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Abstract

Let G be a Lie group and H its subgroup. A Clifford-Klein form

of a homogeneous manifold G/H is the double coset space Γ\G/H if Γ

is a subgroup of G acting properly discontinuously and freely on G/H .

For example, any closed Riemann surface M with genus ≥ 2 is biholo-

morphic to a compact Clifford-Klein form of the Poincaré plane G/H =

PSL(2,R)/SO(2). On the other hand, there is no compact Clifford-Klein
form of the hyperboloid of one sheet G/H = PSL(2,R)/SO(1, 1). Even
more, there is no infinite discrete subgroup of G which acts properly dis-

continuously on G/H (the Calabi-Markus phenomenon). As is observed

in the second example, not all discrete subgroup of G can act properly

discontinuously on a homogeneous manifold G/H if H is noncompact. We

discuss recent developments in the theory of discontinuous groups acting

on a homogeneous manifold G/H where G is a real reductive Lie group

and H is a noncompact reductive subgroup. Geometric ideas of various

methods together with a number of examples are presented regarding fun-

damental problems: “which homogeneous manifolds G/H admit properly

discontinuous actions of infinite discrete subgroups of G ?”, and “which

homogeneous manifolds G/H admit compact Clifford-Klein forms ?”
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§0. Introduction to Clifford-Klein forms

0.1. Homogeneous manifolds

First, we consider the setting:

G ⊃ H.

Here G is a Lie group and H is a closed subgroup of G. Then the coset

space G/H equipped with the quotient topology carries a C∞-manifold

structure so that the natural quotient map

π : G→ G/H

is a C∞-map. We say G/H is a homogeneous manifold.

0.2. Clifford-Klein forms

Second, we consider a more general setting:

Γ ⊂ G ⊃ H.

Here G is a Lie group, H is a closed subgroup and Γ is a discrete subgroup

of G. Then one might ask

Question 0.2. Does the double coset space Γ\G/H equipped with the

quotient topology carry a C∞-manifold structure so that the natural quo-

tient map

$ : G→ Γ\G/H

is a C∞-map ?

If yes, we say Γ\G/H is a Clifford-Klein form of the homogeneous man-

ifold G/H.

Unfortunately, the action of a discrete subgroup Γ on G/H is not always

properly discontinuous (see Definition 1.3.1) when H is not compact, and

the quotient topology is not necessarily Hausdorff. Thus, we cannot always

expect an affirmative answer to Question 0.2. This is the main difficulty

of our subject. However, leaving this question aside for a moment, we first

discuss the geometric aspect of Clifford-Klein forms in this section.

0.3. Clifford-Klein forms from the view point of geometry

From the view point of differential geometry, the important point in

considering a Clifford-Klein form Γ\G/H is that we have a local diffeomor-
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phism p : G/H → Γ\G/H, with the following commutative diagram:

G

π . & $

G/H −→
p
Γ\G/H.

Therefore any G-invariant local structure (e.g. affine, complex, symplectic,

Riemannian or pseudo-Riemannian, . . . ) on a homogeneous manifold G/H

induces the same kind of structure on a Clifford-Klein form Γ\G/H . In
other words, the double coset space Γ\G/H is a manifold enjoying the

same local properties as G/H , as long as the discrete subgroup Γ allows an

affirmative answer to Question 0.2.

Conversely, let us start from a differentiable manifold M endowed with

some local structure T and then explain how a Clifford-Klein form arises.

Let fM be the universal covering manifold of M . Then the local structure

T is also defined on fM through the covering map fM →M . We set

G ≡ Aut(fM, T ) := {ϕ ∈ Diffeo(fM) : ϕ preserves the structure T }.
We note that G is the group of isometries if T is a Riemannian structure;

the group of biholomorphic automorphisms if T is a complex structure.

We fix a point o ∈ fM and write ō ∈ M for its image of the covering

map fM →M . Then the fundamental group π1(M, ō) acts effectively on fM
as the covering automorphism. We write Γ for the image of the injection

π1(M, ō) ,→ G = Aut(fM, T ). That is, Γ is a discrete subgroup of G in the
compact open topology, which is isomorphic to π1(M, ō). Then we have a

natural diffeomorphism M ' Γ\fM .
Assume G = Aut(fM, T ) is small enough to be a Lie group (see a text-

book by Shoshichi Kobayashi [Ko72] for some sufficient conditions) and is

large enough to act transitively on fM . Then fM is represented as a ho-

mogeneous manifold fM ' G/H with the isotropy subgroup H at o ∈ fM .
Consequently, M is naturally represented as a Clifford-Klein form of G/H :

fM ' G/H

π1(M)

⏐⏐y ⏐⏐yΓ
M ' Γ\G/H

We remark that Question 0.2 has automatically an affirmative answer in

this case.
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We shall give a number of examples of simply connected manifolds fM '
G/H equipped with some local structure in §0.4; and Clifford-Klein forms
of these manifolds in §0.5.

0.4. Examples of homogeneous manifolds

First, we present some examples where G = Aut(fM, T ) acts transitively
on a simply connected manifold fM so that fM is represented as a homoge-

neous manifold of G.

Example 0.4.1. Let( fM := Rn,

T := the canonical affine connection ∇.

Then Aut(Rn,∇) ' GL(n,R) n Rn is the affine transformation group,
acting transitively on Rn by

(g, b) · x := gx+ b for (g, b) ∈ GL(n,R)nRn, x ∈ Rn.
The isotropy subgroup at the origin 0 ∈ Rn is isomorphic to GL(n,R)
and therefore the manifold Rn is represented as the homogeneous manifold
GL(n,R)nRn/GL(n,R).

Example 0.4.2. Let( fM := Rn,

T := standard Riemannian structure g.

Then Aut(Rn, g) ' O(n)nRn is the Euclidean motion group, acting tran-
sitively on Rn by

(g, b) · x := gx+ b for (g, b) ∈ O(n)nRn, x ∈ Rn.
Thus Rn is represented as the homogeneous manifold O(n)nRn/O(n).

Example 0.4.3. Let( fM :=
©
x ∈ Rn+1 : x12 + · · ·+ xn2 − xn+12 = 1

ª
(n ≥ 3),

T := the Lorentz metric g induced from dx1
2 + · · ·+ dxn2 − dxn+12.

Let O(n, 1) be the indefinite orthogonal group preserving the quadratic

form x1
2+· · ·+xn2−xn+12. Then O(n, 1) acts transitively and isometrically

on the hyperboloid of one sheet fM , and it coincides with the group of
isometries of fM . Thus, Aut(fM, g) = O(n, 1) and fM ' O(n, 1)/O(n−1, 1).
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Example 0.4.4. Let

( fM := C,

T := the standard complex structure J.

Then the group of biholomorphic automorphisms is given by Aut(C, J) '
C× nC, a semi-direct product of C× and C with C normal. The action of
C× nC on C is given by the complex affine transformation:

(a, b) · z = az + b for (a, b) ∈ C× nC.

This action is obviously transitive so that the complex plane C is repre-

sented as the homogeneous manifold C× nC/C×.

Example 0.4.5. Let

( fM := CP 1 (the complex projective space),

T := the standard complex structure J.

The natural action of SL(2,C) on C2 \ {0} induces a transitive action of
PSL(2,C) on the projective space CP 1 = C2 \ {0}/C× ' C ∪ {∞}, which
is given by the linear fractional transformation:

µ
a b

c d

¶
· z = az + b

cz + d
for

µ
a b

c d

¶
∈ PSL(2,C) = SL(2,C)/{±I2}.

Then PSL(2,C) ' Aut(CP 1, J), the group of biholomorphic automor-
phisms. The projective space CP 1 is represented as a homogeneous mani-
fold PSL(2,C)/B where B is a Borel subgroup of PSL(2,C).

Example 0.4.6. Let

( fM := H ≡ {z ∈ C : Imz > 0} the Poincaré plane,

T := the standard complex structure J.

Then the group of biholomorphic automorphisms is given by Aut(H, J) '
PSL(2,R), where the action of PSL(2,R) is also defined by the linear
fractional transformation:µ

a b

c d

¶
· z = az + b

cz + d
for

µ
a b

c d

¶
∈ PSL(2,R) = SL(2,R)/{±I2}.
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This action is transitive so that the Poincaré plane H is represented as the

homogeneous manifold PSL(2,R)/SO(2).

0.5. Examples of Clifford-Klein forms

Next, we present a number of examples of Clifford-Klein forms of the

homogeneous manifolds given in Example 0.4. We also explain that these

examples are closely related to the following interesting topics:

Examples 0.5.1,0.5.2 · · ·the Auslander Conjecture on the fundamental
group of compact complete affine manifolds.

Example 0.5.4 · · · · · · · · ·the Calabi-Markus phenomenon for relativistic
spherical forms.

Example 0.5.5 · · · · · · · · ·the uniformization theorem of Riemannian

surfaces due to Klein, Poincaré and Koebe.

Example 0.5.1 (see Example 0.4.1). An affine manifold M is a mani-

fold which admits a torsion free affine connection whose curvature tensor

vanishes. It is said to be complete if every geodesic can be defined on all

time intervals. Then it is known that the universal covering of any com-

plete affine manifoldM =Mn is isomorphic to (Rn,∇) as affine manifolds.
Therefore it follows from Example 0.4.1 that M can be represented as a

Clifford-Klein form

M ' Γ\GL(n,R)n Rn/GL(n,R),

where Γ is a discrete subgroup of GL(n,R) n Rn which is isomorphic to
the fundamental group π1(M).

Example 0.5.2 (see Example 0.4.2). Retain the notation in Example

0.5.1. IfMn is a Riemannian manifold and ifMn is a complete affine man-

ifold (see Example 0.5.1) for the Levi-Civita connection, then the universal

covering of M is isometric to Rn endowed with the standard Riemannian
metric g. Therefore it follows from Example 0.4.2 that M is represented

as another Clifford-Klein form

M ' Γ\O(n)nRn/O(n)

with Γ ⊂ O(n)nRn.
Similarly, if Mn is a Lorentz manifold (namely, M carries a pseudo-

Riemannian metric of type (n−1, 1)), and ifM is a complete affine manifold
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for the Levi-Civita connection, then M is reduced to be a Clifford-Klein

form

M ' Γ\O(n− 1, 1)nRn/O(n− 1, 1)

with Γ ⊂ O(n− 1, 1)nRn.

Remark 0.5.3 (the Auslander Conjecture). Regarding to Example 0.5.1,

0.5.2, we mention the Auslander conjecture which asserts that the funda-

mental group π1 of any compact complete affine manifold is virtually solv-

able (see [Au64], [Mi77], [Ma83] and references therein). In view of Example

0.5.1, this is equivalent to the conjecture that a discrete group Γ is virtually

solvable if Γ\GL(n,R)nRn/GL(n,R) is a compact Clifford-Klein form of

a homogeneous manifold GL(n,R)nRn/GL(n,R) ' Rn. Auslander’s con-
jecture remains open except for some special cases such as Γ ⊂ O(n)nRn
(Bieberbach’s theorem, see [Ra72], Corollary 8.26), Γ ⊂ O(n − 1, 1) n Rn
([GK84], see also [To90] for a generalization to rank one groups). The geo-

metric meaning of Γ ⊂ O(n) n Rn (or Γ ⊂ O(n − 1, 1) n Rn) is that the
affine connection is the Levi-Civita connection of the standard Riemannian

(or Lorentz) metric (see Example 0.5.2).

Example 0.5.4 (a relativistic spherical space form; see Example 0.4.3).

In the physics of relativistic cosmology, the space-time continuum is

taken to be a Lorentz manifold M4. A relativistic spherical space form is a

complete Lorentz manifoldMn for n ≥ 3 with constant sectional curvature
K = +1. Any relativistic spherical space form M is represented as a

Clifford-Klein form:

M ' Γ\O(n, 1)/O(n− 1, 1),
where Γ is a discrete subgroup of O(n, 1) which is isomorphic to the fun-

damental group π1(M). We shall see that Γ must be a finite group in §2
(the Calabi-Markus phenomenon [CM62]).

Example 0.5.5 (the uniformization theorem of Riemann surfaces; see Ex-

ample 0.4.4, 0.4.5 and 0.4.6). The uniformization theorem of Riemann

surfaces due to Klein, Poincaré and Koebe asserts that a simply connected

Riemann surface M is biholomorphic to one of the following complex man-

ifolds:

C, CP 1, or H

We recall that the Riemann mapping theorem is the special case obtained

by assumingM to be a domain of C. We refer the reader to [Sp57], [AhSa60]
for details.
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The point here is that any of simply connected Riemann surfaces C,
CP 1, and H has a transitive transformation group of biholomorphic au-

tomorphisms, as we have seen in Examples 0.4.4, 0.4.5 and 0.4.6, respec-

tively. Consequently, any connected Riemann surface M is represented as

a Clifford-Klein form

M ' Γ\G/H,

where (G,H) is (C×nC,C×), (PSL(2,C), B) or (PSL(2,R), SO(2)), and
Γ is a discrete subgroup of G which is isomorphic to π1(M).

In particular, suppose M is compact. The rank of the first homology

group H1(M) is always even, and it is denoted by 2g. Then g is said to be

the genus of the Riemann surfaceM , and such a Riemann surface is usually

denoted by Mg. Then the universal covering of Mg is uniquely determined

up to biholomorphic automorphism by the genus g. In fact, we have

Mg ' Γ\PSL(2,C)/B, Γ = π1(Mg) = {e}, (g = 0),

Mg ' Γ\C× n C/C×, Γ = π1(Mg) ' Z2, (g = 1),

Mg ' Γ\PSL(2,R)/SO(2), Γ = π1(Mg), (g ≥ 2).
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§1. Discontinuous actions (discrete and continuous version)

Let G be a Lie group, H a closed subgroup and Γ a discrete subgroup

of G. In §0, we have defined that a Clifford-Klein form of a homogeneous

manifold G/H is the double coset space Γ\G/H if it is Hausdorff and car-

ries naturally a C∞ structure (see Question 0.2). This condition is satisfied

if Γ acts properly discontinuously and freely on G/H (see Definition 1.3.1),

as we shall see in Lemma 1.3.2. The purpose of this section is to under-

stand properly discontinuous actions by exhibiting a number of typical bad

features of the action of noncompact groups.

1.1. Clifford-Klein form of PSL(2,R)/SO(2)
First we recall Example 0.5.5. LetMg be a closed Riemann surface with

genus ≥ 2. The universal covering manifold of Mg is biholomorphic to the

the Poincaré plane H. So Mg is represented as a compact Clifford-Klein

form Γ\PSL(2,R)/SO(2) of the Poincaré plane PSL(2,R)/SO(2), where
Γ is an infinite discrete subgroup of PSL(2,R) isomorphic to π1(Mg).

There are two directions of generalization of this classical example,

namely,

i) generalization to higher dimensions (e.g. Theorem 4.2).

ii) generalization to noncompact isotropy subgroups.

Here we are interested in the latter direction.

1.2. Clifford-Klein form of PSL(2,R)/SO(1, 1)
There is no compact Clifford-Klein form of the hyperboloid of one sheet

PSL(2,R)/SO(1, 1). This fact can be proved in various ways, which are of
importance as typical examples of later arguments. We indicate here four

different proofs, which we shall elaborate in the following sections.

i) A direct calculation (§1).
Assume that Γ is a discrete subgroup of PSL(2,R) such that ]Γ =

∞. Then we can show that the action of Γ on PSL(2,R)/SO(1, 1)
is never properly discontinuous, and the corresponding quotient space

Γ\PSL(2,R)/SO(1, 1) is not Hausdorff. We consider first the most

non-trivial case where Γ consists of unipotent elements. For example,

let us consider the case where Γ is a discrete subgroup of PSL(2,R)
generated by a single unipotent element. Then the quotient topology

of Γ\PSL(2,R)/SO(1, 1) is locally Hausdorff but non-Hausdorff, as we
shall explain in this section (see Example 1.6.2 and Exercise 1.6.3 (iii),

(v)). On the other hand, if Γ does not contain a nilpotent element (still
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we assume ]Γ =∞), then the action of Γ has an accumulating point in
PSL(2,R)/SO(1, 1) (see Definition 1.3.4) so that Γ\PSL(2,R)/SO(1, 1)
is not Hausdorff, too (see Example 1.6.1 (ii) and Exercise 1.6.3 (iv),(v)).

ii) Calabi-Markus phenomenon (§2).
We will give a necessary and sufficient condition in terms of the ranks

of G and H for a homogeneous space G/H of reductive type to admit

an infinite discontinuous group (see Theorem 2.5 for a criterion of the

so-called Calabi-Markus phenomenon; see also Example 0.5.4). The idea

of proof is to study an analogous problem in a continuous setting and

to look at the infinite points by means of the Cartan decomposition.

iii) Hirzebruch’s proportionality principle (§3).
A Clifford-Klein form M of PSL(2,R)/SO(1, 1), the hyperboloid of one
sheet, carries an indefinite-Riemannian metric of type (1, 1) induced from

the Killing form. This metric gives rise to a non-vanishing vector field on

M . If M were compact and orientable, this would imply the vanishing

of the Euler-Poincaré class of M thanks to a theorem of Poincaré-Hopf.

On the other hand, the Euler-Poincaré class of a “compact real form”

S2 ' SU(2)/SO(2) does not vanish. This leads to a contradiction by

a generalized Hirzebruch’s proportionality principle (see Corollary 3.8).

The idea here leads to a necessary condition for the existence of compact

Clifford-Klein forms (see Corollary 3.12.1 and Example 3.12.2).

iv) Semisimple orbits, invariant complex structure (§4).
The hyperboloid of one sheet is realized as a semisimple orbit of the

adjoint representation of PSL(2,R). We shall see in §4 that a semisim-
ple orbit having a compact Clifford-Klein form must be isomorphic to

an elliptic orbit, so that it carries an invariant complex structure (see

Corollary 4.12). But this is not the case for the hyperboloid of one sheet.

1.3. Properly discontinuous action

A distinguished feature in the setting §1.2 is that the isotropy subgroup
H ' SO(1, 1) is noncompact. As a consequence, the action of a discrete

subgroup Γ on G/H is not automatically properly discontinuous. Here we

recall the definition of properly discontinuous actions:

Suppose that a discrete group Γ acts continuously on a locally compact

Hausdorff topological space X. For a subset S of X, we put

ΓS := {γ ∈ Γ : γS ∩ S 6= ∅} .

Note that if S is a singleton {p} (p ∈ X) then ΓS is nothing but the isotropy
subgroup at p. In general ΓS is not a subgroup.
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Definition 1.3.1. The action of Γ on X is said to be:

i) properly discontinuous if ΓS is a finite subset for any compact subset

S of X,

ii) free if Γ{p} is trivial for any p ∈ X.

Then we have the following standard fact:

Lemma 1.3.2. Suppose that a discrete group Γ acts on a [C∞, Rie-

mannian, complex, . . . ] manifold X properly discontinuously and freely

[and smoothly, isometrically, holomorphically, . . . ]. Equipped with the

quotient topology, Γ\X is then a Hausdorff topological space, on which a

manifold structure is uniquely defined so that

π : X → Γ\X

is locally homeomorphic [diffeomorphic, isometric, biholomorphic, . . . ].

Although this lemma is well-known, we give a sketch of its proof in order

that the readers get used to the definition of properly discontinuous actions.

Sketch of proof.

1) (Hausdorff) (We use only the assumption that the action is properly

discontinuous.) Take x, y ∈ X so that π(x) 6= π(y). We want to find

neighbourhoods V,W of X such that x ∈ V, y ∈W and π(V )∩ π(W ) = ∅.
First, we take relatively compact neighbourhoods V1 and W1 of X such

that x ∈ V1, y ∈ W1. As the action of Γ on X is properly discon-

tinuous, ΓV1∪W1 = {γ ∈ Γ : γ(V1 ∪W1) ∩ (V1 ∪W1) 6= ∅} is a finite set,
say, {γ1, · · · , γk}. Second, we take neighbourhoods V and W such that

x ∈ V ⊂ V1, y ∈ W ⊂ W1 and γjV ∩W = ∅ (j = 1, · · · , k). Then we have
ΓV ∩ ΓW = ∅, that is, π(V ) ∩ π(W ) = ∅, which we wanted to prove.
2) (manifold structure) The proof is quite similar as that of (1). In fact,

by using the assumption that the action is properly discontinuous and free,

we can find a neighbourhood V ⊂ X at each point x ∈ X such that

{γ ∈ Γ : γV ∩ V 6= ∅} = {e}.

Such an open set V is homeomorphic to π(V ) ⊂ Γ\X, and these sets form
a basis for the open sets giving local charts of Γ\X. ¤

Here is a necessary condition that the action of Γ on X is properly

discontinuous.

Lemma 1.3.3. Suppose a discrete group Γ acts properly discontinuously

on a locally compact, Hausdorff topological space X. Then we have:
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1) There is no accumulating point of the action of Γ on X.

2) Each Γ-orbit is a closed subset of X.

Here we recall:

Definition 1.3.4. For each element x of X, the Γ-orbit through x is a

subset of X given by

Γ · x := {γx : γ ∈ Γ} .

We say y (∈ X) is an accumulating point of the Γ-orbit Γ·x if ](U∩Γ·x) =∞
for any neighbourhood U of y in X. We say y (∈ X) is an accumulating
point of the action of Γ on X, if there exists x ∈ X such that y is an

accumulating point of the orbit Γ · x.

Proof of Lemma 1.3.3.

1) We want to show that the action of Γ onX is not properly discontinuous

if there exists an accumulating point of the action of Γ on X. Suppose

that y ∈ X is an accumulating point of the action of Γ on X. That is,

there exists x ∈ X such that ](U ∩ Γ · x) =∞ for any neighbourhood U

of y. We choose U to be relatively compact and define S := U ∪{x} and
Γ0 := {γ ∈ Γ : γx ∈ U}. Then we have ]Γ0 =∞ because ](U∩Γ·x) =∞.
Then we have ]ΓS =∞ because

ΓS = {γ ∈ Γ : γS ∩ S 6= ∅} ⊃ Γ0.

Hence the action of Γ on X is not properly discontinuous.

2) We want to show that the action of Γ onX is not properly discontinuous

if there exists a non-closed orbit Γ ·x. Take y ∈ Γ · x\Γ ·x and relatively
compact, open neighbourhoods Uj (j = 1, 2, · · · ) of y such that U1 ⊃
U2 ⊃ · · · and that ∩jUj = {y}. Then we can take γj ∈ Γ such that
γj · x ∈ Uj for each j ∈ N because Γ · x ∩ Uj 6= ∅. Then we have

] {γj : j = 1, 2, · · ·} = ∞ because ∩jUj = {y}. Finally, we put S :=

U1 ∪ {x}, and we have ]ΓS =∞ because

ΓS ⊃ ∪j {γ ∈ Γ : γ · x ∈ Uj} ⊃ {γj : j = 1, 2, · · ·} .

Hence the action of Γ on X is not properly discontinuous. ¤

1.4. Discontinuous groups acting on homogeneous manifolds

Definition 1.4. A discrete subgroup Γ of G is said to be a discontinuous

group acting on G/H if the action of Γ on G/H is properly discontinuous.
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If Γ is a discontinuous group acting on G/H and if the action of Γ on

G/H is free, then the double coset space Γ\G/H carries a natural C∞-

manifold structure from Lemma 1.3.2 so that Γ\G/H is a Clifford-Klein

form of the homogeneous manifold G/H . Thus we have an affirmative

answer to Question 0.2 in this case.

Here, the point is that Γ is assumed to be a subgroup ofG so that Γ\G/H
inherits any G-invariant (local) structure on the homogeneous manifold

G/H . One should keep in mind the essential difference between the action

on G/H of a discrete group Γ ⊂ G (our case) and a discrete group Γ ⊂
Diffeo(G/H). For example, if G/H = SL(2,R)/SO(1, 1) (a hyperboloid of
one sheet), then G/H is diffeomorphic to S1×R (a cylinder), which admits
a properly discontinuous action of Z (⊂ Diffeo(G/H)) along the direction
of R. But this action does not come from SL(2,R) and is not isometric
with respect to a natural indefinite Riemannian metric on the hyperboloid.

1.5. Remark

In this lecture, proper discontinuity is essentially important, but freeness

is less important. In fact, if a discrete group Γ acts on a manifold X

properly discontinuously, then the isotropy group Γ{p} at p ∈ X is not

necessarily trivial indeed but it is always finite. Correspondingly, Γ\X is

not necessarily a smooth manifold but still has a nice structure called V -

manifold in the sense of Satake [Sa56] or called an orbifold in the sense of

Thurston (see also [Car60]). Moreover, if Γ acts properly discontinuously

on X and if Γ0 ⊂ Γ is a torsion free subgroup (i.e. x ∈ Γ0, xn = e (n ≥
1)⇒ x = e), then the action of Γ0 on X is properly discontinuous and free.

In view of this, the following result due to Selberg is quite useful.

Theorem 1.5.1 ([Sel60] Lemma 8). A finitely generated matrix group has

a torsion free subgroup of finite index.

1.6. Examples and Exercises

Example 1.6.1. Suppose a discrete group Γ := Z acts on a manifold

X := R in the following two different manners:
i) Γ×X → X, (n, x) 7→ x+ n.

ii) Γ×X → X, (n, x) 7→ 2nx.

The action in (i) is properly discontinuous and free. The resulting quo-

tient manifold Γ\X is diffeomorphic to S1.

On the other hand, the action in (ii) is not properly discontinuous be-
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cause ΓS = Z is not a finite set if we take S := [0, 1], the unit interval in
R. The resulting quotient space Γ\X has a non-Hausdorff topology. That

is, Γ\X is homeomorphic to S1 ∪ {point} ∪ S1 which is topologized to be
connected !

In Example (1.6.1)(ii), we easily see that the action of Γ is not properly

discontinuous because the origin 0 is an accumulation point of the action

of Γ. The next example is more subtle without accumulation points.

Example 1.6.2. Suppose a discrete group Γ := Z acts on a manifold
X := R2 \ {0} in the following manner:

Γ×X → X, (n, (x, y)) 7→ (2nx, 2−ny).

Then this action is not properly discontinuous. In fact, let Bε(x, y) be a

ball of radius ε with the center (x, y) and we put S := B 1
2
(1, 0)∪B 1

2
(0, 1).

Then it is an easy exercise to see that ΓS ≡ {γ ∈ Z : γS ∩ S 6= ∅} is equal to
Z. We note that there is no accumulation point of Γ. In fact every Γ-orbit
is closed in X. The resulting quotient topology of Γ\X is not Hausdorff,

though it is locally Hausdorff in the sense that one can find a Hausdorff

neighbourhood of each point of Γ\X. A picture of a similar topology as

that of Γ\X is illustrated by the following one dimensional example:

•
−−−−−−−−−−−−−−−−◦−−−−−−−−−−−−−−−−

•

Exercise 1.6.3. In the setting as in Example 1.6.2, prove the following:

i) ΓS = Z if S = B 1
2
(1, 0) ∪B 1

2
(0, 1).

ii) Let G = SL(2,R) act naturally on R2 \ {0} from the left. This action

is transitive and the isotropy group at

µ
1

0

¶
is H =

½µ
1 x

0 1

¶
: x ∈ R

¾
so that we have a diffeomorphism:

G/H ' R2 \ {0}.

Let L :=

½µ
y 0

0 y−1

¶
: y > 0

¾
, LZ :=

½µ
2x 0

0 2−x

¶
: x ∈ Z

¾
' Z.

Via the isomorphisms G/H ' R2 \ {0} and LZ ' Γ (= Z), the action
of LZ on G/H coincides with that of Γ on R2 \ {0} in Example 1.6.2.
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Thus the action of LZ on G/H is not properly discontinuous, and the

quotient topology on LZ\G/H is not Hausdorff.

iii) Let HZ :=

½µ
1 x

0 1

¶
: x ∈ Z

¾
. Then the action of HZ on G/L is not

properly discontinuous, and the quotient topology on HZ\G/L is not
Hausdorff.

iv) The action of LZ on G/L has an accumulating point and is not properly

discontinuous, too.

v) We define a quadratic form on R2 by Q
µ
x

y

¶
:= xy. The polarization

of Q gives an indefinite metric of signature (1, 1). Then L is the identity

component of½
g ∈ GL(2,R) : Q(g

µ
x

y

¶
) = Q

µ
x

y

¶
for any x, y ∈ R

¾
' O(1, 1).

Thus G/L ' SL(2,R)/SO0(1, 1).
Hint: The topology of HZ\G/L has a similar feature of Example 1.6.2,
while that of LZ\G/L is similar to Example 1.6.1(ii). The actions in (ii)
and in (iii) are in a kind of duality, between the action of L on G/H and

that of H on G/L. That is, in the setting

LZ ⊂ L ⊂ G ⊃ H ⊃ HZ
with L/LZ and H/HZ compact, the action of LZ on G/H is properly

discontinuous if and only if that of HZ on G/L is properly discontinuous

(see Lemma 1.11.3(1), see also Observation 1.9, [Bou60] Chapitre 3).

1.7. Basic problems in a discrete setting

Suppose G is a Lie group and H is a closed subgroup. Here are the basic

problems in the theory of discontinuous groups acting on a homogeneous

manifold G/H :

Problem 1.7.

1) Which homogeneous manifold G/H admits an infinite discontinuous

group ?

2) Which homogeneous manifold G/H admits a compact Clifford-Klein

form ?

(1) should be a first step in the study of discontinuous groups acting on

homogeneous manifolds. The existence of a compact Clifford-Klein form
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in (2) would be interesting not only from the view point of geometry but

also from that of harmonic analysis and representation theory (see Open

problems 10 in §5). We will study (1) in §2, and (2) in §4 (partly also in
§2 and §3).

1.8. Proper actions

– as a continuous analogue of properly discontinuous actions

In general, the study of a discrete group is quite difficult. Our approach

is to approximate the action of discrete groups by that of connected Lie

groups. For this purpose, it is crucial to find a continuous analogue of a

properly discontinuous action:

Definition 1.8 (see [Pa61]). Suppose that a locally compact topological

group L acts continuously on a locally compact topological space X. For

a subset S of X, we define a subset of L by

LS = {γ ∈ L : γS ∩ S 6= ∅} .

The action of L on X is said to be proper if and only if LS is compact for

every compact subset S of X.

Compared with the definition of proper discontinuity (Definition 1.3),

compactness in Definition 1.8 has now replaced by finiteness. We note that

the action of L on X is properly discontinuous if and only if the action of

L on X is proper and L is discrete, because a discrete and compact set is

finite.

1.9. Observation

The following elementary observation is a bridge between the action of

a discrete group and that of a connected group.

Observation 1.9 ([Ko89a], Lemma 2.3). Suppose a Lie group L acts on

a locally compact space X. Let Γ be a cocompact discrete subgroup of L.

Then

1) The L-action on X is proper if and only if the Γ-action is properly

discontinuous.

2) L\X is compact if and only if Γ\X is compact.

Proof. 1) Suppose Γ acts properly discontinuously. Take a compact subset

C in L so that L = C · Γ and C = C−1. Then for any compact subset S

in X, LS = {g ∈ L : g · S ∩ S 6= ∅} ⊂ C · ΓCS . Because ΓCS is a finite set
from the assumption, we conclude that the action of L is proper. In view
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of ΓS = Γ ∩ LS , the ‘only if’ part follows immediately from the definition.

2) Suppose L\X is compact. We take an open covering X =
S
α
Uα by

relatively compact sets Uα. Then X =
S
α
LUα gives an open covering of

L\X. By the compactness of L\X, we can choose finitely many Uj ’s among
{Uα} so that X =

S
j

L · Uj =
S
j

(Γ · C) · Uj =
S
j

Γ · (C · Uj), showing Γ\X

is compact. The converse statement is clear. ¤

1.10. Problems in a continuous analogue

In view of Observation 1.9, we pose the following analogous problems in

a continuous setting.

Problem 1.10. Let G be a Lie group and H and L closed subgroups.

1) Find the criterion on the triplet (L,G,H) such that the action of L on

G/H is proper ?

2) Find the criterion on the triplet (L,G,H) such that the double coset

L\G/H is compact in the quotient topology ?

We will give a complete answer to Problem (1.10) in terms of Lie algebras

in the following cases:

i) Problem 1.10(1) when G is reductive (see §2)
ii) Problem 1.10(2) when the groups G,H,L are real reductive (see §4).
In preparation for the next lecture we introduce in the rest of this lecture

some notations which are useful for a further study of Problem 1.10(1).

1.11. Relations ∼ and t
Suppose that H and L are subsets of a locally compact topological group

G.

Definition 1.11.1 ([Ko94b] Definition 2.1.1). We denote by H ∼ L
in G if there exists a compact set S of G such that L ⊂ SHS−1 and

H ⊂ SLS−1. Here SHS−1 :=
©
ahb−1 ∈ G : a, b ∈ S, h ∈ H

ª
. Then the

relation H ∼ L in G defines an equivalence relation.
We say the pair (H,L) is proper in G, denoted by H t L in G, iff

SHS−1 ∩ L is relatively compact for any compact set S in G.

The above definition is motivated by the following:
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Observation 1.11.2. Let H and L be closed subgroups of G, and Γ a

discrete subgroup of G.

1) The action of L on the homogeneous manifold G/H is proper if and only

if H t L in G.
2) The action of Γ on the homogeneous manifold G/H is properly discon-

tinuous if and only if H t Γ in G.

Here are some elementary properties of the relations ∼, t :

Lemma 1.11.3 ([Ko94b]). Suppose G is a locally compact topological

group and that H,H 0 and L are subsets of G.

1) H t L if and only if L t H .
2) If H ∼ H 0 and if H t L in G, then H 0 t L in G.

Now we are ready to give a reformulation of Problem 1.10 (1) as:

Problem 1.11.4 (a reformulation of Problem 1.10 (1)). Let G be a Lie

group and H and L subsets of G. Find the criterion on the pair (L,H) (or

on the pair of their equivalence classes with respect to ∼) such that L t H
in G.

1.12. Property (CI)

If a discrete group Γ acts on X properly discontinuously, then every

isotropy subgroup is finite and every Γ orbit is closed (Lemma 1.3.3). The

latter condition corresponds to the fact that each point is closed in the

quotient topology of Γ\X. In general, the converse implication does not
hold (cf. Example 1.6.2).

We have a similar picture in a continuous setting. In fact, let H, L

be closed subgroups of a locally compact topological group G. If L acts

properly on G/H, then any L-orbit LgH ' L/L∩gHg−1 ⊂ G/H is a closed

subset and each isotropy subgroup L ∩ gHg−1 is compact. In general, the
converse implication is not true. However, we focus our attention on the

latter property, that is, each isotropy subgroup is compact.

Definition 1.12.1 ([Ko90a,92a]). Suppose that H and L are subsets of a

locally compact topological group G. We say that the pair (L,H) has the

property (CI) in G if and only if L ∩ gHg−1 is compact for any g ∈ G.
Here (CI) stands for that the action of L has a compact isotropy subgroup

L ∩ gHg−1 at each point gH ∈ G/H , or stands for that L and gHg−1 has
a compact intersection (g ∈ G) (see also [Lip94]).
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If H t L in G, then the pair (L,H) has the property (CI) in G. The
point is to understand how and to what extent the property (CI) implies

the proper action.

Problem 1.12.2 ([Ko90a,92a] Open Problem 2). For which Lie groups,

does the following equivalence (1.3) hold ?

(1.12.3) H t L in G⇔ the pair (L,H) has the property (CI) in G.

In the next section, we shall see that the equivalence (1.12.3) holds if

G,H,L are real reductive algebraic groups (see Theorem (2.9.1)). Recently,

R. Lipsman [Lip94] pointed out that it is likely that the equivalence (1.12.3)

holds as well if G is a simply connected nilpotent group. There are some

further cases, especially in the context of a continuous analogue of the

Auslander conjecture (see Remark 0.5.3), where the equivalence (1.12.3)

is known to hold. See Example 5 and Proposition (A.2.1) in [Ko90a,92a];

Theorem (3.1) and Theorem (5.4) in [Lip94]. However, we should note that

the equivalence (1.12.3) does not always hold. For instance, if G = KAN is

an Iwasawa decomposition of a real reductive group G and if we put L := A

and H := N , then (L,H) has the property (CI) in G, while L 6t H in G as

we saw in Exercise 1.6.3 when G = SL(2,R).
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§2. Calabi-Markus phenomenon

2.1. Calabi-Markus phenomenon

Let G be a Lie group and H a closed subgroup. In the second lecture,

we focus our attention on the first basic problem:

Problem 2.1 (see Problem (1.7)(1)). Which homogeneous manifold G/H

admits an infinite discontinuous group ?

We first note that if M is a compact manifold then there is no infinite

discrete group (⊂ Diffeo(M)) acting onM properly discontinuously. So, we

might expect that the answer to Problem 2.1 should be related to certain

aspect of compactness of a homogeneous manifold G/H with respect to the

transformation group G ⊂ Diffeo(M). One observes that a criterion given
in the reductive case (Theorem 2.5) has such an aspect.

Our main interest here is the reductive case. However, we include a

quick review of some other typical cases as well.

i) relativistic spherical space form (§2.2),
ii) G/H with H compact (§2.3),
iii) G/H with G solvable (§2.4),
iv) G/H with G reductive (§2.5-).

2.2. Relativistic spherical space form

In 1962, Calabi and Markus discovered a surprising phenomenon on the

fundamental group π1 of a Lorentz manifold with constant curvature:

Theorem 2.2.1 ([CM62]). Every relativistic spherical space form is non-

compact and has a finite fundamental group π1 (see Example 0.5.4 for

definition).

As we saw in Example 0.5.4, the Calabi-Markus theorem is reformulated

in a group language as:

Theorem 2.2.2. If n ≥ 3, then there does not exist a discrete subgroup
Γ of O(n, 1) acting on O(n, 1)/O(n − 1, 1) properly discontinuously and
freely such that the fundamental group π1(Γ\G/H) is infinite.

We note that if n = 2, then G/H is diffeomorphic to a cylinder and has

the fundamental group ' Z. Theorem 2.2.2 is also reformulated as:

Theorem 2.2.3. Any discontinuous group acting (see Definition 1.4) on

a homogeneous manifold SO(n, 1)/SO(n− 1, 1) (n ≥ 2) is finite.
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This result will be generalized in §2.5 for homogeneous spaces of reduc-
tive type (Definition 2.6.2).

Setting the main subject aside for a moment, we mention a related

problem in non-Riemannian geometry based on the following observation:

Observation 2.2.4.

i) Any complete Riemannian manifold Mn (n ≥ 2) with constant sec-

tional curvature +1 is compact with a finite fundamental group.

ii) Any complete Lorentz manifold Mn (n ≥ 3) with constant sectional

curvature +1 is non-compact with finite fundamental group.

We recall again in a group language that M ' Γ\O(n + 1)/O(n) in
the first case, while M ' Γ\O(n, 1)/O(n − 1, 1) in the second case. A
classical theorem due to Myers may be interpreted as a “perturbation” of

Riemannian metric in the first statement:

Theorem 2.2.5 ([My41]). If the Ricci curvature of a complete Riemann-

ian manifold M satisfies K(U,U) ≥ c > 0 for all unit vectors, then M is

compact with finite fundamental group.

The author does not know a result concerning a “perturbation” of the

Lorentz metric in Observation 2.2.4 (ii). So we pay an attention on the

following problem in pseudo-Riemannian geometry:

Problem 2.2.6. Suppose M is a complete Lorentz manifold (or more

generally a complete manifold equipped with an indefinite Riemannian

metric).

Find a sufficient condition in terms of a local property of M which as-

sures thatM is noncompact with a finite fundamental group? In particular,

is there a sufficient condition given by some positiveness of the curvature

of M?

2.3. H is compact

Suppose that H is compact. Then it follows immediately from the defi-

nition of properly discontinuous actions that

The action of Γ on G/H is properly discontinuous

⇔ Γ is a discrete subgroup of G.

Moreover, if Γ is a torsion free discrete subgroup of G, then the action

of Γ on G/H is properly discontinuous and free whenever H is compact.

Therefore we have the following:
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Proposition 2.3. If G is a non-compact connected Lie group and H is

a compact subgroup, then there always exists an infinite discrete subgroup

Γ of G acting on G/H properly discontinuously and freely on G/H .

Proof. It suffices to show that any noncompact Lie group G contains an

infinite torsion free discrete subgroup.

Assume first that G is a noncompact semisimple Lie group, we write

G = KAN for an Iwasawa decomposition. We note that G is noncompact

if and only if R-rankG = dimA > 0. So we can take a lattice of A, which is
isomorphic to ZdimA, and is an infinite and torsion free discrete subgroup

of G.

Assume second that G is a noncompact solvable Lie group. Let eG be

the universal covering group of G, and Z the kernel of the covering mapeG → G. It follows from Theorem 1 and Remark of [Ch41] that we find

(0 ≤) r ≤ n = dimG and a basis X1, . . . , Xn of the Lie algebra of G which
has the following properties:

i) Rn → eG, (t1, . . . , tn) 7→ exp(t1X1) . . . exp(tnXn) is a surjective home-

omorphism.

ii) Z is isomorphic to a free abelian group generated by expX1, . . . , expXr.

We note that G is noncompact if and only if r < n. Therefore, if G is

noncompact, we put Γ := {exp(nXr+1) ∈ G : n ∈ Z}, which is an infinite
and torsion free discrete subgroup of G.

Now, we suppose G is a noncompact connected Lie group. Let g = l+ s

is a Levi decomposition, where s is the radical of g and l is a semisimple Lie

algebra. We write L, S for the analytic subgroups of G with Lie algebra l, s

respectively. Then L and S are closed subgroups of G. If G is noncompact,

then L or S must be noncompact. In either case, we can find an infinite

and torsion free discrete subgroup of G. ¤

2.4. Solvable groups

In the case of simply connected solvable homogeneous spaces, it turns

out that the Calabi-Markus phenomenon does not occur. The following

result is proved based on a structural result of a simply connected solvable

groups due to Chevalley [Ch41].

Theorem 2.4 ([Ko93] Theorem 2.2; see also [Lip94]). Suppose G is a solv-

able Lie group and H is a proper closed subgroup of G. Then there exists

a discrete subgroup Γ of G acting on G/H properly discontinuously and

freely such that the fundamental group π1(Γ\G/H) is infinite.
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2.5. Reductive cases

The Calabi-Markus phenomenon in the reductive case has been studied

by Calabi, Markus, Wolf, Kulkarni and Kobayashi, and it has been settled

completely in terms of a rank condition:

Theorem 2.5 ([CM62; Wo62; Wo84; Ku81; Ko89]). Let G/H be a homo-

geneous space of reductive type. The following statements are equivalent:

1) Any discontinuous group acting on G/H is finite.

2) R-rankG = R-rankH .

We will explain some terminology used here in the following section §2.6,
and then give some examples and a sketch of the proof in §2.7 and 2.8.

2.6. Homogeneous spaces of reductive type

We set up some notation of real reductive groups. Good references for

what we need are [He78] Chapter VI and [War72] Chapter I. Let G be a

connected real linear reductive Lie group.

Fix a maximal compact subgroup K in G. We write g = k + p for the

corresponding Cartan decomposition of the Lie algebra of G. Then the

homogeneous space G/K equipped with a G-invariant Riemannian metric

is said to be a Riemannian symmetric space. We fix a maximal abelian

subspace a ⊂ p. Then a is said to be a maximally split abelian subspace for
G. If we want to emphasize the group G, we write aG for a. We write A

for the corresponding connected Lie subgroup. We define:

Σ(g, a) : the restricted root system,

WG : the Weyl group associated to Σ(g, a),

rankG := the dimension of any maximal semisimple abelian subspace

of g,

c-rankG := rankK,

R-rankG := dim a = rankG/K,

d(G) := dim p = dimG/K.

We note that

c-rankG ≤ rankG ≥ R-rankG ≤ d(G).

Example 2.6.1. Let G = SO0(p, q) (p ≥ q) be the identity component
of the indefinite orthogonal group of signature (p, q). Then K ' SO(p) ×
SO(q), A ' Rq, c-rankG = [p2 ] + [

q
2 ], rankG = [p+q2 ], R-rankG = q,

d(G) = pq, and WG ' Sq n (Z/2Z)q. Here Sq denotes the q-th symmetric
group.



24 TOSHIYUKI KOBAYASHI

Definition 2.6.2. Suppose thatH is a closed subgroup in G with at most

finitely many connected components. If there exists a Cartan involution of

G which stabilizes H , then H is said to be reductive in G and G/H is said

to be a homogeneous space of reductive type.

If G/H is a homogeneous space of reductive type, then G and H have a

realization in GL(n,R) such that H ⊂ G ⊂ GL(n,R) are closed subgroups
and that H = tH and G = tG. Here tG := {tg : g ∈ G}, the transposed set
of G in GL(n,R).

Example 2.6.3. Suppose G is a real reductive linear group.

i) If H is compact, then G/H is a homogeneous space of reductive type.

ii) ([Yo38]) If H is semisimple, then G/H is a homogeneous space of re-

ductive type.

iii) Let σ be an involutive automorphism of G. If H is an open subgroup of

Gσ := {g ∈ G : σg = g}, then G/H is a homogeneous space of reductive

type. The homogeneous space G/H is said to be a reductive symmetric

space. If G is semisimple, G/H is said to be a semisimple symmetric

space.

iv) If X ∈ g is a semisimple element, namely, ad(X) ∈ End(g) is semisim-
ple, then the semisimple orbit G/ZG(X) ' Ad(G) ·X (⊂ g) is a homoge-
neous space of reductive type, where ZG(X) := {g ∈ G : Ad(g)X = X}.

v) ([Mos55]) If G0 ⊃ G1 ⊃ · · · ⊃ Gn and if Gi−1/Gi (1 ≤ i ≤ n) are all
homogeneous spaces of reductive type, then so is G0/Gn.

Suppose G/H is a homogeneous space of reductive type. There is a

non-degenerate Ad(H)-invariant bilinear form B on g which is positive

definite on p and negative definite on k. (Actually, there exists B which is

Ad(G)-invariant.) Because h is θ-stable, the restriction of B to h is also

non-degenerate. Therefore B induces a non-degenerate Ad(H)-invariant

bilinear form g/h ' To(G/H), the tangent space of G/H at o = eH ∈ G/H .
It induces a G-invariant (indefinite)-Riemannian metric on G/H by the left

translation. The signature of this metric is (dim(p/p ∩ h),dim(k/k ∩ h)).
In analogy with the polar coordinate in the Euclidean space Rn, there

is a polar coordinate in a Riemannian symmetric space G/K. In a group

language, this means that a real reductive linear Lie group G has a Cartan

decomposition

G = KAK.

In this decomposition, there is an element a(g) ∈ A, unique up to conjuga-
tion by WG such that g ∈ Ka(g)K for each g ∈ G.



DISCONTINUOUS GROUPS AND CLIFFORD-KLEIN FORMS 25

Definition 2.6.4 ([Ko89a], [Ko94b]). For each subset L of G, we define:

A(L) := A ∩KLK = {w · a(g) : w ∈ WG, g ∈ L} ⊂ A,

a(L) := logA(L) ⊂ a.

Here log : A→ a is the inverse of the diffeomorphism exp: a→ A.

If L is a subgroup of G which is reductive in G, then we can take a

maximal compact subgroup K of G such that L ∩ K is also a maximal

compact subgroup of a reductive Lie group L. Let aL be a maximally split

abelian subspace for L. Then there exists an element g of G such that

Ad(g)aL ⊂ aG. Then a(L) is a finite union of subspaces in aG:

a(L) = WG · Ad(g)aL ⊂ aG.

In this case, the notation a(L) coincides with that in [Ko89a] as a subset

of aG/WG.

Remark 2.6.5. Several remarks are in order.

i) If G/H is a homogeneous space of reductive type, then both G and H

are real reductive Lie groups. Note that the converse statement is not

always true.

ii) We avoid the terminology reductive homogeneous space which is usually

used in the following sense: the Lie algebra g may be decomposed into

a vector space direct sum of the Lie algebra h and a H-stable subspace

m (see for example, [KoN69], Chapter X §2). This notion is wider than
that of homogeneous spaces of reductive type in Definition (2.6.2). In

particular, neither G nor H itself is required to be reductive in this usual

definition of a reductive homogeneous space.

2.7. Examples of the Calabi-Markus phenomenon

We present here some examples of Theorem 2.5.

Example 2.7.1. Let G/H = SO(p + 1, q)/SO(p, q). Then R-rankG =

min(p+ 1, q) and R-rankH = min(p, q). Therefore, we have

there is no infinite discontinuous group acting on G/H

⇔ R-rankG = R-rankH

⇔ q ≤ p.

The case q = 1 is the original result of Calabi-Markus (see Theorem 2.2.3).



26 TOSHIYUKI KOBAYASHI

Example 2.7.2.

i) Any para-Hermitian symmetric space does not admit an infinite discon-

tinuous group (see [Lib52] for the definition of para-complex structure; see

also [KaKo85] for the definition and a classification of irreducible para-

Hermitian symmetric spaces).

ii) Any hyperbolic orbit does not admit an infinite discontinuous group.

Here, we say a semisimple orbit G/ZG(X) ' Ad(G)X (see Example 2.6.3

(iv)) is a hyperbolic orbit if X ∈ g is a hyperbolic element, that is, if all
eigenvalues of ad(X) ∈ End(g) are real. We note that a para-Hermitian
symmetric space is a reductive symmetric space that can be realized as a

hyperbolic orbit.

Example 2.7.3. There does not exist an infinite discontinuous group

acting on the following homogeneous manifolds;

reductive symmetric spaces

GL(n,C)/GL(n,R), SO(2n+ 1,C)/SO(2n,C), U(m,n)/O(m,n),

para-Hermitian symmetric spaces

Sp(n,R)/GL(n,R), SO∗(4n)/SU∗(2n)× R,
hyperbolic orbits

GL(n1 + · · ·+ nk,R)/GL(n1,R)× · · · ×GL(nk,R).

On the other hand, there exists a discontinuous group which is isomorphic

to Zn acting on the following homogeneous manifolds;

Sp(2n,R)/U(n, n), GL(2n,R)/GL(n,C), O(2m, 2n)/U(m,n) (n ≤ m).

2.8. Sketch of proof of the criterion for the Calabi-Markus phenomenon

First we explain a continuous analogue, that is, Problem 1.10 (1) for

the criterion for a proper action in a general reductive setting (Theorem

2.9.1). The criterion for the Calabi-Markus phenomenon (Theorem 2.5) is

obtained as a very special case of the continuous analogue, combined with

Observation 1.9.

2.9. Criterion of proper actions in a continuous setting

Theorem 2.9.1 ([Ko89a]). Let G/H, G/L be homogeneous spaces of

reductive type. Then the following four conditions are equivalent:

1) L acts on G/H properly.
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1)0 H acts on G/L properly.

1)00 H t L in G.
2) The triplet (L,G,H) has the property (CI). That is, for any g ∈ G,
L ∩ gHg−1 is compact.

2)0 a(L) ∩ a(H) = {0}.
See §1.11 for the definition of t ; §1.12 for the property (CI); and Defi-

nition 2.6.4 for a(L).

In the above theorem, (1) ⇔ (1)0 ⇔ (1)00, (2) ⇔ (2)0 and (1) ⇒ (2) are

easy. The non-trivial part is the implication (2) ⇒ (1). The proof of (2)

⇒ (1) is divided into two steps:

i) Reduction to the case where H and L are abelian. This is an easy step

that can be proved by using the Cartan decomposition.

ii) Proof of the abelian case. This is done by looking at the infinite points

in a Riemannian symmetric space based on some structural results on

parabolic subgroups and nilpotent elements.

Similar techniques lead us to a generalization to the case where H and

L are not necessarily reductive:

Theorem 2.9.2 ([Ko94b]). Let H,L are subsets of a real reductive linear

Lie group G.

1) H t L in G ⇔ a(H) t a(L) in a.
2) H ∼ L in G ⇔ a(H) ∼ a(L) in a.
If H and L are reductive in G, then it is easy to see that Theorem 2.9.2

(1) implies Theorem 2.9.1. If G = GL(n,R) and H = GL(m,R), then
Theorem 2.9.2 (1) implies a result of Friedland ([Fr94] Theorem (3.1)). For

more details, we refer to [Ko89a], [Ko94b].

2.10. Examples

Example 2.10. Let G = SO(2m, 2n), L = U(m,n) ⊂ G and H =

SO(p, q) ' 12m−p × SO(p, q) × 12n−q ⊂ G. Here we assume 0 < q ≤
p, 0 < n ≤ m, p ≤ 2m and q ≤ 2n for simplicity. Then with a suitable
coordinate, we can identify aG with R2n and WG ' S2n n (Z/2Z)2n in
GL(aG). Up to the conjugacy by an element of WG, we have

a(L) = {(a1, a1, a2, a2, . . . , an, an) : ai ∈ R (1 ≤ i ≤ n)} ,
a(H) = {(b1, b2, . . . , bq, 0, . . . , 0) : bi ∈ R (1 ≤ i ≤ q)} .

So the condition (2)0 in Theorem 2.9.1 amounts to q = 1. Therefore we

conclude that U(m,n) acts on SO(2m, 2n)/SO(p, q) properly if and only

if q = 1.
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2.11. Exercise

Exercise 2.11. Let G/H = SO(2p, 2q)/U(i, j) (i ≤ p, j ≤ q, i ≤ j).

Prove that if i < min(p, q) then there exists a discontinuous group Γ (⊂ G)
acting on G/H such that Γ is isomorphic to π1(Mg).

Hint: Show first that there is a subgroup of G which is isomorphic to

PSL(2,R) that acts properly on G/H (use Theorem 2.9.1). Then use

the fact that there exists a discrete subgroup Γ of PSL(2,R) such that
Γ ' π1(Mg) (see Example 0.5.5).

2.12. Historical Notes

Reductive Case : For the implication (1) ⇒ (2) in Theorem 2.5, E.Calabi

and L.Markus first proved in the case G/H = SO(n + 1, 1)/SO(n, 1) in

[CM62] (see Theorem 2.2.1). Then J.Wolf extended their result to the case

G/H = SO(p+ 1, q)/SO(p, q) (q ≤ p) in [Wo62]. After finding some other
similar results in symmetric spaces of rank one (e.g. [Wo64]), he finally

obtained the sufficiency of the real rank condition in the case of semisimple

symmetric spaces in the 60’s (see [Wo84]). His idea is also applicable to our

more general setting. On the other hand, the proof of the necessity of the

real rank condition given there was incomplete because of some confusion

with the definition of properly discontinuous actions (see Example 1.6.2 for

the difference between local Hausdorff topology and Hausdorff topology).

The converse implication (2) ⇒ (1) in Theorem 2.5 is more difficult be-

cause we have to show the existence of an infinite discontinuous group

acting on G/H if R-rankH < R-rankG. It took about twenty years be-
fore the converse implication was first proved in the rank one case G/H =

SO(p + 1, q)/SO(p, q) (q > p) by R.Kulkarni ([Ku81] Theorem 5.7). The

method there is based on a study of quadratic form of type (p+1, q). The

general case is due to T.Kobayashi [Ko89a] as an application of Theorem

2.9.1 with dimL = 1.

Solvable Case: It was proved by Kobayashi that there always exist a

Clifford-Klein form of a homogeneous manifold G/H with infinite funda-

mental group (Theorem 2.4) if G is a solvable group and H 6= G ([Ko93]).
Lipsman made a further study of properly discontinuous actions and the

property (CI) in [Lip94].

General Case: It is still an open problem to find a criterion on (G,H)

for a general Lie group G such that a homogeneous space G/H admits an

infinite discontinuous group.
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§3. Generalized Hirzebruch’s
proportionality principle and its application

3.1. Hirzebruch’s proportionality principle

In 1956, Hirzebruch proved

Theorem 3.1([Hi56]). Let D be a bounded Hermitian symmetric do-

main, Γ a torsion free discrete cocompact subgroup of the automorphism

group Aut(D) of D, and M the compact Hermitian symmetric space dual

to D. Then there is a real number A = A(Γ) such that cα(Γ\D)[Γ\D] =
Acα(M)[M ] for any cα, where α = (α1, . . . ,αk) is a multi-index and

cα = cα11 ∪ · · · ∪ cαkk is a monomial of Chern classes.

In the third lecture, we shall clarify this principle by eliminating unnec-

essary conditions. The setting is generalized as follows:

Hermitian symmetric spaces −→ homogeneous spaces of reductive type

tangent bundles −→ homogeneous vector bundles.

characteristic numbers −→ characteristic classes

As an application, we find an obstruction to the existence of compact

Clifford-Klein forms of homogeneous spaces of reductive type by means

of the Euler-Poincaré class (see Corollary 3.12.1).

3.2. Sketch of idea

It has been a classical and standard technique, in particular, in represen-

tation theory, to compare two objects through a holomorphic continuation:

For instance,

i) Weyl’s unitary trick – finite dimensional representations of reductive

groups

iii) Flensted-Jensen duality – eigenspaces on semisimple symmetric spaces

(e.g. [Fl86])

The argument in §3 lies in the same line:
iii) (generalized) Hirzebruch’s proportionality principle – characteristic

classes of homogeneous spaces of reductive type.

Let us explain the idea briefly in the case of Theorem 3.1, taking G =

SL(2,R) as an example. In this case

D = SL(2,R)/SO(2) (the Poincaré upper half plane),

M = SU(2)/SO(2) (' CP 1) (the projective space).
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There are two ways to compare the two manifolds D (or Γ\D) and M :
i) D ⊂M (the Borel embedding),

ii) D ⊂ SL(2,C)/SO(2,C) ⊃M (complexification).

The proportionality principle for Hermitian symmetric spaces (Theo-

rem 3.1) can be proved based on the Borel embedding (i) as well as based

on the complexification (ii). However, we will see that the argument us-

ing (ii) has a wider application, even when there is no natural map be-

tween D and M . Returning to our special example, we note that MC :=

SL(2,C)/SO(2,C) is a common complexification of M = SU(2)/SO(2)

andD = SL(2,R)/SO(2) in (ii), if we forget the original complex structures
and look upon M and D simply as real manifolds. Now, we can compare

differential forms which represent characteristic classes of two manifolds D

and M through the holomorphic continuation on MC. This is the main

idea of the proof of a generalized Hirzebruch’s proportionality principle,

which we discuss in §3.3 and §3.4.

3.3. Complexification and associated Riemannian spaces

of compact type

Let us introduce the setting to realize the idea in §3.2. Let G be a

connected real reductive linear group and H a connected subgroup reduc-

tive in G. We assume that there is a connected complex reductive Lie

group GC and a connected closed subgroup HC with Lie algebras gC and

hC respectively, such that G ⊂ GC. Take a Cartan involution θ of G

such that θH = H . We write the corresponding Cartan decomposition

as g = k + p. Let GU be a connected subgroup of GC with a Lie algebra

gU := k +
√
−1p, and HU a connected subgroup of GC with a Lie algebra

hU := h ∩ k+
√
−1h ∩ p. Then GU is a maximal compact subgroup of GC.

Similarly, HU is that of HC. The homogeneous manifold GU/HU is said to

be an associated Riemannian space of compact type. In summary, we have

the following setting:

G ⊂ GC ⊃ GU

∪ ∪ ∪
H ⊂ HC ⊃ HU .

Remark 3.3.1. The argument in this section is still valid forH with finitely

many connected components, if we replace HC by HC(H ∩K) and HU by
HU (H ∩K).

Example 3.3.2.
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i) Let G/H = SL(n,R)/SO(p, n−p). Then GC/HC = SL(n,C)/SO(n,C)
and GU/HU = SU(n)/SO(n).

ii) Let G/H = GL(n,R)/(R×)n. Then GC/HC = GL(n,C)/(C×)n and
GU/HU = U(n)/U(1)

n.

iii) Let G/H = Sp(2n,R)/Sp(n,C). Then GC/HC = Sp(2n,C)/Sp(n,C)×
Sp(n,C) and GU/HU = Sp(2n)/Sp(n)× Sp(n).

Example 3.3.3. The above assumption (i.e. closedness ofHC) is satisfied

for (G,H) in Example 2.6.3 (i), (ii), (iii), (iv). We recall that G/H is a

reductive symmetric space in Example 2.6.3 (iii); G/H is a semisimple orbit

in Example 2.6.3 (iv). The corresponding associated Riemannian space of

compact type GU/HU is:

GU/HU = a compact symmetric space for Example 2.6.3 (iii),

GU/HU = a generalized flag variety for Example 2.6.3 (iv).

3.4. A homomorphism between cohomology rings

In the setting of §3.3, suppose a discrete subgroup Γ of G acts on G/H
properly discontinuously and freely, so that Γ\G/H is a smooth manifold.

(We do not require that Γ\G/H is compact. Γ is allowed to be the trivial

subgroup {e}.)
We define

MU := GU/HU ⊂MC := GC/HC ⊃MR := G/H.

Then in order to compare characteristic classes of the two manifolds MU

and MR we use the following restriction maps:

O
Ã

p̂

TMC

!

. rest. & rest.

A
Ã

p̂

RTMU

!
A
Ã

p̂

RTMR

!
.

The groups GU and G acting onMU andMR respectively have the common

complexification GC, which acts holomorphically on MC. Because GU is

compact, we can find a GU invariant differential form as a representative of
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an arbitrary element of the de Rham cohomology group H∗(GU/HU ;C).
This element extends to a holomorphic differential form on GC/HC, and

then we can restrict to G/H and to Γ\G/H . Thus, the above diagram
induces a homomorphism on the cohomology level:

Theorem 3.4. We have a natural C-algebra homomorphism

η : H∗(GU/HU ;C)→ H∗(Γ\G/H ;C).

If Γ\G/H is compact and H is connected, then η is injective.

The last statement follows from the Poincaré duality.

3.5. Real homogeneous vector bundles

We review the definition of an associated vector bundle. Let ρ : H →
GLR(V ) be a representation of H on a real vector space V . Suppose a

discrete subgroup Γ acts on a homogeneous space G/H properly discontin-

uously. Associated to the principal H-bundle

H → Γ\G→ Γ\G/H,

is a real homogeneous vector bundle over Γ\G/H
ΓE := Γ\G×

ρ
V

defined by the set of equivalence classes with respect to the action of H ,

that is,

(g, v), (g0, v0) ∈ Γ\G× V are equivalent

⇔ g = g0h and v = ρ(h−1)v0 for some h ∈ H.

The projection on the first component Γ\G × V → Γ\G gives rise to the

projection ΓE ≡ Γ\G ×
ρ
V → Γ\G/H with typical fiber V . Similarly, an

associated real vector bundle EU := GU ×
ρU
VU over GU/HU is defined if a

representation ρU : HU → GLR(VU ) is given.

3.6.Weyl’s unitary trick

The idea of Weyl’s unitary trick is a holomorphic continuation of finite

dimensional representations. Here, we set up some notation of finite dimen-

sional representations that fits into Hirzebruch’s proportionality principle.
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Let H ⊂ HC ⊃ HU be as in §3.3, namely, HC is a complex reductive Lie
group, H is a real form and HU is a compact real form. Let

ρ : H → GLR(V ),

ρU : HU → GLR(VU )

be finite dimensional representations over R. We say that the complexifi-
cations of ρ and ρU are isomorphic if there are

i) a complex vector space VC

ii) a holomorphic representation ρC : HC → GL(VC,C)
iii) isomorphisms ψ : V ⊗ C ∼→ VC and ψU : VU ⊗ C ∼→ VC

such that the following diagram commutes:

H
ι
,→ HC ←- HU

ρ

⏐⏐y ⏐⏐yρC ⏐⏐yρU
GLR(V ) ,→

ψ]
GLC(VC) ←-

ψU]

GLR(VU ).

3.7. Hirzebruch’s proportionality principle

Theorem 3.7([KoO90]). Retain the setting as in §3.3. Let Γ be any
discrete subgroup of G acting on G/H freely and properly discontinuously

from the left. Suppose that the complexifications of ρ : H → GLR(V )

and ρU : HU → GLR(VU ) are isomorphic. Then the i-th Pontryagin class

satisfies

η(pi(EU )) = pi(
ΓE) ∈ H4i(Γ\G/H ;R).

In particular, if there is a relation
P
aαp

α(EU ) = 0 in H∗(GU/HU ;R),
then the equation

P
aαp

α(ΓE) = 0 in H∗(Γ\G/H ;R) holds. Here α =
(α1, . . . ,αk) is a multi-index and p

α = pα11 ∪ · · · ∪ pαkk is a monomial of

Pontryagin classes.

Sketch of Proof. We take an invariant connection (the canonical connec-

tion of the second kind on G/H in the sense of [No54]) on the principal

bundles G → G/H , GU → GU/HU , respectively. Then the curvature

forms are represented in terms of the Lie algebras. By the Chern-Weil

theory (see [D78], [KoN69], [We80]), characteristic classes are represented

by using curvature forms. Now, we have the theorem by the usual Weyl’s
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unitary trick for finite dimensional representations and by using the holo-

morphic continuation through η. ¤

We note that in the case of Riemannian symmetric spaces (in particular,

Hermitian symmetric spaces), we can prove the theorem without using a

holomorphic continuation. That is, we pull back directly the curvature

forms via the R-linear bijection gU/hU ∼−→ g/h. This map is different from
η in Theorem 3.4 only by a constant multiple depending on degrees.

3.8. Tangent bundle

The characteristic classes of a manifold are, by definition, those of the

tangent bundle. The tangent bundle T (Γ\G/H) is associated to the adjoint
representation

Ad|H : H → GLR(g/h),

that is,

T (Γ\G/H) ' Γ\G ×
Ad|H

g/h,

and similarly

T (GU/HU ) ' GU ×
Ad|HU

gU/hU .

Since Ad|H : H → GLR(g/h) and Ad|HU
: HU → GLR(gU/hU ) have iso-

morphic complexifications, we have now relations of Pontryagin classes (of

the tangent bundle) between GU/HU and Γ\G/H as follows.

Corollary 3.8. In the same setting as Theorem 3.7, we have

η (pi(GU/HU )) = pi(Γ\G/H) ∈ H4i(Γ\G/H ;R).

Furthermore, if H is connected, then we have a relation of Euler-Poincaré

classes:

η (χ(GU/HU )) = χ(Γ\G/H) ∈ Hn(Γ\G/H;R).

We note that both Γ\G/H andGU/HU are orientable ifH is connected.

3.9. Complex homogeneous vector bundles

Let ρ : HC → GLC(VC) be a holomorphic representation on a finite di-

mensional vector space VC over C . Associated to the principal H-bundle

H → Γ\G→ Γ\G/H,
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we define a homogeneous complex vector bundle over Γ\G/H by

ΓEC := Γ\G ×
ρ|H

VC.

Similarly, we define a homogeneous complex vector bundle over GU/HU by

EUC := GU ×
ρ|HU

VC.

3.10. Chern classes

Theorem 3.10.1 ([KoO90]). Retain the setting as above. Let Γ be any

discrete subgroup of G acting on G/H freely and properly discontinuously

from the left. Then the i-th Chern class satisfies

η(ci(EUC)) = ci(
ΓEC) ∈ H2i(Γ\G/H ;R).

In particular, if there is a relation
P
aαc

α(EU ) = 0 in H∗(GU/HU ;R),
then the equation

P
aαc

α(ΓE) = 0 in H∗(Γ\G/H;R) holds. If Γ\G/H is

compact and H is connected, the converse statement also holds.

Exercise 3.10.2. Formulate an analogous result to Corollary 3.8 in the

case of Chern classes of homogeneous manifolds.

(Hint: The assumption will be that G/H is an elliptic orbit. See §4.12. See
also [KoO90] Corollary 4.)

3.11. Examples

Example 3.11.1. We consider a semisimple symmetric space G/H =

SO(p, q)/SO(p − 1, q). All Pontryagin classes of any Clifford-Klein form
Γ\G/H of a homogeneous manifold G/H vanish in H∗(Γ\G/H ;R) be-
cause we know the corresponding result holds for GU/HU ' Sp+q−1.

In particular, all Pontryagin classes of a Riemannian manifold of con-

stant sectional curvature vanish (see also [Su76]). We mention that there

exist compact Clifford-Klein forms of SO(p, q)/SO(p − 1, q) if (p, q) =
(1, n), (2, 2n), (4, 4n), (8, 8) (n ∈ N) (see Example 4.13.1).

Example 3.11.2. We endow Cp+q+1 with an (indefinite) Hermitian metric
of type (p+ 1, q), that is,

(z, z) := z1z1 + · · ·+ zp+1zp+1 − zp+2zp+2 − · · ·− zp+q+1zp+q+1.

Let X(p, q) be the open subset of the projective space CP p+q, which con-
sists of the complex lines on which the restriction of the indefinite Hermitian
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metric is positive definite. Then U(p+ 1, q) acts transitively on X(p, q) so

that we have a diffeomorphism

X(p, q) ' U(p+ 1, q)/U(1)× U(p, q) =: G/H
⊂ GU/HU := U(n+ 1)/U(1)× U(n) ' CPn.

Here we put n = p+ q. We note that X(n, 0) = CPn ' GU/HU and that
X(0, n) is the dual Hermitian symmetric domain of the noncompact type

(ref. [He78] for the terminology). Let Γ be a discrete subgroup of U(p+1, q)

acting on X(p, q) freely and properly discontinuously so that Γ\X(p, q) is
a Clifford-Klein form of X(p, q). Then we have a relation among Chern

classes:

cj(Γ\X(p, q)) = (
j−1Y
l=0

n+ 1− l
n+ 1

) c1(Γ\X(p, q))j (1 ≤ j ≤ n).

This follows from the corresponding fact for

X(n, 0) = CPn ' U(n+ 1)/U(1)× U(n),
that is, the total Chern class c(CPn) = 1+ c1(CPn)+ · · ·+ cn(CPn) of the
complex projective space CPn is given by

c(CPn) ≡ (1 + x)n+1 mod xn+1,

where x is the first Chern class of the hyperplane section bundle (see

[BoHi58] 15.1, [MiSt74] Theorem 14.10). If Γ\X(p, q) is a compact Clifford-
Klein form of X(p, q), then cj(Γ\X(p, q)) 6= 0 for any j with 1 ≤ j ≤ n.
There exists a compact Clifford-Klein form of X(0, n), X(n, 0) (Riemann-

ian case) and X(1, 2r) (see Corollary 4.7), whereas any discrete subgroup

acting properly discontinuously on X(p, q) with p ≥ q is finite (see Theorem
2.5).

Example 3.11.3. Let M be a compact Clifford-Klein form of a complex

manifold SO(p, q+ 2)/SO(p, q)× SO(2). Then the Chern class cj(M), for
any j with 1 ≤ j ≤ p+q, of a complex manifoldM does not vanish, because

we know that the corresponding result holds for the Hermitian symmetric

space SO(n + 2)/SO(n) × SO(2). There exists a compact Clifford-Klein
form for (p, q) = (n, 0) (n ∈ N) and (4, 1) (see Corollary 4.7).

3.12. Compact Clifford-Klein form

We mentioned in §1.2 a third proof that PSL(2,R)/SO(1, 1) does not
admit a compact Clifford-Klein form by using a non-vanishing vector field.

Now we are ready to state a generalization of this result to a higher dimen-

sional setting:
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Corollary 3.12.1. Let (G,H) be as in §3.3. Denote byK a maximal com-

pact subgroup of G such that H ∩K is also a maximal compact subgroup

of H . If rankG = rankH and dimK/H ∩K is odd, then G/H admits

no uniform lattice, that is, there exists no compact Clifford-Klein form of

G/H .

Sketch of Proof. We may and do assume H is connected. Then G/H

admits a G-invariant orientation so that a Clifford-Klein form Γ\G/H is

an orientable manifold. The tangent bundle T (Γ\G/H) splits according to
the H ∩K module decomposition q = q ∩ k+ q ∩ p. Then χ(Γ\G/H) = 0
because dimR q ∩ k = dimK/H ∩ K is odd. On the other hand, as H is

of maximal rank in G, so is HU in GU . As H is connected, so is HU .

Therefore GU/HU is a compact orientable manifold with non-vanishing

Euler number χ(GU/HU ) ([HoS40]). Now it follows from Theorem 3.4

that the fact χ(GU/HU ) 6= 0 contradicts to that χ(\G/H) = 0 if Γ\G/H
is compact. Hence Γ\G/H cannot be compact. ¤

Example 3.12.2 (see §1.2). We know that the hyperboloid of one sheet

G/H = SL(2,R)/SO(1, 1) does not admit a compact Clifford-Klein form.
This fact was explained by using non-vanishing vector fields in §1.2 (3),
which is a geometric idea of Corollary 3.12.1. In this case, we have rankG =

rankH = 1 and dimK/H ∩K = 1, so that the assumptions in Corollary

3.12.1 are satisfied.

Exercise 3.12.3 (see also Example 4.13.1). Prove that a semisimple sym-

metric space SO(i+ k, j + l)/SO(i, j)× SO(k, l) does not have a compact
Clifford-Klein form if exactly one element among i, j, k, l is even.

At the end of this section, we pose the following conjecture:

Conjecture 3.12.4 (see [Ko89b] Conjecture 6.4). Let G/H be a homo-

geneous space of reductive type. It is likely to hold the inequality

rankG+ rank(H ∩K) ≥ rankH + rankK

if G/H admits a compact Clifford-Klein form.

The case with rankG = rankH can be proved based on Corollary 3.8

and on an argument of the cohomological dimension of a discrete group,

as a slight improvement of Corollary 3.12.1 (see [Ko89a] Corollary 5). If

H is compact or if G/H is a group manifold, then the above inequality is

obviously satisfied. As far as the author knows, the above inequality holds

for all homogeneous spaces of reductive type that are proved to admit

compact Clifford-Klein forms (cf. Corollary 4.7).
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3.13. Notes

1) Most material in this section is taken from [KoO90].

2) To establish the holomorphic continuation, we calculate characteristic

forms in terms of Lie algebras. Similar calculations are also carried out

in [Bo67], [CGW76] for Riemannian symmetric spaces.

3) There exist different generalizations of Hirzebruch’s proportionality prin-

ciple, due to D.Mumford [Mu77] for the noncompact Clifford-Klein forms

of Hermitian symmetric spaces, J.L.Dupont-W.Kamber [DK93] for the

secondary characteristic numbers.

4) F.Labourie informed me that Corollary 3.12.1 is also valid for a manifold

modeled on a homogeneous space G/H (by e-mail, 1994).

5) A similar idea (at least implicitly) to Corollary 3.12.1 is used in [Ku81]

based on the Gauss-Bonnet theorem in the case of rank 1 symmetric

spaces G/H = SO(p+ 1, q)/SO(p, q) (cf. Exercise (3.12.3)).
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§4. Compact Clifford-Klein forms of
non-Riemannian homogeneous spaces

In the fourth lecture, we focus our attention on compact Clifford-Klein

forms of homogeneous spaces of reductive type. §4 is organized as follows:
i) §4.1 - §4.9 Homogeneous spaces with compact Clifford-Klein forms.

ii) §4.10 - §4.12 Homogeneous spaces without compact Clifford-Klein

forms.

4.1. Uniform lattice, compact Clifford-Klein form

Definition 4.1. Suppose G is a Lie group and H is a closed subgroup.

If a discrete subgroup Γ ⊂ G satisfies the following two conditions:
(4.1.1)(a) Γ acts properly discontinuously and freely on G/H ,

(4.1.1)(b) Γ\G/H is compact,

then Γ is said to be a uniform lattice for the homogeneous space G/H .

Then the double coset space Γ\G/H is a compact Clifford-Klein form of

the homogeneous space G/H.

Suppose there exists a G-invariant measure on G/H. (This is the case

for a homogeneous space of reductive type.) Then it induces a measure

on a Clifford-Klein form Γ\G/H . The discrete subgroup Γ is said to be a
lattice for the homogeneous space G/H provided both (4.1.1)(a) and

(4.1.2)(b) Γ\G/H is of finite volume

are satisfied.

If H is compact (in particular H = {e} or H = K), the above definition

coincides with a usual one.

4.2. Riemannian cases

If the isotropy subgroup H is compact, then any discrete subgroup of

G acts properly discontinuously on G/H as we saw in §2.3. This case,
reffered to as the Riemannian case, allows a compact Clifford-Klein form.

We recall the following important theorem due to Borel, Harish-Chandra,

Mostow-Tamagawa.

Theorem 4.2([Bo63],[BoHa62],[MoTa62]). Suppose G is a real linear re-

ductive Lie group and H is a compact subgroup of G. Then G/H ad-

mits compact Clifford-Klein forms. Furthermore, G/H has noncompact

Clifford-Klein forms which have finite volume if G contains a noncompact

semisimple factor.
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We shall not prove this theorem, and instead refer the reader to [Ra72],

[Zi84] as well as original papers. We shall mention, however, some typical

examples.

i) A compact Riemann surface Mg (g ≥ 2) is a compact Clifford-Klein

form of the Poincaré plane PSL(2,R)/SO(2) (see Example 0.5.5).
ii) If Γ = Zn ⊂ G = Rn ⊃ H = {0}, then Γ\G/H ' S1 × · · · × S1 is a
compact Clifford-Klein form of G/H ' Rn.

iii) If Γ = GL(n,Z) ⊂ G = GL(n,R) ⊃ H = {e} (n ≥ 2), then Γ\G/H is a

noncompact Clifford-Klein form of G/H ' GL(n,R) with finite volume.

4.3. Moore’s Ergodicity Theorem

A simple remark here is that if Γ is a uniform lattice for a group manifold

G = G/{e}, then the quotient topology of the double coset space Γ\G/H
is always compact. However, if H is non-compact, the double coset space

Γ\G/H does not have a good topology in general. In fact, the action of

Γ on G/H is not properly discontinuous. We leave it to the reader as an

easy exercise:

Exercise 4.3.1. Prove that the action of Γ on G/H is not properly dis-

continuous if Γ is a uniform lattice of G and if H is noncompact.

Furthermore, the action of Γ on G/H can be ergodic:

Theorem 4.3.2 ([Moo66], see also [Zi84] Chapter 2). Let G be a non-

compact simple linear Lie group. If Γ ⊂ G is a lattice and H ⊂ G is a

closed subgroup, then

The action of Γ is ergodic on G/H ⇔ H is noncompact.

Here, we recall that the action of Γ is said to be ergodic if every Γ-invariant

measurable set is either null or conull.

Thus, a uniform lattice for G/H must be smaller than a uniform lattice

for G in some sense. In this respect, the cohomological dimension of an

abstract group is a nice measure for the ‘size’ of a discrete group (see

[Ko89a] Corollary 5.5). We use it in the proof of Theorem 4.9 and Theorem

4.10. Basic references of the cohomological dimension of groups for which

we need are [Ser71] and [Bi76].

4.4. Indefinite-Riemannian case

Theorem 4.4 ([Ko89a] §4). Suppose that G is a real reductive linear

group and that H and L are both reductive in G. If the triplet (G,L,H)
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satisfies both of the following conditions

a(L) ∩ a(H) = {0},(4.4)(a)

d(L) + d(H) = d(G),(4.4)(b)

thenG/H admits compact Clifford-Klein forms. Furthermore, G/H admits

noncompact Clifford-Klein forms which have finite volume if L contains a

noncompact semisimple factor.

So does G/L because a symmetric role of H and L.

4.5. Trivial examples (I) — Riemannian cases revisited

Suppose G/H is of reductive type. We know that there exists compact

Clifford-Klein forms of G/H if H is compact (Theorem 4.2). This fact is

explained in the context of Theorem 4.4 as follows.

Suppose H is compact. Then we have a(H) = {0} and d(H) = 0. If

we take L = G, then the conditions (4.4)(a) and (b) are satisfied. Thus,

Theorem 4.2 (Riemannian case) is a special case of Theorem 4.4. But this

is rather stupid because we shall use Theorem 4.2 as a starting point for

the proof of Theorem 4.4.

4.6. Trivial examples (II) — group manifold cases

Let G0 be a noncompact real reductive Lie group. Suppose (G,H) =

(G0×G0, diagG0) so that G/H ' G0 is a group manifold. This case is trivial
because it is obvious that G/H admits a compact Clifford-Klein form by

Theorem 4.2. But it is instructive to see how Theorem 4.4 is applied in the

group manifold case because H ' G0 is noncompact.
Let g0 = Lie G0 = k0 + p0 be a Cartan decomposition and aG0 ⊂ p0 be

a maximally abelian subspace. We write WG0 for the Weyl group of the

restricted root system Σ(g, a). Then we have

aG = aG0 ⊕ aG0 ,

WG =WG0 ×WG0 .

Let us take L := G0 × 1 (or 1×G0). Then we have

a(H) = {(X,wX) : X ∈ aG0 , w ∈WG0}
a(L) = {(X, 0) : X ∈ aG0}
d(H) = d(L) = d(G0), d(G) = 2 dimG0.

Hence the conditions (4.4)(a) and (b) are satisfied.
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4.7. Examples of indefinite-Riemannian homogeneous spaces that have

compact Clifford-Klein forms

As a corollary of Theorem 4.4 we have

Corollary 4.7. The following homogeneous spaces (six series and six iso-

lated ones) admit compact Clifford-Klein forms. Also they admit non-

compact Clifford-Klein forms of finite volume.

1) a) SU(2, 2n)/Sp(1, n), b) SU(2, 2n)/U(1, 2n),

2) a) SO(2, 2n)/U(1, n), b) SO(2, 2n)/SO(1, 2n),

3) a) SO(4, 4n)/Sp(1, n), b) SO(4, 4n)/SO(3, 4n),

4) a) SO(8, 8)/SO(8, 7), b) SO(8, 8)/Spin(8, 1),

5) a) SO(4, 4)/SO(4, 1)× SO(3), b) SO(4, 4)/Spin(4, 3),

6) a) SO(4, 3)/SO(4, 1)× SO(2), b) SO(4, 3)/G2(2).

Here, (a) and (b) in each line forms a pair (G/H,G/L) which satisfies

the assumptions (4.4) (a) and (b) of Theorem 4.4. For example, the first

line means (G,H,L) = (SU(2, 2n), Sp(1, n), U(1, 2n)) satisfies (4.4)(a) and

(b).

The signature of the indefinite metric on G/H (and also on Clifford-

Klein forms) induced from the Killing form is given by (4n, 3n2 − 2n),
(4n, 2), (2n, n2 − n), (2n, 1), (12n, 7n2 − 4n + 3), (4n, 3), (8, 7), (56, 28),
(12, 3), (4, 3), (8, 2), and (4, 3), respectively.

4.8. Sketch of Proof

The idea of Theorem 4.4 is illustrated by the abelian case. Let G =

Rn ⊃ H = Rk (n ≥ k). Take a complementary subspace L ' Rn−k of H
in G and choose a lattice Γ ' Zn−k of L. Then

Γ\G/H ' Zn−k\Rn/Rk ' S1 × · · · × S1

is a compact Clifford-Klein form of G/H . In this case (4.4)(a) is satisfied

because L ' Rn−k is complementary to H ' Rk, and (4.4)(b) is satisfied
because d(L) + d(H) = (n− k) + k = n = d(G).
For the general case, the proof of Theorem 4.4 is divided into the fol-

lowing three steps.

i) The criterion for proper actions (continuous analogue of discontinuous

groups) (Theorem 2.9.1),

ii) The criterion for compact quotient (continuous analogue of uniform

lattice) (Theorem 4.9),

iii) Existence of uniform lattice in the Riemannian case (Theorem 4.2).
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If both (4.4)(a) and (4.4)(b) are satisfied, then L acts properly on G/H

by Theorem 2.9.1 and the quotient topology of L\G/H is compact by

Theorem 4.9. On the other hand, Theorem 4.2 assures the existence of

a torsion free cocompact discrete subgroup Γ of L. Then Γ turns out to

be a uniform lattice for G/H thanks to Observation 1.9. This shows the

first half of Theorem 4.4. Similarly, a torsion free co-volume finite discrete

subgroup Γ of L is also a lattice for G/H .

4.9. Continuous analogue

A continuous analogue of a compact Clifford-Klein form Γ\G/H of a

homogeneous manifold is a compact double coset space L\G/H in the

quotient topology where L,H are closed subgroups of G such that L acts

properly on G/H (see Definition 1.8).

Theorem 4.9. Let G be a real reductive linear Lie group, H and L closed

subgroups which are reductive in G. Under the equivalent conditions in

Theorem 2.9.1 (i.e. L t H in G in the sense of Definition 1.11.1), the

following two conditions are equivalent:

(4.9)(a) L\G/H is compact in the quotient topology.

(4.9)(b) d(L) + d(H) = d(G).

A flavor of the proof. We recall that d(G) = dimR p if we write a Cartan

decomposition as g = k + p. In view of the Cartan decomposition of Lie

group G ' K × exp(p), we may regard
(4.9.1) d(G) = the dimension of “noncompact part” of G.

A homogeneous space of reductive type G/H has a vector bundle structure

over a compact manifold K/H ∩K with typical fiber p/p∩ h (e.g. [Ko89a]
Appendix). In view of dimR p/p ∩ h = d(G)− d(H), we may regard:
(4.9.2) d(G)− d(H) = the dimension of “noncompact part” of G/H.

Now, one might expect that

(4.9.3)

d(G)− d(H)− d(L) = the dimension of “noncompact part”of L\G/H,
and that (4.9.3) would lead to Theorem 4.9. However, (4.9.3) is not always

“true” if we do not assume that L t H in G. (We remark that the dimen-

sion of “noncompact part” of L\G/H is not defined yet.) The simplest and

illustrative observation is when G = Rn and H,L are vector subspaces of
G with dimension k, l, respectively. Then

d(G)− d(H)− d(L) = n− k − l,
L\G/H ' Rn−k−l+dim(H∩L).
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Therefore, if we assume dim(H∩L) = 0 (or equivalently L t H in G), then

we have

d(G)− d(H)− d(L) = 0⇐⇒ L\G/H is compact.

This explains why the assumption L t H is necessary in Theorem 4.9, and

how (4.9)(a) and (4.9)(b) are related.

For the general case where G is a real reductive linear group, the under-

lying idea is similar but we need some more work. This is carried out in a

frame work of a discrete analogue of Theorem 4.9, where L is replaced by

an arithmetic subgroup Γ of L and d(L) is replaced by the cohomological

dimension of Γ. See [Ko89a] for details. ¤

4.10. Necessary conditions for the existence of compact Clifford-Klein

forms

For the existence of compact Clifford-Klein forms of homogeneous spaces

of reductive type, we have presented two necessary conditions so far:

i) Calabi-Markus phenomenon (Theorem 2.5)

ii) Hirzebruch’s proportionality principle (Corollary 3.12.1)

Here we give a third necessary condition for the existence of compact

Clifford-Klein forms of homogeneous spaces:

Theorem 4.10. LetG/H be a homogeneous space of reductive type. G/H

does not admit a compact Clifford-Klein form if there exists a closed sub-

group L reductive in G satisfying the following two conditions:

a(L) ⊂ a(H),(4.10)(a)

d(L) > d(H).(4.10)(b)

The proof of Theorem 4.10 is similar to that of Theorem 4.4 and Theorem

4.9, by using the cohomological dimension of an abstract group together

with Theorem 2.9.1. See [Ko92b] for details.

For an application of Theorem 4.10, we need to find a suitable L satis-

fying (4.10)(a),(b), provided G/H is given. This is done systematically for

some typical homogeneous space of reductive type in §4.11 and §4.12.

4.11. Semisimple symmetric spaces

In order to apply Theorem 4.10 to a semisimple symmetric space, we

need some results on the root system for semisimple symmetric spaces.

First of all, we give a brief review of the notion of ²-families introduced by

T.Oshima and J.Sekiguchi [OS84].
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Let g be a semisimple Lie algebra over R, σ an involution of g, θ a
Cartan involution of g commuting with σ. Then σθ is also an involution

of g because (σθ)2 = σ2θ2 = 1. Let g = k + p = h+ q = ha + qa be direct

sum decompositions of eigenspaces with eigenvalues ±1 corresponding to
θ, σ and σθ respectively. The symmetric pair (g, ha) is said to be the

associated symmetric pair of (g, h). Note that ha = k ∩ h + p ∩ q and
that (ha)

a
= h. Fix a maximally abelian subspace ap,q of p ∩ q. Then

Σ(ap,q) ≡ Σ(g, ap,q) satisfies the axiom of root system (see [Ro] Theorem

5, [OS84] Theorem 2.11) and is called the restricted root system of (g, h).

As σθ ≡ id on ap,q, we have a direct sum decomposition of the root space

g(ap,q,λ) = (g(ap,q,λ) ∩ ha) + (g(ap,q,λ) ∩ qa). We define a map
(4.11.1) (m+,m−) : Σ(ap,q)→ N× N,
by m+(λ) := dim (g(ap,q,λ) ∩ ha), m−(λ) := dim (g(ap,q,λ) ∩ qa). Note
that if (g, h) is a Riemannian symmetric pair, then ha = g and m− ≡ 0. A
map ε : Σ(ap,q)∪ {0}→ {1,−1} is said to be a signature of Σ(ap,q) if ε is a
semigroup homomorphism with ε(0) = 1. It is easy to see that a signature

is determined by its restriction to Ψ, a fundamental system for Σ(ap,q) and

that any map Ψ→ {1,−1} is uniquely extended to a signature.
To a signature ε of Σ(ap,q), we associate an involution σε of g defined

by σε(X) := ε(λ)σ(X) if X ∈ g(ap,q;λ), λ ∈ Σ(ap,q)∪{0}. Then σε defines
a symmetric pair (g, hε). The set

F ((g, h)) := {(g, hε) : ε is a signature of Σ(ap,q)}
is said to be an ε-family of symmetric pairs ([OS84] §6). Among an ε-

family, there is a distinguished symmetric pair called basic characterized

by,

m+(λ) ≥ m−(λ) for any λ ∈ Σ(ap,q) such that
λ

2
/∈ Σ(ap,q).

It is known that there exists a basic symmetric pair of F = F ((g, h)) unique

up to isomorphisms ([OS84] Proposition 6.5).

Example 4.11.1.

i) {(sl(n,R), so(p, n− p)) : 1 ≤ p ≤ n} is an ε-family with (sl(n,R), so(n))
basic. This family is an example of the so-called Kε-family, which is a

special case of an ε-family.

ii) For F = R,C or H (a quaternionic number field), we write U(p, q;F)
for O(p, q), U(p, q) and Sp(p, q), respectively. We fix r < q < p. Then

{(u(r, p+ q − r;F), u(k, p− k;F) + u(r − k, q − r + k;R) : 0 ≤ k ≤ r}
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is an ε-family with (u(r, p+ q − r;F), u(r, p− r;F) + u(q;R)) basic.

Now we are ready to state an application of Theorem 4.10 to symmetric

spaces:

Corollary 4.11.2 ([Ko92b] Theorem 1.4). If a semisimple symmetric

space G/H admits a compact Clifford-Klein form, then the associated sym-

metric pair (g, ha) is basic in the ε-family F ((g, ha)).

Sketch of Proof. We apply Theorem 4.10 with “H”:= Ha
ε and “L”:= H

a.

Then the assumptions (4.10)(a) and (4.10)(b) follow from the following

lemma (see [Ko92b] Lemma 4.5.2). ¤

Lemma 4.11.3. With notations as above, let (g, h) be basic in the ε-family

F = F ((g, h)) and (g, hε) be not basic in F . Then we have

1) a(Ha) = a(Hε
a).

2) d(Ha) > d(Hε
a).

Here are some examples of symmetric pair (g, h) such that the associated

pair (g, ha) is basic in its ε-family.

Example 4.11.4. As usual, we write (g, k) for a Riemannian symmetric

space if g is a Lie algebra of noncompact reductive Lie group G. In the

following table F denotes R, C or H.

(g, h) (g, ha) is basic

(g, g) (g, k)

(g, k) (g, g)

(g+ g,diag g) (g+ g, diag g)

(gC, kC) (gC, g)

(u(p, q;F), u(m, q;F) + u(p−m;F)) (u(p, q;F), u(m;F) + u(p−m, q;F))

A stupid remark is that the associated symmetric pair (g, ha) of a Rie-

mannian symmetric pair (g, k) is (g, g) which is obviously basic, and that
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of a group manifold (g0+g0,diag g0) is again a group manifold which is also

basic. This is consistent with the fact that both Riemannian symmetric

spaces and group manifolds admit compact Clifford-Klein forms (cf. §4.5
and §4.6). See [Ko92b] Table (4.4) (and also [Ko90b]Table (5.4.3)) for a
list of semisimple symmetric spaces which are proved by this method not

to admit compact Clifford-Klein forms.

4.12. Semisimple orbits

Another typical example of a homogeneous space of reductive type is

a semisimple orbit Ad(G) · X ' G/ZG(X), where X ∈ g is a semisimple
element (Example 2.6.3 (iv)). We apply Theorem 4.10 to semisimple orbits.

Corollary 4.12 (see [Ko90a,92a], [Ko92b]; [BL92]). Let G be a real reduc-

tive linear Lie group, and X a semisimple element of g. If G·X ' G/ZG(X)
admits a compact Clifford-Klein form, then the orbit G · X carries a G-

invariant complex structure.

Before giving a sketch of proof, we remark that a simple group G cannot

be a complex group if there is a nonzero semisimple elementX ∈ g such that
Ad(G)·X ' G/ZG(X) admits a compact Clifford-Klein form. In fact, since
rankG = rankZG(X), we have R-rankG = R-rankZG(X) ifG is a complex
reductive Lie group. Then there is no infinite discontinuous group acting

on G/ZG(X) by Theorem 2.5 (the Calabi-Markus phenomenon). Therefore

G/ZG(X) does not admit a compact Clifford-Klein form. This means that

G itself is not a complex group. Nevertheless Corollary 4.12 asserts that

the homogeneous space G/ZG(X) carries a G-invariant complex structure.

This is because G/ZG(X) is realized as an elliptic orbit, which is a crucial

point of the proof.

Sketch of Proof. Let X = Xe + Xh be a decomposition of a semisim-

ple element X ∈ g, where Xe is elliptic and Xh is hyperbolic such that
[Xe, Xh] = 0. Applying Theorem 4.10 with L := ZG(Xe) and H := ZG(X),

we obtain Corollary 4.12. An alternative proof is given in [BL92] based on

symplectic structure. ¤

Let X be an elliptic element of g. We make here a quick review that an

elliptic orbit Ad(G) · X ' G/ZG(X) has a rich geometric structure. It is

well-known that an elliptic orbit G/ZG(X) carries a G-invariant complex

structure via the generalized Borel embedding into the generalized flag

variety GU/ZGU (X):

G/ZG(X) ⊂ GU/ZGU (X).
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See for example [KoO90] Appendix for a proof. (This embedding is a usual

Borel embedding if G/ZG(X) is a Hermitian symmetric space, equivalently,

if G/ZG(X) is a symmetric space and if ZG(X) is compact (see [He78]).

G/ZG(X) is said to be ‘dual manifolds of Kähler C-space’ in the sense of

Griffiths-Schmid if ZG(X) is compact; G/ZG(X) is said to be a ‘
1
2 -Kähler

symmetric space’ in the sense of Berger if G/ZG(X) is a symmetric space

and if ZG(x) is noncompact.)

A G-invariant symplectic structure on the elliptic orbit is induced from the

one on the coadjoint orbit through the identification g ' g∗, which is given
by a non-degenerate G-invariant bilinear form B on g (e.g. the Killing

form if g is semisimple). The orbit G/ZG(X) also carries a G-invariant

(indefinite-)Kähler structure induced by B. The indefinite Kähler structure

is then compatible with the symplectic structure.

We note that Clifford-Klein forms of an elliptic orbit inherit these struc-

tures. Corollary 4.7 asserts that the following homogeneous manifolds

U(2, 2n)/U(1)× U(1, 2n),

SO(2, 2n)/U(1, n),

SO(4, 3)/SO(2)× SO(4, 1)

admit compact Clifford-Klein forms. Furthermore, these are realized as

elliptic orbits of the adjoint action. So we obtain new examples of compact

indefinite-Kähler manifolds.

Finally, it should be in sharp contrast that a hyperbolic orbit does not

admit an infinite discontinuous group (Example 2.6.1).

4.13. Examples

We give here a number of examples of homogeneous spaces which are

proved not to have (or to have) Clifford-Klein forms by the method in §4.
These examples may be helpful to reveal the applications and limitations

of various methods known so far (e.g. [Ko88], [Ko89a], [Ko90b], [KoO90],

[Ko90a,92a], [Ko92b], [BL92], [Zi94], [LaMZ94], [Ko94c], [Co94]) in study-

ing the existence problem of compact Clifford-Klein forms, which has not

yet found a final answer (see also Notes in §4.14).
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Example 4.13.1. First we consider a semisimple symmetric space

G/H = SO(i+ j, k + l)/SO(i, k)× SO(j, l), (i ≤ j, k, l).
It follows from Theorem 4.10 (or Corollary 4.11) that if G/H admits a

compact Clifford-Klein form, then G/H is compact, or H is compact, or

0 = i < l ≤ j − k. Moreover, we have jkl ≡ 0 mod 2 as an application

of Hirzebruch’s proportionality principle in §3 (see Corollary 3.12.1 and a
remark after Conjecture 3.12.4).

Conversely, if (i, j, k, l) = (0, 2n, 1, 1), (0, 4n, 1, 3), (0, 4, 2, 1), (0, 8, 1, 7) or if

i = l = 0, then there exists a compact Clifford-Klein form of G/H (see

Corollary 4.7).

Example 4.13.2.

i) A semisimple symmetric space

G/H = SO∗(2n)/U(l, n− l)
does not admit a compact Clifford-Klein form if 3l ≤ 2n ≤ 6l and if

n ≥ 3. We explain it in Table 4.13.4 together with similar examples.

It admits compact Clifford-Klein forms if (n, l) = (4, 1), (4, 3), (3, 1),

(3, 2), (2, 1), l = 0 or l = n. In fact, we have a local isomorphism

SO∗(8)/U(1, 3) ≈ SO(2, 6)/U(1, 3), which is proved to admit compact
Clifford-Klein forms in Corollary 4.7. It is trivial in the cases (3, 1),

(3, 2) and (2, 1) because G/H is then compact. G/H is a Riemannian

symmetric space in the cases l = 0 or l = n (see Theorem 4.2).

i) A semisimple symmetric space

G/H = SO∗(4n)/SO∗(4p+ 2)× SO∗(4n− 4p− 2)
does not admit compact Clifford-Klein forms if 1 ≤ p ≤ n − 2 owing
to Corollary 4.12. We note that SO∗(8)/SO∗(6) × SO∗(2) (namely, in
the case (n, p) = (2, 1)) admits compact Clifford-Klein forms. Sim-

ilarly, there exist compact Clifford-Klein forms in the case (n, p) =

(2, 0). In fact we have a local isomorphism SO∗(8)/SO∗(2)× SO∗(6) ≈
SO(2, 6)/U(1, 3), which is in the list of Corollary 4.7.

Example 4.13.3. Suppose thatGC/HC is a complex irreducible semisim-

ple symmetric space. It is a conjecture that GC/HC admits compact

Clifford-Klein forms if and only if GC/HC is locally isomorphic to a group

manifold. One can prove that GC/HC does not have compact Clifford-

Klein forms unless GC/HC is locally isomorphic to either a group manifold,

SO(2n + 2,C)/SO(2n + 1,C), SL(2n,C)/Sp(n,C) (n ≥ 2), or E6,C/F4,C
(see [Ko92b] Example 1.9).
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Example 4.13.4.

G/H does not have a compact Clifford-Klein form

G H range of parameters

SL(n,R) Sp(l,R) 0 < 2l ≤ n− 2

SL(n,C) Sp(l,C) 0 < 2l ≤ n− 1

SL(n,C) SO(l,C) 0 < l ≤ n

SO∗(2n) U(l, n− l) 3l ≤ 2n ≤ 6l, n ≥ 3

Sp(n,R) Sp(l,C) 0 < 2l ≤ n

SU∗(2n) SO∗(2l) 1 < l ≤ n

SL(2n,C) SU(p, q) p+ q < n or p = q (pq > 0)

SL(2n,R) SO(p, q) p+ q < n or p = q (pq > 0)

Table 4.13.4.

These examples except for Sp(n,R)/Sp(l,C) with n = 2l are proved by
Theorem 4.10. In applying Theorem 4.10, the choice of “L” is not unique.

Here is an example of the choice of “L” for G/H :

SO(l, n− l) for SL(n,R)/Sp(n,R), U(l, n− l) for SL(n,C)/Sp(l,C),
U([ l2 ], n− [ l2 ]) for SL(n,C)/SO(l,C), SO∗(4l+2) for SO∗(2n)/U(l, n− l),
U(l, n− l) for Sp(n,R)/Sp(l,C), Sp([ l2 ], n− [ l2 ]) for SU∗(2n)/SO∗(2l),
U(p, 2n− p) or Sp(p,C) for SL(2n,C)/U(p, q), and
SO(p, 2n− p) or Sp(p,R) for SL(2n,R)/SO(p, q), respectively
The proof for Sp(2l,R)/Sp(l,C) is different. We need to use an argument

of Hirzebruch’s proportionality principle (see §3; [Ko89a] Example (4.11)).
For more examples of the above type, we refer to Table 4.4 and Table

5.3 in [Ko92b].
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Example 4.13.5.

G/H does not have a compact Clifford-Klein form

G H range of parameters

(n > m > 1) m is even m is odd

SL(n,R) SL(m,R) n > 3
2m n > 3

2m+
3
2

SU∗(2n) SU∗(2m) n > 3
2m− 1 n > 3

2m+
1
2

SO∗(2n) SO∗(2m) n > 3
2m− 1 n > 3

2m− 1
2

Sp(n,R) Sp(m,R) n > 3
2m+ 1 n > 3

2m+
3
2 + δm3

SL(n,C) SL(m,C) n > 3
2m− 1 n > 3

2m+
1
2

SO(n,C) SO(m,C) n > 3
2m− 1 n > 3

2m− 1
2

Sp(n,C) Sp(m,C) n > 3
2m n > 3

2m+
1
2 + δm3

Table 4.13.5 (a)

We indicate the proof of Table 4.13.5 (a) for G = SL(n,R) ⊃ H =

SL(m,R) with m even. We want to show that G/H does not admit a

compact Clifford-Klein form if 23n > m. We take a subgroup

L := SO(
m

2
, n− m

2
) ⊂ G.

We identify a(G) with Rn by choosing a suitable coordinate of aG, so
that the action of the Weyl group WG ' Sn is given by permutation of

coordinates. Then we have

a(L) =

½
(y1, . . . , y 1

2m
,−y1, . . . ,−y 1

2m
, 0, . . . , 0) : yj ∈ R (1 ≤ j ≤

1

2
m)

¾
,

a(H) =

⎧⎨⎩(x1, . . . , xm, 0, . . . , 0) : xj ∈ R, (1 ≤ j ≤ m),
mX
j=1

xj = 0

⎫⎬⎭ ,
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regarded as subsets in aG/WG. Therefore, we have a(L) ⊂ a(H).
On the other hand,

d(L)− d(H) = m

2
(n− m

2
)− (1

2
m(m+ 1)− 1)

=
m

2
(n− 3

2
m− 1) + 1 > 0.

Now Theorem 4.10 shows that G/H does not admit a compact Clifford-

Klein form.

Other cases in Table 4.13.5 (a) are proved similarly from Theorem 4.10.

A choice of L for each (G,H) is listed in the following Table.

A choice of L for Table 4.13.5 (a)

G H L

(n > m > 1) m is even m is odd

SL(n,R) SL(m,R) SO(m2 , n− m
2 ) SO(m−12 , n− m−1

2 )

SU∗(2n) SU∗(2m) Sp(m2 , n− m
2 ) Sp(m−12 , n− m−1

2 )

SO∗(2n) SO∗(2m) U(m2 , n− m
2 ) U(m−12 , n− m−1

2 )

Sp(n,R) Sp(m,R) U(m2 , n− m
2 ) U(m−12 , n− m−1

2 )

SL(n,C) SL(m,C) U(m2 , n− m
2 ) U(m−12 , n− m−1

2 )

SO(n,C) SO(m,C) SO(m2 , n− m
2 ) SO(m−12 , n− m−1

2 )

Sp(n,C) Sp(m,C) Sp(m2 , n− m
2 ) Sp(m−12 , n− m−1

2 )

Table 4.13.5 (b)
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Example 4.13.6.

G/H does not have a compact Clifford-Klein form

G H range of parameters

(j ≥ i > 0, p ≥ i, q ≥ j)

O(p, q) O(i, j) j 6= q or p > q or (p+ 1)iq ≡ 1 mod 2

U(p, q) U(i, j) j 6= q or p > q

Sp(p, q) Sp(i, j) j 6= q or p > q

Table 4.13.6 (a)

For F = R,C or H (a quaternionic number field), we write U(p, q;F) for
O(p, q), U(p, q) and Sp(p, q), respectively.

Sketch of Proof. To prove Table 4.13.6 (a), we first choose L = U(i, q;F)
(F = R, C, H). Then a(H) = a(L) because i ≤ j ≤ q, and d(H) ≤
d(L). Here the equality holds if and only if j = q. Therefore, it follows

from Theorem 4.10 that U(p, q;F)/U(i, j;F) admits a compact Clifford-
Klein form only if j = q. Now U(p, q;F)/U(i, q;F) admits a compact
Clifford-Klein form if and only if so does a reductive symmetric space

U(p, q;F)/U(p− i;F)× U(i, q;F). Then use Corollary 4.11.2, and we have
p > q. See Example 4.13.1 for the condition (p + 1)iq ≡ 1 mod 2 in the

case where F = R. ¤

Example 4.13.7.

1) Suppose G = SL(n,R) ⊃ H = SL(2,R) × · · · × SL(2,R) (k-times)
(n ≥ 2k > 0). If n > 3, then there does not exist a compact Clifford-

Klein form of G/H .

2) Suppose G = SL(n,C) ⊃ H = SL(2,C) × · · · × SL(2,C) (k-times)
(n ≥ 2k > 0). If n ≥ 3, then there does not exist a compact Clifford-
Klein form of G/H. In particular, SL(3,C)/SL(2,C) does not admit a
compact Clifford-Klein form ([Ko90a,92a] Example7).

Proof.
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1) Take L = SO(k, n− k). Then a(H) = a(L) and d(L)− d(H) = k(n−
k)−2k = k(n−k−2) > 0 if n > 4 and if n ≥ 2k > 0. Take L = Sp(2,R)
for n = 4.

2) Take L = SU(k, n− k). Then a(H) = a(L) and d(L)− d(H) = 2k(n−
k)− 3k = k(2n− 2k − 3) > 0 if n ≥ 2k. ¤

For more examples of homogeneous spaces without compact Clifford-

Klein forms, we refer to [Ko92b] Table 5.3.

4.14. Notes

The existence problem of a compact Clifford-Klein form of a homoge-

neous space G/H has its origin in the uniformization theorem of Riemann

surfaces due to Klein, Poincaré and Koebe (Example 0.5.5). In this case,

the homogeneous space is the Poincaré plane G/H = PSL(2,R)/SO(2),
which is the simplest example a Riemannian symmetric space of the non-

compact type.

At the beginning of the 1960’s, the existence problem of a compact

Clifford-Klein form of any Riemannian symmetric space was settled affir-

matively by Borel, Harish-Chandra, Mostow-Tamagawa ([Bo63], [BoHa62],

[MoTa62]; see Theorem 4.2). Contrary to this, around the same time, it was

found by Calabi, Markus and Wolf that certain pseudo-Riemannian sym-

metric spaces (of rank 1) do not admit compact Clifford-Klein forms (Theo-

rem 2.2.1; [CM62], [Wo62], [Wo64], see also Notes in §2.12). Clifford-Klein
forms of the real hyperbolic space SO(p, q)/SO(p − 1, q) was studied by
R.Kulkarni in the begining of 1980’s, and in particular the Calabi-Markus

phenomenon of this special case was settled [Ku81].

It was in the late 1980’s that a systematic study of the existence problem

of compact Clifford-Klein forms was basically begun for a general homo-

geneous space of reductive type, which is a wide class of homogeneous

spaces containing Riemannian symmetric spaces, reductive group mani-

folds, pseudo-Riemannian symmetric spaces and semisimple orbits of the

adjoint action. An overview is given in [Ko90a,92a]. A sufficient con-

dition for the existence of compact Clifford-Klein forms (Theorem 4.4)

was proved in [Ko89a]. The proof rests on an argument in the continu-

ous setting, namely the criterion for proper actions (Theorem 2.9.1) and

the criterion for the compactness of a double coset space (Theorem 4.9).

Among six series and six isolated homogeneous spaces that admit com-

pact Clifford-Klein forms in Corollary 4.7, (2-b) and (3-b) (i.e. in the case

SO(p+1, q)/SO(p, q)) were first proved by Kulkarni ([Ku81]), (4-a), (4-b),
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(5-a) and (5-b) in [Ko94c], and other cases in [Ko89a] or [Ko90a,92a].

Conversely, necessary conditions for the existence of compact Clifford-

Klein forms have been also studied since the late 1980’s by various ap-

proaches. That is,

i) the Calabi-Markus phenomenon and the criterion for proper actions

([Ko89a], [Fr94], [Ko94b]),

ii) Hirzebruch’s proportionality principle ([KoO90]),

iii) Comparison theorem ([Ko92b]),

iv) Construction of symplectic forms ([BL92]),

v) Ergodic theory ([Zi94], [LaMZ94]).

We have explained (i), (ii) and (iii) in §2 (e.g. Theorem 2.5, Theorem

2.9.1, Theorem 2.9.2), §3 (e.g. Corollary 3.12.1) and §4 (e.g. Theorem 4.10,
Corollary 4.11.2, Corollary 4.12), respectively. We have not dealt with (iv)

and (v) here, which are so different from other methods. However, some of

examples obtained so far by other methods (e.g. [BL92], [Zi94], [LaMZ94],

[Co94]) are also proved (sometimes in a stronger form) by (i), (ii) and (iii)

in the reductive case.

In order to clarify the applications and limitations of various methods,

we will examine some typical classes of homogeneous spaces. We note that

the setting of the above results due to Benoist, Labourier, Zimmer, Mozes,

Corllete ([BL92], [Zi94], [LaMZ94], [Co94]) requires either

(4.14.1) ZG(H) contains R

or

(4.14.2) ZG(H) contains a semisimple Lie group with R-rank ≥ 2.

First, suppose that G/H is a semisimple symmetric space, which we as-

sume G/H is irreducible for simplicity. We have seen that the methods (i),

(ii) and (iii) give rise to necessary conditions for the existence of compact

Clifford-Klein forms, namely, Theorem 2.5, Corollary 3.12.1 and Corol-

lary 4.11.2, which are not covered by one another. On the other hand, the

assumption (4.14.1) is satisfied if and only if G/H is a para-Hermitian sym-

metric space which does not admit compact Clifford-Klein forms (Example

2.7.2 (1)) by the Calabi-Markus phenomenon. The assumption (4.14.2) is

never satisfied in the symmetric case.

Second, suppose that G/H is a semisimple orbit. Then the assumption

(4.14.1) is satisfied. In this case, Benoist-Labourie using the method (iv)

gave an alternative proof of Corollary 4.12 (the method (iii)) in a strength-

ened form ([BL92] Theorem 1).
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Typical examples of homogeneous spaces which satisfy the assumption

(4.14.2) are those listed in some part of Example 4.13.4, Example 4.13.4 and

Example 4.13.6. Zimmer proved that SL(n,R)/SL(m,R) does not admit a
compact Clifford-Klein form if 12n > m. His approach is based on Ratner’s

theorem and ergodic theory ([Zi94] Corollary 1.3). Recently Labourier-

Mozes-Zimmer simplified and extended Zimmer’s approach to manifolds

locally modeled on homogeneous spaces ([LaMZ94]). Their result allows

the case 1
2n = m in this example. On the other hand, the method (iii) (see

§4) shows that SL(n,R)/SL(m,R) does not admit a compact Clifford-Klein
form if 23n > m for even m (or if 23n > m + 1 when m is odd), which is a

slightly stronger result if n and m are large enough (see Example 4.13.5).

Similarly, the indefinite Stiefel manifolds U(p, q;F)/U(i, j;F) (F = R,C,H)
(j ≥ i > 0, p ≥ i, q ≥ j) does not admit a compact Clifford-Klein form
if j 6= q or if p > q (Example 4.13.6). The special case with (p, q, i, j) =

(n, 2,m, 1), n > 2m and F = H implies a result that Sp(n, 2)/Sp(m, 1) (n >
2m) does not admit a compact Clifford-Klein, which was announced by

Corllette in ICM-94 ([Co94] Theorem 12). Corlette’s approach apparently

differs from other methods (i)-(v).

Since the beginning of the 1990’s, the existence problem of compact

Clifford-Klein forms of homogeneous spaces with noncompact isotropy sub-

groups has been observed to have connections with other branches of math-

ematics. For example, in the classification of certain Anosov flows, Benoist-

Foulon-Labourier [BFL92] encountered the non-existence problem of com-

pact Clifford-Klein forms of G/H where G is real reductive and H is a

semisimple part of a Levi subgroup of a maximal parabolic subgroup. Also,

symplectic geometry [BL92], ergodic theory and Ratner’s theory [Zi94],

[LaMZ94], harmonic maps [Co94], unitary representation theory [Ko94a]

have come to be related with the existence problem of compact Clifford-

Klein forms.

Many basic questions about Clifford-Klein forms of non-Riemannian ho-

mogeneous spaces have not yet found a final answer. As observed in the

recent developments mentioned above, it looks so fascinating that different

areas of mathematics seem to be closely related to the existence problem

of compact Clifford-Klein forms.



DISCONTINUOUS GROUPS AND CLIFFORD-KLEIN FORMS 57

§5. Open problems

At the end of the lecture notes, we collect some open problems.

Open problems 5.

1) (Problem 1.7.2) Find a criterion for the Calabi-Markus phenomenon

for a general Lie group.

2) (Problem 1.11.4) Find a criterion for L t H in G if L,H are closed

subgroups of G.

3) (Problem 1.12.2) In which class of Lie groups, does the following equiv-

alence hold ?

H t L in G⇔ the pair (L,H) has the property (CI) in G.

4) (Problem 2.2.6) Is there a sufficient condition on some positiveness

of the curvature of a pseudo-Riemannian manifold M (in particular,

Lorentz manifold) assuring that M is non-compact with a finite funda-

mental group ?

5) (Problem 1.7.2) Find a criterion on G/H which admits a compact

Clifford-Klein form. Also find a criterion on G/H which admits a non-

compact Clifford-Klein form of finite volume.

6) Suppose that G/H is a homogeneous space of reductive type which

admits a compact Clifford-Klein form. Is there a subgroup L reductive

in G which satisfies the conditions both (4.4)(a) and (4.4)(b) ?

7) (Conjecture 3.12.4) Does the inequality

rankG+ rank(H ∩K) ≥ rankH + rankK.

hold if G/H admits a compact Clifford-Klein form ?

8) Is there a Teichmüller theory for a compact Clifford-Klein form ?

9) If there exists a compact Clifford-Klein form of G/H , then does there

also exist a noncompact Clifford-Klein form of G/H of finite volume,

and vice versa ?

10) ([Wal86]) Is there an analogue of Eisenstein series which describes the

decomposition of L2(Γ\G/H) if Γ\G/H is a compact Clifford-Klein form

or if Γ\G/H is a noncompact Clifford-Klein form of finite volume ?

We have already explained most of these problems. Here are short com-

ments for the convenience of the reader.

Problem (5.1) is solved for the reductive case and the simply connected

solvable case as we explained in §2.
Problem (5.2) is solved if G is a a reductive group.
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Problem (5.3) is a subproblem for Problem (5.2), and in particular, the

property (CI) might be the final solution for a simply connected nilpotent

group (the conjecture of Lipsman).

Problem (5.4) is a question in pseudo-Riemannian geometry. It is re-

garded as a “perturbation” of the Calabi-Markus phenomenon, and should

be in a good contrast to a classical theorem of Myers [My41].

Problem (5.5) has been one of the main subjects of this lecture. For

example, SO(i + j, k + l)/SO(i, j) × SO(k, l) remains open (see Example
4.13.1 for partial results obtained so far).

Problem (5.6) and Problem (5.7) are subproblems of Problem (5.5).

Problem (5.6) asks if a converse of Theorem (4.4) holds. We should remark

that it is not true that the Zariski closure of a uniform lattice for G/H of

reductive type does not always satisfy the condition (4.4).

We have found a phenomenon that an analogue of the Weil rigidity does

not always hold for semisimple symmetric spaces of higher ranks and that

an analogue of the Mostow rigidity does not always hold for semisimple

symmetric spaces of higher dimensions [Ko93]. There seems to be a large

room to study deformation of uniform lattices, which we pose in Problem

(5.8).

Regarding to Problem (5.10), we recall that an existence result of com-

pact Clifford-Klein forms (or noncompact ones of finite volume) of Rie-

mannian symmetric spaces (Theorem 4.2) has opened a theory of Eisen-

stein series in harmonic analysis on square integrable functions over the

double coset space Γ\G/H . It is natural to expect that an existence result
for pseudo-Riemannian symmetric spaces could open a theory of harmonic

analysis on such nice double coset spaces.
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Postscript December 21 1995

There has been some recent progress on Open Problems in §5.
Y.Benoist gave a different proof of Theorem 2.9.2 (1) and proved a non-

existence theorem of compact Clifford-Klein forms of some homogeneous

spaces such as SO(4n,C)/SO(4n − 1,C) (see Example 4.13.3) in [1] (see
Open Problem 5.5).

É.Ghys studied a fine structure of the deformation of a lattice for a group

manifold G0 × G0/ diagG0 with G0 = SL(2,C) in [2], and T.Kobayashi
studied for which homogeneous manifold of reductive type local rigidity of

a uniform lattice fails in [3] (see Open Problem 5.8).

[1] Y.Benoist, Actions propres sur les espaces homogenes reductifs,

Preprint.

[2] É.Ghys, Déformations des structures complexes sur les espaces

homogènes de SL(2,C), J. reine angew. Math. 468 (1995) 113-138.
[3] T.Kobayashi, Remarks on deformation of compact Clifford-Klein forms

of indefinite-Riemannian homogeneous manifolds, Preprint.



60 TOSHIYUKI KOBAYASHI

References

[AhSa60] L.V.Ahlfors and L.Sario, Riemann Surfaces, Princeton Math. Series,

vol. 26, Princeton Univ. Press, Princeton, N.J., 1960.

[Au64] L.Auslander, The structure of compact locally affine manifolds, Topology

3 (1964), 131-139.

[BL92] Y.Benoist and F.Labourie, Sur les espaces homogenes modeles de varietes

compactes, I.H.E.S. Publ. Math. (1992), 99-109.

[BFL92] Y.Benoist, P.Foulon, F.Labourie, Flots d’Anosov à distributions stanble et
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[Bo67] , Sur une généralisation de la formule de Gauss-Bonnet, An.Acad.

Bras.Cienc. 39 (1967), 31-37.

[BoHa62] A.Borel and Harish-Chandra, Arithmetic subgroups of algebraic groups,

Ann. of Math. 75 (1962), 485-535.

[BoHi58] A.Borel and F.Hirzebruch, Characteristic classes and homogeneous spaces

I, Amer. Math. J. 80 (1958), 458-538.

[Bou60] N.Bourbaki, Éléments de mathématique, Topologie générale, Hermann,

Paris, 1960.

[CM62] E.Calabi and L.Markus, Relativistic space forms, Ann. of Math. 75 (1962),

63-76.

[Car60] H.Cartan, Quotients of analytic spaces, Contributions to functional theory,

Bombay, 1960.

[CGW76] R.S.Cahn, P.B.Gilkey, and J.A.Wolf, Heat equation, proportionality prin-

ciple, and volume of fundamental domains, Differential Geometry and Rel-

ativity (ed. M.Cahen and M.Flato), pp. 43-54, Reidel (Dordrecht), 1976.

[Ch41] C. Chevalley, On the topological structure of solvable groups, Ann. of Math.

42-3 (1941), 668-675.

[Co94] K.Corlette, Harmonic maps, rigidity and Hodge theory (1994), ICM-94,

invited talk.

[D78] J.L.Dupont, Curvatures and characteristic classes, Lecture Note in Math.,

vol. 640, Springer-Verlag, 1978.

[DK93] J.L.Dupont and F.W.Kamber, Cheeger-Chern-Simons classes of transver-

sally symmetric foliations: dependence relations and eta-invariants, Math.

Ann. 295 (1993), 449—468.

[Fl86] M.Flensted-Jensen, Analysis on non-Riemannian symmetric spaces, C. B.

M. S., Regional Conference Series, vol. 61, Amer.Math.Soc., 1986.

[Fr94] Friedland, Properly discontinuous groups on certain matrix homogeneous

spaces, Preprint (1994).

[GK84] W.Goldman and Y.Kamishima, The fundamental group of a compact flat

space form is virtually polycyclic, J. Differential Geometry 19 (1984), 233-

240.

[He78] S.Helgason, Differential geometry, Lie groups and symmetric spaces, Pure

and Appl. Math., vol. 80, Academic Press, 1978.

[Hi56] F.Hirzebruch, Automorphe Formen und der Satz von Riemann-Roch, Sym-

posium Internacional de Topologia algebraica (1956), 129-144.

[HoS40] H.Hopf and H.Samelson, Ein Satz über die Wirkungsräume geschlossener
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