Symmetry Breaking under Translations

Toshiyuki Kobayashi

The Graduate School of Mathematical Sciences The University of Tokyo http://www.ms.u-tokyo.ac.jp/~toshi/

AIM-IHP seminar

Institut Henri Poincaré, France, 11 February 2025

This work

Some of the results from this talk will be used as a basis in the forthcoming joint papers:

Harris-TK-Speh (in preparation),

Translation functors and restriction of coherent cohomology of Shimura varieties.

TK-Speh (in preparation),

How does the restriction of representations change under translations?

Classical branching law: finite-dim'l reps of U(n)

For $\mu = (\mu_1, \dots, \mu_n) \in \mathbb{Z}^n$ satisfying $\mu_1 \ge \dots \ge \mu_n$, $F^{U(n)}(\mu)$: the irreducible rep of U(n) with highest weight μ .

 $\frac{\text{Weyl's branching law }(U(n) \downarrow U(n-1))}{F^{U(n)}(\mu)|_{U(n-1)}} \simeq \bigoplus_{\tau} F^{U(n-1)}(\tau)$ where the highest weight τ runs over \mathbb{Z}^{n-1} satisfying $\mu_1 \ge \tau_1 \ge \mu_2 \ge \tau_2 \ge \cdots \ge \tau_{n-1} \ge \mu_n$.

Classical branching law: finite-dim'l reps of U(n)

For $\mu = (\mu_1, \dots, \mu_n) \in \mathbb{Z}^n$ satisfying $\mu_1 \ge \dots \ge \mu_n$, $F^{U(n)}(\mu)$: the irreducible rep of U(n) with highest weight μ .

Weyl's branching law $(U(n) \downarrow U(n-1))$

$$F^{U(n)}(\mu)|_{U(n-1)} \simeq \bigoplus F^{U(n-1)}(\tau)$$

where the highest weight au runs over \mathbb{Z}^{n-1} satisfying

$$\mu_1 \geq \tau_1 \geq \mu_2 \geq \tau_2 \geq \cdots \geq \tau_{n-1} \geq \mu_n$$

Reformulation $gl(n) \downarrow gl(n-1)$

 $\mathfrak{Z}(\mathfrak{gl}_n)$: the center of the enveloping algebra $U(\mathfrak{gl}_n)$

 $\operatorname{Hom}_{\mathbb{C}\operatorname{-alg}}(\mathfrak{Z}(\mathfrak{gl}_n),\mathbb{C})\simeq \mathbb{C}^n/\mathfrak{S}_n$ (Harish-Chandra isomorphism).

Reformulation $gl(n) \downarrow gl(n-1)$

 $\mathfrak{Z}(\mathfrak{gl}_n)$: the center of the enveloping algebra $U(\mathfrak{gl}_n)$

 $\operatorname{Hom}_{\mathbb{C}\operatorname{-alg}}(\mathfrak{gl}_n), \mathbb{C}) \simeq \mathbb{C}^n / \mathfrak{S}_n$ (Harish-Chandra isomorphism).

highest wt		infinitesimal character
$F^{U(n)}(\mu)$	\sim	$x := \mu + (\frac{n-1}{2}, \frac{n-3}{2}, \dots, \frac{1-n}{2}),$
$F^{U(n-1)}(\tau)$	\sim	$y:=\tau+(\frac{n-2}{2},\ldots,\frac{2-n}{2}).$

Remark
$$x_i - y_j \in \mathbb{Z} + \frac{1}{2}$$
.

$$\mu_1 \ge \tau_1 \ge \mu_2 \ge \tau_2 \ge \cdots \ge \tau_{n-1} \ge \mu_n$$
$$\iff x_1 > y_1 > x_2 > y_2 > \cdots > y_{n-1} > x_n$$

Wall for G vs **Fence** for $G \supset G'$

$$\mathbb{R}^n_{>} := \{ x \in \mathbb{R}^n : x_1 > \dots > x_n \},\$$
$$\mathbb{R}^n_{\geq} := \{ x \in \mathbb{R}^n : x_1 \ge \dots \ge x_n \}.$$

This is viewed as the dominant Weyl chamber for gI_n .

<u>Wall</u> of \mathbb{R}^n_{\geq} : the hyperplane defined by $x_i = x_{i+1}$, corresponding to an adjacent inequality $x_i > x_{i+1}$.

<u>Fence</u> in $\mathbb{R}^n_> \times \mathbb{R}^m_>$: shall be defined in the next slide.

Fence: definition

Fence: definition

Definition An interlacing pattern D in) in	$\mathbb{R}^n_>$	×	$\mathbb{R}^m_>$	is a tot	al order
among	x = (x	(x_1,\ldots,x_n)	$\in \mathbb{R}^n_{>}$	and	y =	= (y ₁	,	. , y _n	$_{n}) \in \mathbb{R}_{>}^{m}$	•

$$\begin{array}{c|c} \hline \text{Example} & D_1 = \{(x, y) \in \mathbb{R}^{3+2} : x_1 > y_1 > x_2 > x_3 > y_2 \}, \\ \hline & D_2 = \{(x, y) \in \mathbb{R}^{3+2} : y_1 > y_2 > x_1 > x_2 > x_3 \}, \\ \text{are examples of interlacing patterns in } \mathbb{R}^3_{>} \times \mathbb{R}^2_{>}. \end{array}$$

Fence: definition

Definition An interlacing patter) in	$\mathbb{R}^n_> \times \mathbb{R}^m_>$		$\mathbb{R}^m_>$	is a total order		
among $x = (x_1, \ldots, x_n) \in \mathbb{R}^n_>$	and	y =	= (y ₁	,	. , y _n	$_{n}) \in \mathbb{R}_{>}^{m}$	•

$$\begin{array}{l} \underline{\mathsf{Example}} \ D_1 = \{(x, y) \in \mathbb{R}^{3+2} : \ x_1 > y_1 > x_2 > x_3 > y_2 \}, \\ D_2 = \{(x, y) \in \mathbb{R}^{3+2} : \ y_1 > y_2 > x_1 > x_2 > x_3 \}, \\ \text{are examples of interlacing patterns in } \mathbb{R}^3_{>} \times \mathbb{R}^2_{>}. \end{array}$$

<u>Definition</u> A fence of an interlacing pattern *D* is the hyperplane corresponding to the adjacent inequality between x_i and y_j .

Example D_1 has 3 fences: $x_1 = y_1$, $y_1 = x_2$, and $x_3 = y_2$, while D_2 has only one fence $y_2 = x_1$.

Harish-Chandra modules, Casselman–Wallach globalization

Let G be a real reductive linear Lie group.

 $\mathcal{M}(G)$: the category of admissible smooth representations of *G* of finite length having moderate growth. Irr(*G*): Irreducible objects in $\mathcal{M}(G)$.

Harish-Chandra modules, Casselman–Wallach globalization

Let G be a real reductive linear Lie group.

 $\mathcal{M}(G)$: the category of admissible smooth representations of *G* of finite length having moderate growth. Irr(*G*): Irreducible objects in $\mathcal{M}(G)$.

K: maximal compact subgroup of *G*.

 $\mathcal{M}(\mathfrak{g}, K)$: the category of (\mathfrak{g}, K) -modules of finite length.

There is a natural category equivalence (Casselman–Wallach):

 $\mathcal{M}(G) \simeq \mathcal{M}(\mathfrak{g}, K).$

Virtual (g, K)-modules: reminder

G: real reductive Lie group $\supset K$: max compact subgroup

 $\mathcal{M}(\mathfrak{g}, K)$: the category of (\mathfrak{g}, K) -modules of finite length.

 $\mathcal{V}(\mathfrak{g}, K)$: the Grothendieck group of $\mathcal{M}(\mathfrak{g}, K)$.

· · · the abelian group generated by $X \in \mathcal{M}(g, K)$ modulo the equivalence relation

$$X \sim Y + Z$$

whenever there is a short exact sequence $0 \rightarrow Y \rightarrow X \rightarrow Z \rightarrow 0$.

Similarly,

 $\mathcal{M}(G)$: the category of admissible smooth representation of *G* of finite length having moderate growth.

 $\mathcal{V}(G)$: the Grothendieck group of $\mathcal{M}(G)$.

Reminder: Coherent family

 $G \supset J$ (maximally split) Cartan subgroup, W: Weyl group for $\Delta(\mathfrak{g}_{\mathbb{C}}, \mathfrak{j}_{\mathbb{C}})$, $\Lambda \subset \mathfrak{j}^*$: weight lattice of finite-dimensional reps of G. (To be precise, $\Lambda \subset \widehat{J}$)

> <u>Definition</u> (Coherent family) Let $\xi \in j_{\mathbb{C}}^*$. A map $\Pi: \xi + \Lambda \to \mathcal{V}(\mathfrak{g}, K)$ is a <u>coherent family</u> if, for any $x \in \xi + \Lambda$, (1) Π_x has infinitesimal character $x \in j_{\mathbb{C}}^* \mod W$; (2) $\Pi_x \otimes F \simeq \sum_{u \in \Delta(F)} \Pi_{x+u}$ in $\mathcal{V}(\mathfrak{g}, K)$ for any finite-dimensional rep *F* of *G*.

Similarly, one can define coherent families in $\mathcal{V}(G)$.

<u>Fact</u> (1) (Existence and Uniqueness) Let Π be an irreducible rep of *G* with <u>non-singular</u> infinitesimal character $\xi \in j^*_{\mathbb{C}}$. Then there exists a unique coherent family

$$\Pi \colon \xi + \Lambda \to \mathcal{V}(G)$$

starting from $\Pi_{\xi} + 0 := \Pi$.

(2) (Irreducibility) Π_x is irreducible as long as $x \in \xi + \Lambda$ is non-singular and stays inside the same Weyl chamber containing ξ .

<u>Fact</u> (1) (Existence and Uniqueness) Let Π be an irreducible rep of *G* with <u>non-singular</u> infinitesimal character $\xi \in j^*_{\mathbb{C}}$. Then there exists a unique coherent family

$$\Pi \colon \xi + \Lambda \to \mathcal{V}(G)$$

starting from $\Pi_{\xi} + 0 := \Pi$.

(2) (Irreducibility) Π_x is irreducible as long as $x \in \xi + \Lambda$ is non-singular and stays inside the same Weyl chamber containing ξ .

"Fence Crossing" and "Symmetry Breaking"

Let $\Pi: \xi + \Lambda \to \mathcal{V}(G)$ be a coherent family through the initial point $\Pi_{\xi} := \Pi \in \operatorname{Irr}(G)$ at non-singular ξ .

- Representations (a single group *G*) Many of representation-theoretic properties of Π_x are stable, if x ∈ ξ + Λ is (strictly) inside the same Weyl chamber with ξ.
- Symmetry Breaking (a pair of reductive groups G ⊃ G') The multiplicity [Π_x|_{G'} : π] can alter significantly even if x ∈ ξ + Λ is inside the same Weyl chamber with ξ.

"Fence Crossing" and "Symmetry Breaking"

Let $\Pi: \xi + \Lambda \to \mathcal{V}(G)$ be a coherent family through the initial point $\Pi_{\xi} := \Pi \in \operatorname{Irr}(G)$ at non-singular ξ .

- Representations (a single group *G*) Many of representation-theoretic properties of Π_x are stable, if x ∈ ξ + Λ is (strictly) inside the same Weyl chamber with ξ.
- Symmetry Breaking (a pair of reductive groups G ⊃ G') The multiplicity [Π_x|_{G'} : π] can alter significantly even if x ∈ ξ + Λ is inside the same Weyl chamber with ξ.

Multiplicity for Symmetry Breaking $G \downarrow G'$

Let $G \supset G'$ be a pair of real reductive linear Lie groups.

For $\Pi \in \operatorname{Irr}(G)$ and $\pi \in \operatorname{Irr}(G')$, the <u>multiplicity</u> is defined by $[\Pi|_{G'}:\pi] := \dim \operatorname{Hom}_{G'}(\Pi|_{G'},\pi) \in \{0\} \cup \mathbb{Z}_+ \cup \{\infty\},$ where

 $\operatorname{Hom}_{G'}(\Pi|_{G'}, \pi) := \{ \text{symmetry breaking operators} \}.$

Multiplicity for Symmetry Breaking $G \downarrow G'$

Let $G \supset G'$ be a pair of real reductive linear Lie groups.

For $\Pi \in Irr(G)$ and $\pi \in Irr(G')$, the <u>multiplicity</u> is defined by $[\Pi|_{G'} : \pi] := \dim \operatorname{Hom}_{G'}(\Pi|_{G'}, \pi) \in \{0\} \cup \mathbb{Z}_+ \cup \{\infty\},$ where

 $\operatorname{Hom}_{G'}(\Pi|_{G'}, \pi) := \{ \text{symmetry breaking operators} \}.$

TK–T. Oshima* $[\Pi|_{G'}:\pi] < \infty \quad (^{\forall}\Pi, ^{\forall}\pi) \iff (G \times G')/\operatorname{diag} G' \text{ is real spherical,}$ $[\Pi|_{G'}:\pi] \leq C \quad (^{\forall}\Pi, ^{\forall}\pi) \iff (G'_{\mathbb{C}} \times G'_{\mathbb{C}})/\operatorname{diag} G'_{\mathbb{C}} \text{ is spherical,}$ Sun–Zhu**

 $[\Pi|_{G'}:\pi] \in \{0,1\} \quad ({}^{\forall}\Pi,{}^{\forall}\pi) \quad \text{if } (G,G') \text{ is }$

 $(GL(n,\mathbb{R}),GL(n-1,\mathbb{R})),$ (U(p,q),U(p-1,q)), etc.

* TK, Proc. Summer School, 1995, TK-T. Oshima, Adv. Math. 2013; ** Sun-Zhu, Ann. Math. 2012.

Symmetry Breaking inside "Fence"

Let (G, G') be real forms of $(GL(n, \mathbb{C}), GL(n-1, \mathbb{C}))$. E.g. $(G, G') = (GL(n, \mathbb{R}), GL(n-1, \mathbb{R}))$ or (U(p,q), U(p-1,q)).

 π : irreducible rep of the subgroup *G'* with infinitesimal character *y*. II: irreducible rep of *G* with non-singular infinitesimal character ξ .

Let $\Pi: \xi + \Lambda \to \mathcal{V}(G)$ be a coherent family starting at $\Pi_{\xi+0} = \Pi$.

Symmetry Breaking inside "Fence"

Let (G, G') be real forms of $(GL(n, \mathbb{C}), GL(n-1, \mathbb{C}))$. E.g. $(G, G') = (GL(n, \mathbb{R}), GL(n-1, \mathbb{R}))$ or (U(p,q), U(p-1,q)).

 π : irreducible rep of the subgroup *G'* with infinitesimal character *y*. Π : irreducible rep of *G* with non-singular infinitesimal character ξ .

Let $\Pi: \xi + \Lambda \to \mathcal{V}(G)$ be a coherent family starting at $\Pi_{\xi+0} = \Pi$.

<u>Theorem A</u> For any $x \in \xi$ + Λ such that (x, y) satisfies the same interlacing pattern with (ξ, y) , one has $[\Pi_{x}|_{G'} : \pi] = [\Pi|_{G'} : \pi].$

Example: $U(3) \downarrow U(2)$ revisited

Weyl's branching law: If $\xi_1 \ge \tau_1 \ge \xi_2 \ge \tau_2 \ge \xi_3$, then

 $[F^{U(3)}(\xi_1,\xi_2,\xi_3)|_{U(2)}:F^{U(2)}(\tau_1,\tau_2)]=1.$

A simple and easy case

Example: $U(3) \downarrow U(2)$ revisited

Weyl's branching law: If $\xi_1 \ge \tau_1 \ge \xi_2 \ge \tau_2 \ge \xi_3$, then

$$[F^{U(3)}(\xi_1,\xi_2,\xi_3)|_{U(2)}:F^{U(2)}(\tau_1,\tau_2)]=1.$$

Theorem A

A simple and easy case:

$$[F^{U(3)}(\tau_1, \tau_2, \xi_3)|_{U(2)} : F^{U(2)}(\tau_1, \tau_2)] = 1.$$

The infinitesimal characters *y* and *x* of π and Π , respectively: $(\tau_1 + \frac{1}{2}, \tau_2 - \frac{1}{2}) \equiv (y_1, y_2)$ $(\tau_1 + 1, \tau_2, \xi_3 - 1) \equiv (x_1, x_2, x_3)$ satisfies the interlacing pattern $x_1 > y_1 > x_2 > y_2 > x_3$.

Example: Gan–Gross–Prasad conjecture

- (G, G') = (U(p,q), U(p-1,q))
 We review Harish-Chandra's discrete series representations for G and G' in a simple setting where (p,q) = (2, 1).
- G = U(2, 1)

Three families: for $x = (x_1, x_2, x_3) \in \mathbb{Z}^3_>$.

 $\Pi^{\text{holo}}(x), \quad \Pi^{\text{non}}(x), \quad \Pi^{\text{anti}}(x).$

• G = U(1, 1)Two families: for $y = (y_1, y_2) \in (\mathbb{Z} + \frac{1}{2})^2_>$,

 $\pi^{\text{holo}}(y), \quad \pi^{\text{anti}}(y).$

Here, x, y stand for infinitesimal characters.

Inside Fence: Example: (G, G') = (U(2, 1), U(1, 1))

$$x = (x_1, x_2, x_3) \in \mathbb{Z}^3_>$$
, $y = (y_1, y_2) \in (\mathbb{Z} + \frac{1}{2})^2_>$

•
$$[\Pi^{\text{holo}}(x)|_{G'} : \pi^{\text{holo}}(y)] = 1$$

 $\iff y_1 > x_1 > x_2 > y_2 > x_3$.

•
$$[\Pi^{\text{non}}(x)|_{G'} : \pi^{\text{holo}}(y)] = 1$$

 $\underset{\text{H. He}^*}{\longleftrightarrow} \quad \begin{array}{c} x_1 > y_1 > y_2 > x_2 > x_3 \text{ or } \\ x_1 > x_2 > x_3 > y_1 > y_2 \end{array}$.

These conditions on parameters fit well with our general theorem:

<u>Theorem A</u> For any $x \in \xi$ + Λ such that (x, y) satisfies the same interlacing pattern with (ξ, y) , one has $[\Pi_x|_{G'} : \pi] = [\Pi|_{G'} : \pi].$

* H. He, On the Gan–Gross–Prasad conjecture for U(p,q), Invent. Math., 209 (2017), 837–884.

Jumping Fence of Interlacing Pattern

Let (G, G') be real forms of $(GL(n, \mathbb{C}), GL(n - 1, \mathbb{C}))$.

 π : irreducible rep of *G'* with infinitesimal character <u>y</u>. Π : irreducible rep of *G* with non-singular infinitesimal character <u>x</u>.

Theorem A is derived from: let $\phi_x^{x'}$ be a translation functor.

<u>Theorem B</u> Let x be non-singular. Then $\operatorname{Hom}_{G'}(\Pi|_{G'}, \pi) \simeq \operatorname{Hom}_{G'}(\phi_x^{x+f_i}(\Pi)|_{G'}, \pi)$ if $x_i \notin \{y_1 - \frac{1}{2}, \dots, y_{n-1} - \frac{1}{2}\}.$

• Previous examples $\cdots x_i - y_j \in \mathbb{Z} + \frac{1}{2}$.

• If $x_i - y_j \in \mathbb{Z}$, then one can jump the fences!

Discrete series representations for G/H

 \widehat{G} : the unitary dual of G.

Suppose that a homogeneous space G/H has a G-invariant measure.

 $\rightsquigarrow G \frown L^2(G/H)$ unitary representation.

The set of discrete series representations for G/H is defined by

 $\operatorname{Disc}(G/H) := \{ \Pi \in \widehat{G} : \operatorname{Hom}_{G}(\Pi, L^{2}(G/H)) \neq \{0\} \}.$

Examples of discrete series reps for G/HDisc $(G/H) := {\Pi \in \widehat{G} : \text{Hom}_G(\Pi, L^2(G/H)) \neq {0}}.$

Example $X = G/H = GL(n, \mathbb{R})/(GL(p, \mathbb{R}) \times GL(q, \mathbb{R}))$ (p + q = n).

 $\operatorname{Disc}(G/H) \simeq \{\Pi_{\lambda} : \lambda \in (2\mathbb{Z}+1)^{\ell}, \lambda_1 > \cdots > \lambda_{\ell} > 0\}.$

$$\begin{split} \Pi_{\lambda} \text{ is a cohomological parabolic induction from the Levi subgroup} \\ L &\simeq (\mathbb{C}^{\times})^{\ell} \times GL(2n-\ell,\mathbb{R}), \quad \ell := \min(p,q). \end{split}$$

Our normalization: $\mathfrak{Z}(\mathfrak{g}_{\mathbb{C}})$ -inf character of Π_{λ} is

 $x := \frac{1}{2}(\lambda_1, \ldots, \lambda_\ell, n - 2\ell - 1, \ldots, 1 + 2\ell - n, -\lambda_\ell, \cdots, -\lambda_1).$

Examples of discrete series reps for G/HDisc $(G/H) := {\Pi \in \widehat{G} : \text{Hom}_G(\Pi, L^2(G/H)) \neq \{0\}}.$

Example $X = G/H = GL(n, \mathbb{R})/(GL(p, \mathbb{R}) \times GL(q, \mathbb{R}))$ (p + q = n).

 $\operatorname{Disc}(G/H) \simeq \{ \Pi_{\lambda} : \lambda \in (2\mathbb{Z}+1)^{\ell}, \lambda_1 > \cdots > \lambda_{\ell} > 0 \}.$

 Π_{λ} is a cohomological parabolic induction from the Levi subgroup $L \simeq (\mathbb{C}^{\times})^{\ell} \times GL(2n - \ell, \mathbb{R}), \quad \ell := \min(p, q).$

Our normalization: $\mathfrak{Z}(\mathfrak{g}_{\mathbb{C}})$ -inf character of Π_{λ} is

 $x := \frac{1}{2}(\lambda_1, \ldots, \lambda_\ell, n - 2\ell - 1, \ldots, 1 + 2\ell - n, -\lambda_\ell, \cdots, -\lambda_1).$

Similarly for $Y = G'/H' = GL(n-1, \mathbb{R})/(GL(p, \mathbb{R}) \times GL(q-1, \mathbb{R}))$. $\text{Disc}(G'/H') = \{\pi_v : v \in (2\mathbb{Z}+1)^{\ell'}, v_1 > \dots > v_{\ell'} > 0\},$ Here, $\ell' = \min(p, q-1)$. The $\Im(\mathfrak{g}_{\mathbb{C}})$ -inf character of π_v is $y := \frac{1}{2}(v_1, \dots, v_{\ell'}, n-2\ell'-2, \dots, 2+2\ell'-n, -v_{\ell'}, \dots, -v_1)$.

Period integral

 $\Pi \subset L^2(X)$: discrete series representation for X = G/H \cup $\pi \subset L^2(Y)$: discrete series representation for Y = G'/H'

Consider a period integral:

$$B: \Pi^{\infty} \times \pi^{\infty} \to \mathbb{C}, \quad (F, f) \mapsto \int_{Y} F\overline{f}$$
$$\longrightarrow T_{B} \in \operatorname{Hom}_{G'}(\Pi^{\infty}|_{G'}, \pi^{\infty}) \quad \text{via } \overline{\pi}^{\vee} \simeq \pi.$$

 $\begin{array}{l} \underline{\mathsf{Example}} & (G,G') = (GL(n,\mathbb{R}),GL(n-1,\mathbb{R})) \quad p+q=n, \ 2p \leq n-1. \\ & H = GL(p,\mathbb{R}) \times GL(q,\mathbb{R}), \\ & H' = GL(p,\mathbb{R}) \times GL(q-1,\mathbb{R}). \end{array}$

Jumping Fence of Interlacing Pattern

<u>Theorem</u> For any $\Pi \in \text{Disc}(G/H)$ and any $\pi \in \text{Disc}(G'/H')$ with non-singular inf characters, we have $[\Pi|_{G'}:\pi] = 1.$

Jumping Fence of Interlacing Pattern

<u>Theorem</u> For any $\Pi \in \text{Disc}(G/H)$ and any $\pi \in \text{Disc}(G'/H')$ with non-singular inf characters, we have $[\Pi|_{G'}:\pi] = 1.$

Proof. For simplicity, $(G, G') = (GL(5, \mathbb{R}), GL(4, \mathbb{R}))$ and p = 2. The period integral does not vanish in the <u>special setting</u> where $(\lambda_1, \lambda_2) = (\nu_1, \nu_2)$, thus, $[\Pi_{\lambda}|_{G'} : \pi_{\nu}] = 1$. The interlacing property in this specific case is given as

 $x_1 = y_1 > x_2 = y_2$.

 \rightsquigarrow One can jump fences for x_i and y_j , because

 $x_i - y_j \in \mathbb{Z}$, whereas

Theorem B involves an "obstruction" only when $x_i - y_j \in \mathbb{Z} + \frac{1}{2}$.

Another example: Branching of the Speh representation

$$(G, G') = (GL(2m, \mathbb{R}), GL(2m - 1, \mathbb{R}))$$

For simplicity of the slide, consider the case m = 2.

• $G = GL(4, \mathbb{R})$ Let $\mu = (\mu_1, \mu_2, \mu_3, \mu_4) \in (\mathbb{Z}^4)_{\geq}$. $\Pi(\mu)$: coherent continuation of the Speh rep of $G = GL(4, \mathbb{R})$.

Our normalization:

 $\Im(\mathfrak{g}_{\mathbb{C}})\text{-infinitesimal character} \quad x = \mu + (\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}) \\ \mu = (\ell, \ell, -\ell, -\ell) \rightsquigarrow \Pi(\mu) \text{ is the } 2\ell\text{-th Speh rep.}$

• $G' = GL(3, \mathbb{R})$

For $\tau = (\tau_1, \tau_2, \tau_3) \in \mathbb{Z}^3_>$, we consider a certain coherent family $\pi(\tau) \in \operatorname{Irr}(G')$ having an infinitesimal character $y = (\tau_1, \tau_2, \tau_3)$.

Another example: Branching of the Speh representation

 $\Pi(\mu) \cdots$ (Speh representation) cohomological parabolic induction

 $L=GL(n,\mathbb{C})\uparrow G=GL(2n,\mathbb{R})$

 $\pi(\tau) \cdots$ cohomological parabolic induction $L' = GL(n-1, \mathbb{C}) \times \mathbb{R}^{\times} \uparrow G' = GL(2n-1, \mathbb{R})$ **Branching to Speh representation** $GL(2m) \downarrow GL(2m-1)$ For simplicity, we consider the case m = 2. Let $\tau \in \mathbb{Z}^3_>$.

Theorem For any
$$\mu_1 \ge \tau_1 \ge \mu_2 > \mu_3 \ge \tau_3 \ge \mu_4$$
,
 $[\Pi(\mu_1, \mu_2, \mu_3, \mu_4)]_{G'} : \pi(\tau_1, \tau_2, \tau_3)] = 1.$

This corresponds to the interlacing pattern of $\mathfrak{Z}(\mathfrak{g}_{\mathbb{C}})$ -inf characters:

$$x_1 > y_1 > x_2 > x_3 > y_3 > x_4$$

Branching to Speh representation $GL(2m) \downarrow GL(2m-1)$ For simplicity, we consider the case m = 2. Let $\tau \in \mathbb{Z}_{>}^{3}$.

Theorem For any
$$\mu_1 \ge \tau_1 \ge \mu_2 > \mu_3 \ge \tau_3 \ge \mu_4$$
,
 $[\Pi(\mu_1, \mu_2, \mu_3, \mu_4)]_{G'} : \pi(\tau_1, \tau_2, \tau_3)] = 1.$

This corresponds to the interlacing pattern of $\mathfrak{Z}(\mathfrak{g}_{\mathbb{C}})$ -inf characters:

$$x_1 > y_1 > x_2 > x_3 > y_3 > x_4$$

Branching to Speh representation $GL(2m) \downarrow GL(2m-1)$ For simplicity, we consider the case m = 2. Let $\tau \in \mathbb{Z}^3_>$.

Theorem For any
$$\mu_1 \ge \tau_1 \ge \mu_2 > \mu_3 \ge \tau_3 \ge \mu_4$$
,
 $[\Pi(\mu_1, \mu_2, \mu_3, \mu_4)|_{G'} : \pi(\tau_1, \tau_2, \tau_3)] = 1.$

This corresponds to the interlacing pattern of $\mathfrak{Z}(\mathfrak{g}_{\mathbb{C}})$ -inf characters:

 $x_1 > y_1 > x_2 > x_3 > y_3 > x_4$

Easier case: if $\mu_1 \ge \tau_1$, $\tau_3 \ge \mu_4$, and $\mu_1 + \mu_4 = \tau_2$, then

 $[\Pi(\mu_1, \tau_1, \tau_3, \mu_4)|_{G'} : \pi(\tau_1, \tau_2, \tau_3)] = 1.$

Vanishing: Branching of Speh Representation

Changing the interlacing pattern

 $x_1 > y_1 > x_2 > x_3 > y_3 > x_4$,

for the non-vanishing, one has a vanishing result.

Here we recall $x = \mu + \frac{1}{2}(1, -1, 1, -1)$, $y = \tau$.

Proof for the vanishing uses again Theorem B to extend an easier and special case to the general case.

Scheme

(inside fences)

Thank you very much!