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Abstracts

Symmetry Breaking Operators for Orthogonal Groups O(n, 1)

Toshiyuki Kobayashi

Given an irreducible representation π of a group G and a subgroup G′, we may
think of π as a representation of the subgroup G′ (the restriction π|G′). A typical
example is the tensor product representation π1⊗π2 of two representations π1 and
π2 of a group H, which is obtained by the restriction of the outer tensor product
π1 ⊠ π2 of the direct product group G := H ×H to its subgroup G′ := diag(H).

As branching problems, we wish to understand how the restriction π|G′ behaves
as a G′-module. For reductive groups, this is a difficult problem, partly because
the restriction π|G′ may not be well under control as a representation of G′ even
when G′ is a maximal subgroup of G. Wild behavior such as infinite multiplicities
may occur, for instance, already in the tensor product representation of SL3(R).

The author proposed in [3] to go on successively, further steps in the study of
branching problems via the following three stages:

Stage A: Abstract feature of the restriction π|G′

Stage B: Branching laws.

Stage C: Construction of symmetry breaking operators (Definition 0.1).

Here, branching laws in Stage B ask an explicit decomposition of the restriction
into irreducible representations of the subgroup G′ when π is a unitary represen-
tation, and also ask the multiplicity m(π, τ) := dimHomG′(π|G′ , τ) for irreducible
representations τ of G′. The latter makes sense even when π and τ are nonunitary.
Stage C refines Stage B, by asking an explicit construction of SBOs when π and
τ are realized geometrically.

Definition 0.1. An element in HomG′(π|G′ , τ) is called a symmetry breaking op-
erator, SBO for short.

Stage A includes a basic question whether spectrum is discrete or not, see [1].
Another fundamental question in Stage A is an estimate of multiplicities. In [2, 6],
we discovered the following geometric creteria to control multiplicities:

Theorem 0.2 (geometric criteria for finite/bounded multiplicities).

(1) The dimension of HomG′(π|G′ , τ) is finite for any irreducible representa-
tions π of G and any τ of G′ iff G×G′/diag(G′) is real spherical.

(2) The dimension of HomG′(π|G′ , τ) is uniformly bounded with respect to π
and τ iff (GC ×G′

C)/diag(G
′
C) is spherical.

Here we recall

Definition 0.3. (1) A complex manifold XC with holomorphic action of a
complex reductive group GC is spherical if a Borel subgroup of GC has an
open orbit in XC.
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(2) A real manifold X with continuous action of a real reductive group G is
real spherical if a minimal parabolic subgroup of G has an open orbit in
X.

The latter terminology was introduced in [2] in search for a broader framework
for global analysis on homogeneous spaces than the usual (e.g. group manifolds,
symmetric spaces). That is, the function space C∞(G/H) (or L2(G/H) etc.)
should be under control by representation theory if

(1) dimHomG(π,C
∞(G/H)) < ∞ for all π ∈ Ĝadm,

and hence we could expect to develop global analysis on G/H by using representa-
tion theory if (1) holds[2]. We discovered and proved that the geometric property
“real spherical” characterizes exactly the representation-theoretic property (1):

Fact 0.4 ([2, 6]). Let X = G/H where G ⊃ H are algebraic real reductive groups.

(1) dimHomG(π,C
∞(X)) < ∞ (∀π ∈ Ĝadm) iff X is real spherical.

(2) dimHomG(π,C
∞(X)) is uniformly bounded iff XC is spherical.

Theorem 0.2 follows from Fact 0.4.
The classification of the real spherical spaces of the form (G × G′)/diag(G′)

was accomplished in [5] when (G,G′) is a reductive symmetric pair. This a priori
estimate in Stage A singles out the settings which would be potentially promising
for Stages B and C of branching problems. One of such settings arises from a
different discipline, namely, from conformal geometry. The first complete solution
to Stage C obtained [7] is related to this geometric setting as below.

Given a Riemannian manifold (X, g), we write G = Conf(X, g) for the group of
conformal diffeomorphisms of X. Then there is a natural family of representations
πλ of G on C∞(X) for λ ∈ C given by

(πλ(h)f)(x) = Ω(h−1, x)λf(h−1 · x) for h ∈ G, x ∈ X.

We can extend this to a family of representations on the space E i(X) of differential

i-forms, to be denoted by π
(i)
λ .

If Y is a submanifold of X, then there is a natural morphism

G′ := {h ∈ G : h · Y ⊂ Y } → Conf(Y, g|Y ).

Then we may compare two families of representations of the group G′:

• the restriction π
(i)
λ |G′ acting on E(i)(X),

• the representation π′(j)
ν acting on E(j)(Y ).

A conformally covariant SBO on differential forms is a linear map E i(X) → Ej(Y )

that intertwines π
(i)
λ |G′ and π′(j)

ν . Here is a basic question arising from conformal
geometry:

Question 0.5. Let X be a Riemannian manifold X, and Y a hypersurface. Con-
struct and classify conformally covariant SBOs from E i(X) to Ej(Y ).
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We are interested in “natural operators” D that persist for all pairs (X,Y ).
The larger Conf(X;Y ) is, the more constrains are on D, and hence, we first
focus on the model space with largest symmetries which is given by (X,Y ) =
(Sn, Sn−1). In this case the pair (G,G′) of conformal groups is locally isomorphic
to (O(n+1, 1), O(n, 1)). It then turns out that the criterion in Theorem 0.2 (2) for
Stage A is fulfilled. Then Question 0.5 is regarded as Stages B and C of branching
problems. Recently, we have solved completely Question 0.5 in the model space:

• Continuous SBOs for i = j = 0 were constructed and classified in [7].
• Differential SBOs for general i and j were constructed and classified in [4].
• The final classification is announced in [8].

Here is a flavor of the complete classification:

Theorem 0.6. If HomG′(π
(i)
λ |G′ , π′(j)

ν ) ̸= {0} for some λ, ν ∈ C, then j ∈ {i −
2, i− 1, i, i+ 1} or i+ j ∈ {n− 2, n− 1, n, n+ 1}.

In the talk, I gave briefly the methods of the complete solution [4, 7, 8], some of
which are also applicable in a more general setting that Theorem 0.2 (an a priori
estimate for Stage A) suggests.

Finally, some applications of these results include:
• an evidence of a conjecture of Gross and Prasad for O(n, 1), see [8];
• periods of irreducible unitary representations with nonzero cohomologies;
• a construction of discrete spectrum of the branching laws of complementary

series [7, Chap. 15].
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