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Abstract. Rankin–Cohen bidifferential operators are the projectors onto irre-
ducible summands in the decomposition of the tensor product of two particular
representations of SL(2,R). We consider the general problem to find explicit for-
mulæ for such projectors in the setting of multiplicity-free branching laws for
reductive symmetric pairs.

For this purpose we develop a new method (F-method) based on an algebraic
Fourier transform for generalized Verma modules, which enables us to characterize
those projectors by means of certain systems of partial differential equations of
second order.

We discover explicit formulæ for new equivariant holomorphic differential oper-
ators in the six different complex geometries arising from real symmetric pairs of
split rank one, and reveal an intrinsic reason why the coefficients of Jacobi poly-
nomials appear in these operators including the classical Rankin–Cohen brackets
as a special case.
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1. Introduction

What kind of differential operators do preserve modularity? This question was
studied by R. A. Rankin [Ra56] and later investigated by H. Cohen [C75] in the
framework of bidifferential operators. These authors introduced a family of operators
transforming a given pair of modular forms into another modular form of a higher
weight. Let f1 and f2 be holomorphic modular forms for a given arithmetic subgroup
of SL(2,R) of weight k1 and k2, respectively. The bidifferential operator, referred to
as the Rankin–Cohen bracket of degree a and defined by

(1.1) RCa
k1,k2(f1, f2)(z) ∶=

a

∑
`=0

(−1)` (
k1 + a − 1

`
)(

k2 + a − 1
a − `

)
∂a−`f1

∂za−`
(z)

∂`f2

∂z`
(z),

yields a new holomorphic modular form of weight k1 + k2 + 2a.
These operators have attracted considerable attention in recent years particularly

because of their various applications in

- theory of modular and quasimodular forms (special values of L-functions,
the Ramanujan and Chazy differential equations, van der Pol and Niebur
equalities) [CL11, MR09, Z94],

- covariant quantization [BTY07, CMZ97, CM04, OS00, DP07, P08, UU96],
- ring structures on representations spaces [DP07, Z94].

Existing methods for the SL(2,R)-case. A prototype of Rankin–Cohen brack-
ets was already found by P. Gordan and S. Guldenfinger [Go1887, Gu1886] in the
19th century by using recursion relations for invariant binary forms and the Cay-
ley processes. For explicit constructions of such equivariant bidifferential operators
several different methods have been developed:

- Recurrence relations [C75, El06, HT92, P12, Z94].
- Taylor expansions of Jacobi forms [EZ85, IKO12, Ku75].
- Reproducing kernels for Hilbert spaces [PZ04, UU96, Zh10].
- Dual pair correspondence [B06, EI98].

We propose a new method based on branching laws for infinite dimensional rep-
resentations and the algebraic Fourier transform of generalized Verma modules. We
discover new families of covariant differential operators by applying this method to
six different complex geometries beyond the SL(2,R) case (see Table 1.1).

Branching laws for symmetric pairs. By branching law we mean the decom-
position of an irreducible representation π of a group G when restricted to a given
subgroup G′. An important and fruitful source of examples is provided by pairs of
groups (G,G′) such that G′ is the fixed point group of an involutive automorphism
σ of G, called symmetric pairs.
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The decomposition of tensor product is a special case of branching laws with re-
spect to symmetric pairs (G,G′). Indeed, if G = G1 × G1 and σ is an involutive
automorphism of G given by σ(x, y) = (y, x), then G′ ≃ G1 and the restriction of the
outer tensor product π1 ⊠ π2 to the subgroup G′ is nothing but the tensor product
π1 ⊗ π2 of two representations π1 and π2 of G1. The Littlewood–Richardson rule
for finite dimensional representations is another classical example of branching laws
with respect to the symmetric pair (GL(p + q,C),GL(p,C) × GL(q,C)). Our ap-
proach relies on recent progress in the theory of branching laws of infinite dimensional
representations for symmetric pairs.

Rankin–Cohen operators as intertwining operators. From the view point of
representation theory the Rankin–Cohen operators are the projectors to irreducible
components in the tensor product of two holomorphic discrete series representations
of SL(2,R). More precisely, the operator (1.1) is the projector to the summand
πk1+k2+2a in the following abstract branching law [Mo80, Re79]:

(1.2) πk1 ⊗ πk2 ≃∑
a∈N

⊕
πk1+k2+2a.

The subject of this paper is to develop a method to find explicit projectors onto
irreducible components of branching laws in a broader setting of symmetric pairs. A
reasonable general assumption to work with would be the multiplicity-free decompo-
sitions where the projectors are unique up to scalars. This is the case, for instance,
if the representation π is any highest weight module of scalar type (or equivalently π
is realized in the space of holomorphic sections of a homogeneous holomorphic line
bundle over a bounded symmetric domain) and (G,G′) is any symmetric pair (see
[K08, K12] for the multiplicity-free theorems).

Geometric setting. We shall work in the following geometric setting. Let VX →X
be a homogeneous vector bundle of a Lie group G and WY → Y a homogeneous
vector bundle of G′. Then we have a natural representation π of G on the space
Γ(X,VX) of sections on X, and similarly that of G′ on Γ(Y,WY ). Assume G′ is a
subgroup of G. Our main concern is with the following question:

Question 1. Find explicit G′-intertwining operators from Γ(X,VX) to Γ(Y,WY ).

For G′ = G and Y = X being a flag variety, Question 1 amounts to the study of
intertwining operators between principal series representations, see [KS71, Kos74].
But not much has been known until know in the case where G′ ⫋ G and Y ⫋X.

In the case where X is a Hermitian symmetric domain, Y a subsymmetric domain,
G′ ⊂ G are the groups of biholomorphic transformations of f ∶ Y ↪ X, respectively,
and VX is any line bundle Lλ with sufficiently positive parameter λ, we prove:
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Theorem A. Any continuous G′-homomorphism from O(X,Lλ) to O(Y,W) is given
by a unique, up to a scalar, differential operator.

See Theorem 4.3 for precise statement. Theorem A includes the tensor product
case, namely, G ≃ G′ × G′ and X ≃ Y × Y as a special case. In contrast to Theo-
rem A, we notice that in general, the intertwining operators between two unitary
representations of real reductive Lie groups G′ ⊂ G are given by integro-differential
operators in geometric models. Among them, equivariant differential operators are
very special (e.g. [KS71] for G′ = G and [KS13] for G′ ⫋ G).

We observe that the pullback f∗ of sections is obviously G′-intertwining if WY ≃

f∗VX . Finding all bundles WY for which such nontrivial intertwining operators exist
is a part of the above question, which reduces to abstract branching problems (see
Theorem 2.7). However, giving explicit formulæ of intertwining operators is more
involved even when abstract branching laws are known, as we may note by comparing
(1.1) with (1.2) in the SL(2,R) case. In fact, to answer Question 1 one has to know
a finer structure of branching laws, namely, the precise places where the irreducible
summands are located in the whole representation space.

F-method. To answer Question 1, we propose a method, that we call F-method,
which consists of two stages:

(a) Transfer the initial question to an algebraic problem of understanding a fine
structure of branching laws for induced modules of enveloping algebras.

(b) Characterize projectors by means of certain systems of partial differential
equations.

Concerning the stage (a) we first prepare a rigorous notion of ‘differential operators’
between two manifolds X and Y with morphism f ∶ Y → X and then we prove in
Theorem 2.7 a one–to–one correspondence between G′-equivariant differential oper-
ators and g′-homomorphisms of induced modules (algebraic branching laws). This
generalizes a well-known result in the case where G = G′ and X = Y are the same
flag variety ([HJ82]). The multiplicity-freeness of algebraic branching laws for gen-
eralized Verma modules guarantees the uniqueness of the projectors in Question 1
when X and Y are flag varieties.

We proceed to Stage (b) under the assumption that X is defined by a parabolic
subalgebra with an abelian nilradical. We then characterize g′-homomorphisms of
generalized g-Verma modules by means of certain systems of partial differential equa-
tions. It should be noted that the system is of second order although the resulting
covariant differential operators may be of any higher order. The characterization is
performed by applying an algebraic Fourier transform (see Definition 3.1).

The detailed recipe of the F-method is described in Section 3.5 relying on Theorem
3.9 and Proposition 3.11.
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In Sections 5 and 6 we give an answer to Question 1 for all symmetric pairs
(G,G′) of split rank one inducing a holomorphic embedding Y ↪X (see Table 4.1).
We remark that the split rank one condition does not force the rank of G/G′ to be
equal to one (see Table 1.1 (1), (5) below).

Normal derivatives and Jacobi–type differential operators. In representation
theory, taking normal derivatives with respect to an equivariant embedding Y ↪X is
a standard tool to find abstract branching laws for representations that are realized
on X (see S. Martens [M75] and H. P. Jakobsen and M. Vergne [JV79]).

However, we should like to emphasize that the common belief “Normal derivatives
with respect to Y ↪X are intertwining operators in the branching laws” is not true.
Actually, it already fails for the tensor product of two holomorphic discrete series of
SL(2,R) where the only equivariant operators are Rankin–Cohen brackets.

We discuss when normal derivatives become intertwiners in the following six com-
plex geometries arising from real symmetric pairs of split rank one:

(1) PnC ↪ PnC × PnC (4) Grp−1(Cp+q) ↪ Grp(Cp+q)
(2) LGr(C2n−2) × LGr(C2) ↪ LGr(C2n) (5) PnC ↪ Q2nC
(3) QnC ↪ Qn+1C (6) IGrn−1(C2n−2) ↪ IGrn(C2n)

Table 1.1. Equivariant embeddings of flag varieties

Here Grp(Cn) is the Grassmanian of p-planes in Cn, QmC ∶= {z ∈ Pm+1C ∶ z2
0 +⋯+

z2
m+1 = 0} is the complex quadric, and IGrn(C2n) ∶= {V ⊂ C2n ∶ dimV = n, Q∣V ≡ 0} is

the Grassmanian of isotropic subspaces of C2n equipped with a quadratic form Q, and
LGrn(C2n) ∶= {V ⊂ C2n ∶ dimV = n, ω∣V ×V ≡ 0} is the Grassmanian of Lagrangian
subspaces of C2n equipped with a symplectic form ω.

For Y ↪X as in Table 1.1 and any equivariant line bundle Lλ →X with sufficiently
positive λ we give a necessary and sufficient condition for normal derivatives to
become intertwiners:

Theorem B.
(1) Any G′-intertwining operator from O(X,Lλ) to O(Y,W) is given by normal

derivatives with respect to the equivariant embedding Y ↪X of type (4), (5) or (6).
(2) None of normal derivatives of positive order is a G′-intertwining operator for

Y ↪X of type (1), (2) and (3).

See Theorem 5.1 for the precise formulation of the statement (1) . By using the
F-method we prove that all the differential intertwining operators appearing in the
setting of statement (2) are built on Jacobi polynomials in one variable. Namely,
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let Pα,β
` (x) be the Jacobi polynomial, and Cα

` (x) the Gegenbauer polynomial. We
inflate them to polynomials of two variables by

Pα,β
` (x, y) ∶= y`Pα,β

` (2
x

y
+ 1) and Cα

` (x, y) ∶= x
`
2Cα

` (
y

√
x
) .

Then we obtain explicit formulæ for equivariant differential operators correspond-
ingly to (1), (2), and (3) in Table 1.1:

Theorem C. In that follows, Lλ stands for a homogeneous holomorphic line bundle,
and Wa

λ a homogeneous vector bundle with typical fiber Sa(Cm) (m = n in (1); = n−1
in (2)) with parameter λ (see Lemma 5.3 for details).

(1) For the symmetric pair (U(n,1) ×U(n,1), U(n,1)) the differential operator

DX→Y,a ∶= P
−λ′+n,λ′+λ′′−2n−2a+1
a (

n

∑
i=1

vi
∂

∂zi
,
n

∑
j=1

vj
∂

∂zj
)

is an intertwining operator from O(Y,L(λ′1,λ′2))⊗O(Y,L(λ′′1 ,λ′′2)) to O(Y,Wa
(λ′1+λ′′1 ,λ′2+λ′′2)

),

where λ′1, λ
′′
1 , λ

′
2, λ

′′
2 ∈ Z, λ′ = λ′1 − λ

′
2, λ′′ = λ′′1 − λ

′′
2 , and a ∈ N.

(2) For the symmetric pair (Sp(n,R), Sp(n − 1,R) ×Sp(1,R)) the differential op-
erator

DX→Y,a ∶= C
λ−1
a ( ∑

1≤i,j≤n−1

2vivj
∂2

∂zij∂znn
, ∑

1≤j≤n−1

vj
∂

∂zjn
)

is an intertwining operator from O(X,Lλ) to O(Y,Wa
λ), where λ ∈ Z, a ∈ N.

(3) For the symmetric pair (SO(n,2), SO(n − 1,2)) the differential operator

DX→Y,a ∶= C
λ−n−1

2
a (−∆Cn−1 ,

∂

∂zn
)

is an intertwining operator from O(X,Lλ) to O(Y,Lλ+a), where λ ∈ Z and a ∈ N.

See Theorems 6.14, 6.9, and 6.1 for precise statements, respectively. The above
operators exhaust all intertwining operators for generic parameter λ (or (λ′, λ′′) in
(1)), see Theorem 4.3.

The first statement corresponds to the decomposition of the tensor product, and
gives rise to the classical Rankin–Cohen brackets in the case where n = 1. An
analogous formula for the third family was recently found in a completely different
way by A. Juhl [J09] in the setting of conformally equivariant differential operators
with respect to the embedding of Riemannian manifolds Sn−1 ↪ Sn.

Last but not least, we expect that the F-method could be a useful tool in other
settings, for example, in constructing covariant operators in parabolic geometries (cf.
[KØSS13]), and also in developing a theory of equivariant differential operators built
on orthogonal multivariable polynomials associated to root systems.
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2. Differential intertwining operators

In this section we discuss equivariant differential operators between homogeneous
vector bundles in a more general setting than usual, namely, over different base spaces
admitting a morphism. In this generality, we establish a natural bijection between
such differential operators and certain Lie algebra homomorphisms, see Theorem 2.7.

2.1. Pullback of differential operators. We understand the notion of differential
operators between two vector bundles in the usual sense when the bundles are defined
over the same base space. We extend this terminology in a more general setting,
where there exists a morphism between base spaces.

Definition 2.1. Let V → X and W → Y be two vector bundles and p ∶ Y → X a
smooth map. We say that a linear map T ∶ C∞(X,V) → C∞(Y,W) is a differential
operator if T is a local operator in the sense that

(2.1) Supp(Tf) ⊂ p−1(Supp f), for any f ∈ C∞(X,V).

We write Diff(VX ,WY ) for the vector space of such differential operators from C∞(X,V)
to C∞(Y,W).

Since any smooth map is factorized into the composition of a submersion and an
embedding, the following example describes the general situation.

Example 2.2. (1) Let p ∶ Y ↠ X be a submersion. Choose an atlas of local
coordinates {(xi, zj)} on Y in such a way that {xi} form an atlas on X.
Then, every T ∈ Diff(VX ,WY ) is locally of the form

∑
α∈NdimX

hα(x, z)
∂ ∣α∣

∂xα
,

where hα(x, z) are Hom(V,W )-valued smooth functions on Y .
(2) Let i ∶ Y ↪X be an embedding. Choose an atlas of local coordinates {(yi, zj)}

on X in such a way that {yi} form an atlas on Y . Then, every T ∈ Diff(VX ,WY )

is locally of the form

∑
(α,β)∈NdimX

gαβ(y)
∂ ∣α∣+∣β∣

∂yα∂zβ
,

where gα,β(y) are Hom(V,W )-valued smooth functions on Y .

Let ΩX ∶= ∣⋀
top T ∗(X)∣ be the bundle of densities, and denote by V∗ the dualizing

bundle V∨ ⊗ ΩX . By the L. Schwartz kernel theorem, any continuous linear map
T ∶ C∞(X,V)→ C∞(Y,W) is given as

f ↦ ⟨KT (x, y), f(x)⟩,



8 TOSHIYUKI KOBAYASHI, MICHAEL PEVZNER

for some distribution KT ∈ D′(X × Y,V∗ ⊠W) such that the second projection pr2 ∶

X × Y → Y is proper on the support of KT .

Lemma 2.3. Let p ∶ Y →X be a smooth map. A continuous operator T ∶ C∞(X,V)→
C∞(Y,W) is a differential operator in the sense of Definition 2.1 if and only if
SuppKT ⊂ ∆(Y ), where ∆(Y ) ∶= {(p(y), y) ∶ y ∈ Y } ⊂X × Y .

Proof. Suppose SuppKT ⊂ ∆(Y ). By the structural theory of distributions sup-
ported on a submanifold [S66, Chapter III, Théorème XXXVII] to ∆Y ⊂ X × Y , we
have ⟨KT , f⟩ ∈ D′(Y,W) is locally given as

(2.2) ∑
α

hα(y)
∂ ∣α∣f

∂xα
(p(y)),

for every f ∈ C∞(X,V) and some hα(y) ∈ D′(Y,V∗ ⊗W). Thus T is a differential
operator in the sense of Definition 2.1.

Conversely, by the definition of the kernel distribution KT , for any (xo, yo) ∈

SuppKT and for any neighborhood S of xo in X there exists f ∈ C∞(X,V) such
that Suppf ⊂ S and (xo, yo) ∈ Supp f × SuppTf . If T is a differential operator then
by (2.1)

(xo, yo) ∈ Supp f × p−1(Supp f).

Since S is an arbitrary neighborhood of xo, then necessarily (xo, yo) ∈ ∆(Y ) and
therefore SuppKT ⊂ ∆(Y ). �

Next, suppose the two vector bundles V → X and W → Y to be equivariant with
respect to a given Lie group G. Then we have natural actions on the spaces C∞(X,V)
and C∞(Y,W) by translations. We set

DiffG(VX ,WY ) ∶= Diff(VX ,WY ) ∩HomG(C
∞(X,V),C∞(Y,W)).

Example 2.4. If X and Y are both Euclidean vector spaces and if G contains the
subgroup of translations of Y then DiffG(VX ,WY ) is a subspace of the space of dif-
ferential operators with constant coefficients.

2.2. Induced modules. Let g be a Lie algebra over C, and U(g) its universal
enveloping algebra. Let h be a Lie subalgebra of g.

Definition 2.5. For an h-module V we define the induced U(g)-module as

indg
h(V ) ∶= U(g)⊗U(h) V.

If h is a Borel subalgebra and dimV = 1, then indg
h(V ) is the standard Verma module.

For further purposes we formulate the following statement in terms of the contra-
gredient representation V ∨. Let h′ be another Lie subalgebra of g.

Proposition 2.6. For finite dimensional h′-module W we have
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(1) Homg(indg
h′(W

∨), indg
h(V

∨)) ≃ Homh′(W ∨, indg
h(V

∨)).

(2) If h′ /⊂ h, then Homh′(W ∨, indg
h(V

∨)) = {0}.

Proof. The first statement is due to the functoriality of the tensor product.
For the second statement it suffices to treat the case where h′ is one-dimensional.

The assumption h′ /⊂ h implies that there is a direct sum decomposition of vector
spaces:

g = h′ + q + h,

for some subspace q in g. Then, by the Poincaré–Birkhoff–Witt theorem we have an
isomorphism of h′-modules:

indg
h(V

∨) ≃ U(h′)⊗C U
′(q)⊗C V

∨,

where U ′(q) ∶= C-span{X1⋯X` ∶ X1, . . . ,X` ∈ q, ` ∈ N}. In particular, indg
h(V

∨) is a

free U(h′)-module. Hence no finite dimensional h′-submodule exists in indg
h(V

∨). �

2.3. Differential operators between homogeneous vector bundles on differ-
ent base spaces. Let G be a real Lie group, g(R) ∶= Lie(G) and g ∶= g(R) ⊗ C.
Analogous notations will be applied to other Lie groups.

Consider two actions dR and dL of the universal enveloping algebra U(g) on
the space C∞(G) of smooth complex-valued functions on G induced by the regular
representation L ×R of G ×G on C∞(G):

(2.3) (dR(X)f)(x) ∶=
d

dt
∣
t=0

f(xetX), and (dL(X)f)(x) ∶=
d

dt
∣
t=0

f(e−tXx).

Let H be a closed subgroup of G. Given a finite dimensional representation V of
H we define the homogeneous vector bundle VX ≡ V ∶= G ×H V over X ∶= G/H. The
space of smooth sections C∞(X,V) can be seen as a subspace of C∞(G)⊗ V :

C∞(X,V) ≃ C∞(G,V )H ⊂ C∞(G)⊗ V.

The right differentiation given by (2.3)

C∞(G) ×U(g)→ C∞(G), (f, u)↦ dR(u)f

together with the canonical coupling V × V ∨ → C induces a well-defined diagram of
maps:

C∞(G)⊗ V ×U(g)⊗C V ∨ Ð→ C∞(G)

1 ↡ ∥

C∞(X,V) × indg
h(V

∨) ⇢ C∞(G),

because C∞(X,V) ≃ C∞(G,V )H . In turn, we get the following g-homomorphism:

(2.4) indg
h(V

∨)Ð→ HomG(C
∞(X,V),C∞(G)),

where C∞(G) is regarded as G × g-module via L × dR.
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Consider another connected closed Lie subgroup H ′. Given a finite dimensional
representation W of H ′ we form a homogeneous vector bundle WZ ≡W ∶= G ×H′ W
over Z ∶= G/H ′. Taking the tensor product of (2.4) with W , we get a morphism:

HomC(W
∨, indg

h(V
∨))Ð→ HomG(C

∞(X,V),C∞(G,W )).

Taking h′-invariants, we have then a morphism

(2.5) Homh′(W
∨, indg

h(V
∨))Ð→ HomG(C

∞(X,V),C∞(Z,W)), ϕ↦Dϕ.

We note that the map (2.5) is injective.
Take any subgroup G′ containing H ′ and form a homogeneous vector bundleWY ∶=

G′×H′W over Y = G′/H ′. Then, the vector bundleWY is isomorphic to the restriction
WZ ∣Y of the vector bundle WZ to the submanifold Y of the base space Z. Let
RZ→Y ∶ C∞(Z,WZ)→ C∞(Y,WY ) be the restriction map of sections. We set

(2.6) DX→Y (ϕ) ∶= RX→Y ○Dϕ.

The next theorem describes explicitly the image DX→Y which, according to Propo-
sition 2.6, is non–trivial only when H ′ ⊂ H, that is, when the following diagram
exists:

Z = G/H ′

'' ''NNNNNNNNNNN

Y = G′/H ′
?�

OO

// X = G/H

.

Theorem 2.7. Let G be a Lie group, H and H ′ are closed connected subgroups such
that H ′ ⊂H. Consider two finite dimensional representations V and W of H and H ′,
respectively. Then, for any G′ containing H ′ the map DX→Y establishes a bijection:

DX→Y ∶ Homh′(W
∨, indg

h(V
∨))

∼
Ð→ DiffG′(VX ,WY ).(2.7)

Remark 2.8. (1) By the functoriality of the tensor product, the bijection (2.7)
may be restated as

(2.7)′ DX→Y ∶ Homg′(indg′

h′(W
∨), indg

h(V
∨))

∼
Ð→ DiffG′(VX ,WY ).

(2) Theorem 2.7 is well-known when X = Y , i.e. G′ = G and H ′ =H, in particular
in the setting of complex flag varieties, see e.g. [HJ82, Kos74].

(3) We shall consider the case where H ′ = H ∩G′ in later applications, however,
the setting of Theorem 2.7 covers also the cases where the natural morphism
Y →X is not injective, i.e. where H ′ ⫋H ∩G′.
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(4) The left–hand side of (2.7) does not depend on the choice of G′. This fact is
reflected by the commutativity of the following diagram.

(2.8) Homh′(W ∨, indg
h(V

∨))

DX→Y

∼

))TTTTTTTTTTTTTTT

∼ // DiffG(VX ,WZ)

RZ→Y
��

DiffG′(VX ,WY )

Before giving a proof of Theorem 2.7 we state its variants, namely, for disconnected
subgroups (Corollary 2.9) and for the holomorphic case (Proposition 2.10).

In dealing with a representation V of a disconnected subgroup H, we notice that
the diagonal H-action on U(g)⊗C V ∨ defines a representation of H on indg

h(V
∨) and

thus indg
h(V

∨) is endowed with a (g,H)-module structure.

Corollary 2.9. Let H ′ ⊂H be (possibly disconnected) closed subgroups of G with Lie
algebras h′ ⊂ h, respectively. Suppose V and W are finite dimensional representations
of H and H ′, respectively. Let G′ be any subgroup containing H ′, and VX ∶= G ×H V
and WY ∶= G′ ×H′ W be the corresponding homogeneous vector bundles. Then, there
exists the following natural bijection:

DX→Y ∶ HomH′(W ∨, indg
h(V

∨))
∼
Ð→ DiffG′ (VX ,WY ) ,

or equivalently,

DX→Y ∶ Hom(g′,H′)(indg′

h′(W
∨), indg

h(V
∨))

∼
Ð→ DiffG′ (VX ,WY ) ,

Proposition 2.10. Theorem 2.7 remains valid for complex Lie groups and equivari-
ant holomorphic differential operators.

The proofs of Corollary 2.9 and Proposition 2.10 are parallel to the one of Theorem
2.7, which is based on the explicit construction of the bijection DX→Y .

2.4. Proof of Theorem 2.7. The proof for the surjectivity of DX→Y reduces to a
realization of the induced U(g)-modules indg

h(V ) in the space of distributions. We
begin with some notations.

Let C2ρ denote the one-dimensional representation of H defined by

h↦ ∣det(AdG/H(h) ∶ g/h→ g/h)∣−1.

The bundle of densities ΩG/H is given as a G-equivariant line bundle,

ΩG/H ≃ G ×H ∣det−1 AdG/H ∣ ≃ G ×H C2ρ.

Given an H-module V , we define a ‘twist’ of the contragredient representation by

V ∨
2ρ ∶= V

∨ ⊗ ∣det −1 AdG/H ∣ ≃ V ∨ ⊗C2ρ.
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Then the dualizing bundle is given, as a homogeneous vector bundle, by:

(2.9) V∗ ≡ V∨2ρ ∶= V
∨ ⊗ΩG/H ≃ G ×H V

∨
2ρ.

In what follows D′(X,V∗) (respectively, E ′(X,V∗)) denotes the space of V ∗-valued
distributions (respectively, those with compact support). We shall regard distribu-
tions as generalized functions à la Gelfand rather than continuous linear forms on
C∞
c (X,V) (respectively, C∞(X,V)), and write ∫X ω for the pairing of ω ∈ E ′(X,ΩX)

and the constant function 1X on X. For a compact subset S of X, we write
D′S(X,V

∗) = E ′S(X,V
∗) for the space of distributions supported on S.

For a homogeneous vector bundle V , we shall use the notation V∨2ρ rather than V∗.
Let o = eH ∈X. Define a vector valued Dirac δ-function

δ ∶ V ∨ Ð→ E ′[o](X,V
∨
2ρ), v∨ ↦ δ ⊗ v∨,

by

(2.10) ⟨f, δ ⊗ v∨⟩ ∶= ⟨f(e), v∨⟩, for f ∈ C∞(X,V) ≃ C∞(G,V )H .

The following lemma is standard:

Lemma 2.11.

(1) The G-invariant functional ω ↦ ∫X ω induces a G-invariant bilinear map

(2.11) C∞(X,V) × E ′(X,V∨2ρ)Ð→ C.

(2) Let S be a closed subset of X and U an open neighborhood of S in X. Then,
by restriction, the above map gives rise to a g-invariant pairing:

C∞(U,V) × E ′S(X,V
∨
2ρ)Ð→ C.

(3) The map

(2.12) indg
h(V

∨)
∼
Ð→E ′[o](X,V

∨
2ρ), u⊗ v∨ ↦ dL(u) (δ ⊗ v∨) ,

is a g-isomorphism.

Now let us consider the setting of Theorem 2.7 where we have a G′-equivariant
(but not necessarily injective) morphism from Y = G′/H ′ to X = G/H.

Lemma 2.12. Suppose that G′ is a subgroup of G. Then the multiplication map

m ∶ G ×G′ → G, (g, g′)↦ (g′)−1g,

induces the isomorphism:

m∗ ∶ (D′(X,V∨2ρ)⊗W )
∆(H′) ∼

Ð→ D′(X × Y,V∨2ρ ⊠W)∆(G′).
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Proof. The image of the coproduct m∗ ∶ D′(G)→ D′(G×G′) is D′(G×G′)∆(G′), where
G′ acts diagonally from the left. Thus, considering the remaining G×G′ action from
the right, we take H ×H ′-invariants with respect to the diagonal action in

D′(G)⊗ V ∨
2ρ ⊗W

∼
Ð→ D′(G ×G′)∆(G′) ⊗ V ∨

2ρ ⊗W,

and therefore we get Lemma. �

Lemma 2.13. There is a natural bijection:

DiffG′(VX ,WY )
∼
Ð→ (D′[o](X,VX)⊗W )∆(H′), T ↦ (m∗)−1(KT ).

Proof. Let T ∈ DiffG′(VX ,WY ). By Lemma 2.3 the distribution kernel KT is sup-
ported on the diagonal set ∆(Y ) ⊂X ×Y . Via the bijection m∗ given in Lemma 2.12
we thus have

Supp((m∗)−1KT ) ⊂ {o}.

Conversely, take any element F ∈ (D′[o](X,VX)⊗W )∆(H′), then m∗(F ) is supported

on the diagonal set ∆(Y ) ⊂X ×Y . Since it is invariant under the diagonal action of
G′, all the distributions hα in (2.2) are smooth. Therefore m∗(F ) defines a differential
operator from C∞(X,V) to C∞(Y,W). �

Proof of Theorem 2.7. Taking the tensor product of each term in (2.12) with the
finite dimensional representation W of H ′, we get a bijection between the subspaces
of h′-invariants:

Homh′(W
∨, indg

h(V
∨))

∼
Ð→ (D′[o](X,VX)⊗W )∆(H′).

Composing this with the bijection in Lemma 2.13, we obtain a bijection from
Homh′(W ∨, indg

h(V
∨)) to DiffG′(VX ,WY ), which is by construction nothing butDX→Y

in Theorem 2.7. �

To achieve our goal to describe intertwining operators between discretely decom-
posable generalized Verma modules we shall now make the correspondence ϕ ↦
DX→Y (ϕ) explicit.

3. F-method

In this section we develop the F-method in details. The recipe is given in Section
3.5 relying on the algebraic Fourier transform of generalized Verma modules (The-
orem 3.9 and Proposition 3.11). Some useful lemmas for actual computations for
vector-bundle valued differential operators are collected in Section 3.6.
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3.1. Weyl algebra and algebraic Fourier transform. Let E be a vector space
over C. The Weyl algebra D(E) is the ring of holomorphic differential operators on
E with polynomial coefficients.

Definition 3.1. We define the algebraic Fourier transform as an isomorphism of
two Weyl algebras on E and its dual space E∨:

D(E)→ D(E∨), T ↦ T̂ ,

induced by

∂̂

∂zj
∶= −ζj, ẑj ∶=

∂

∂ζj
, 1 ≤ j ≤ n = dimE.

where (z1, . . . , zn) are coordinates on E and (ζ1, . . . , ζn) are coordinates on E∨.

Remark 3.2. Definition 3.1 does not depend on the choice of coordinates.

The natural action of the general linear group GL(E) on E yields a representation
of GL(E) on the ring Pol(E) of polynomials of E. Taking its differential, we get a
Lie algebra homomorphism End(E)→ D(E). In the coordinates this homomorphism
amounts to

(3.1) End(E)→ D(E), A↦ −tZ tA∂Z ≡ −∑
i,j

Aijzj
∂

∂zi
.

Likewise, for the contragredient representation on E∨ we have

(3.2) End(E)→ D(E∨), A↦ tζ A∂ζ ≡∑
i,j

Ajiζj
∂

∂ζi
.

Further, a representation σ of g on E gives rise to Lie algebra homomorphisms
Ψσ ∶ g→ D(E) and Ψσ∨ ∶ g→ D(E∨).

Lemma 3.3. The algebraic Fourier transform T ↦ T̂ relates Ψσ and Ψσ∨ as follows:

Ψ̂σ = Ψσ∨ +Trace ○ σ.

Proof. By (3.1) and (3.2) the computation of the difference of Ψ̂σ and Ψσ∨ reduces
to the commutation relations

∂

∂ζi
ζi − ζi

∂

∂ζi
= δij,

in the Weyl algebra D(E∨). It yields Trace ○ σ. �

For actual computations we need in the latter part of this work it is convenient
to give another interpretation of the algebraic Fourier transform using specific real
forms of E.
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Definition 3.4. Fix a real form E(R) of E. Let E ′[0](E(R)) be the space of dis-

tributions on the vector space E(R) supported at the origin which is a convolution
algebra with unit δ, the Dirac delta function. Define a ‘Fourier transform’ Fc by the
following formula:

(3.3) Fc ∶ E
′
[0](E(R))

∼
Ð→ Pol(E∨), Fcf(ξ) ∶= ⟨f(x),Φ(x, ζ)⟩, ζ ∈ E∨,

where Φ is given by:

Φ ∶ E ×E∨ → C (x, ζ)↦ Φ(x, ζ) ∶= e⟨x,ζ⟩.

Notice that we do not include
√
−1 in the definition of Φ(x, ζ). This map is an

algebra isomorphism and its inverse F−1
c ∶ Pol(E∨)

∼
Ð→ E ′[0](E(R)) satisfies:

F−1
c (1) = δ.

Remark 3.5. The algebraic Fourier transform defined in Definition 3.1 satisfies

(3.4) T̂ = Fc ○ T ○F−1
c for T ∈ D(E),

and the formula (3.4) characterizes T̂ because the Weyl algebra D(E) acts faithfully
on E ′[0](E(R)) and so does D(E∨) on Pol(E∨). The composition Fc ○ T ○ F−1

c does

not depend on the choice of a real form E(R).

3.2. Symbol map and reversing signatures. In the sequel we let E be a certain
nilpotent Lie algebra n−. Even in the case when it is abelian, the left and right
actions dL and dR cause different signatures. The purpose of this section is to set
up carefully and clearly relations involving various signatures in connection with the
algebraic Fourier transform.

We define the symbol map

Symb ∶ Diffconst
(E)

∼
Ð→Pol(E∨), Dx ↦ Q(ζ)

by the following characterization

(DxΦ)(x, ζ) = Q(ζ)Φ(x, ζ).

The differential operator on E with symbol Q(ζ) will be denoted by ∂Qx.
For any homogeneous polynomial P on E∨ of degree ` and any polynomial Q on

E seen as a multiplication operator one has

(3.5) ∂̂Px = (−1)`P (ζ), Q̂(x) = ∂Qζ .

For further purposes notice that Êz = −Eζ − n, where Ez ∶= ∑j zj
∂
∂zj

stands for the

Euler operator on the corresponding vector space.
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Denote γ ∶ S(E)
∼
Ð→ Pol(E∨) the canonical isomorphism, and define another algebra

isomorphism

γsgn ∶ S(E)
∼
Ð→ Pol(E∨),

by γ ○a, where a ∶ S(E)→ S(E) is the automorphism induced by the antipodal map
X ↦ −X for every X ∈ E.

Now we regard E as an abelian Lie algebra over C, and identify its enveloping al-
gebra U(E) with the symmetric algebra S(E). Then, the right and left-infinitesimal
actions induce two isomorphisms:

dR ∶ S(E)
∼
Ð→ Diffconst

(E), dL ∶ S(E)
∼
Ð→ Diffconst

(E).

By the definition of the symbol map, we get,

Symb ○dR = γ, Symb ○dL = γsgn.

On the other hand, it follows from (3.5) that

d̂L(u) = γ(u), d̂R(u) = γsgn(u),

for every u ∈ S(E) ≃ U(E), where polynomials are regarded as multiplication oper-
ators. Hence we have proved

Lemma 3.6. For any u ∈ U(E), one has:

Symb ○dR(u) = d̂L(u), Symb ○dL(u) = d̂R(u).

3.3. Construction of equivariant differential operators by algebraic Fourier
transform. In Section 2.3 we explained a general construction of equivariant dif-
ferential operators between homogeneous vector bundles on different base spaces X
and Y equipped with a morphism Y → X by using the right action dR of U(g) on
C∞(G). Now we develop another construction based on the algebraic Fourier trans-
form. In Theorem 3.9 we show that both methods give the same operators when the
base space X is a flag variety G/P , where the parabolic subgroup P has an abelian
nilradical.

From now, let G be a real semisimple Lie group, P a parabolic subgroup of G with
Levi decomposition P = LN+ and V a finite dimensional representation of P . We
apply the results of the previous sections to the case when H = P .

Let LN− be the opposite parabolic subgroup and n−(R) the Lie algebra of N−. By
the Bruhat decomposition we have the following open dense imbedding ι ∶ n−(R) ↪

G/P given by X ↦ exp(X)⋅o, where o = eP ∈ G/P . The pullback of the G-equivariant
vector bundle V∨2ρ → G/P via ι is trivialized into n−(R) × V ∨ → n−(R) and thus we
have a linear isomorphism:

(3.6) E ′[o](G/P,V∨2ρ)
∼
Ð→ E ′[0](n−(R), V ∨),
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through which we induce the action of the Lie algebra g on E ′[0](n−(R), V ∨) denoted

by dπ.
The Killing form of g identifies n∨−(R) ≃ n+(R) and thus the algebraic Fourier

transform (3.3) gives rise to a linear isomorphism:

Fc ⊗ id ∶ E ′[0](n−(R), V ∨)
∼
Ð→ Pol(n+)⊗ V

∨,

through which we induce the action of the Lie algebra g further on the right-hand
side, namely,

(3.7) d̂π(X) ∶= Fc ○ dπ(X) ○F−1
c .

By Remark 3.5 this action d̂π is given by the Fourier transform of operators:

d̂π(X) = d̂π(X).

In summary we have the following g-isomorphisms:

(3.8) Fc ∶ indg
p(V

∨)
(2.12)
∼
Ð→ E ′[o](G/P,V∨2ρ)

(3.6)
∼
Ð→E ′[0](n−(R), V ∨)

Fc⊗id
∼
Ð→ Pol(n+)⊗ V

∨.

Remark 3.7. (1) The map Fc does not depend on the choice of a real form G of
GC that appears in the two middle terms of (3.8). This fact will be used for actual
computations (see Section 6).

(2) The isomorphism Fc ∶ indg
p(V

∨)
∼
Ð→ Pol(n+) ⊗ V ∨ only depends on the infini-

tesimal action of P on V , and so does d̂π.

Let E be a hyperbolic element of g defining a parabolic subalgebra p(E) = l(E) +

n(E), namely, l(E) and n(E) are the sum of eigenspaces of ad(E) with zero and
positive eigenvalues, respectively.

Let G′ be a reductive subgroup of G and g′ = Lie(G′)⊗C.

Definition 3.8. A parabolic subalgebra p is said to be g′-compatible if there exists
a hyperbolic element E′ ∈ g′ such that p = p(E′).

If p = l + n is g′-compatible, then p′ ∶= p ∩ g′ becomes a parabolic subalgebra of g′

with the following Levi decomposition:

p′ = l′ + n′ ∶= (l ∩ g′) + (n ∩ g′),

The key tool for the F-method that we explain in Section 3.5 is the following assertion
that the two approaches (the canonical invariant pairing (2.11)) and the algebraic
Fourier transform (3.8)) give rise to the same differential operators:
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Theorem 3.9. Suppose p is a parabolic subalgebra g which is g′-compatible. Assume
further the nilradical n+ is abelian. Then the following diagram commutes:

HomC(W ∨, indg
p(V

∨))
Fc⊗id
∼
Ð→ Pol(n+)⊗HomC(V,W )

Symb⊗id
∼
←Ð Diffconst

(n−)⊗HomC(V,W )

∪ ↻ ∪

Homp′(W ∨, indg
p(V

∨))
∼
Ð→
DX→Y

DiffG′(VX ,WY ).

Proof. Take an arbitrary ϕ ∈ Homp′(W ∨, indg
p(V

∨)), which may be written as

ϕ =∑
j

uj ⊗ ψj ∈ U(n−)⊗HomC(V,W )

by the Poincaré–Birkhoff–Witt theorem U(g) ≃ U(n−)⊗U(p). Then it follows from
(2.12) and (3.8) that

Fcϕ =∑
j

Fc dL(uj)δ ⊗ ψj ∈ Pol(n+)⊗HomC(V,W ).

Since δ = F−1
c (1), we get

Fcϕ =∑
j

d̂L(uj)⊗ ψj.

On the other hand, by the construction (2.8),

DX→Y (ϕ) =∑
j

dR(uj)⊗ ψj.

Now we use the assumption that n+ or equivalently n− is abelian. Then, in the
coordinates n− ↪ G/P the operator dR(uj) for uj ∈ U(n−) defines a constant coeffi-
cient differential operator on n−. Thus DX→Y (ϕ) can be regarded as an element of
Diffconst

(n−)⊗HomC(V,W ).
Applying the symbol map we have

(Symb⊗ id) ○DX→Y (ϕ) =∑
j

Symb ○dR(uj)⊗ ψj =∑
j

d̂L(uj)⊗ ψj,

where the last equation follows from Lemma 3.6. Thus we have proved that

(Fc ⊗ id)ϕ = (Symb⊗ id) ○DX→Y(ϕ),

whence the Theorem. �

3.4. Fourier transform of principal series representations. As a preparation
of the F -method, we recall some standard facts on principal series representations of
complex reductive Lie groups. Let PC = LCN+ be a parabolic subgroup of a connected
complex reductive Lie group GC. Let λ be a holomorphic representation of LC on
V , and extend it to PC by letting the unipotent radical N+ act trivially. We form
a GC-equivariant holomorphic vector bundle V and V∗ ≡ V∨2ρ over the (generalized)
flag variety GC/PC associated to λ and µ ∶= λ∨ ⊗C2ρ, respectively. We consider the
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representation πµ of GC on C∞(GC/PC,V∨2ρ). We use the same notation πµ for the
representation of a given subgroup of GC on C∞(U,V∨2ρ∣U) if U is an invariant open
subset of GC/PC.

According to the Gelfand–Naimark decomposition g = n− + l + n+ of the complex
reductive Lie algebra g, we have a diffeomorphism

n− ×LC × n+ → GC, (X, `, Y )↦ (expX)`(expY ),

into an open dense subset Greg
C of GC. Let

p± ∶ G
reg
C Ð→ n±, po ∶ G

reg
C → LC,

be the projections characterized by the identity

exp(p−(g))po(g) exp(p+(g)) = g.

For a section f ∈ C∞(GC/PC,V∨2ρ), we define F ∈ C∞(n−, V ∨) by

F (X) ∶= f(expX), for X ∈ n−.

We use the same letter πµ to denote the ‘action’ of GC on C∞(n−, V ∨), more precisely,

(πµ(g)F ) (X) = µ(po(g
−1 expX))−1F (p−(g

−1 expX))

for g ∈ GC and X ∈ n− such that g−1 expX ∈ Greg
C . In particular, for g =m expZ, with

m ∈ LC, Z ∈ n−, we have

(3.9) (πµ(g)F ) (X) = µ(m)F (Ad(m)−1X −Z).

The goal of this subsection is to analyze the infinitesimal action dπµ(Y ) for X ∈ g

and its algebraic Fourier transform d̂πµ(Y ), in particular for Y ∈ n+. For this, we
introduce the following two maps:

α ∶ g × n− → l, (Y,X)↦
d

dt
∣
t=0

po (e
tY eX) ,(3.10)

β ∶ g × n− → n−, (Y,X)↦
d

dt
∣
t=0

p− (e
tY eX) .(3.11)

We may regard β(Y, ⋅ ) as a vector field on n− through the following identification
n− ∋X ↦ β(Y,X) ∈ n− ≃ TXn−.

Example 3.10. GC = GL(p+ q,C), LC = GL(p,C)×GL(q,C), and n− ≃M(p, q;C).
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We note that n− is realized as upper block matrices. Then for g−1 = (
a b
c d

) ∈ GC ,

Y = (
A B
C D

) ∈M(p + q;C) and X ∈M(p, q;C) we have

p−(g
−1) =bd−1,

po(g
−1) =(a − bd−1c, d) ∈ GL(p,C) ×GL(q,C),

α(Y,X) =(A −XC,CX +D) ∈ glp(C) + glq(C),

β(Y,X) =AX +B −XCX −XD.

With the notation (3.10) and (3.11), the infinitesimal action dπµ on C∞(n−, V ∨)
is given by:

(3.12) (dπµ(Y )F ) (X) = µ(α(Y,X))F (X) − (β(Y, ⋅ )F )(X) for Y ∈ g,

where, by a little abuse of notations µ stands for the infinitesimal action as well.
The right-hand side of (3.12) makes sense whenever µ is a representation of the

Lie algebra l without assuming that it lifts to a representation of LC, and thus we
get a Lie algebra homomorphism

(3.13) dπµ ∶ g→ D(n−)⊗End(V ∨).

If n+ is abelian, we get another Lie algebra homomorphism by the algebraic Fourier
transform on the Weyl algebra D(n−), see Definition 3.1:

(3.14) d̂πµ ∶ g→ D(n+)⊗End(V ∨).

We pin down a concrete formula, which follows immediately from the definition
(3.8):

Proposition 3.11. Let (λ,V ) be an l-module, and set µ ∶= λ∨ ⊗C2ρ. We extend λ∨

to a p-module by letting n+ act trivially, and define d̂πµ by (3.14). Then the algebraic
Fourier transform of generalized Verma modules (see (3.8))

Fc ∶ indg
p(V

∨)
∼
Ð→ Pol(n+)⊗ V

∨

intertwines the g-action on the generalized Verma module indg
p(V

∨) = U(g) ⊗U(p)
(λ∨, V ∨) with d̂πµ.

We begin by analyzing d̂πµ on the subalgebra l. Let L+ ∶ l → D(n+) be the
representation of l by vector fields on n+ given by

Y ↦ L+(Y )x ∶=
d

dt
∣
t=0

Ad(e−tY )x.
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Lemma 3.12. The following two representations of l on Pol(n+)⊗V ∨are isomorphic:

(3.15) d̂πµ∣l ≃ L
+ ⊗ id + id⊗ (µ − 2ρ)(Y ).

Proof. For Y ∈ l, X ∈ n− we have α(Y,X) = Y , and the formula (3.12) reduces, in
D(n−)⊗End(V ∨), to

dπµ(Y ) = id⊗ µ(Y ) − β(Y, ⋅ )⊗ id.

We apply Lemma 3.3 to the case where (σ,E) is the adjoint representation of l on
n−. With the notation therein we remark that Ψad = −β(Y, ⋅ ). Then, we get

d̂πµ(Y ) = id⊗ µ(Y ) +Ψad(Y )⊗ id +Trace ○ ad(Y )∣
n−

= id⊗ µ(Y ) +L+(Y )⊗ id − id⊗ 2ρ(Y )id.

Thus, Lemma follows. �

The differential operators d̂πµ(Y ) with Y ∈ n+ play a central role in the F-method.
We describe their structure by the following

Proposition 3.13. For every Y ∈ n+ the operator d̂πµ(Y ) is of degree −1 and more
precisely it is of the form

(3.16) ∑ajki ξ
i ∂2

∂ξj∂ξk
+∑ bj

∂

∂ξj
,

where ajki and bj are constants depending only on Y .

Proof. Since n+ is abelian, we can take a characteristic element H such that

Ad(etH)Y = etY, for anyY ∈ n+.

The equality (3.15) implies that

(π̂µ(`)h) (ξ) = λ
∨(`)h(Ad(`−1)ξ), for ξ ∈ n+, andµ ∶= λ∨ ⊗C2ρ.

In particular, we have π̂µ(etH) = a⟨λ,H⟩Ra, where a ∶= e−t and (Rah)(ξ) ∶= h(aξ).
Then the identity

π̂µ(e
tH)d̂πµ(Y )π̂µ(e

−tH) = etd̂πµ(Y ),

implies

Rad̂πµ(Y )R−1
a = a−1d̂πµ(Y ).

Hence d̂πµ(Y ) is of degree −1 for any Y ∈ n+. As dπµ(X) is a vector field there is no
derivatives of higher order in the expression (3.16). �
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3.5. Recipe of the F-method. Our goal is to find an explicit form of a G′-inter-
twining differential operator from VX to WY . Equivalently, what we call F-method

yields an explicit element in Homg′(indg′

p′(W
∨), indg

p(V
∨)) ≃ Homp′(W

∨, indg
p(V

∨)).
Our assumption here is that p = l + n+ is a g′-compatible parabolic subalgebra of g
with abelian nilradical n+. In particular, p′ ∶= p ∩ g′ is a parabolic subalgebra of g′

with a Levi decomposition p′ = l′ + n′+ where l′ ∶= l ∩ g′ and n′+ ∶= n+ ∩ g′.
The method we develop is as follows:

Step 0. Fix a finite dimensional representation (λ,V ) of p = l + n+. In case λ lifts
to a group PC, we form a GC-equivariant holomorphic vector bundle VX on
X = GC/PC.

Step 1. Consider a representation µ ∶= λ∨ ⊗ C2ρ of the Lie algebra p on V ∨
2ρ ∶= V

∨ ⊗

C2ρ(≃ V ∨), and compute (see (3.13) and (3.14)),

dπµ ∶ g → D(n−)⊗End(V ∨),

d̂πµ ∶ g → D(n+)⊗End(V ∨).

Step 2. Find a finite dimensional representation (ν,W ) of the Lie algebra p′ such that

Homp′(W
∨, indg

p(V
∨)) ≠ {0}.

in case W lifts to a group P ′
C we form a G′

C-equivariant holomorphic vector
bundle WY on Y = G′

C/P
′
C.

Step 3. Consider the system of partial differential equations for ψ ∈ Pol(n+)⊗Hom(V,W ):

(d̂πµ(A)⊗ idW + id⊗ν(A))ψ = 0 forA ∈ l′,(3.17)

(d̂πµ(C)⊗ idW + id⊗ν(C))ψ = 0 forC ∈ n′+.(3.18)

Notice that equations (3.17) are of first order, whereas the equations (3.18)
are of second order.

Step 4. Use invariant theory and reduce the system of differential equations (3.17)
and (3.18) to another system of differential equations on a lower dimensional
space S. Solve it.

Step 5. Let ψ be a polynomial solution to (3.17) and (3.18) obtained in Step 4.
Compute (Symb⊗ id)−1(ψ). This short-cut gives the desired equivariant
differential operator in the coordinates n− of X by Theorem 3.9. As a
byproduct, (Fc ⊗ id)−1(ψ) gives an explicit element in Homp′(W ∨, indg

p(V
∨))

(≃ Homg′(indg′

p′(W
∨), indg

p(V
∨))), which is sometimes referred to as a singular

vector.

For actual applications in this work we assume in Step 0 that dimV = 1 and that
X is a Hermitian symmetric space G/K so that VX is a holomorphic line bundle over
X, and in Step 2 that (ν,W ) is irreducible so that n′+ acts trivially on W . In this
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case the equation (3.18) is given as (d̂πµ(C)⊗ idW )ψ = 0, for which we shall simply

write as d̂πµ(C)ψ = 0.
In Step 2 we can use explicit branching laws (see Fact 4.4 and Theorem 4.3) to

find all such W when (g(R),g′(R)) is a reductive symmetric pair, n+ is abelian, V
is irreducible with a sufficiently positive parameter λ.

In Step 3, branching laws (Step 2) assures the existence of solutions to (3.17)
and (3.18). Conversely, these differential equations are useful in certain cases to
get a finer structure of branching laws, e.g., to find the Jordan–Hölder series of the
restriction for exceptional parameters λ (see [KØSS13]).

In Step 4, we can take S to be one-dimensional in the case where G/G′ is a
reductive symmetric space of split rank one.

3.6. F-method – supplement for vector valued cases. In order to deal with
the general case where the target WY is no longer a line bundle but a vector bundle,
i.e., where W is an arbitrary finite dimensional, irreducible l′-module, we may find
the condition (3.17) somewhat complicated in practice, even though it is a system
of differential equations of first order. In this section we give two useful lemmas to
simplify Step 3 in the recipe by reducing (3.17) to a simpler algebraic question on
polynomial rings, so that we can focus on the crucial part consisting of a system of
differential equations of second order (3.18). The idea here is to work first on the
highest weight variety of the fiber W , and will be used in Sections 6.2 and 6.3.

We fix a Borel subalgebra b(l′) of l′. Let χ ∶ b(l′) → C be a character. For a
completely reducible l′-module U , we set

Uχ ∶= {u ∈ U ∶ Zu = χ(Z)u for any Z ∈ b(l′)}.

Notice that dimUχ = 1 if and only if U is irreducible and with highest weight χ.
Let W be an irreducible representation of l′ as before, and χ the highest weight of

the contragredient representation W ∨. We fix w∨ ∈ (W ∨)χ a nonzero highest weight
vector. Then we have the following:

Lemma 3.14. For an element ψ ∈ Pol(n+) ⊗ Hom(V,W ), we set P ∶= ⟨ψ,w∨⟩ ∈

Pol(n+) ⊗ V ∨. Then ψ satisfies (3.17) and (3.18) if and only if the polynomial P
belongs to (Pol(n+)⊗ V ∨)χ and satisfies the equation (3.18).

Proof. Denote λ the action of l on V and ν the action of l′ on W . Owing to Lemma
3.12, we have the identity:

{ψ ∈ Pol(n+)⊗HomC(V,W ) ∶ ψ satisfies (3.17)} = (Pol(n+)⊗HomC(V,W ))l
′

,

where l′ acts on Pol(n+)⊗HomC(V,W ) by L+⊗ id+ id⊗(λ∨⊗ id+ id⊗ν) on the right-
hand side.
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For an l′-module U , we notice that the following contraction

U ⊗W ⊗Cw∨ → U, u⊗w ⊗w∨ ↦ ⟨w,w∨⟩u

is a b(l′)-homomorphism. Therefore, if U is completely reducible, the evaluation
map

U ⊗W → U, ψ ↦ ⟨ψ,w∨⟩,

induces a bijection between two subspaces:

(3.19) (U ⊗W )l
′ ∼
Ð→ Uχ.

Applying (3.19) to U ∶= Pol(n+)⊗HomC(V,W ), we get Lemma 3.14. �

Since any nonzero vector in W ∨ is cyclic, the next lemma explains how to recover
DX→Y (ϕ) from P given in Lemma 3.14.

We assume, for simplicity, that the l-module (λ,V ) lifts to LC, the l′-module
(ν,W ) lifts to L′C, and use the same letters to denote their liftings.

Lemma 3.15. For any ϕ ∈ Homp′(W ∨, indg
p(V

∨)), ` ∈ L′C and w∨ ∈W ∨,

(3.20) ⟨DX→Y (ϕ), ν
∨(`)w∨⟩ = (Ad(`)⊗ λ∨(`)) ⟨DX→Y (ϕ),w

∨⟩ .

Proof. We write ϕ = ∑j uj ⊗ ψj ∈ U(n−) ⊗ HomC(V,W ). Since ϕ is p′-invariant, we
have the identity:

∑
j

uj ⊗ ψj =∑
j

Ad(`)uj ⊗ ν(`) ○ ψj ○ λ(`
−1) for l ∈ L′C.

In turn, we have

⟨DX→Y (ϕ), ν
∨(`)w∨⟩ = ∑

j

dR(Ad(`)uj)⊗ ⟨ψj,w
∨⟩ ○ λ(`−1)

= ((Ad(`)⊗ λ∨(`)) ⟨DX→Y (ϕ),w
∨⟩ .

Thus, we have proved Lemma. �

We notice that the right-hand side of (3.20) can be computed by using the identity
in Diffconst

(n−)⊗ V ∨:

⟨DX→Y (ϕ),w
∨⟩ = (Symb−1

⊗ idV ∨)(P ),

once we know the polynomial P = ⟨ψ,w∨⟩ with ψ = (Fc ⊗ id)(ϕ) (see Theorem 3.9).
In Sections 6.2 and 6.3, we find explicit formulæ for vector-bundle valued equivariant
differential operators by solving equations for the polynomials P .

4. Branching laws and Hermitian symmetric spaces

From now we apply the general theory developed in the previous sections to the
case where (G,G′) is a reductive symmetric pair and where DX→Y intertwines holo-
morphic discrete series representations.
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4.1. Branching laws. Our subject is to construct an explicit covariant differential
operator from VX to WY . The existence, respectively the uniqueness (up to scaling)
of such operators are subject to the conditions

(4.1) dim DiffG′(VX ,WY ) ≥ 1, respectively ≤ 1.

We then encounter a question to find the geometric settings (i.e. the pair Y ⊂ X of
generalized flag varieties and two homogeneous vector bundles VX →X andWY → Y )
that satisfies (4.1). This is the main ingredient of Step 2 in the recipe of the F-
method, and thanks to Theorem 2.7, the existence and uniqueness are equivalent
to the following question of (abstract) branching laws: Given a p-module V , find
all finite dimensional p′-modules W such that dim Homp′(W ∨, indg

p(V
∨)) = 1, and

equivalently,

(4.2) dim Homg′(indg′

p′(W
∨), indg

p(V
∨)) = 1.

This subsection briefly reviews what is known on this question (see Fact 4.2).
Let g be a complex semisimple Lie algebra, and j a Cartan subalgebra of g. We

fix a positive root system ∆+ ≡ ∆+(g, j), write ρ for half the sum of positive roots,
α∨ for the coroot for α ∈ ∆, and gα for the root space. Define a Borel subalgebra
b = j + n with the nilradical n ∶=⊕α∈∆+ gα.

The BGG category O is defined as the full subcategory of g-modules whose objects
are finitely generated, j-semisimple and locally n-finite [BGG76].

As in the previous section, fix a standard parabolic subalgebra p with Levi decom-
position p = l+n+ such that the Levi factor l contains j. We set ∆+(l) ∶= ∆+ ∩∆(l, j).
The parabolic BGG category Op is defined as the full subcategory of O whose objects
are locally l-finite.

The set of λ ∈ j∗ whose restrictions to j ∩ [l, l] are dominant integral is denoted by

Λ+(l) ∶= {λ ∈ j∗ ∶ ⟨λ,α∨⟩ ∈ N for any α ∈ ∆+(l)}.

We write Vλ for the finite dimensional simple l-module with highest weight λ, regard
it as a p-module by letting n+ act trivially, and consider the generalized Verma
module

indg
p(λ) ≡ indg

p(Vλ) ∶= U(g)⊗U(p) Vλ.

Then indg
p(λ) ∈ O

p and any simple object in Op is the quotient of some generalized
Verma module. If

(4.3) ⟨λ,α∨⟩ = 0 for all α ∈ ∆(l),

then Vλ is one-dimensional, to be denoted also by Cλ. In this case we say indg
p(λ) is

of scalar type.
Let τ ∈ Aut(g) be an involutive automorphism of the Lie algebra g. We write

g±τ ∶= {v ∈ g ∶ τv = ±v}
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for the ±1 eigenspaces of τ , respectively. We say that (g,g′) is a symmetric pair if
g′ = gτ for some τ .

For a general choice of τ and p, the space considered in (4.2) may be reduced to
zero for all p′-modules W . Suppose V ≡ Vλ with λ ∈ Λ+(l) generic. Then a necessary
and sufficient condition for the existence of W such that the left-hand side of (4.2) is
nonzero is given by the geometric requirement on the generalized flag variety GC/PC,
namely, the set Gτ

CPC is closed in GC, see [K12, Proposition 3.8].
Consider now the case where the nilradical n+ of p is abelian. Then, the following

result holds :

Fact 4.1 ([K12]). If the nilradical n+ of p is abelian, then for any symmetric pair
(g,gτ) the restriction of a generalized Verma module of scalar type indg

p(−λ)∣ι(gτ ) is
multiplicity-free for any embedding ι ∶ gτ → g such that ι(Gτ

C)PC is closed in GC and
for any sufficiently positive λ.

A combinatorial description of the branching law is given as follows. Suppose
that p is gτ -compatible (see Definition 3.8). Then the involution τ stabilizes l and
n+, respectively, the nilradical n+ decomposes into a direct sum of eigenspaces n+ =
nτ++n

−τ
+ and Gτ

CPC is closed in GC. Fix a Cartan subalgebra j of l such that jτ ∶= j∩gτ

is a Cartan subalgebra of lτ .
We define θ ∈ End(g) by θ∣l = id and θ∣n++n− = − id. Then θ is an involution

commuting with τ . Moreover it is an automorphism if n+ is abelian. The reductive
subalgebra gτθ = lτ + n−τ− + n−τ+ decomposes into simple or abelian ideals ⊕i g

τθ
i , and

we write the decomposition of n−τ− as n−τ− = ⊕i n
−τ
−,i correspondingly. Each n−τ−,i is a

jτ -module, and we denote by ∆(n−τ−,i, j
τ) the set of weights of n−τ−,i with respect to jτ .

The roots α and β are said to be strongly orthogonal if neither α + β nor α − β is a

root. We take a maximal set of strongly orthogonal roots {ν
(i)
1 ,⋯, ν

(i)
ki

} in ∆(n−τ−,i, j
τ)

inductively as follows:

1) ν
(i)
1 is the highest root of ∆(n−τ−,i, j

τ).

2) ν
(i)
j+1 is the highest root among the elements in ∆(n−τ−,i, j

τ) that are strongly

orthogonal to ν
(i)
1 ,⋯, ν

(i)
j (1 ≤ j ≤ ki − 1).

We define the following subset of Nk (k = ∑ki) by

(4.4) A+ ∶=∏
i

Ai, Ai ∶= {(a
(i)
j )1≤j≤ki ∈ Nki ∶ a

(i)
1 ≥ ⋯ ≥ a

(i)
ki

≥ 0}.

Introduce the following positivity condition:

(4.5) ⟨λ − ρg, α⟩ > 0 for any α ∈ ∆(n+, j).

Fact 4.2 ([K08]). Suppose p is gτ -compatible, and λ satisfies (4.3) and (4.5). Then
the generalized Verma module indg

p(−λ) decomposes into a multiplicity-free direct sum
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of irreducible gτ -modules:

(4.6) indg
p(−λ)∣gτ ≃ ⊕

(a(i)j )∈A+
indgτ

pτ (−λ∣jτ −∑
i

ki

∑
j=1

a
(i)
j ν

(i)
j ).

In particular, for a simple pτ -module W (namely, a simple lτ -module with trivial
action of nτ),

dim Homgτ (indgτ

pτ (W
∨), indg

p(C−λ)) = 1

if and only if the highest weight of the lτ -module W is of the form λ∣jτ +∑i∑
ki
j=1 a

(i)
j ν

(i)
j

for some (a
(i)
j ) ∈ A+.

In the latter part of the paper we shall construct a family of equivariant differential
operators for all symmetric pairs (g,gτ) with k = 1 (in particular, ∆(n−τ−,i, j

τ) is empty
for all but one i).

4.2. Local versus non-local intertwining operators for branching laws. Dis-
crete branching laws for the restriction of a unitary representation of G to G′ assure
that there exist continuous G′-intertwining operators from the representation of G
to irreducible summands of G′. In general such operators are integro-differential
operators, e.g., [KS13]. In this section, however, we formulate and prove a quite
remarkable phenomenon that any continuous G′-intertwining operators between two
representation spaces consisting of holomorphic sections is given simply by differen-
tial operators in certain settings, see Theorem 4.3.

Let G be a simple, connected, simply connected Lie group and K a maximal
compact subgroup of G. We write c(k) for the center c(k) of the complexified
Lie algebra k ∶= Lie(K) ⊗R C. Assume c(k) is nonzero. Then c(k) is actually one-
dimensional, and there exists a characteristic element Z ∈ c(k) such that the eigen-
values of ad(Z) ∈ End(g) is 0 or ±1. We decompose

g = l + n+ + n−

into the eigenspaces of ad(Z) with eigenvalues 0, 1, and −1, respectively. We note
that l = k in this setting. Then p ∶= l + n+ is a parabolic subalgebra with abelian
nilradical n+, and the homogeneous G/K becomes a Hermitian symmetric space, for
which the complex structure is induced from the Borel embedding

G/K ⊂ GC/KC expn+ = GC/PC.

Furthermore, let τ be an involutive automorphism of G. Without loss of generality
we may and do assume that τ commutes with the Cartan involution θ, and therefore
induces a diffeomorphism of the symmetric space G/K. Thus, the subsymmetric
space Gτ/Kτ ⊂ G/K is fixed pointwisely by τ . We use the same letters τ and
θ to denote the complex linear extensions of their differentials. Since τθ = θτ , the
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involution τ leaves the center c(k) of k invariant, and therefore one has either τ ∣c(k) = id
or τ ∣c(k) = − id because dim c(k) = 1. We say τ is of holomorphic type if τ ∣c(k) = id. In
this case, the roles of θ and τ are the same as in the previous section, and we have:

(a) the involution τ acts holomorphically on the Hermitian symmetric spaceG/K;
(b) the embedding Gτ/Kτ ↪ G/K is holomorphic;
(c) p is gτ -compatible.

Here the complex structure on Gτ/Kτ is induced from the open embedding in the
complex flag variety Gτ

C/P
τ
C :

Gτ/Kτ ↪ G/K

open ⋂ ⋂ open

Y = Gτ
C/P

τ
C ↪ GC/PC =X.

Notice that in this setting the complexified Lie algebra of Kτ coincides with the
Levi part lτ of the parabolic subalgebra pτ . Given a finite dimensional representation
of Kτ , we endow the vector space O(Gτ/Kτ ,W) of global sections of the homoge-
neous vector bundle W → Gτ/Kτ with the Fréchet topology of uniform convergence
on compact sets.

Theorem 4.3. Suppose the line bundle parameter λ satisfies (4.5).

(1) Any continuous Gτ -homomorphism

(4.7) O(G/K,Lλ)Ð→ O(Gτ/Kτ ,W)

is given by a differential operator.
(2) Suppose W is irreducible as a Kτ -module. There exists a non-trivial contin-

uous Gτ -homomorphism (4.7) if and only if the Kτ -module W is of the form
W

a
λ for some a ∈ A+ (see (4.4)).
In this case, the homomorphism is given, up to a scalar, by the restriction

to open subsets Gτ/Kτ ⊂ nτ− and G/K ⊂ n− of the differential operator DX→Y
constructed in Theorem 3.9.

We denote by H2(M,V) the Hilbert space of square integrable holomorphic sec-
tions of the Hermitian vector bundle V over a Hermitian manifold M . If (4.5) holds,
then H2(G/K,Lλ) ≠ {0}, and G acts unitarily and irreducibly on it.

In order to prove Theorem 4.3, we recall the corresponding branching laws in the
category of unitary representations, which are the dual of the formulæ in Fact 4.2. In
general Gτ is noncompact, and we need to consider infinite dimensional irreducible
representations of Gτ when we consider the branching law G ↓ Gτ .

Given a = (a
(i)
j ) ∈ A+ (⊂ Nk), we write W

a
λ for the Gτ -equivariant holomorphic

vector bundle over Gτ/Kτ associated to the irreducible representation W
a
λ of lτ with

highest weight λ∣jτ +∑i∑
ki
j=1 a

(i)
j ν

(i)
j .
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Fact 4.4 ([K08]). If the positivity condition (4.5) is satisfied, then H2(Gτ/Kτ ,W
a
λ)

is non-zero and Gτ acts on it as an irreducible unitary representation of Gτ for any
a ∈ A+. Moreover, the branching law for the restriction G ↓ Gτ is given by

(4.8) H2(G/K,Lλ) ≃ ∑
⊕

a∈A+
H2(Gτ/Kτ ,W

a
λ) (Hilbert direct sum).

Proof of Theorem 4.3. For continuous representations σ,σ′ ofGτ , we write HomGτ (σ, σ′)
for the space of continuous Gτ -homomorphisms.

Suppose σ is an arbitrary irreducible unitary representation of Gτ . Then for any
irreducible Kτ -module W , we have

(4.9) dim HomGτ (σ,O(Gτ/Kτ ,W)) ≤ 1.

Moreover, suppose W1 and W2 are two irreducible Kτ -modules. Then
(4.10)

dim HomGτ (σ,O(Gτ/Kτ ,Wi)) ≠ 0 for i = 1,2 ⇒W1 ≃W2 as Kτ -modules.

The assertion (4.10) is an immediate consequence of the propagation theorem for
multiplicity-freeness property under visible actions [K13].

In order to prove the first statement, it is sufficient to assume that W is asso-
ciated to an irreducible Kτ -module W . Then it follows from (4.9), (4.10) and the
multiplicity-free branching law (4.6) that the space HomGτ (H

2 (G/K,Lλ) ,O(Gτ/Kτ ,W))

is at most one-dimensional, and is nonzero if and only if there exists a ∈ A+ such that
W ≃W

a
λ .

Conversely, suppose that W ≃W
a
λ . Then, by the branching law for the generalized

Verma modules (see Fact 4.2), we have

Homgτ (indgτ

pτ (W
∨), indg

p(C∨
λ)) ≠ {0}.

Taking a non-zero element ϕ, we get a Gτ -equivariant holomorphic differential op-
erator DX→Y (ϕ) ∈ Diffconst

(n−) ⊗ HomC(Cλ,W ) according to Theorem 3.9. The
restriction of DX→Y (ϕ) gives an element of HomGτ (O (G/K,Lλ) ,O(Gτ/Kτ ,W

a
λ)).

Since this space is at most one-dimensional, both statements of the theorem are now
proved. �

In the sequel, by a little abuse of notation, we shall write X = G/K and Y = Gτ/Kτ

and denote DX→Y the intertwining differential operator given in Theorem 4.3.

4.3. Split rank one reductive symmetric pairs of holomorphic type. The
homogeneous space G/Gτ is endowed with a G-invariant pseudo-Riemannian struc-
ture g induced from the Killing form, and becomes an affine symmetric space with
respect to the Levi-Civita connection.
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g(R) g(R)τ g(R)τθ

1 su(n,1)⊕ su(n,1) su(n,1) su(n,1)
2 sp(n + 1,R) sp(n,R)⊕ sp(1,R) u(1, n)
3 so(n,2) so(n − 1,2) so(n − 1)⊕ so(1,2)
4 su(p, q) s(u(1)⊕ u(p − 1, q)) s(u(1, q)⊕ u(p − 1))
5 so(2,2n) u(1, n) u(1, n)
6 so∗(2n) so(2)⊕ so∗(2n − 2) u(1, n − 1)

Table 4.1. Split rank one irreducible symmetric pairs of holomorphic type

Definition 4.5. Geometrically, the split rank of the semisimple symmetric space
G/Gτ is the dimension of a maximal flat, totally geodesic submanifoldB inG/Gτ such
that the restriction of g to B is positive definite. Algebraically, it is the dimension
of the maximal abelian subspace of g(R)−τ,−θ ∶= {Y ∈ g(R) ∶ τY = θY = −Y }. We
denote it by rankRG/Gτ .

Assume from now that the split rank of the semisimple symmetric space G/Gτ is
equal to 1, or equivalently, the real rank of g(R)τθ is one. Table 4.1 above gives the
infinitesimal classification of split rank one irreducible semisimple symmetric pairs
(g(R),g(R)τ) of holomorphic type.

The remaining part of this work is devoted to the explicit description of Gτ -
intertwining operators between H2(X,Lλ) and its irreducible components given in
Theorem 4.3. The next section treats all the cases where such operators are given by
normal derivatives. In Section 6 we analyze all the split rank one symmetric pairs of
holomorphic type for which those operators have more intricate structure.

5. Normal derivatives versus intertwining operators

Suppose we are in the setting of Section 4.2, namely, Gτ/Kτ is a subsymmetric
space of the Hermitian symmetric space G/K. Then we can consider the Taylor
expansion of any holomorphic function (section) on G/K along the normal direction
by using the Borel embedding. This idea was used earlier by Martens, Jakobsen and
Vergne [M75, JV79] for filtered modules to find abstract branching laws.

However, it should be noted that normal derivatives do not always give rise to
intertwining operators. In this section we clarify the reason and give a classification
of all pairs (g(R),g(R)τ ) of split rank one for which it happens.

5.1. Normal derivatives and the Borel embedding. Suppose E = E+ +E− is a
direct sum of vector spaces. Then every u ∈ E− defines a vector field on E

f(v)↦
d

dt
∣
t=0

f(v + tu),
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which is a normal derivative along the normal direction E−.
More generally, we shall use vector-bundle valued operators T̃ ∶ C∞(E,V ) →

C∞(E+,W ) given by normal derivatives. For this, we begin with the following set-
ting. Let S(E−) be the space of symmetric tensors on E−, and suppose that W ∨ is a
subspace of S(E−)⊗V ∨. Let T denote the inclusion map T ∶W ∨ ↪ S(E−)⊗V ∨. Then
it determines an element, denoted by the same letter T , in S(E−) ⊗ HomC(V,W ),
which can be viewed as an element of Diffconst

(E)⊗HomC(V,W ) via the composition

S(E−) ⊂ S(E)
∼
Ð→ Diffconst

(E).

In the coordinates x = ∑
q
j=1 xjej ∈ E−, where {e1, . . . , eq} is a basis of E−, it is

written as

T = ∑
α∈Nq

eα ⊗ Tα for some Tα ∈ HomC(V,W ).

The subspace E+ is given by the condition x = 0 in E = {(x, y) ∶ x ∈ E−, y ∈ E+}.

Then the differential operator T̃ ∶ C∞(E,V ) Ð→ C∞(E+,W ), f(x, y) ↦ (T̃ f)(y) is
of the form

(5.1) (T̃ f) (y) = ∑
α∈Nq

Tα (
∂ ∣α∣f(x, y)

∂xα
∣
x=0

) ,

which is a normal derivative along the direction E−.
We apply this construction to the subsymmetric space Gτ/Kτ in G/K. As in

Section 4, let VX be a homogeneous vector bundle over X = G/K associated to an
irreducible representation V of K. Similarly, letWY be a homogeneous vector bundle
over the subsymmetric space Y = Gτ/Kτ associated with an irreducible representa-
tion W of Kτ .

If there is a homomorphism T ∶W ∨ Ð→ S(n−τ− )⊗V ∨ then it defines a holomorphic

normal derivative T̃ with respect to n− = nτ− + n−τ− , which induces a holomorphic
differential operator between two vector bundles by

O(n−, V )
T̃ //

restriction
��

O(nτ−,W )

restriction
��

O(G/K,VX) // O(Gτ/Kτ ,WY ).

(5.2)

We shall denote it by the same letter T̃ , and call it a normal derivative along the
direction n−τ− .

5.2. When are normal derivatives intertwining operators? Let dim V = 1,
and we write as before Lλ for the homogeneous line bundle over X = G/K associated
to the character Cλ of K.
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Theorem 5.1. Suppose (g(R),g(R)τ) is a split rank one irreducible symmetric pair
of holomorphic type. Then, the following three conditions on the pair (g(R),g(R)τ)

are equivalent:

(i) For any λ satisfying (4.5) and for any irreducible Kτ -module W , all contin-
uous Gτ -homomorphisms

O(X,Lλ)Ð→ O(Y,W),

are given by normal derivatives along the direction n−τ− .
(ii) For some λ satisfying (4.5) and for some irreducible Kτ -module W , there

exists a non-trivial Gτ -intertwining operator

O(X,Lλ)Ð→ O(Y,W)

which is given by normal derivatives of positive order.
(iii) The symmetric pair (g(R),g(R)τ) is isomorphic to one of (su(p, q), s(u(1)⊕

u(p − 1, q))), (so(2,2n),u(1, n)) or (so∗(2n), so(2)⊕ so∗(2n − 2)).

Notice that the geometric nature of embeddings Y ↪X mentioned in the condition
(iii) corresponds to the following inclusions of flag varieties:

Grp−1(Cp+q) ↪ Grp(Cp+q);

PnC ↪ Q2nC;

IGrn−1(C2n−2) ↪ IGrn(C2n),

where Grp(Ck) ∶= {V ⊂ Ck ∶ dimV = p} is the complex Grassmanian, QmC ∶= {z ∈
Pm+1C ∶ z2

0+⋯+z
2
m+1 = 0} is the complex quadric and IGrn(C2n) ∶= {V ⊂ Ck ∶ dimV =

n, Q∣
V
≡ 0} is the isotropic Grassmanian for C2n equipped with a quadratic form Q.

5.3. Outline of the proof of Theorem 5.1. The implication (i)⇒(ii) is obvious.
On the other hand, for split rank one symmetric spaces there are three other cases
(i.e., (1), (2) and (3) in Table 4.1) where the Gτ -intertwining operators are not given
by normal derivatives. In Section 6 we construct them explicitly. This will conclude
the implication (ii)⇒(iii). For the rest of this section we shall give a proof for the
implication (iii)⇒(i).

Consider a homomorphism: T ∶ W ∨ Ð→ S(n−τ− ) ⊗ V ∨. We regard S(n−τ− ) ⊗ V ∨ as

a subspace of Pol(n+)⊗ V ∨ on which the Lie algebra g acts by d̂πµ, see (3.14). If T

is a Kτ -homomorphism, the differential operator T̃ ∶ O(G/K,VX)→ O(Gτ/Kτ ,WY )

is Kτ -equivariant. The following statement gives a sufficient condition for T̃ to be
Gτ -equivariant.

Proposition 5.2. The normal derivative T̃ induces a Gτ -equivariant differential
operator from VX to WY if T is a Kτ -homomorphism and T (W ∨) is contained in

(Pol(n+)⊗ V ∨)
d̂πµ(nτ+).
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Proof. The proof is a direct consequence of the F-method as follows. First of all, we
note that D ∈ Diffconst

(n−) ⊗ HomC(V,W ) is a normal derivative along the normal
direction n−τ− if and only if (Symb⊗ id)(D) ∈ Pol(n−τ+ )⊗Hom(V,W ) in the diagram
of Theorem 3.9. Furthermore, by Proposition 3.11, Fc⊗ idW induces an isomorphism
of two subspaces:

(5.3) Hompτ (W
∨, indg

p(V
∨)) ≃ (Pol(n+)⊗Hom(V,W ))

d̂πµ(pτ ) .

As lτ is the complexification of the Lie algebra of Kτ , T ∈ HomKτ (W ∨, S(n−τ− )⊗V ∨)

defines an element in (Pol(n+)⊗Hom(V,W ))
d̂πµ(lτ ), and therefore the invariance

with respect to pτ = lτ + nτ+ reduces to that with respect to nτ+.
Hence, by Theorem 3.9, the normal derivative T̃ coincides with the Gτ -equivariant

differential operator DX→Y (ϕT ), where ϕT is the preimage of T in (5.3). �

Lemma 5.3. Suppose (g(R),g(R)τ) is a split rank one irreducible symmetric pair
of holomorphic type and λ satisfying (4.5). For a ∈ N we define an lτ -module:

(5.4) W a
λ ∶= S

a(n−τ+ )⊗Cλ.

(1) The module W a
λ is irreducible for any a ∈ N.

(2) If for an irreducible Kτ -module W there exists a nonzero continuous Gτ -
homomorphism O(G/K,Lλ)→ O(Gτ/Kτ ,W), then the module W is isomor-
phic to W a

λ for some a ∈ N.
(3) Assume that

(5.5) Homlτ (S
a(n−τ− ), Sa1(nτ−)⊗ S

a−a1(n−τ− )) = {0} for any 1 ≤ a1 ≤ a.

Then, the normal derivative T̃ corresponding to the natural inclusion T ∶

(W a
λ )

∨ → S(n−τ− )⊗ (Cλ)
∨ is a Gτ -equivariant differential operator.

Proof. If rankRG/Gτ = 1, then the noncompact part of g(R)τθ is isomorphic to
su(1, n) for some n. Thus the first statement follows from the observation that the
action of lτ on n−τ+ corresponds to the natural action of gln(C) on Cn.

The second statement is due to Theorem 4.3 for k = rankRG/Gτ = 1.
We have the following natural inclusions A ⊂ B ⊃ C, where

A ∶= Pola(n−τ+ )⊗C∨
λ, B ∶= Pola(n+)⊗C∨

λ, C ∶= (Pola(n+)⊗C∨
λ)
d̂π(nτ

+
).

Therefore

Homlτ ((W
a
λ )

∨,A)↪ Homlτ ((W
a
λ )

∨,B)↩ Homlτ ((W
a
λ )

∨,C).

The left-hand side is an isomorphism because of the assumption (5.5). Moreover,
sinceA is isomorphic to the irreducible lτ -moduleW a

λ , the first term is one-dimensional
by Schur’s lemma. The last one is also one-dimensional according to the multiplicity-
one decomposition given in Fact 4.2. Therefore, all three terms coincide.
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Hence the canonical isomorphism T ∶ (W a
λ )

∨ → S(n−τ− ) ⊗ (Cλ)
∨ satisfies the as-

sumption of Proposition 5.2. Thus Lemma follows. �

Remark 5.4. The highest weight vectors of the generalized Verma module indg
p(C∨

λ)

with respect to pτ have a significantly simple form if the condition (5.5) is satisfied.
In fact, by Poincaré–Birkhoff–Witt theorem indg

p(C∨
λ) is isomorphic, as an l-module,

to S(n−)⊗C∨
λ, when n− is abelian. Under the assumption (5.5) we thus have

(indg
p(C∨

λ))
nτ
+

≃
∞
⊕
a=0

Sa(n−τ− )⊗C∨
λ.

This formula is an algebraic explanation of the fact that Gτ -equivariant operators
are given by normal derivatives in this setting.

In order to conclude the proof of Theorem 5.1 we have to show that in all cases
mentioned in (iii) the condition (5.5) is fulfilled. It will be done in the next subsection.

5.4. An application of the classical branching rules. In what follows, we shall
verify the condition (5.5) for the last three cases (4), (5) and (6) in Table 4.1 by
using some classical branching rules of irreducible representations of glm(C).

Denote by F (glm(C), µ) the finite dimensional irreducible glm(C)-module with
highest weight µ. For example, the natural representation of the Lie algebra glm(C)

on Cm corresponds to F (glm(C), (1,0, . . . ,0)) and its contragredient representation
on (Cm)∨ to F (glm(C), (0,0, . . . ,0,−1)), while the action of glm(C) on the space
of symmetric matrices Sym(m,C) ≃ S2(Cm) given by C ↦ XC tX for X ∈ glm(C)

and C ∈ Sym(m,C) corresponds to F (glm(C), (2,0, . . . ,0)). More generally, the
action of glm(C) on the space of i-th symmetric tensors is no longer irreducible and
decomposes as follows:

Si (Sym(m,C)) ≃ Si (S2(Cm))

≃ ⊕
i1≥...≥im≥0
i1+⋅⋅⋅+im=i

F (glm(C), (2i1,2i2, . . . ,2im)).(5.6)

In turn, the classical Pieri’s rule implies the following decomposition for the tensor
product of such modules:

Si (S2(Cm))⊗ Sk (Cm) ≃ ⊕
i1≥...≥im≥0,
i1+⋅⋅⋅+im=i

⊕
`1≥2i1≥...≥`m≥2im,
∑mr=1(`r−2ir)=k

F (glm(C), (`1, . . . , `m)).

Remark 5.5. The summand of the form F (glm(C), (`,0, . . . ,0)) occurs in the above
formula if and only if i2 = ⋯ = im = 0, hence i1 = i and `− 2i = k. This remark will be
used in Section 6.2.
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Example 5.6. Let G = U(p, q), Gτ = U(1) × U(p − 1, q) and lτ = kτ(R) ⊗R C ≃

gl1(C) + glp−1(C) + glq(C). Then, the decomposition n− ≡ nτ− ⊕ n−τ− as an lτ -module
amounts to

(Cp)∨ ⊠Cq ≃ (C ⊠ (Cp−1)∨ ⊠Cq)⊕ (C−1 ⊠C ⊠Cq).

Where ⊠ stands for the outer tensor product representation. Since the lτ -module
Sa(n−τ− ) is isomorphic to the irreducible module C−a ⊠C ⊠ Sa(Cq), the space

⊕
a1+a2=a

Homlτ (S
a(n−τ− ),C−a2 ⊠ S

a1(Cp−1)∨ ⊠ (Sa1(Cq)⊗ Sa2(Cq)))

is not reduced to zero if and only if a1 = 0 and a2 = a. Therefore, the condition (5.5)
is satisfied.

Example 5.7. Let G = SO(2,2n), Gτ = U(1, n) and lτ = gl1(C) + gln(C). Then the
decomposition n− ≡ nτ− ⊕ n−τ− as an lτ -module amounts to

C−1 ⊠C2n ≃ (C−1 ⊠Cn)⊕ (C−1 ⊠ (Cn)∨).

Thus, lτ -module Sa(n−τ− ) is isomorphic to the irreducible module C−a ⊠ (Sa(Cn))
∨
,

whereas we have an isomorphism of lτ -modules:

Sa1(nτ−)⊗ S
a2(n−τ− ) ≃ C−a1−a2 ⊠ (Sa1(Cn) ⊠ Sa2(Cn)).

Thus, the space Homlτ (Sa(n−τ− ), Sa1(nτ−)⊗S
a2(n−τ− )) is not reduced to zero if and only

if a1 = 0 and a2 = a. Therefore, the condition (5.5) is satisfied.

Example 5.8. Let G = SO∗(2n), Gτ = SO∗(2n − 2) × SO(2) and lτ = gln−1(C) +

gl1(C). In this case, the decomposition n− ≡ nτ− ⊕ n−τ− as an lτ -module amounts to

(Alt(Cn−1)∨ ⊠ 1)⊕ ((Cn−1)∨ ⊠C−1).

Thus the lτ -modules Sa(n−τ− ) and Sa1(nτ−)⊗ S
a2(n−τ− ) are given as

Sa(n−τ− ) ≃Sa((Cn−1)∨) ⊠C−a,

Sa1(nτ−)⊗ S
a2(n−τ− ) ≃(Sa1(Alt(Cn−1)∨)⊗ Sa2((Cn−1)∨)) ⊠C−a2 .

Hence the compatibility condition for the action of gl1(C) ⊂ lτ implies (5.5).

Thus we have verified the assumption (5.5) for all the three symmetric pairs
(g(R),g(R)τ) and have proved the implication (iii)⇒ (i) in Theorem 5.1 by Lemma
5.3 (3).
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6. Partial differential operators built on Jacobi polynomials

In this section we apply the F-method to the remaining cases of split rank one
symmetric pairs of holomorphic type (see Table 4.1, (1), (2) and (3)). In all three
cases, the families of equivariant differential operators we discover are built on special
values of Jacobi polynomials in one variable.

We shall give a detailed account of each step of the F-method according to the
recipe (see Section 3.5) in the first case. For the remaining two cases, we skip similar
computations and highlight new features, e.g. a trick that allows to describe vector-
bundle valued differential operators.

6.1. Case of SO(n,2) ↓ SO(n−1,2). Let n ≥ 2 and Q̃ be a non-degenerate quadratic

form on Cn+2 defined by Q̃(w) = w2
0 + ⋯ + w2

n − w
2
n+1. Then the special orthogonal

group GC ∶= SO(Cn+2, Q̃) acts transitively on the isotropic cone

ΞC ∶= {w ∈ Cn+2 ∖ {0} ∶ Q̃(w) = 0},

and also on the complex quadric

QnC ∶= ΞC/C∗ ⊂ Pn+1C,

which is a flag variety containing Cn as an open dense subset (open Bruhat cell):

(6.1) Cn → QnC, z ↦ [1 −
∣z∣2

4
∶ z ∶ 1 +

∣z∣2

4
] .

We write p ∶ ΞC → QnC for the natural projection.
The quadratic form Q̃ is of signature (n,2) when restricted to the real vector space

ER ∶=
√
−1e0+∑

n+1
j=1 Rej, where {ej ∶ 0 ≤ j ≤ n+1} is the standard basis in Cn+2. Thus

we have an isomorphism:

SO(Cn+2, Q̃) ∩GLR(ER) ≃ SO(n,2).

Let G be its identity component SOo(n,2). Then the G-orbit through the origin in
the open Bruhat cell Cn (⊂ QnC) is still contained in Cn, and is identified with the
Lie ball X ∶= {z ∈ Cn ∶ ∣ztz∣2 + 1 − 2ztz > 0, ∣ztz∣ < 1}.

Let τ be the involution of G acting by conjugation by diag(1, . . . ,1,−1,1). It
leaves G invariant, and we denote by G′ the identity component of Gτ . The group
G′ = SOo(n − 1,2) acts on the subsymmetric domain

Y ∶=X ∩ {zn = 0}.

Note that X ≃ SOo(n,2)/SO(n) × SO(2) is the bounded Hermitian symmetric do-
main of type IV in n− ≃ Cn and Y ≃ SOo(n−1,2)/SO(n−1)×SO(2) a subsymmetric
space of complex codimension one.
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We construct explicit holomorphic differential operators that give the projectors
onto irreducible summands in the branching laws with respect to the symmetric pair
(SOo(n,2), SOo(n − 1,2)).

By using the Gegenbauer polynomial Cα
` (x) (see Appendix A.2), we set

(6.2) Cα
` (x, y) ∶= x

`
2Cα

` (
y

√
x
) =

[ `
2
]

∑
k=0

(−1)k
Γ(` − k + α)

Γ(α)Γ(k + 1)Γ(` − 2k + 1)
(2y)`−2kxk.

For instance, Cα
0 (x, y) = 1, Cα

1 (x, y) = 2αy, Cα
2 (x, y) = 2α(α + 1)y2 − αx, etc. Notice

that, Cα
` (x

2, y) is a homogeneous polynomial of x and y of degree `.

Theorem 6.1. Suppose λ ∈ Z satisfies λ > n − 1, and a ∈ N. Then, any Gτ -
intertwining operator from O(G/K,Lλ) to O(Gτ/Kτ ,Lλ+a) is given, up to a scalar,
by the differential operator of degree a:

(6.3) DX→Y,a ∶= C
λ−n−1

2
a (−∆Cn−1 ,

∂

∂zn
) .

Remark 6.2.

(1) The same statement remains true for intertwining operators between the uni-
tary representations H2(G/K,Lλ) and H2(Gτ/Kτ ,Lλ+a).

(2) For every λ ∈ C and a ∈ N, DX→Y,a given by the same formula, is a G̃τ -
equivariant holomorphic differential operator between two homogeneous bun-
dles Lλ → G/K and Lλ+a → Gτ/Kτ .

Remark 6.3. This result is a ‘holomorphic version’ of the conformally covariant op-
erator considered by A. Juhl [J09] in the setting Sn ↪ Sn+1, with equivariant actions
of the pair of groups SO(n + 1,1) ⊂ SO(n + 2,1), respectively. For the case n = 1 we
recover the celebrated Rankin–Cohen brackets.

In order to prove Theorem 6.1 we apply the F-method (see Section 3.5). We set

Ho ∶= E0,n+1 +En+1,0, and a = CHo. Then, the Lie algebra g = so(Cn+2, Q̃) is a sum

g = n− + (a +m) + n+

of −1,0, and 1 eigenspaces of ad(Ho), respectively. The stabilizer of the base point
wo = [1 ∶ 0 ∶ ⋯ ∶ 0 ∶ 1] ∈ QnC is a parabolic subgroup PC with Langlands decomposition
PC =MCACNC, where AC = expa and NC = expn+.

As Step 1 of the F-method we define a standard basis of n+ ≃ Cn by

Cj ∶= Ej,0 −Ej,n+1 −E0,j −En+1,j (1 ≤ j ≤ n),

and similarly a standard basis of n− ≃ Cn by

Cj ∶= Ej,0 +Ej,n+1 −E0,j +En+1,j (1 ≤ j ≤ n),
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Let Z = 1
2 ∑

n
i=1 ziCi ∈ n− and Y = ∑

n
j=1 yjCj ∈ n+. Notice that exp(Z) ⋅wo = z ∈ Cn ⊂

QnC via (6.1). Moreover, with the notations of (3.10) and (3.11), one has

α(Y,Z) = −(z, y)Ho modm;

β(Y,Z) = (z, y)Ez −
1

2
Qn(z)

n

∑
j=1

yj
∂

∂zj
,

where (z, y) = z1y1 +⋯ + znyn and Qn(z) ∶= z
2
1 +⋯ + z2

n.
For µ ∈ C, we define a character µ ∶ a = CHo → C by Ho ↦ µ, and extend it to

a character of p, denoted by the same letter µ ∶ p → C, or simply by Cµ, as the
composition of the projection p→ p/(m + n) and the above map µ ∶ a→ C.

Then the infinitesimal action dπµ(Cj) is given by

(6.4) dπµ(Cj) = −µzj − zjEz +
1

2
Qn(z)

∂

∂zj
,

where Ez ∶= ∑
n
j=1 zj

∂
∂zj

.

Lemma 6.4. For C ∈ Cn ≃ n+ and Z ∈ Cn ≃ n− one has,

d̂πµ(Cj) = λ
∂

∂ζj
+Eζ

∂

∂ζj
−

1

2
ζj◻ζ , 1 ≤ j ≤ n,

where µ = λ∨ ⊗C2ρ = −λ + n, Eζ ∶= ∑
n
j=1 ζj

∂
∂ζj

and ◻ζ is the d’Alembertian differential

operator of symbol Qn(z).

Proof. The proof is straightforward from Definition 3.1 and (6.4). �

As for Step 2 we write ζ = (ζ ′, ζn) ∈ Cn with ζ ′ = (ζ1, . . . , ζn−1) ∈ Cn−1 and, according
to Lemma 5.3 (2), we set for λ ∈ C

(6.5) W a
λ ∶= S

a(n−τ+ )⊗Cλ.

The vector space W a
λ is one-dimensional because n−τ− ≃ C. We denote by ν the action

of lτ on W a
λ . In our setting where dimV = dimW a

λ = 1, Step 3 reduces to find
polynomials ψ which are, according to (3.17) and (3.18), m-invariant, homogeneous
of degree a and satisfying

d̂πλ(Cj)ψ = (λ
∂

∂ζj
+Eζ

∂

∂ζj
−

1

2
ζj◻ζ)ψ = 0, 1 ≤ j ≤ n − 1.

Lemma 6.5.

(1) For the irreducible lτ -module W a
λ given in (6.5) the highest weight of (W a

λ )
∨

is given by χ ∶= λ + a.
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(2) For the m-module Pol(n+)⊗ V ∨, the χ-weight space for b(lτ) is given by

(Pol(n+)⊗ V
∨)χ ≃ Pola[ξ2

n,Q(ξ′)],

where we identify Pol(n+)⊗ V ∨ with Pol(n+) as vector spaces.

Proof. First notice that in the present setting lτ = so(n − 1,C) + so(2,C). The
decomposition n− ≡ nτ− ⊕ n−τ− as an lτ -module amounts to

Cn ⊠C−1 ≃ (Cn−1 ⊠C−1)⊕ (C ⊠C−1).

Since we have isomorphisms as lτ -modules:

Sa(n−) ≃ ⊕
a1+a2=a

Sa1(nτ−)⊗ S
a2(n−τ− ) =

a

⊕
a1=0

Sa1(Cn−1) ⊠C−a

and since the lτ -module Sa(n−τ− ) is isomorphic to the irreducible module C−a⊠C, we
obtain

Homlτ (S
a(n−τ− ), Sa(n−)) ≃ ⊕

a1+a2=a
Homlτ (C ⊠C−a, S

a1(Cn−1) ⊠C−a1)⊗ (C ⊠C−a2)

= ⊕
a1+a2=a

Homso(n−1)(C, Sa1(Cn−1))

= ⊕
0≤j≤a

2

CQn−1(ζ
′)j ⋅ ∣ζn∣

a−2j.

�

Suppose n ≥ 3. There exists a polynomial

(6.6) g(t) ∈ C -Span ⟨ta−2j ∶ 0 ≤ j ≤ [
a

2
]⟩

of one variable t such that every ψ ∈ Pola[ξ2
n,Q(ξ′)] can be written as

(6.7) ψ(ζ) = (Tag) (ζ) ∶= Qn−1(ζ
′)
a
2 g

⎛

⎝

ζn
√
Qn−1(ζ ′)

⎞

⎠
.

We note that for a more general g ∈ C[t] the map Tag is a (multi-valued) mero-
morphic function of ζ1, . . . , ζn.

To implement Step 4 of the F-method we say that a differential operator R on Cn

is T -saturated if there exists an operator S on C such that the following diagram
commutes:

C[t]
Ta //

S
��

C(ζ1, . . . , ζn)

R
��

C[t]
Ta // C(ζ1, . . . , ζn).
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Such an operator S is unique (if exists), and we denote it by T ♯
aR. We allow R to

have meromorphic coefficients. We note that

(6.8) T ♯
a(R1 ⋅R2) = T

♯
a(R1) ⋅ T

♯
a(R2),

whenever it makes sense.
We give several examples of saturated differential operators that we shall use later.

Lemma 6.6. For every 0 ≤ j < n one has:

T ♯
a (ζjEζ′ −Qn−1(ζ

′)
∂

∂ζj
) = 0,(6.9)

T ♯
a ((a − 1)ζn −Eζ

∂

∂ζj
) = 0.(6.10)

Proof. The proof of both statements is straightforward from the definition of Ta. �

Lemma 6.7. Let ϑt ∶= t
d
dt and ∆Cn−1 ∶=

∂2

∂ζ21
+⋯ + ∂2

∂ζ2n
. One then has:

(1) T ♯
a(Eζ′) = a − ϑt.

(2) T ♯
a (

Qn−1(ζ′)
ζj

∂
∂ζj

) = (a − ϑt).

(3) T ♯
a (

Qn−1(ζ′)
ζj

Eζ
∂
∂ζj

) = (a − 1)(a − ϑt).

(4) T ♯
a(ζ

2
n∆Cn−1) = t2(ϑt − a)(ϑt − n − a + 3).

(5) T ♯
a(Qn−1(ζ ′)∆Cn−1) = (ϑt − a)(ϑt − n − a + 3).

(6) T ♯
a(Qn−1(ζ ′)

∂2

∂ζ2n
) = t−2(ϑ2

t − ϑt).

(7) T ♯
a(ζn

∂
∂ζn

) = ϑt.

(8) T ♯
a(ζ

2
n
∂2

∂ζ2n
) = ϑ2

t − ϑt.

Proof. Notice first that the identity (1) is equivalent to (2) according to (6.9) and that
the identity (3) may be deduced from (1) or (2) by (6.10). Furthermore, identities
(4) and (5) on the one hand and (6) and (8) on the other are equivalent according
to the very definition of T -saturation as t = ζn√

Qn−1(ζ′)
.

Thus, it would be enough to show only identities (1), (4), (7) and (8). We give
a proof for the first statement, the remaining cases can be treated in a similar way.
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Let 1 ≤ j ≤ n − 1. Then

(T ♯
a(Eζ′)g) (t) =

n−1

∑
j=1

ζj
∂

∂ζj

⎛

⎝
Qn−1(ζ

′)
a
2 g

⎛

⎝

ζn
√
Qn−1(ζ ′)

⎞

⎠

⎞

⎠

= aQn−1(ζ
′)
a
2
−1g

⎛

⎝

ζn
√
Qn−1(ζ ′)

⎞

⎠

n−1

∑
j=1

ζ2
j −Qn−1(ζ

′)
a
2 g′

⎛

⎝

ζn
√
Qn−1(ζ ′)

⎞

⎠

n−1

∑
j=1

ζ2
j ζn

√
Q3
n−1(ζ

′)

= aQn−1(ζ
′)
a
2 g

⎛

⎝

ζn
√
Qn−1(ζ ′)

⎞

⎠
−

ζn
√
Qn−1(ζ ′)

Qn−1(ζ
′)
a
2 g′

⎛

⎝

ζn
√
Qn−1(ζ ′)

⎞

⎠

= (a − t
d

dt
) g(t).

�

Thus Step 4 of the F-method in this setting is given as follows:

Proposition 6.8. Let Ta be as in (6.7).

(1) Any polynomial ψ on n+ of degree a satisfying (3.17) is of the form ψ = Tag
for some polynomial g(t) of one variable, belonging to (6.6).

(2) The polynomial ψ(ζ) = (Tag)(ζ) of n-variables satisfies the system of partial
differential equations (3.18) if and only if g(t) satisfies the following single
ordinary differential equation:

(6.11) ((1 − s2)ϑ2
s − (1 + (2λ − n + 1)s2)ϑs + a(a + 2λ − n + 1)s2) g(−

√
−1s) = 0,

or equivalently, g(−
√
−1s) is, up to a scalar, the Gegenbauer polynomial

C
λ−n−1

2
a (s).

Proof. The first statement of Proposition follows from (6.7) and Lemma 3.12.

Consider for any fixed 1 ≤ j < n the differential operator Qn−1(ζ′)
ξj

d̂πµ(Cj). Accord-

ing to identities (1-6) in Lemma 6.7 we have following identities:

T ♯
a (
Qn−1(ζ ′)

ζj

∂

∂ζj
) = a − θt,

T ♯
a (
Qn−1(ζ ′)

ζj
Eζ

∂

∂ζj
) = (a − ϑt)(a − ϑt − 1) + ((a − ϑt)ϑt) = (a − 1)(a − ϑt),

T ♯
a (
Qn−1(ζ ′)

ζj
ζj◻ζ) = T ♯

a (Qn−1(ζ
′)(∆Cn−1 +

∂2

∂ζ2
n

))

= (ϑt − a)(ϑt − n + 3 − a) + t−2(ϑ2
t − ϑt).
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Summing up these terms we get

T ♯
a (
Qn−1(ζ ′)

ζj
d̂πµ(Cj)) = (1 + t2)ϑ2

t − (1 − (2λ − n + 1)t2)ϑt − a(a + 2λ − n + 1)t2.

Thus Proposition follows after the change of variable t = −
√
−1s. �

Thus we have carried out the crucial part of the F-method. Let us complete the
proof of Theorem 6.1.

Proof of Theorem 6.1. The uniqueness of the intertwining operator (6.3) follows from
the multiplicity-freeness of the spectral decomposition in the unitary case (Theorem
4.3).

The explicit form of the intertwining operator DX→Y,a follows from Step 5 of the
F-method, which is given by Proposition 6.8. �

6.2. Case of Sp(n,R) ↓ Sp(n− 1,R)×Sp(1,R). Let G = Sp(n,R) be the Lie group
of all linear transformations of R2n preserving the anti-symmetric bilinear form given

by Jn ∶= (
0 −In
In 0

). Let τ be the involution of G acting by conjugation by I2n−2,2,

where Ip,q ∶= (
Ip 0
0 −Iq

). We consider the symmetric pair (G,Gτ), where Gτ = Sp(n−

1,R) × Sp(1,R).
Denote Hn the Siegel upper half-plane {Z ∈ Sym(n,C) ∶ ImZ ≫ 0}. It is a

Hermitian symmetric domain of type CI in n− ≃ Sym(n,C). The Lie group G =

Sp(n,R) acts biholomorphically on Hn by

g ⋅Z = (aZ + b)(cZ + d)−1 for g = (
a b
c d

) ∈ G, Z ∈Hn,

where the isotropy subgroup K of the origin is isomorphic to U(n).
We set X ∶= Hn and Y ∶= Hn−1 ×H1. Thus Y ↪ X is a complex Gτ -equivariant

submanifold of X.
Consider the following decomposition of the Lie algebra g = sp(n,C) = n− + k + n+,

(
A B
C −tA

) ↦ (B,A,C) with B = tB and C = tC. Notice that in the present setting

k = l ≃ gln(C).

We write G̃ for the universal covering of G, and K̃ for its connected subgroup with
Lie algebra k.

For λ ∈ C, the map k → C, A ↦ −λTraceA is a character of k, which we denote
by Cλ according to that we have chosen a realization of n+ in the lower triangular
matrices. The character Cλ lifts to K̃ and defines a G̃-equivariant holomorphic line
bundle Lλ over X = G̃/K̃ ≃ G/K. Notice that in the present case C2ρ = Cn+1.
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Then, according to branching law in Fact 4.4, we have to deal with vector bundles
rather than line bundles because there exists a nontrivial Gτ -intertwining operator
DX→Y (ϕ) from O(X,Lλ) to O(Y,WY ) only if dimW > 1 except for the trivial case
WY = Lλ∣Y . In order to give a concrete model of such a representation space W , we
define a module of lτ ≃ gln−1(C) + gl1(C) by

W a
λ ∶= Sa(n−τ+ )⊗ (−λTracen)(6.12)

≃ (Sa ((Cn−1)∨)⊗ (−λTracen−1)) ⊠ F (gl1, (−λ − a)en).

As a vector space W a
λ is isomorphic to the space Pola(n−τ− ) of homogeneous polyno-

mials on n−τ− ≃ Cn−1. Thus, if W is taken to be W a
λ , then the intertwining differen-

tial operator can be thought of as an element of C [ ∂
∂zij

] ⊗ Pola[v1, . . . , vn−1], where

(v1, . . . , vn−1) are standard coordinates on n−τ− ≃ Cn−1 and zij those on n− ≃ Sym(n,C).

Theorem 6.9. Suppose λ ∈ Z satisfies λ > n, and a ∈ N. Then any Gτ -intertwining
operator from O(X,Lλ) to O(Y,Wa

λ) is given, up to a scalar, by
(6.13)

DX→Y,a ∶= C
λ−1
a ( ∑

1≤i,j≤n−1

2vivj
∂2

∂zij∂znn
, ∑

1≤j≤n−1

vj
∂

∂zjn
) ∈ C[

∂

∂zij
]⊗Pola[v1,⋯, vn−1],

where the polynomial Cλ−1
a (x, y) was defined in (6.2) by the Gegenbauer polynomial.

Remark 6.10.

(1) The same statement remains true for intertwining operators between the uni-
tary representations H2(X,Lλ) and H2(Y,Wa

λ).

(2) For any λ ∈ C and a ∈ N, the operator DX→Y,a defined by (6.13) is a G̃τ -
equivariant holomorphic differential operator between two homogeneous bun-
dles Lλ →X and Wa

λ → Y .

In order to prove Theorem 6.9 we apply the F-method. Its Step 1 is given by

Lemma 6.11. For C ∈ Sym(n,C) ≃ n+ and Z ∈ Sym(n,C) ≃ n− one has

dπµ(C) = µTrace(CZ) +∑
i≤j
∑
k,`

Ck`zikzj`
∂

∂zij
,

d̂πµ(C) = −λ∑
i≤j
Cij

∂

∂ζij
−

1

2

⎛

⎝
∑

i≤k,j≤`
Ck`ζij

∂2

∂ζik∂ζj`
+ ∑
i≥k,j≥`

Ck`ζij
∂2

∂ζik∂ζj`

⎞

⎠
,

where µ = λ∨ ⊗C2ρ = −λ + n + 1.

Proof. We embed the group Sp(n,R) into U(n,n) and apply the results of Example
3.10 with p = q = n. Thus, the first statement follows from the formula (3.12).
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We consider a bilinear form

n+ × n− → C, (C,Z)↦ Trace(CtZ),

where n+ ≃ Sym(n,C) ≃ n−. Recall that ζij with 1 ≤ i ≤ j ≤ n are the coordinates on
Sym(n,C). However, it is convenient for the computations below to allow writing
∂
∂ζji

to denote ∂
∂ζij

. Then

ẑij =
1

2
(1 + δij)

∂

∂ζij
,

∂̂

∂zij
= (δij − 2)ζij.

Thus the algebraic Fourier transform of the first term of dπµ(C) amounts to

(Trace(CZ))̂ =
1

2
∑
i,j

Cij(1 + δij)
∂

∂ζij
=∑
i≤j
Cij

∂

∂ζij
,

whereas that of the second term of dπµ(C) amounts to

⎛

⎝
∑
i≤j
∑
k,`

Ck`zikzj`
∂

∂zij

⎞

⎠

̂

= −(n + 1)∑
i≤j
Cij

∂

∂ζij
−

1

4
∑
i,j,k,l

Ckl(1 + δik)(1 + δjl)ζij
∂2

∂ζik∂ζj`

= −(n + 1)∑
i≤j
Cij

∂

∂ζij
−

1

2

⎛

⎝
∑

i≤k,j≤`
Ck`ζij

∂2

∂ζik∂ζj`
+ ∑
i≥k,j≥`

Ck`ζij
∂2

∂ζik∂ζj`

⎞

⎠
.

Hence the formula for d̂πµ(C) follows. �

The Step 2 of the F-method is given by the branching law in Fact 4.2 and leads
us to (6.12). For Step 3 we apply Lemma 3.14 and we get:

Lemma 6.12. Let W a
λ be the irreducible lτ -module defined in (6.12).

(1) The highest weight of (W a
λ )

∨ is given by

χ = (a,0, . . . ,0;a) + (λ, . . . , λ;λ).

(2) For the l-module Pol(n+)⊗C∨
λ, the χ-weight space for b(lτ) is given by:

(6.14) (Pol(n+)⊗C∨
λ)χ ≃ ⊕

2j+k=a
Cζj11ζ

k
1nζ

j
nn,

where we identify Pol(n+)⊗C∨
λ with Pol(n+) as vector spaces.

Proof. The statement (1) is clear from the definition of W a
λ given in (6.12).

Notice then that in our convention ∆(n−) = {ei + ej; 1 ≤ i ≤ j ≤ n}. Thus n−
decomposes into irreducible representations of lτ as

n− ≃ (Sym(n − 1),C) ⊠C)⊕ (C ⊠C2)⊕ (Cn−1 ⊠C1)

≃ (F (gln−1,2e1) ⊠ F (gl1,0))⊕ (F (gln−1,0) ⊠ F (gl1,2en))(6.15)

⊕ (F (gln−1, e1) ⊠ F (gl1, en)) .
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Accordingly we get an isomorphism of lτ -modules:

Pol(n+) ≃ S(n−) ≃⊕
i,j,k

(Si(Sym(n − 1),C))⊗ Sk(Cn−1)) ⊠C2j+k.(6.16)

Since ζ11, ζnn and ζ1n are highest weight vectors in the lτ -module n− with respect
to ∆+(lτ) (see (6.15)), so is any monomial ζ i11ζ

j
nnζk1n in the lτ -module S(n−) ≃ Pol(n+)

of weight (2i + k)e1 + (k + 2j)en.
According to the irreducible decomposition (6.16) and Remark 5.5, it follows that

the right-hand side of (6.14) exhausts all highest weight vectors in Pol(n+) of weight
a(e1 + en). Thus, taking into account the lτ -action on C∨

λ ≃ λTracen, we get Lemma.
�

As Step 4, we reduce the system of differential equations (3.18), i.e. d̂πµ(C)ψ = 0,
to an ordinary differential equation as follows:

Proposition 6.13.

(1) Any polynomial ψ(ζ) ≡ ψ(ζij) in the right–hand side of (6.14) is given by

(6.17) ψ(ζ) = (Tag) (ζ) ∶= (
√

2ζ11ζnn)
ag (

ζ1n
√

2ζ11ζnn
) ,

where g(t) is a polynomial in one variable t of degree at most a.
(2) The polynomial ψ(ζ) of 1

2n(n + 1) variables satisfies the system of partial

differential equations d̂πµ(C)ψ = 0 for any X ∈ nτ+ if and only if g(t) satisfies
the Gegenbauer differential equation

(6.18) ((1 − t2)ϑ2
t − (1 + 2(n − µ)t2)ϑt + a(a + 2(n − µ))t2) g(t) = 0,

where we denote ϑt = t
d
dt as before.

Proof. The first statement is clear from (6.14). The proof of the second assertion is
similar to the one of Proposition 6.8 and uses the following identities:

T ♯
aϑξ11 = T

♯
aϑξnn =

1

2
(a − ϑt), T ♯

aϑξ1n = ϑt,

where ϑζij = ζij
∂
∂ξij

. �

We are ready to complete the proof of Theorem 6.9.

Proof of Theorem 6.9. The existence and uniqueness of the continuousGτ -intertwining
operator are guaranteed by Theorem 4.3. Let us prove that DX→Y,a defined in
(6.13) belongs to DiffGτ (Lλ,Wa

λ). Using the F-method we have proved that if
D ∈ DiffGτ (Lλ,Wa

λ) and w∨ is a highest weight vector in (W a
λ )

∨, then ⟨D,w∨⟩ is

of the form (Symb−1
⊗ id)Tag, where g(t) is a polynomial satisfying (6.18). Hence
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g(t) is, up to a scalar multiple, the Gegenbauer polynomial Cλ−1
a (t). In turn,

(Tag)(ζ) = Cλ−1
a (2ζ11ζnn, ζ1n) up to a scalar.

Thus, in order to show DX→Y,a ∈ DiffGτ (Lλ,Wa
λ) it is sufficient to verify for all

` ∈ LτC:

(6.19) (Symb⊗ id)⟨DX→Y,a, ν
∨(`−1)w∨⟩ = (Ad(`−1)⊗ λ∨(`−1))(Tag),

by Lemma 3.15 and by the observation that every nonzero w∨ ∈ W ∨ is cyclic. The
left-hand side of (6.19) amounts to

⟨Cλ−1
a ( ∑

1≤i,j≤n−1

2vivjζijζnn, ∑
1≤j≤n−1

vjζjn) , ν
∨(`−1)w∨⟩

= (det `)−λ ⟨Cλ−1
a ( ∑

1≤i,j≤n−1

2(`v)i(`v)jζijζnn, ∑
1≤j≤n−1

(`v)jζjn) ,w
∨⟩ ,

where v = t(v1, . . . , vn−1) stands for the column vector. Since ⟨Q(v),w∨⟩ gives the
coefficients of va1 in the polynomial Q(v), it is equal to

(det `)−λCλ−1
a ( ∑

1≤i,j≤n−1

2`i1`j1ζijζnn, ∑
1≤j≤n−1

`j1ζjn)

= (det `)−λCλ−1
a ( ∑

1≤i,j≤n−1

2(t`ζ`)11ζnn, ∑
1≤j≤n−1

(t`ζ)1n) .

On the other hand, the action of Ad(`−1) on Pol(n+) is generated by

ζij ↦ (t`ζ`)ij, ζin ↦ (t`ζ)in.

Hence, the right–hand side of (6.19) amounts to

(det `)−λCλ−1
a ( ∑

1≤i,j≤n−1

2(t`ζ`)11ζnn, ∑
1≤j≤n−1

(t`ζ)1n) ,

which concludes the proof of Theorem 6.9. �

6.3. Case of U(n,1)×U(n,1) ↓ U(n,1). Let U(n,1) be the Lie group of all matrices
preserving the standard Hermitian form given by In,1. Consider the Lie group G ∶=

U(n,1) × U(n,1) and let τ be the involution of G acting by τ ∶ (g, h) → (h, g). We
consider the symmetric pair (G,Gτ), where Gτ ≃ ∆(U(n,1)) ⊂ G.

Let D be the unit ball {Z ∈ Cn ∶ ∥Z∥ < 1}. It is a Hermitian symmetric domain
of type AIII in Cn. We adapt the notations of Example 3.10 with p = n and q = 1.
Then the Lie group U(n,1) acts biholomorphically on D by

g ⋅Z = (aZ + b)(cZ + d)−1 for g = (
a b
c d

) ∈ U(n,1), Z ∈D,

and the isotropy subgroup K at the origin is isomorphic to U(n) ×U(1).
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We set X ∶=D ×D and Y ∶= ∆(Y ). Thus, we have the following diagram:

X =D ×D ⊂ Cn ×Cn ≃ n− ⊂ PnC × PnC
∪ ∪ ∪ ∪

Y = ∆(D) ⊂ ∆(Cn) ≃ nτ− ⊂ ∆(PnC).

For λ1, λ2 ∈ C, the map gln(C) + gl1(C) → C, (A,d) ↦ −λ1 TraceA − λ2d is a
character, which we denote by C(λ1,λ2) according to that we have chosen a realization
of n+ in the lower triangular matrices. For integral values of λ1 and λ2 the character
C(λ1,λ2) lifts to U(n) ×U(1).

According to the branching law in Fact 4.4, there exists a nontrivialGτ -intertwining
operator DX→Y (ϕ) from O(X,L(λ′1,λ′2) ⊗L(λ′′1 ,λ′′2)) to O(Y,WY ) only if dimW > 1 ex-
cept for the case WY ≃ (L(λ′1,λ′2) ⊗ L(λ′′1 ,λ′′2))∣Y . In order to give a concrete model of
such a representation space W , we define a module of lτ ≃ gln(C) + gl1(C) by

W a
(λ1,λ2) ∶= Sa(n−τ+ )⊗C(λ1,λ2)(6.20)

≃ (Sa ((Cn)∨)⊗ (−λ1 Tracen)) ⊠ F (gl1, (−λ2 + a)en+1).

As a vector space W a
λ is isomorphic to the space Pola(n−τ− ) of homogeneous polynomi-

als on n−τ− ≃ Cn. Thus, if W is taken to be W a
(λ1,λ2), then the intertwining differential

operator can be thought of as an element of

(6.21) C [
∂

∂z′1
, . . . ,

∂

∂z′n
,
∂

∂z′′1
, . . . ,

∂

∂z′′n
]⊗Pola[v1, . . . , vn],

where (v1, . . . , vn) are the standard coordinates on n−τ− ≃ Cn and z′i, z
′′
j are those on

n− ≃ Cn +Cn.
Let Pα,β

` (t) be the Jacobi polynomial defined by

Pα,β
` (t) =

Γ(α + ` + 1)

Γ(α + β + ` + 1)

`

∑
m=0

(
`
m

)
Γ(α + β + ` +m + 1)

`!Γ(α +m + 1)
(
t − 1

2
)
m

,

see Appendix for more details. We set

Pα,β
` (x, y) ∶= y`Pα,β

` (2
x

y
+ 1) .

For instance, Pα,β
0 (x, y) = 1, Pα,β

1 (x, y) = (2 + α + β)x + (α + 1)y, etc.

Theorem 6.14. Suppose that λ′1, λ
′
2, λ

′′
1 , λ

′′
2 ∈ Z satisfy λ′ ∶= λ′1 − λ

′
2 > 0 and λ′′ ∶=

λ′′1 −λ
′′
2 > 0, and that a ∈ N. Then any Gτ -intertwining operator from O2(Y,L(λ′1,λ′2))⊗

O2(Y,L(λ′′1 ,λ′′2)) to O2(Y,Wa
(λ′1+λ′′1 ,λ′2+λ′′2)

) is given, up to a scalar, by

(6.22) DX→Y,a ∶= P
−λ′+n,λ′+λ′′−2n−2a+1
a (

n

∑
i=1

vi
∂

∂zi
,
n

∑
j=1

vj
∂

∂zj
) .
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Remark 6.15.

(1) The fiber of the vector bundle Wa
(λ1,λ2) is isomorphic to the space Sa(Cn)

of symmetric tensors of degree a. It is a line bundle if and only if a = 0
or n = 1. In the case n = 1, the formula (6.22) is nothing but the classical
Rankin–Cohen bidifferential operator (we note that SU(1,1) is isomorphic
to SL(2,R)).

(2) DX→Y,a belongs to (6.21), and is thus regarded as a Wa
(λ′1+λ′′1 ,λ′2+λ′′2)

-valued

differential operator (see Diagram 5.2).
(3) The same statement remains true for the unitary representations.
(4) For any λ′1, λ

′
2, λ

′′
1 , λ

′′
2 ∈ C and a ∈ N, the operator DX→Y,a defined by the same

formula, is a Ũ(n,1)-equivariant holomorphic differential operator between
two homogeneous bundles (L(λ′1,λ′2))⊗L(λ′′1 ,λ′′2)))→X and Wa

(λ1,λ2) → Y .

In order to prove Theorem 6.14 we apply again the F-method. Its Step 1 is given
by

Lemma 6.16. Let C ∶= C ′ +C ′′ = (c′1, . . . , c
′
n) + (c′′1 , . . . , c

′′
n) ∈ n+ ≃ Cn ⊕Cn,

dπµ′1,µ′2(C
′)⊕ dπµ′′1 ,µ′′2 (C

′′) =
n

∑
i=1

c′iz
′
i(Ez′ − (µ′1 − µ

′
2)) +

n

∑
j=1

c′′j z
′′
j (Ez′′ − (µ′′1 − µ

′′
2))

d̂πµ′1,µ′2(C
′)⊕ d̂πµ′′1 ,µ′′2 (C

′′) = −((µ′1 − µ
′
2 + n + 1)

n

∑
i=1

c′i
∂

∂ζ ′i
+

n

∑
i,j=1

c′iζ
′
j

∂2

∂ζ ′i∂ζ
′
j

)

−((µ′′1 − µ
′′
2 + n + 1)

n

∑
j=1

c′′j
∂

∂ζ ′′j
+

n

∑
i,j=1

c′′i ζ
′′
j

∂2

∂ζ ′′i ∂ζ
′′
j

) .

The Step 2 of the F-method is given by the branching law in Fact 4.2 and leads
us to (6.20). For Step 3 we apply Lemma 3.14 and we get:

Lemma 6.17. For λ1, λ2 ∈ C and a ∈ N we recall from (6.20) that W a
(λ1,λ2) is an

irreducible module of lτ ≃ gln(C) + gl1(C).

(1) The highest weight of (W a
(λ1,λ2))

∨
is given by

χ = (a,0,⋯,0;−a) + (λ1,⋯, λ1;λ2).

(2) For the l-module Pol(n+)⊗ (Cλ)
∨, the χ-weight space with respect to b(lτ) is

given by

(6.23) (Pol(n+)⊗C∨
λ)χ ≃ ⊕

i+j=a
C(ζ ′1)

i(ζ ′′1 )
j,

where we identify Pol(n+)⊗C∨
λ with Pol(n+) as vector spaces.
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Proof. According to the natural decomposition n+ ≃ Cn ⊕Cn, one has

Pol(n+) ≃ ⊕
i,j

Poli(Cn)⊗Polj(Cn)

≃ ⊕
i,j
⊕
s
F (gln(C), (s1,⋯, sn))⊗ F (gl1(C),−(i + j)en),

where the sum in the second factor is taken over all s = (s1,⋯, sn) ∈ Nn satisfying
s1 ≥ ⋯ ≥ sn ≥ 0, max(i, j) ≥ s1 ≥ min(i, j) and s1 +⋯+ sn = i+ j. In particular, the χ-
weight space for b(lτ) occurs in Pol(n+)⊗C∨

λ if and only if i+j = a and s2 = ⋯ = sn = 0.
In this case the weight vectors are the monomials (ζ ′1)

i(ζ ′′1 )
j. Lemma follows. �

As Step 4, we reduce the system of differential equations (3.18), i.e. d̂πµ(C)ψ = 0,
to an ordinary differential equation as follows:

Proposition 6.18.

(1) Any polynomial ψ(ζ ′, ζ ′′) of 2n-variables in the right-hand side of (6.23) is
given by

ψ(ζ ′, ζ ′′) = (Tag)(ζ
′, ζ ′′) ∶= (ζ ′′1 )

ag (
ζ ′1
ζ ′′1

) ,

where g(t) is a polynomial in one variable t of degree at most a.

(2) The polynomial ψ(ζ ′, ζ ′′) satisfies d̂π(X)ψ = 0 for any X ∈ nτ+ if and only if
the polynomial g(t) solves the single equation

(6.24) ((1 − s2)
d2

ds2
+ q(s)

d

ds
+ a(1 − a2 − a)) g (

s − 1

2
) = 0,

where a1 = µ′1 −µ
′
2 +n+ 1, a2 = µ′′1 −µ

′′
2 +n+ 1 and q(s) = s(a2 − 2+ 2a)− 2a1 −

a2 − 2a + 2.

For the proof of Proposition 6.18 we state following identities for Ta-saturated
operators whose verification is similar to one for Lemma 6.7.

Lemma 6.19. One has:

(1) T ♯
a (ζ

′′
1

∂
∂ζ′1

) = d
dt .

(2) T ♯
a (ζ

′
1ζ

′′
1

∂2

∂(ζ′1)2
) = t d

2

dt2 .

(3) T ♯
a (ζ

′′
1

∂
∂ζ′′1

) = a − d
dt .

(4) T ♯
a ((ζ

′′
1 )

2 ∂2

∂(ζ′′1 )2) = a(a − 1) − 2(a − 1)t ddt + t
2 d

2

dt2 .

Proof of Proposition 6.18. The general conditions (3.17) and (3.18) of the F-method
reduce in the present case to one non-trivial differential equation that holds for
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C1 = (1,0, . . . ,0) + (1,0, . . . ,0) ∈ nτ+:
(6.25)

((µ′1 − µ
′
2 + n + 1)

∂

∂ζ ′1
+ ζ ′1

∂2

∂(ζ ′1)
2
+ (µ′′1 − µ

′′
2 + n + 1)

∂

∂ζ ′′1
+ ζ ′′1

∂2

∂(ζ ′′1 )
2
)ψ(ζ ′, ζ ′′) = 0.

According to Lemma 6.19 the above requirement corresponds to the following con-
dition on g(t):

(6.26) (t + t2)
d2

dt2
+ (a1 − t(a2 + 2a − 2))

d

dt
+ a(a2 + a − 1)g(t) = 0,

where a1 = µ′1 − µ
′
2 + n + 1 and a2 = µ′′1 − µ

′′
2 + n + 1.

To complete the proof, notice that the change of variable t ↦ 1
2(s − 1) transforms

the above equation into (6.24). �

Proof of Theorem 6.14. Now we have all the necessary ingredients to apply Lemma
3.15. The remaining part of the proof is parallel to one for Theorem 6.9. �

Remark 6.20. In all the three cases we have reduced a system of partial differen-
tial equations to a single ordinary differential equation in Step 4 of the F-method.
The latter equation has regular singularities at t = ±1 and ∞. We describe the
corresponding singularities via the map Ta as below:

(1) The singularities of the differential equation (6.11) correspond to the varieties
given by ζn = 0 and Qn−1(ζ ′) = 0.

(2) The singularities of the differential equation (6.18) correspond to the varieties

given by ζ1n = 0 and det ∣
ζ11 ζ1n

ζ1n ζnn
∣ = 0.

(3) The singularities of the differential equation (6.24) correspond to the varieties
given by ζ ′1 = 0 and ζ ′1 = ±ζ

′′
1 .

Appendix A. Jacobi polynomials and Gegenbauer polynomials

A.1. Jacobi polynomials. Let α > −1 and β > −1. Jacobi polynomials Pα,β
` (t) of

one variable t and of degree ` form an orthogonal basis in L2([−1,1], (1−t)α(1+t)βdt)
and satisfy the Jacobi differential equation

(A.1) ((1 − t2)
d2

dt2
+ (β − α − (α + β + 2)t)

d

dt
+ `(` + α + β + 1)) y = 0.



RANKIN–COHEN OPERATORS FOR SYMMETRIC PAIRS 51

This equation is a particular case of the Gauss hypergeometric equation. Therefore

its unique polynomial solution y(t) satisfying y(1) = Γ(α+`+1)
Γ(α+1)`! is given by:

Pα,β
` (t) =

Γ(α + ` + 1)

Γ(α + 1)`!
2F1 (−`,1 + α + β + `;α + 1;

1 − t

2
)

=
Γ(α + ` + 1)

Γ(α + β + ` + 1)

`

∑
m=0

(
`
m

)
Γ(α + β + ` +m + 1)

Γ(α +m + 1)`!
(
t − 1

2
)
m

.

The Jacobi polynomials are subject to the Rodrigues formula

(1 − t)α(1 + t)βPα,β
` (t) =

(−1)`

2``!
(
d

dt
)

`

((1 − t)`+α(1 + t)`+β) .

When α = β these polynomials yield Gegenbauer polynomials (see the next paragraph
for more details) and they reduce to Legendre polynomials in the case when α = β = 0.

Here are the first four Jacobi polynomials.

● Pα,β
0 (t) = 1.

● Pα,β
1 (t) = 1

2(α − β + (2 + α + β)t).

● Pα,β
2 (t) = 1

2(1+α)(2+α)+
1
2(2+α)(3+α+β)(t−1)+ 1

8(3+α+β)(4+α+β)(t−1)2.

A.2. Gegenbauer Polynomials. The Gegenbauer (or ultraspherical) polynomial
Cα
` (t) is a polynomial of t of degree ` satisfying the Gegenbauer differential equation

(A.2) ((1 − t2)ϑ2
t − (1 + 2αt2)ϑt + `(` + 2α)t2) y = 0.

It is a specialization of the Jacobi polynomial

(A.3) Cα
` (t) =

Γ(α + 1
2)Γ(` + 2α)

Γ(2α)Γ(` + α + 1
2)
P
α− 1

2
,α− 1

2

` (t).

This equation (A.2) is a particular case of the Gauss hypergeometric differential
equation. Thus

Cα
` (t) =

Γ(` + 2α)

Γ(2α)Γ(` + 1)
2F1 (−`, ` + 2α;α +

1

2
;
1 − t

2
)

=

[ `
2
]

∑
k=0

(−1)k
Γ(` − k + α)

Γ(α)Γ(k + 1)Γ(` − 2k + 1)
(2t)`−2k.

Here are the first five Gegenbauer polynomials.

● Cα
0 (t) = 1.

● Cα
1 (t) = 2αt.

● Cα
2 (t) = −α(1 − 2(α + 1)t2).

● Cα
3 (t) = −2α(α + 1)(t − 2

3(α + 2)t3).
● Cα

4 (t) =
1
2α(α + 1)(1 − 4(α + 2)t2 + 4

3(α + 2)(α + 3)t4).
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