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Institut Henri Poincaré, France, 11 February 2025



This work

Some of the results from this talk will be used
as a basis in the forthcoming joint papers:

Harris–TK–Speh (in preparation),
Translation functors and restriction of coherent cohomology
of Shimura varieties.

TK–Speh (in preparation),
How does the restriction of representations change
under translations?



Classical branching law: finite-dim’l reps of U(n)
For µ = (µ1, . . . , µn) ∈ Zn satisfying µ1 ≥ · · · ≥ µn,
FU(n)(µ): the irreducible rep of U(n) with highest weight µ.

Weyl’s branching law (U(n) ↓ U(n − 1))

FU(n)( µ )|U(n−1) ≃
⊕

τ
FU(n−1)( τ )

where the highest weight τ runs over Zn−1 satisfying

µ1 ≥ τ1 ≥ µ2 ≥ τ2 ≥ · · · ≥ τn−1 ≥ µn .

Example (U(4) ↓ U(3))

µ1 µ2 µ3 µ4

τ1 τ2 τ3
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Reformulation gl(n) ↓ gl(n − 1)

Z(gln): the center of the enveloping algebra U(gln)

HomC -alg(Z(gln),C) ≃ Cn/Sn (Harish-Chandra isomorphism).

highest wt infinitesimal character

FU(n)(µ) ! x := µ + ( n−1
2 ,

n−3
2 , . . . ,

1−n
2 ) ,

FU(n−1)(τ) ! y := τ + ( n−2
2 , . . . ,

2−n
2 ) .

Remark xi − y j ∈ Z + 1
2 .

µ1 ≥ τ1 ≥ µ2 ≥ τ2 ≥ · · · ≥ τn−1 ≥ µn

⇐⇒ x1 > y1 > x2 > y2 > · · · > yn−1 > xn
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Wall for G vs Fence for G ⊃ G′

Rn
> :={x ∈ Rn : x1 > · · · > xn},
Rn
≥ :={x ∈ Rn : x1 ≥ · · · ≥ xn}.

This is viewed as the dominant Weyl chamber for gln.

Wall of Rn
≥ : the hyperplane defined by xi = xi+1 , corresponding

to an adjacent inequality xi > xi+1 .

Fence in Rn
≥ × Rm

≥ : shall be defined in the next slide.



Fence: definition

Definition An interlacing pattern D in Rn
> × Rm

> is a total order
among x = (x1, . . . , xn) ∈ Rn

> and y = (y1, . . . , ym) ∈ Rm
> .

Example D1 = {(x, y) ∈ R3+2 : x1 > y1 > x2 > x3 > y2 },
D2 = {(x, y) ∈ R3+2 : y1 > y2 > x1 > x2 > x3 },

are examples of interlacing patterns in R3
> × R2

>.

Definition A fence of an interlacing pattern D is the hyperplane
corresponding to the adjacent inequality between xi and y j .

Example D1 has 3 fences: x1 = y1 , y1 = x2 , and x3 = y2 ,
while D2 has only one fence y2 = x1 .
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Harish-Chandra modules, Casselman–Wallach globalization

Let G be a real reductive linear Lie group.

M(G): the category of admissible smooth representations of G
of finite length having moderate growth.

Irr(G): Irreducible objects inM(G).

K: maximal compact subgroup of G.

M(g,K): the category of (g,K)-modules of finite length.

There is a natural category equivalence (Casselman–Wallach):

M(G) ≃ M(g,K).
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Virtual (g,K)-modules: reminder

G: real reductive Lie group ⊃ K: max compact subgroup

M(g,K): the category of (g,K)-modules of finite length.

V(g,K): the Grothendieck group ofM(g,K).
· · · the abelian group generated by X ∈M(g,K)

modulo the equivalence relation
X ∼ Y + Z

whenever there is a short exact sequence 0→ Y → X → Z → 0.

Similarly,

M(G): the category of admissible smooth representation of G
of finite length having moderate growth.

V(G): the Grothendieck group ofM(G).



Reminder: Coherent family

G ⊃ J ( maximally split ) Cartan subgroup,
W: Weyl group for ∆(gC, jC),
Λ ⊂ j∗: weight lattice of finite-dimensional reps of G.

( To be precise , Λ ⊂ Ĵ)

Definition (Coherent family) Let ξ ∈ j∗C. A map

Π : ξ + Λ→ V(g,K)
is a coherent family if, for any x ∈ ξ + Λ,

(1) Πx has infinitesimal character x ∈ j∗C mod W;
(2) Πx ⊗ F ≃ ∑

u∈∆(F)
Πx+u inV(g,K)

for any finite-dimensional rep F of G.

Similarly, one can define coherent families inV(G).



Coherent continuation: Basic property and examples

Fact (1) (Existence and Uniqueness) Let Π be an irreducible rep
of G with non-singular infinitesimal character ξ ∈ j∗C. Then there
exists a unique coherent family

Π : ξ + Λ→ V(G)

starting from Πξ + 0 := Π.

(2) (Irreducibility) Πx is irreducible as long as x ∈ ξ + Λ is
non-singular and stays inside the same Weyl chamber containing ξ.

Example (1) (Finite-dim’l rep) Let FG(µ) denote an irreducible
finite-dim’l rep of G with highest weight µ:

ΠρG+µ := FG(µ) (µ: dominant integral).
(2) (Principal series representations).
(3) (Discrete series representations).
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“Fence Crossing” and “Symmetry Breaking”

Let Π : ξ + Λ→ V(G) be a coherent family through the initial point
Πξ := Π ∈ Irr(G) at non-singular ξ.

• Representations (a single group G)
Many of representation-theoretic properties of Πx are stable,
if x ∈ ξ + Λ is (strictly) inside the same Weyl chamber with ξ.

• Symmetry Breaking (a pair of reductive groups G ⊃ G′)
The multiplicity [Πx|G′ : π] can alter significantly
even if x ∈ ξ + Λ is inside the same Weyl chamber with ξ.

Wall Crossing ! “Fence Crossing”

G G ⊃ G′
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Multiplicity for Symmetry Breaking G ↓ G′

Let G ⊃ G′ be a pair of real reductive linear Lie groups.

For Π ∈ Irr(G) and π ∈ Irr(G′), the multiplicity is defined by

[Π|G′ : π] := dim HomG′(Π|G′ , π) ∈ {0} ∪ Z+ ∪ {∞},
where

HomG′(Π|G′ , π) := {symmetry breaking operators}.

TK–T. Oshima∗
[Π|G′ : π] < ∞ (∀Π, ∀π) ⇐⇒ (G ×G′)/ diag G′ is real spherical,

[Π|G′ : π] ≤ C (∀Π, ∀π) ⇐⇒ (G′C ×G′C)/ diag G′C is spherical,

Sun–Zhu∗∗
[Π|G′ : π] ∈ {0, 1} (∀Π, ∀π) if (G,G′) is

(GL(n,R),GL(n − 1,R)), (U(p, q),U(p − 1, q)), etc.

∗ TK, Proc. Summer School, 1995, TK–T. Oshima, Adv. Math. 2013; ∗∗ Sun–Zhu, Ann. Math. 2012.
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Symmetry Breaking inside “Fence”

Let (G,G′) be real forms of (GL(n,C),GL(n − 1,C)).
E.g. (G,G′) = (GL(n,R),GL(n − 1,R)) or (U(p, q),U(p − 1, q)).

π: irreducible rep of the subgroup G′ with infinitesimal character y .
Π: irreducible rep of G with non-singular infinitesimal character ξ .

Let Π : ξ + Λ→ V(G) be a coherent family starting at Πξ+0 = Π.

Theorem A For any x ∈ ξ + Λ such that ( x , y ) satisfies the same
interlacing pattern with ( ξ , y ), one has

[ Π x|G′ : π ] = [ Π |G′ : π ].
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Example: U(3) ↓ U(2) revisited

Weyl’s branching law: If ξ1 ≥ τ1 ≥ ξ2 ≥ τ2 ≥ ξ3 , then

[FU(3)( ξ1 , ξ2 , ξ3 )|U(2) : FU(2)( τ1 , τ2 )] = 1.

=
⇒ Theorem A

A simple and easy case:

[FU(3)( τ1 , τ2 , ξ3 )|U(2) : FU(2)( τ1 , τ2 )] = 1.

The infinitesimal characters y and x of π and Π, respectively:
(τ1 + 1

2 , τ2 − 1
2 ) ≡ (y1, y2)

(τ1 + 1, τ2, ξ3 − 1) ≡ (x1, x2, x3)
satisfies the interlacing pattern x1 > y1 > x2 > y2 > x3 .
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Example: Gan–Gross–Prasad conjecture

• (G,G′) = (U(p, q),U(p − 1, q))
We review Harish-Chandra’s discrete series representations
for G and G′ in a simple setting where (p, q) = (2, 1).

• G = U(2, 1)
Three families: for x = (x1, x2, x3) ∈ Z3

>.

Πholo(x), Πnon(x), Πanti(x).

• G = U(1, 1)
Two families: for y = (y1, y2) ∈ (Z + 1

2 )2
>,

πholo(y), πanti(y).

Here, x , y stand for infinitesimal characters.



Inside Fence: Example: (G,G′) = (U(2, 1),U(1, 1))

x = (x1, x2, x3) ∈ Z3
> , y = (y1, y2) ∈ (Z + 1

2 )2
> .

• [Πholo(x)|G′ : πholo(y)] = 1
⇐⇒ y1 > x1 > x2 > y2 > x3 .

• [Πnon(x)|G′ : πholo(y)] = 1
⇐⇒
H. He∗

x1 > y1 > y2 > x2 > x3 or

x1 > x2 > x3 > y1 > y2 .

These conditions on parameters fit well with our general theorem:

Theorem A For any x ∈ ξ + Λ such that ( x , y ) satisfies the same
interlacing pattern with ( ξ , y ), one has

[Πx|G′ : π] = [Π|G′ : π].
∗ H. He, On the Gan–Gross–Prasad conjecture for U(p, q), Invent. Math., 209 (2017), 837–884.



Jumping Fence of Interlacing Pattern

Let (G,G′) be real forms of (GL(n,C),GL(n − 1,C)).

π: irreducible rep of G′ with infinitesimal character y .
Π: irreducible rep of G with non-singular infinitesimal character x .

Theorem A is derived from: let φx′
x be a translation functor.

Theorem B Let x be non-singular. Then

HomG′(Π|G′ , π) ≃ HomG′(φ
x+ fi
x (Π)|G′ , π)

if xi ! { y1 − 1
2 , . . . , yn−1 − 1

2 }.

• Previous examples · · · xi − y j ∈ Z + 1
2 .

• If xi − y j ∈ Z, then one can jump the fences!



Discrete series representations for G/H

Ĝ: the unitary dual of G.

Suppose that a homogeneous space G/H has a G-invariant
measure.

! G! L2(G/H) unitary representation.

The set of discrete series representations for G/H is defined by

Disc(G/H) := {Π ∈ Ĝ : HomG(Π, L2(G/H)) " {0}}.



Examples of discrete series reps for G/H

Disc(G/H) := {Π ∈ Ĝ : HomG(Π, L2(G/H)) " {0}}.

Example X = G/H = GL(n,R)/(GL(p,R) ×GL(q,R)) (p + q = n).

Disc(G/H) ≃ {Πλ : λ ∈ (2Z + 1)%, λ1 > · · · > λ% > 0}.
Πλ is a cohomological parabolic induction from the Levi subgroup

L ≃ (C×)% ×GL(2n − %,R), % := min(p, q).
Our normalization: Z(gC)-inf character of Πλ is

x := 1
2 (λ1, . . . , λ%, n − 2% − 1, . . . , 1 + 2% − n,−λ%, · · · ,−λ1) .

Similarly for Y = G′/H′ = GL(n − 1,R)/(GL(p,R) ×GL(q − 1,R)).
Disc(G′/H′) = {πν : ν ∈ (2Z + 1)%′ , ν1 > · · · > ν%′ > 0},

Here, %′ = min(p, q − 1). The Z(g′C)-inf character of πν is
y := 1

2 (ν1, . . . , ν%′ , n − 2%′ − 2, . . . , 2 + 2%′ − n,−ν%′ , · · · ,−ν1) .
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Disc(G/H) := {Π ∈ Ĝ : HomG(Π, L2(G/H)) " {0}}.

Example X = G/H = GL(n,R)/(GL(p,R) ×GL(q,R)) (p + q = n).

Disc(G/H) ≃ {Πλ : λ ∈ (2Z + 1)%, λ1 > · · · > λ% > 0}.
Πλ is a cohomological parabolic induction from the Levi subgroup

L ≃ (C×)% ×GL(2n − %,R), % := min(p, q).
Our normalization: Z(gC)-inf character of Πλ is

x := 1
2 (λ1, . . . , λ%, n − 2% − 1, . . . , 1 + 2% − n,−λ%, · · · ,−λ1) .

Similarly for Y = G′/H′ = GL(n − 1,R)/(GL(p,R) ×GL(q − 1,R)).
Disc(G′/H′) = {πν : ν ∈ (2Z + 1)%′ , ν1 > · · · > ν%′ > 0},

Here, %′ = min(p, q − 1). The Z(g′C)-inf character of πν is
y := 1

2 (ν1, . . . , ν%′ , n − 2%′ − 2, . . . , 2 + 2%′ − n,−ν%′ , · · · ,−ν1) .



Period integral

Π ⊂ L2(X) : discrete series representation for X = G/H
∪

π ⊂ L2(Y) : discrete series representation for Y = G′/H′

Consider a period integral:

B : Π∞ × π∞ → C, (F, f ) -→
∫

Y
F f

! TB ∈ HomG′(Π∞|G′ , π∞) via π∨ ≃ π.

Example (G,G′) = (GL(n,R),GL(n − 1,R)) p + q = n, 2p ≤ n − 1.
H = GL(p,R) ×GL(q,R),

H′ = GL(p,R) ×GL(q − 1,R).



Jumping Fence of Interlacing Pattern

Theorem For any Π ∈ Disc(G/H) and any π ∈ Disc(G′/H′)
with non-singular inf characters, we have

[Π|G′ : π] = 1.

Proof. For simplicity, (G,G′) = (GL(5,R),GL(4,R)) and p = 2.
The period integral does not vanish in the special setting
where (λ1, λ2) = (ν1, ν2) , thus, [Πλ|G′ : πν] = 1.
The interlacing property in this specific case is given as

x1 = y1 > x2 = y2 .

! One can jump fences for xi and y j , because Theorem B

involves an “obstruction” only when xi − y j ∈ Z + 1
2 .
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Another example: Branching of the Speh representation

(G,G′) = (GL(2m,R),GL(2m − 1,R))

For simplicity of the slide, consider the case m = 2.

• G = GL(4,R)
Let µ = (µ1, µ2, µ3, µ4) ∈ (Z4)≥.
Π(µ): coherent continuation of the Speh rep of G = GL(4,R).

Our normalization:
Z(gC)-infinitesimal character x = µ + ( 1

2 ,− 1
2 ,

1
2 ,−1

2 ) .
µ = (!, !,−!,−!)! Π(µ) is the 2!-th Speh rep.

• G′ = GL(3,R)
For τ = (τ1, τ2, τ3) ∈ Z3

>, we consider a certain coherent family
π(τ) ∈ Irr(G′) having an infinitesimal character y = (τ1, τ2, τ3) .



Another example: Branching of the Speh representation

Π(µ) · · · (Speh representation)
cohomological parabolic induction
L = GL(n,C) ↑ G = GL(2n,R)

π(τ) · · · cohomological parabolic induction
L′ = GL(n − 1,C) × R× ↑ G′ = GL(2n − 1,R)



Branching to Speh representation GL(2m) ↓ GL(2m − 1)

For simplicity, we consider the case m = 2. Let τ ∈ Z3
>.

Theorem For any µ1 ≥ τ1 ≥ µ2 > µ3 ≥ τ3 ≥ µ4 ,

[Π( µ1 , µ2 , µ3 , µ4 )|G′ : π( τ1 , τ2 , τ3 )] = 1.

This corresponds to the interlacing pattern of Z(gC)-inf characters:
x1 > y1 > x2 > x3 > y3 > x4

Theorem A =
⇒

Easier case: if µ1 ≥ τ1, τ3 ≥ µ4, and µ1 + µ4 = τ2, then

[Π( µ1 , τ1 , τ3 , µ4 )|G′ : π( τ1 , τ2 , τ3 )] = 1.
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Vanishing: Branching of Speh Representation

Changing the interlacing pattern

x1 > y1 > x2 > x3 > y3 > x4 ,

for the non-vanishing, one has a vanishing result.

Corollary If the following interlacing
x1 > x2 > y1 > y3 > x3 > x4

holds, then
[Π(µ)|G′ : π(τ)] = 0.

Here we recall x = µ + 1
2 (1,−1, 1,−1) , y = τ .

Proof for the vanishing uses again Theorem B to extend an easier
and special case to the general case.



Scheme

Theorem A Theorem B

(depending on parity)

Interlacing Pattern Jumping Fences
(inside fences)



Thank you very much!


