom@(f(g(i, Nles 7a(j, v)).

In order to state a closed formula for the multiplicity m(i, j) as a function
of (A, v,0,¢), we introduce the following subsets of Z? x {+1}:

Li={(=, =, (=1)"™") : (i,5) € Z*,0 < j < i} = Leven U Loaa,
L' :={(\,v,y) € L:v #0}.

In the theorem below, we shall see

m(i,j) €{1,2,4}  ifj=1i—1ori
m(i,j) €{0,1,2}  ifj=i—2ori+1,

m(i,j) =0 otherwise.

By Proposition [5.13 and Lemma[B36 the multiplicity formula for (G, G) is
derived from the one for (G,G’) by using Proposition [5.13, which amounts
to

Homgr (L5(i, M|, J- (5, v))
~ HOHIGH(L;(Z, /\)|G’7 ( )) @D HOIIIGV(L;(TL —1 )\)’G’ (j, ))

The right-hand side was computed in Theorem B.23 Hence we get an explicit
formula of the multiplicity for the restriction of nonunitary principal series
representations in this setting:

Theorem 15.16 (multiplicity formula). Suppose n > 3, 0 < i < [§], 0 <
J<[%52], 6, e € {£} = {x1}, and \,v € C.

Then the multiplicity m(i, j) = dime Homgr(I5(i, N)|a7, J-(, V) is given
as follows.

(1) Suppose j = i.
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(a) Casei=0.

m(0,0) = {

(b) Casel1 <i< % —1.

(d) Casei= 25t (n: odd).

m(ngl’ngl):{

(2) Suppose j =i — 1.

(a) Case 1l <i< 7L

m(i,i —1) = {i

(b) Case i =25t (n: odd).

n—1n-—3
2 7 2

) =

m(
1

(¢) Casei =2 (n: even).

2 if (\,v,d¢) € L,

1 otherwise.

if (\,v,0e) € L' U{(i,i,+)},

otherwise.

if (A, v,0e) € L'U{(i,i,+)yU{(i,i +1,—-)},
otherwise.

4 Zf ()\,y,ég) € L/U{<i7i7+)}>
2

otherwise.

if (A, v,0e) € L'U{(n—1i,n—1i,+)},

otherwise.

if (\,v,0¢e) € L/,
if \v,0e) e {(n—i,n—i,+)}U{(i,i+1,—)},

otherwise.

if M, v,0e) e LU{(n—i,n—1i,+)},

otherwise.
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(3) Suppose j =1i— 2.

(a) Case2 <i< 3.

m(i’i_2):{1 if A\, v,08) = (n—i,m—i+1,-),

0 otherwise.
(b) Casei =% (n: even).

{2 if (A v, 02) = (2,2 4+ 1,-),

0 otherwise.

(4) Suppose j =i+ 1.

(a) Casei=0 andn > 3.

0 otherwise.

m(o,l)z{ re-Nv=1, andde=(=1)"",

(b) Case 1 <i< 253,

1 ; a1
m<7’72+1) = Zf (>\7V7.55> (Z,’l—|— , )’
0 otherwise.
(¢) Casei= "T_?’ and n > 3, odd.
n—3 n—1 2 if (\ v, 0e) = (28, L )
m( 9 )I ( ’ ) ( 5 3 )
2 2 0 otherwise.
(d) Casei=0 andn = 3.
m(0,1) = 2 if A e fN, v =1, and e = (—1)M1,
0 otherwise.

(5) Suppose j & {i —2,i—1,i,i+1}. Then m(i,j) =0 for all A\, v, §,¢.
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Remark 15.17 (multiplicity-one property). In [B9] it is proved that
dim¢ Homg (Il &, m) < 1

for any irreducible admissible smooth representations Il and 7 of G = SO(n+
1,1) and G’ = SO(n, 1), respectively. Thus Theorem fits well with their
multiplicity-free results for \,v € C — Z, where I;(i,\) and J.(j,v) are
irreducible admissible representations of G and G’, respectively, except for
the cases n = 2i or n = 27 + 1. In the case n = 2¢ or n = 25 + 1, the
multiplicity is counted twice as we saw in (I50) and (I50), and thus the
statements (1-d), (2-c), (3-b), and (4-c) in Theorem B2l fit again with [59].

Remark 15.18 (generic multiplicity-two phenomenon). In addition to the sub-
group G’ = SO(n, 1), the Lorentz group O(n,1) contains two other sub-
groups of index two, that is, O*(n, 1) (containing orthochronous reflections)
and O~ (n,1) (containing anti-orthochronous reflections) with terminology
in relativistic space-time for n = 3. Our results yield also the multiplicity
formula for such pairs by using an analogous result to Proposition [5.13]
and it turns out that a generic multiplicity-one statement fails if we replace
(G,G") = (SO(n +1,1),80(n, 1)) by (O~(n+1,1),07(n,1)). In fact, the
multiplicity m(Il, ) is generically equal to 2 for irreducible representations
IT and 7 of O~ (n + 1,1) and O~ (n, 1), respectively, as is expected by the
general theory [l E4] because there are two open orbits in P~\G~/P~ in
this case.

15.8 Symmetry breaking between irreducible repre-
sentations of G and G’ with trivial infinitesimal
character p

Similar to the notation ﬁm for the restriction of the irreducible representation
IL; 5 of G = O(n+1,1) to the special orthogonal group G = SO(n+1,1), we
denote by 7; . the restriction of the irreducible representation 7. (0 < j < n,
e = %) of G’ = O(n, 1) to the special orthogonal group G’ = SO(n, 1). Then
ﬁmy (0<i<n+l,6==%)and 7. (0 < j <n,e==£)exhaust irreducible ad-
missible smooth representations of G and G’ having 3(g)-infinitesimal char-
acter pz and 3(g’)-infinitesimal character pgr respectively, by Lemma [5.100
In this section, we deduce the formula of the multiplicity

dime Homgr(IL; 5|77, 7.0 )

326



for the symmetry breaking for (G,G’) = (SO(n + 1,1),50(n, 1)) from the
one for (G,G') = (O(n+1,1),0(n, 1)).

In view of the G-isomorphism ﬁn+ + Hn+1 _ for n even and the G'-
isomorphism 7z >~ 7z _ for n odd, we shall use the following convention

= —for 0 if n+ 1 = 2i; =—foreifn=2j (15.8)

when we deal with the representations I1; 5 (0 < i < ["TH]) and 7. (0<j <

[5])-

Owing to Proposition I5.13] Theorem P20 tells that
Homgr(IL; sle7, 7j.c) ~ Homer (I; 5], 5. ) @ Homer (I i1—5,—s] e, j.c).-

Applying TheoremsE Tl and 2l about symmetry breaking for the pair (G, G') =
(O(n+1,1),0(n,1)) to the right-hand side, we determine the multiplicity

m(Il,7) for all II € Irr(G), and 7 € Irr(G'),
for the pair (G,G’) = (SO(n + 1,1),S0(n, 1)) of special orthogonal groups
as follows.

Theorem 15.19. Suppose 0 < i < [2], 0 < j < [2], and é,e = £ with the
convention [I58). then

1 if0=e and j e {i—1,i},

dimc Homgzr ﬁ A Mie) =
© orMisler 7s.) {0 otherwise.
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16 Appendix III: A translation functor for
G=0(n+1,1)

In this chapter, we discuss a translation functor for the group G = O(n+1, 1),
which is not in the Harish-Chandra class if n is even, in the sense that Ad(G)
is not contained in the group Int(gc) of inner automorphisms. Then the
“Weyl group” Wy is larger than the group generated by the reflections of
simple roots. This causes some technical difficulties when we extend the idea
of translation functor which is usually formulated for reductive groups in
the Harish-Chandra class or reductive Lie algebras, see [22] 7 [63] [69] for

instance.

16.1 Some features of translation functors for reduc-
tive groups that are not of Harish-Chandra class

For n even, say n = 2m, we write hc (=~ C™T!) for a Cartan subalgebra of
gc. Then we recall from Section 214

e the Weyl group W, ~ &,,11 X (Z/2Z)™ for the root system A(gc, he)
is of index two in the Weyl group Wg ~ &,,41 X (Z/2Z)™! for the
disconnected group G;

e the 3:(g)-infinitesimal character for the irreducible admissible repre-
sentation of G is parametrized by b /W, but not by hg/W;

o pc = (m,---,1,0) is not “We-regular”, although it is “Wy-regular”
(Definition 2T]).

We can still use the idea of a translation functor, but we need a careful
treatment for disconnected groups G which are not in the Harish-Chandra
class. In fact, differently from the usual setting for reductive Lie groups in
the Harish-Chandra class, we are faced with the following feature:

e translation from a Weg-regular (in particular, Wy-regular) dominant
parameter to the trivial infinitesimal character pg does not necessarily
preserve irreducibility, see Theorem [16.8

This means that translation inside the same “Wg-regular Weyl chamber”
may involve a phenomenon as if it were “translation from the wall to regular

parameter”, cf., [21].
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In what follows, we retain the terminology “regular” for W, but not for
W as in Definition 2] (in particular, pg is regular in our sense), whereas
we need to use W¢ (not Wy) in describing 3¢(g)-infinitesimal characters of
G-modules.

16.2 Translation functor for G = O(n+1,1)

In this section we fix some notation for a translation functor for the group
G = O(n + 1,1). Usually, a translation functor is defined in the category
of (g, K)-modules of finite length. However, we also consider a translation
functor in the category of admissible representations of finite length
of moderate growth.

16.2.1 Primary decomposition of admissible smooth representa-
tions

Let II be an admissible smooth representation of G of finite length. For
p € he/We, we define the p-primary component P,(II) of IT by

P,1I) := U ﬂ Ker(z — xu(2)",

N>0z€3(g)
where we recall the Harish-Chandra isomorphism (2.15])
Homc ag(36(9), C) = be/Wa,  xu <>

Then P,(II) is a G-module with generalized 3¢(g)-infinitesimal character p,
and II is decomposed into a direct sum of finitely many primary components:

1= @ P,(II) (finite direct sum).
I

By abuse of notation, we use the letter P, to denote the G-equivariant pro-
jection II — P, (II) with respect to the direct sum decomposition.

16.2.2 Translation functor /"7 for G = O(n + 1,1)

Let G = O(n+1,1) and m = [%]. We recall that W ~ &1 X (Z/2Z)™!
acts on b ~ C™*! as a permutation group and by switching the signatures
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of the standard coordinates. For 7 € Z™*!, we define 74om to be the unique
element in AT(m + 1) (see (ZI7)) in the Wg-orbit through 7, i.e.,

Tdom = W T for some w € Wg. (16.1)

Let F' O(”+1’1)(Td0m)+,+ be the irreducible finite-dimensional representation of
G =0(n+1,1) of type I (Definition T4.2)) defined as in (ITZ3).

Definition 16.1 (translation functor ¢#*7). For y € C"*! and 7 € Z™*',
we define translation functor ¢4*7 by

YETT(D) = Puir (Bu(ID) © FOU D (Tgom) 14). (16.2)

Then @/}L‘*T is a covariant functor in the category of admissible smooth
representations of G of finite length, and also in the category of (g, K)-
modules of finite length. Clearly, we have

YEHT = EEteT for all w € W (16.3)

wh

In defining the translation functor ¢4 in (I6.2), we have used only finite-
dimensional representations of type I (Definition [Z42) of the disconnected
group G = O(n + 1,1). We do not lose any generality because taking the
tensor product with the one-dimensional characters xq (a,b € {£}) yields
the following isomorphism as G-modules:

QMAH_T(H) & Xab =~ P;H-T(PM(H) ® Fo(n+171)(7—dom)a7b)' (16-4)

We shall use a finite-dimensional representation F'(V,\) (Definition [I6.17)
which is not necessarily of type I in Theorems [6.22] and [[6.23] which are a
reformulation of the properties (Theorems [[6.6l and [[6.8 respectively) of the

translation functor (I6.2) via (IG.4).

The translation functor ¢/, , is the adjoint functor of @DZ*T. In our setting,
since (—7)dom = Tdom, the functor ¢y, takes the following form:

Z—H—(H) = PM(P/H—T(H) & Fo(n+171)(7dorrl>+,+)'

16.2.3 The translation functor and the restriction G | G

We retain the notation of Appendix II, and denote by G the subgroup SO (n+
1,1)in G = O(n+1,1). Then G = SO(n + 1,1) is in the Harish-Chandra
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class for all n. For the group G, we shall use the notation ?# and EZH instead
of P, and ¥#*7, respectively. To be precise, for 7 € Z™* where m = [3], we
write Tgom for the unique element in the orbit Wy 7 which is dominant with
respect to the positive system A*(gc, hbe). We denote by FEOU+LD (70 ).
the irreducible representation of G = SO(n+1,1) obtained by the restriction
of the irreducible holomorphic representation of SO(n + 2, C) having Tgom as
its highest weight. For an admissible smooth representation II of G of finite
length, the translation functor EZJFT is defined by

P = P (Pu(M) © SO0 (7)), (16.5)

We collect some basic facts concerning the primary components for G-modules
and G-modules. The following lemma is readily shown by comparing (2.13)
of the Harish-Chandra isomorphisms for G and G.

Lemma 16.2. Let II be an admissible smooth representation of finite length
of G=0(n+1,1). We set m := (%] as before. Suppose ji € b ~ C™*1.

(1) If nis odd or if n is even and at least one of the entries p1, =+, fimi1
18 zero, then there is a natural isomorphism of G-modules:

P.(I)g ~ P,(|g).

(2) If n is even and all of p; are nonzero, then we have a direct sum
decomposition of a G-module:

PM(H)|§ = ﬁu(l_”é) S ?u’<H|§)7
where we set (' = ({1, fm, —fm+1)-

Now the following lemma is an immediate consequence of Lemma
and of the definition of the translation functors ¥£*7 and ETT, see (I6.2)
and (I6.5]).

Lemma 16.3. Let G = O(n+ 1,1) and G = SO(n + 1,1). Let Il be an
admissible smooth representation of G of finite length.
(1) Suppose n is odd. Then we have a canonical G-isomorphism.:

_#+7—

U (Mg =4y, (Hlg). (16.6)

(2) Suppose that n is even. If all of p, 7 and p + 7 contain 0 in their
entries, then we have a canonical G-isomorphism ([G.0).
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16.2.4 Some elementary properties of translation functor @bl‘f”
Some of the properties of the translation functors remain true for the discon-
nected group G = O(n+ 1,1).

Proposition 16.4. Suppose p € hi(~ C™) and 7 € Z™+.

(1) Yi*7 is a covariant evact functor.

(2) Suppose p and p+ 7 belong to the same Weyl chamber with respect to
Wy If pp+ 7 is regular (Definition [2), then 177 (I1) is nonzero if 11
18 NONZETO.

Proof. (1) The first statement follows directly from the definition, see Zuck-

erman [69].

(2) By Lemma and the branching law from G = O(n + 1,1) to the
subgroup G = SO(n + 1,1), we have

VT (M) D Pl ().

Since G is in the Harish-Chandra class, EZ+T(H|§) is nonzero under the
assumption on p and 7. Hence ¢#*7(I) is a nonzero G-module. O]

Remark 16.5. The regularity assumption for p + 7 in Proposition I6.4] is
in the weaker sense (i.e., Wy-regular), and not in the stronger sense (i.e.,
We-regular).

16.3 Translation of principal series representation /5(V, \)

We discuss how the translation functors affect induced representations of
G =0O(n+1,1). We recall that G is not in the Harish-Chandra class when
n is even.

16.3.1 Main results: Translation of principal series representa-
tions
Theorem 16.6. Suppose G = O(n+ 1,1) and (V,\) € Red, see (IZ£9), or

equivalently, V- € O(n) and X\ € Z — (S(V) U Sy(V)), see Theorem [17.13
Let i := i(V,\) € {0,1,...,n} be the height of (V,\) as in (IZIT), and
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r(V,A\) € Z" as in (IEIQ). We write V = FO™ (o). with o € A*(m) and
e € {£}, where m := [§]. We define a character x of G by

_ 1 ife(5 —1i) =0,
=x(V; ) = {det ife(y —1) <O0. (16.7)

Then there is a natural G-isomorphism:

TSV (I5(0,1)) @ x = I_pni5(V, A).

p(l)

Remark 16.7. The conclusion of Theorem does not change if we replace

the definition ([I6.7) with x = det when 7 = . In fact, V is of type Y if

the height i(V, A) equals 7, and thus V ® det ~ V as O(n ) modules (Lemma
29). Then there is an 1somorphlsm of G-modules

Ig(‘/, )\) ® det ~ ]5(‘/, )\)
for any 6 € {£} by Lemmas T4 and

The translation functor é& N is the adjoint functor of v (V)‘)

Even
when the infinitesimal character of Is(V, \) is Wg- regular (in partlcular Wy-
regular) (Definition 1], the translation functor w V » does not always pre-

serve irreducibility if G is not of Harish-Chandra class as in the following
theorem.

Theorem 16.8. Retain the setting and notation of Theorem [16.4. In par-
ticular, we recall that (V,\) € Red, i = i(V,\) is the height of (V,)\), and
X =x(V,A), see (IGD).
(1) If (V,A) € Redy (Definition[T].17), i.e., if V is of type X (in particular,
if nis odd) or if X = %, then there is a natural G-isomorphism.:

(i) ..
wf(V,A) (I(fl)*—ié(u A)) QX [5(17 Z)-

(2) If (V,\) € Reduy, i.e., if V is of type Y and X\ # 5, then n is even,
i # 5 and there is a natural G-isomorphism:
(0 . o
0 (VA)(]( yr-is(Vo ) @ x > I5(i,4) @ Is(n —4,1).

In Section [[6.4] we introduce an irreducible finite-dimensional represen-
tation F(V,\) by taking the tensor product of FOM+LU (74 Y. . with an
appropriate one-dimensional character of GG, see Definition [6.17 Then, by
using F'(V, ), Theorems [[6.6l and [[6.8 can be reformulated in a simpler form
about signatures, see Theorems [16.22] and [[6.23
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16.3.2 Strategy of the proof for Theorems [16.6] and [16.8]

If n is odd, then G = (SO(n + 1,1), —I5,42) is in the Harish-Chandra class,
and therefore Theorems and are a special case of the general theory,
see [63 Chap. 7] for instance. Moreover, the translation functor behaves as
we expect from the general theory for reductive groups in the Harish-Chandra
class when it is applied to the induced representation I5(V, \) if (V, X) € Red,
see Theorem (1). We note that Red = Red; and Redy; = 0 if n is odd
(Remark MTZ.18).

On the other hand, its behavior is somewhat different if (V) \) € Redy,
see Theorem (2) and Proposition [63] for instance. Main technical
complications arise from the fact that we need the primary decomposition
for the generalized 3¢(g)-infinitesimal characters parametrized by b /We
where Wy is larger than the group generated by the reflections of simple
roots if n is even, for which G = O(n + 1,1) is not in the Harish-Chandra
class.

Our strategy is to use partly the relation of translation functors for G =
O(n+1,1) and the subgroup G = SO(n+1, 1) which is in the Harish-Chandra
class.

Theorem is proved in Section as a consequence of the following
two propositions.

Proposition 16.9. Suppose that (V,\) € Red. Retain the notation as in
Theorem[I6.8. Then the G-module w;g’)‘)(fg(i, i))®@x contains I_yp-is(V, )
as a subquotient. Equivalently, the G-module P, (I5(i,7) @ F(V, X)), see
Definition [16.17 below, contains I5(V, \) as a subquotient.

We recall from (I6.7) that the character x = x(V,A) is trivial when
restricted to the subgroup G = SO(n + 1,1).

Proposition 16.10. Suppose that (V,;\) € Red. Retain the notation as in
Theorem [[6.4. Then 1/1;((})/”\)(]5(1', i))|g is isomorphic to I_yy-is(V, N[z as a
G-module.

Similarly, Theorem [I6.§] is proved in Section 6.7 by using analogous
results, namely, Propositions [6.33] and [6.34] in Section [G.17

334



16.3.3 Basic lemmas for the translation functor

We use the following well-known lemma, which holds without the assumption
that GG is of Harish-Chandra class.

Lemma 16.11. Let F be a finite-dimensional representation of G, V €
O(n), 6 € {£}, and X\ € C. Then there is a G-stable filtration

such that ‘
L)L ~ndG(Vis @ F9) (1<j<k)

where FY9) is a P-module such that the unipotent radical N acts trivially and
that F(j)\MA is isomorphic to a subrepresentation of the restriction F|yra to
the Levi subgroup M A.

For the sake of completeness, we give a proof.

Proof. Take a P-stable filtration
{0y =FyCFH C---CF,=F
such that the unipotent radical N, of P acts trivially on
FU = F/F;, (1<j<k).

As in ([220), we denote by Vys the irreducible P-module which is an
extension of the M A-module V X § X C, with trivial N, action. We define
G-modules I; (0 < j <k) by

I; :=nd%(Vas ® Fj|p).
Then there is a natural filtration of G-modules
O0=IyClC---CIL,=Ind%(Vas ® Flp)

such that
L/ = Indg(Vas ® (Fj/Fj-1))

as G-modules. Since the finite-dimensional representation F' of G is com-
pletely reducible when viewed as a representation of the Levi subgroup M A,
the M A-module FY) = F;/F; ; is isomorphic to a subrepresentation of
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the restriction F|p 4. Now Lemma [[6.I1] follows from the following G-
isomorphism:

Ind%(Vas @ Flp) =~ IndG(Vys) @ F.
]

Similarly to Lemma[IG.11] we have the following lemma for cohomological
parabolic induction. Retain the notation as in Section [4.9.1]

Lemma 16.12. Suppose that q = Ic + u is a 0-stable parabolic subalgebra
of gc with Levi subgroup L, see (IZ31)), and that W a finite-dimensional
(I, LN K)-module. Let F be a finite-dimensional representation of G, and

{O}ZFOCF1C"'CFk:F

a (q,L)-stable filtration such that the nilpotent radical u acts trivially on
FU) .= F;/F;_y. Then there is a natural spectral sequence

REW @ FY @ Cpy) = REW @ F ® Cy) ~ RE(W ®@ Cy) @ F

as (g, K)-modules.

The proof is similar to the case where G is in the Harish-Chandra class,
see [63 Lem. 7.23].

By the definition ([G2)) of the translation functor 1477, we need to esti-
mate possible 34(g)-infinitesimal characters of Ind$(Vy s ® FU)) in Lemma
IGIT or that of RE(W ® FU @ C,) in Lemma

In order to deal with reductive groups that are not in the Harish-Chandra

class, we use the following lemma which is formulated in a slightly stronger
form than [63] Lem. 7.2.18], but has the same proof.

Lemma 16.13. Let hc be a Cartan subalgebra of a complex semisimple Lie
algebra gc, Wy the Weyl group of the root system A(gc, bc), At (ge, be) a
positive system, (, ) a Wy-invariant inner product on by = Spang A(gc, he),
and || - || its norm.

Suppose that v and T € by satisfy

<V7 a\/> € N+ (Va S A+(g(Ca hC))a
(v+70’) €N ("a € A*(ge, be))-
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If v € b¢ satisfies the following two conditions:

v+ =w(v+T) for some w € Wy, (16.8)
I <lI7l; (16.9)

then v = 1.

Remark 16.14. In [63 Lem. 7.2.18], v is assumed to be a weight occurring in
the irreducible finite-dimensional representation of G (in the Harish-Chandra
class) with extremal weight 7 instead of our assumption (I6.9]).

16.4 Definition of an irreducible finite-dimensional
representation F(V,\) of G =0(n+1,1)

—

For (V,\) € RInt, i.e., for V € O(n) and A € Z — S(V), we defined in
Chapter [I4

i(V,A) € {0,1,...,n}, height of (V,\) (Definition [4.20]),
r(V,\) e ClaH, giving the 3¢(g)-infinitesimal character of I5(V, \),

see ([[ZI0).

In this section we introduce an irreducible finite-dimensional representation
F(V,\) of G = O(n + 1,1) which contains important information on signa-
tures.

16.4.1 Definition of ¢V()\) and o)

We begin with some combinatorial notation.

Definition 16.15. Let m := [3]. For 1 <i <n, 0 = (01, -+ ,0n) € AT (m),
and A € Z, we define 0(\) € Z™*! as follows.
Case 1. n=2m

(0'1—1,"',Ui—l,i—)\,gi+1,"'70m> fOI'OSZSm—l,
cdN) =L (o1 =1, ,om —1,]A—m]) for i = m,
(o1 =1, ,oni — LA =4, 00 i1, " ,Om) form+1<i<n.

Case 2. n=2m+1

U(i)(/\) — {(‘71_17"‘ ;00— 1=\, 0iy1, 0 0m) for 0 <i <m,

(o =1, Jopi —LLA—4, 00441, ,0m) form+1<i<n.
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—

Moreover we define () € Z™ to be the vector obtained by removing the
min(i + 1,n — i + 1)-th component from o ()\) € Zm+1,

Case 1. n=2m

(0'1—1, ',Ui_170-i+1,"'70-m> fOI'OSZSm—l,
o= (oy—1,--+ 0, —1) for i = m,
(01_17"'7Un—i_1agn—i+17"'70m) form+1§z§n
Case 2. n=2m+1
" (o1 =1, oy — 1,001, ,0m) for 0 <i <m,
o\t =
(O'l—l,"',O'n,i—l,O'n,iJrl,"',O'm) form+1§z§n

Definition-Lemma 16.16. Let m := [§]. For (V,\) € RInt, i.e., for
V €O0(n)and A € Z — S(V), we write V = FO" (o), with 0 € AT(m) and
e e {x} We set ‘

a(A) =@ (N), (16.10)

where ¢ :=i(V,;\) € {0,1,...,n} is the height of (V,\) as in (IZIT). Then
we have
a(A) € AT(m+1).

Proof. Suppose n = 2m (even). Let A € Z. By the definition of R(V;1)
(Definition [423), we have the following equivalences:

e for 0 <i<m—1,
/\GR(V,Z) <:>Ui—’i>—)\>0i+1—i—1
<:>0'7;—122'—)\20'i+1;
e for i =m,
ANeRV;m) & —op < A—m <o,
& oy — 1> N—m];
e form—+1<1i<n,
)\ER(V,Z) <:>O'n,i+1—1<)\—i<0'n,i
S o i —12>2A—12> 0541

Thus in all cases o (\) € A*(m + 1).
The proof for n odd is similar. O
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16.4.2 Definition of a finite-dimensional representation F'(V,\) of
G

We are ready to define a finite-dimensional representation, to be denoted by
F(V,)A), for (V,\) € RInt.

Definition 16.17 (a finite-dimensional representation F'(V,\)). Suppose
that (V,\) € RInt, ie., V € O(n) and A € Z — S(V). We write V =
FOM (o), with o € AT(m) and € € {£} where m := [2]. We set i := i(V, ),
the height of (V, ) as in (IZI7), and o(\) € AT(m + 1) as in Definition-
Lemma

We define an irreducible finite-dimensional representation F'(V,\) of G =

O(n+ 1,1) as follows:
o for V of type Y and A = §(=m),

F(V,A) =FOU D (g (M) 1

:FO(n—l-l,l)(O-l 1, om—1,0)4 4;
o for V of type X or A # 3,

FO(n+1,1) (U()\))a(,l))\—is if 4 <

2 16.11
FO("HJ)(0—()\))_5’(_1)),1-,18 ife>2 ( )

27

F(VA) = {

see ([I43) for notation.
By using the character y = x(V, \) of G as defined in ([IG.1), we obtain a

unified expression
F(V,A) = F(o(A)q,—1p-i @ X (16.12)

Remark 16.18. We note that (IG.IT]) is well-defined. In fact, if V' is of type
Y (Definition @), then ¢ is not uniquely determined because there are two

expressions for V:
V ~ FOW (), ~ FOMW(g)_,

see Lemma [IZ4] (1). On the other hand, the (m + 1)-th component of o(\)
does not vanish except for the case i = A = m by Definition [[6.15 Hence we
obtain an isomorphism of O(n + 1, 1)-modules:

FO(n-‘rl,l) (J(A))a,b ~ FO(n-i—l,l) (U(A))—a,—b
for any a,b € {£} by Lemma [I44] (2).
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By Definition [4.2] the following lemma is clear.

Lemma 16.19. Suppose that V is of type X or A # 5. Then there is a
natural isomorphism of O(n + 1,1)-modules:

F(V®&det,\) ~ F(V,\) ® det .

Lemma 16.20. The following two conditions on (V,\) € RInt (i.e., V €

—

O(n) and A € Z — S(V')) are equivalent:
(i) F(V,\) ® det ~ F(V,\) as G-modules;
(ii) V is of type Y (Definition[Z4) and X # 5.

In particular, for (V,\) € Red, (i) holds if and only if (V,\) € Redn (Defi-
nition [T7.17).

Proof. Any of the conditions (i) or (ii) implies that n is even, say, n =
2m. Let us verify (i) = (i). If we write V = FO® (o). for some o =
(01, ,0m) € AT(m) and ¢ € {£}, then o, # 0 because V is of type Y.
On the other hand, the height i :=i(V, \) is not equal to m because A\ # m,
hence the (m + 1)-th component of ¢ (\) equals o,,(# 0) by Definition
Thus there is a natural G-isomorphism F(V,\) @ det ~ F(V, \). The
converse implication is similarly verified. [

Example 16.21. Let (V,\) = (AY(C"),¢) for £ = 0,1,--- ,n. We set m =

[5] as usual. Then

i(V,\) =€, o(\) =0 (€ Z™), and o) = 0 € Z™.
Moreover, we have an isomorphism of G-modules:
F(V,A\)~1 for0</{<n.

16.4.3 Reformulation of Theorems and 6.8

By using the finite-dimensional representation F'(V,\) of G = O(n + 1,1)
(Definition [[6.17])), Theorems [[6.0] and [[6.8 may be reformulated in simpler
forms, respectively, as follows.
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Theorem 16.22. For (V,\) € Red (Definition [I{.§), we set i := i(V, ),
the height of (V,\) as in (I4AIM). Then there is a natural G-isomorphism.:

Prvoy(Is(i,i) @ F(V,A)) = Is(V, A).

Theorem 16.23. Suppose (V,\) € Red. Retain the notation as in Theorem
[16.24.

(1) If(V,\) € Red; (Definition[If.17), then there is a natural G-isomorphism:

Pr(v,)\)([(g(‘/, )\) & F(V, /\)) ~ [5(2', Z)

(2) If (V,\) € Redy, then there is a natural G-isomorphism:

16.4.4 Translation of irreducible representations II;s

We recall from ([233]) that II,5 (0 < ¢ < n+1, § € {+}) are irreducible
admissible smooth representations of G with trivial infinitesimal character
pc, and from ([[Z2])) that I15(V, A) is an irreducible admissible smooth repre-
sentation of G with 34(g)-infinitesimal character r(V;\) mod Wg. We also
recall that p() = pg mod W for all 0 < 4 < n. In this section, we determine
the action of translation functor w;((l‘)/ Y on irreducible representations.

Theorem 16.24. Suppose that (V,\) € Red. Let i := i(V,\) be the height
of (V,A), and F(V,\) be the irreducible finite-dimensional representation of
G (Definition[16.17). Then there is a natural G-isomorphism:

PT(V,)\) (Hz’,6 02y F(V, A)) = H5<V7 )‘>

Proof. Since the translation functor is a covariant exact functor (Proposition
064 (1)), the exact sequence of G-modules

0— 15 — Is(iyi) = 4 s — 0
(Theorem (1)) yields an exact sequence of G-modules

0 — Prn(is @ F(V,A) = I5(V,A) = Py (Hip1,—5 @ F(V,A)) — 0,
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where we have used Theorem [16.22] for the middle term. Since the first and
third terms do not vanish by Proposition [[6.4] (2), we conclude the following
isomorphisms of G-modules:

L(V,A) =~ Py (Ilis ® F(V,\)),
(VA = Py (Ilisr -5 ® F(V, \))

because I5(V, \) has composition series of length two (Corollary[[£.22]). Hence
Theorem follows from the definition (I4.28) of II;(V, \). O

16.4.5 Proof of Theorems 22 and [16.23]

In this subsection, we explain that Theorem is equivalent to Theorem
622} Theorem is equivalent to Theorem

For this we begin with the following lemma which clarifies some combina-
torial meaning of the height i(V, \) € {0,1,...,n} and the dominant integral
weight o(A) € AT (m + 1) in Definition I6T7 Here we recall m = [§].

Lemma 16.25. Suppose V = FO" (o), with 0 € A*(m) and € € {&}. For
0<1<nand A € Z, we set

. , 1
7—(1)(‘/’ A i=7r(V,\) — p(Z) e (§Z)m+1, (16.13)
see (I410Q) and Example [I4.9 for the notation.
(1) Then 7O(V,\) € Z™*! is given by
(01_17"'70i_170i+17"'>Um7)‘_i> f0r0§i§m,
(01— 1, 0n—i— L, 0nis1, " Oy A — 1) form+1<i<n.

(2) Assume that A € Z — S(V'), and we take i to be the height i(V,\) of
(Vi A) as in (I4IT). Then,

r(V,\) and p' belong to the same Weyl chamber for W,.

(3) Let o(X) be as defined in Definition [16.17 Then we have

TV, N dom = 0(N). (16.14)
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Proof. (1) Clear from the definition (IZI0) of 7(V,A) and p®. (2) The
assertion is verified by inspecting the definition (IZIT) of the height i(V, \).
(3) The statement follows from Definition-Lemma O

Now we determine the action of the translation functor w;g N We recall
that the principal series representation I5(i,7) (0 < i < n) has the triv-
ial 3¢(g)-infinitesimal character, which is Wy-regular but not always We-
regular. We apply the translation functor [I6.2) to Is(,) for an appropriate
choice of 7.

Proposition 16.26. Let m = [3]. Suppose G = O(n + 1,1), 0 € {£},
V = FO"(g), with o € A*(m) and e € {£}, and A € Z — (S(V) U Sy (V)).
Leti:=1(V,\) € {0,1,...,n} be as in (IEID). We define r(V,\) € C™*! as
in (IZIQ) and o(N\) € AT (m +1). Then we have

GV Us(0,1) = Py (Is(i,8) @ FOOHD (0(3), ).

Proof. Since I5(i, i) has the trivial 3¢(g)-infinitesimal character, P (I5(i,7)) =

I5(i,i) by @EIZ). Since 7(V,\) = p@ + 7OV, \) by [IGI3J), and since
a(A) = 7O(V, N dgom by (IGI4), the definition of the translation functor shows

@) () . o .
w,ﬁ’m* N (I5(i,4)) = Py (Is(i, 1) @ FO" D (0(N) 1)

Thus Proposition [16.20] is proved. O

It follows from Proposition [[6:26 and from the definition of F'(V, A) (Defi-
nition [[6.17)) that Theorem [6.0lis equivalent to Theorem [6.22] and Theorem
16.9 is equivalent to Theorem [16.23]

16.5 Proof of Proposition [16.9

In this section we complete the proof of Proposition [6.9 By Lemma [I6.11]
the proof reduces to some branching laws for the restriction of finite-dimensional
representations of G = O(n+1, 1) with respect to M A ~ O(n)xSO(1,1) and
to the study of their tensor product representations, see Proposition [[6.29
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16.5.1 Irreducible summands for O(n + 2) | O(n) x O(2) and for
tensor product representations

Before working with Proposition [6.29] in the noncompact setting, we first
discuss analogous branching rules for the restriction with respect to a pair of
compact groups O(n + 2) D O(n) x O(2):

Lemma 16.27 (O(n+2) | O(n) x O(2)). Let 1 = (i1, 5 prms1) € AT (m+
1), where m := [5] as before. For 1 <k <m+1, we set
ﬂ/(k) = (,U/l) U 7,uk717,&;7 M1, >/Lm+1) S A+(m)

Then the O(n + 2)-module FOT"2) (), (see (IZJ)) contains the (O(n) x
O(2))-module

m+1

@ FO(n)(:u/(k))Jr R FO) (1) 1

when restricted to the subgroup O(n) x O(2).

Proof. Take a Cartan subalgebra h¢ of gl(n+2, C) such that hcNo(n+2,C) is
a Cartan subalgebra of 0(n+2, C). We identify b with C"™ via the standard
basis {fj} as before, and choose a positive system A™(gl(n + 2,C),hc) =
{fi — 1<z<j<n+2} Then

o= (p1, - g1, 0"717™) € AT (n + 2)

is a dominant integral with respect to the positive system. Let vz be a
(nonzero) highest weight vector of the irreducible representation (7, FV("2)(j1))
of the unitary group U(n+2). By definition, the O(n+2)-module FO™+2) (1), ,
see ([[Z3), is the unique irreducible O(n + 2)-summand of FY™+2)(}) con-
taining the highest weight vector v;z. We now take a closer look at the
U(n + 2)-module FUC*2)(). Fix 1 < k < m + 1. Iterating the classical
branching rule for U(N) D U(N — 1) x U(1) for N = n+ 2, n+ 1, we see
that the restriction FUV("+2) (1) |u(myxv(2) contains

FU O ) KW

as an irreducible summand, where

/L/(k) = (:ulv' o 7/7;7" : 7Mm+170n_m) € A+(n)
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and W is an irreducible representation of U(2) which has a weight (ug,0).
Since all the weights of an irreducible finite-dimensional representation are
contained in the convex hull of the Weyl group orbit through the highest
weight, we conclude that (uy,0) is actually the highest weight of the U(2)-
module W. Hence the (U(n) x U(2))-module

FUO) () B FV® (11, 0)

occurs as an irreducible summand of the U(n + 2)-module FU™+2) (7). We
now consider the following diagram of subgroups of U(n+2), and investigate
the restriction of the U(n + 2)-module FV"+2)(1).

Un+2) D> Un) xU(2)
U U
O(n+2) D O(n) x O(2)

By our choice of the Cartan subalgebra hc, we observe that there exists
wg € O(n + 2) such that Ad(wy)bhc = he and

wkﬁ = (:uh e 7/7;7 e 7/1’m+170n7m7/1’k70) € ZTL+2’

where we write wy i simply for the contragredient action of Ad(wy) on 11 € h§
(~ C"?). In particular, the O(n + 2)-submodule FO™+2)(y), of the re-
striction FU 2 ([1)|o(n42) contains the weight vector v,z = 7(wy)vy for
the weight wgui. Since wyp is an extremal weight, the weight vector in
FUC2 (1) o(nt2) is unique up to scalar multiplication. Hence vy, is con-
tained also in the submodule FY( (ki) B F Y (1, 0). Thus we conclude

that the irreducible O(n + 2)-module FO™*+2)(1), contains
FOU (1) B FOP ()

as an (O(n) x O(2))-summand when restricted to the subgroup O(n) x O(2)
of O(n + 2). O

Let m = [2] as before. Let V = FO" (o). with 0 € AT(m) and € € {+}.
Suppose A € Z — S(V). We recall from Definition-Lemma that () €
At(m +1).
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Lemma 16.28. For 0 < i < n, the following (O(n) x O(2))-module
(N(C") R 1) @ FOU" 2 ((N)):|owmxo)

contains
VR FOO(IA — i), ifi<

(V@det) R FOD(N—i),  ifi>

NIl 3

as an irreducible summand.

We note that V' ~ V ® det as O(n)-modules if 7 = 7 by Lemmas 2.9 and
14,2

Proof. 1t suffices to prove Lemmal[[6.28 for € = 4 by using a similar argument
to (B22) for the pair (O(n+2),0(n) x O(2)) and for x = det. Then Lemma
is derived from the following two branching laws of compact Lie groups.

e O(n+2) ] 0(n)x0(2):
By Lemma [627, the O(n + 2)-module FO™*2)(g(\)), contains
FOW(g0), ® OO (A — i

as an irreducible summand when restricted to the subgroup O(n) x
O(2), see Definition [6.IH for the notation o(®.

e Tensor product for O(n):

The tensor product representation

N(C™) @ FO® (o),
contains

Vo~ FOW(g),  ifi<

V@det ~ FOM (o). ifi>

NGNS R

as an irreducible component.
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16.5.2 Irreducible summand for the restriction G | M A and for
tensor product representations

We recall that the Levi subgroup M A of the parabolic subgroup P in G =
O(n + 1,1) is expressed as

MA~O(n) x SO(1,1) ~ O(n) x Z/27Z x R.
The goal of the subsection is to prove the following proposition.

Proposition 16.29 (tensor product and the restriction O(n +1,1) | MA).

—

Suppose that (V,\) € Red, i.e., V€ O(n) and A € Z— (S(V)USy(V)). Let

i =1i(V, \) be the height of (V,\) (see (IZ1D)), and F(V,\) be the irreducible

O(n + 1,1)-module as in Definition[16.17 Then the M A-module
(N(CMRIRC;) ® F(V,\)|ara (16.15)

contains
VKIXC,

as an rreducible component.

In what follows, we use a mixture of notations in describing irreducible
finite-dimensional representations (see Sections 22 and [[4.1]). To be precise,
we shall use:

e AT (O(n+2)) (C Z"?), see (Z20), to denote irreducible holomorphic
finite-dimensional representations of the complez Lie group O(n+1,C)
as in Section 2.2}

e AT(m+1) (C Z™*!) and signatures to denote irreducible finite-dimensional
representations of the real groups O(n + 2) and O(n + 1,1) where
m := [5], as in Section I4.11

See ([IZ£3) for the relationship among these representations.

Proof of Proposition 1629 We write V = FOM(g). as before where o €
AT (m), e € {£}, and m = [§]. By Weyl’s unitary trick for the disconnected
group O(n + 1, 1), see (I43)), the restrictions of the holomorphic representa-
tion FOT+20)(g()),0"1=™) to the subgroups O(n + 2) and O(n + 1, 1) are
given respectively by

FOU 2 (a(N)4,

FOCHI ((N)), .
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Then Lemma[[6.28implies that the holomorphic (O(n, C)xO(2, C))-representation
(/\'L(Cn) X 1) ® Fo(””’c)(a()\), 0n+17m)|0(n,(C)XO(2,(C)
contains

FOUO (0,07 B FORO(|A — ], 0) if ¢

IA
o3I 3

(FO"D(0,0"™) @ det) W FOEO (A —],0) if i >

as an irreducible summand. Because the restriction of the first factor to

compact real from O(n) is isomorphic to FO™(g), or FO™(g)_ according

to whether i < 5 or ¢« > 5. Taking the restriction to another real form

O(n) x O(1,1) of O(n,C) x O(2,C), we set that the (O(n) x O(1,1))-module
(N'(C") 1) ® FOU D (0(N)) 4 +lomxon)
contains
FO (o) ®FOED (N =], 0)oay ifi <

FO"(0)- R FOCO(X —il,0)|oq,y ifi>

| 3Iol3

as an irreducible summand.
Since V = FOM(g),, the definition of F(V,\) (Definition [6.17) implies
that the M A-module

(N(C)R1) @ F(V, M) ma
contains

VR (FOEO(N -l 0)|so(1,1) ® Xe,(—1)r—ic|s0(1,1))

as an M A-module. Here we have used that M A ~ O(n) x SO(1,1) and
that Xas|s0(1,1) = X—a,—b|s0(1,1)- Hence Proposition [[6.29]is derived from the
following lemma on the restriction O(2,C) | SO(1,1). O

Let Cy denote the holomorphic character of SO(2,C) on Ce®?,
Lemma 16.30 (O(2,C) | SO(1,1)).

()R (Cr®Cy)  forkeNy,

FOCO (k0 ~
(F O)lzr2z = 4 | ) for k=0,
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where we identify SO(1,1) ~ {£1,} x SOy(1,1) with Z/2Z xR. In particular,
the SO(1, 1)-module

FOCO (N = i],0)|s001,1) ® Xe.(—1r-ic|s0(11)
~FORO(N —il,0)]s0(1,1) ® X—c (-1pr-i-1c]s001,1)
contains
1X C,\_i

as an irreducible summand.

Proof. For k € N, the holomorphic representation FO2C)(k,0) is a two-
dimensional representation of O(2, C), which is isomorphic to Indgg(’éc ()C) (Ceth?).

[ts restriction to the connected subgroup SO(2,C) decomposes into a sum of
two characters of SO(2,C):

FO(Q’C)(]{I, 0)|SO(2,(C) ~ Ceik@ o Ce—ikQ’

on which the central element —1I, acts as the scalar multiplication of (—1)* =
(—=1)=%. Since SO(1,1) is generated by the central element —I, and the
identity component SOq(1,1), Lemma follows. ]

16.5.3 Proof of Proposition [16.9]

Proof of Proposition[16.9. Let F(V,\) be the finite-dimensional representa-
tion of G as in Definition [6.I7 Filter F(V, ) as in Lemma [[G.11 We may
assume in addition that each FU) = F(V,\);/F(V,\);_; is irreducible as an
M A-module. Then by Proposition [6.29] I5(V, \) occurs as a subquotient of
the G-module P,y x)(5(¢,7) @ F(V, X)). Hence the second assertion of Propo-
sition is shown. By Proposition [[6.26] the first assertion follows. O

16.6 Proof of Theorem [16.6l

In this section we complete the proof of Theorem and also its reformu-
lation Theorem [[6.22] By Proposition [[6.9 it suffices to show Proposition
is an isomorphism in the level of G-modules instead of the isomorphism
in Theorem as G-modules.

We divide the argument according to the decomposition

Red = R@dl 1T RGdH,
where we recall from Definition I4.17%
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o (V,)\) € Redy, if V is of type X or A = %;
o (V,A) € Redy, if V is of type Y and A = 3.

As we shall show in the proof of Proposition [6.10 below, the following
assertion holds with the notation therein.

Proposition 16.31. There is a natural isomorphism, as G-modules

—r(V,\ .. .
A O (150, D)) if (V,\) € Redy,
wp(i) ([5(27 Z))‘@ = —r(V(© X) L. .
@S:i P o) (I5(i,1)|z) if (V) € Redyy.

16.6.1 Case: (V,\) € Red;
In this subsection, we discuss the case where V' is of type X or A = 7.

Proof of Proposition 6104 for (V,\) € Red;. If n is odd, then Proposition
follows from Lemma (1).

Hereafter we assume n is even, say n = 2m. We claim that Proposition
follows from Lemma (2) if V is of type X (Definition @) or
A = m. To see this, it is enough to verify that all of p®, r(V,)), and
OV, A) = r(V,\) — p, see (I6IJ), contain 0 in their entries. This is
automatically true for p@ as p¥ € Wgp® (Example (3)) and n is even.
For r(V, ), one sees from ([I4.I0) that the m-th component vanishes if V' is
of type X and the (m + 1)-th component vanishes if A = m. For 70 (V, \),
one see from the formula of 7)(V, ) in Lemma that an analogous
assertion holds because A = m (= %) implies that the height i(V, ) equals m
by Definition [4£.26 Hence Proposition for (V,\) € Redy is shown. [

16.6.2 Case: (V,)\) € Redy

In this subsection, we discuss the case where V' is of type Y and A # 7. In
this case, n is even (= 2m), ¢ := i(V,\) = m, and the restriction of V to
SO(n) is a sum of two irreducible representations of SO(n):

V=vHevH),

as in (I.T]). We extend the definition (IZI0) of »(V, A) to irreducible repre-
sentations V&) of SO(n) with n = 2m by

AV X) = (01 m 1,y 41 A ) € B
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Then 7(V®) | )\) viewed as an element of b /Wy is the 3(g)-infinitesimal char-
acter of the principal series representation I5(V ™) X) of G = SO(n + 1,1).

As in (IGI3), we set
TOWVE N = r(VE ) = plo),

Inspecting the definition (IZI7) of the height i := i(V, ), we see that both
r(VE | X) and p@ belong to the same Weyl chamber with respect to the
Weyl group Wy (not W) as in Lemma

By Lemma [[6.20] the irreducible finite-dimensional G-module F(V,\)
decomposes into a direct sum of two irreducible G-modules, which we may
write as

F(VA)g=FV® N @ FVT,N).

To be precise, we set o*)()\) := o()\) (Definition [6.17), and define o= ())
by replacing the (m-+1)-th component o, with —o,,. For instance, if A < m,
then the height ¢« = #(V, \) is smaller than m and

0-(+)<)\> :(Ul - 17 05— 1a7' - )\70—1'4—17 e 70m—17am)7

U(_)<>\) :(Ul - 17 04— 17Z - )\a Oi+1; """ 5 Om—1; _Um)-
Then F(V®) )\ are the irreducible G-modules such that

F(V(i): A) ® X4 (—1)3—i|SO(m+1,1)

extends to irreducible holomorphic finite-dimensional representations of the
connected complex Lie group SO(n + 2, C) with highest weights o) (\).

Proof of Proposition [I6.104 for (V,\) € Redy. By the definition (I6.2)) of the
translation functor and by Lemma [[6.2] there is a natural G-isomorphism:

r(V,\ ..
e (150, 0)) |z

= (PT(V(+>,)\) + FT(V<*),)\))<I5(L Z)|§ ® (F(V(Jr)? )‘) D F(V(i)v A))) (1616>

We claim for &, n € {£}:

P, oy Us(iy g @ TV ) =508 V(U0 0)z) i én =+, (16.17)
QR F(V

P Is(i, i) g ® F(V™, X)) =0 if & = —. (16.18)
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The first claim ([I6.17) holds by definition ([I6.5]). To see the vanishing (I6.18)
of the cross terms in ([I6.I8]), suppose that

P+ =w(p® + 7OV N))
for some weight v in F(V® )) and for some w € W,. Then we have
I < (PO 0| = [IFOVE ).
Hence we can apply Lemma and conclude
N = T(i)(v(ﬁ)’ A).
By the vanishing ([I6.I8) of the cross terms in (IG.I0]), we obtain the following

G-isomorphisms:

A)
%é) (153, 1) ~ P v, u) (£5(4,9)|5)
ge{£}

o~ EB T ipmis(VEON),

ge{£}

which is isomorphic to the restriction of the principal series representation

I_1yp-i5(V, ) of G to the subgroup G by (I5.2). ]

16.7 Proof of Theorem [16.8

In this section, we show Theorem [I6.8], or its reformulation, Theorem I6.23]
The proof is similar to that of Theorem [I6.6] hence we give only a sketch of
the proof with focus on necessary changes. A part of the proof is carried out
separately according to the decomposition

Red = Red; 11 Redy;  (Definition [4.17]).

The following lemma is a counterpart of Proposition [[6.29

Lemma 16.32 (tensor product and G | M A). Suppose (V,\) € Red. Let
i :=1(V,\) be the height of (V,\), see (IZIM), and F(V,\) be the irreducible
finite-dimensional representation of G = O(n+ 1,1) as in Definition [16.17
Then the M A-module

(VHROIXCy) @ F(V,\)|ma
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contains

N (C")RIRC; if (V,\) € Reds,
(N(CYRIRC) & (A" (CYRIRC;)  if (V,A) € Redu,

as an 1rreducible component.

Proof. The proof is similar to that of Proposition except that there is
a G-isomorphism F(V, \) @ det ~ F(V, A) by Lemma [[620if (V, \) € Redy;.
In this case, the height ¢ = #(V, \) is not equal to § by Lemma (3).
Thus both the O(n)-modules A*(C") and A" /(C") ~ A(C") ® det occur
simultaneously in V ® F(V, A)|om)- O

Theorem [6.23] or equivalently, Theorem [I6.§] is deduced from the fol-
lowing two propositions.

Proposition 16.33. Suppose (V,\) € Red. (Definition[T].§), equivalently,

o~

Ve O(n) and X € Z—(S(V)USy(V)). Then the G-module P,y (Is(V,\)®
F(V, X)) contains

Is(i,14) for (V,\) € Red,
Is(i,i) and Is(n —i,i)  for (V,\) € Redy,

as subquotients.

Proof. Asin the proof of Proposition[I[6.9in Section[I6.5.3] Proposition [I6.33]
follows readily from Lemma [[G.11] by using Lemma [I6.32 O

—

Proposition 16.34. Suppose (V,)\) € Red, namely, V € O(n) and \ €
Z— (S(V)USy(V)). Then there is a natural isomorphism of G-modules:

I5(i,i)|a for (V,\) € Red,,

Povar(Is(V. NRF (V) |y ~ 4 0 -
(V,)\)( 5( ) ( ))’G {I(s(Z?Z)‘G’ P [5(77, — 1, Z)|é fOT’ (V, )\) - Redn.

Proof. The proof is similar to that of Proposition [6.10l again by showing
the vanishing of the cross terms as in (IG.Ig]). O
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component of O(n + 1,1)

B0} 310

G'=0(n,1) 27
L@, Langlands dual group 211
gV,W m
H

H 27 B8,
h*
h% (140l T43] 061
H*(CY), spherical harmonics
1

I5(i, N\ 41 60, 139,
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3 tertwining operator [142]
'f[‘%nf y» renormalized Knapp-Stein
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admissible smooth representationI2]

B
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