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This work

Some of the results from this talk will be used
as a basis in the forthcoming joint papers:

Harris—TK—Speh (in preparation),
Translation functors and restriction of coherent cohomology
of Shimura varieties.

TK-Speh (in preparation),
How does the restriction of representations change
under translations?



Classical branching law: finite-dim’l reps of U(n)
For u = (uy,...,u,) € Z" satisfying uy > - -+ > uy,
FU™(u): the irreducible rep of U(n) with highest weight .

Weyl’'s branching law (U(n) | U(n — 1))
FUYOC)lym-1) =~ BFYD(1)

p
where the highest weight 7 runs over Z"~! satisfying

M1 2 T1 2 g 2 T2 22 Tpol 2 Hp -




Classical branching law: finite-dim’l reps of U(n)
For u = (ui,...,u,) € 2" satisfying u; > -+ > up,
FY™(y): the irreducible rep of U(n) with highest weight .

Weyl’'s branching law (U(n) | U(n — 1))
FYO () y@-1y = PFYD( 1)

.
where the highest weight 7 runs over Z"~! satisfying

M1 2 T1 2 g 2 T2 22 Tpol 2 Hp -

Example (U(4) | U(3))
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Reformulation gl(n) | gl(n — 1)

3(al,): the center of the enveloping algebra U(gl,,)

Homc _,14(3(al,),C) = C"/S, (Harish-Chandra isomorphism).



Reformulation gl(n) | gl(n — 1)

3(al,): the center of the enveloping algebra U(gl,,)

Homc _,14(3(al,),C) = C"/S, (Harish-Chandra isomorphism).

highest wt infinitesimal character
FUOW  w x=pr (G55,
FUO D@y s yi=r+ (53,50

Remark x; — y; €Z+ 1.

HIZ2TI 2 U 2T 22Ty 2 Uy
—

X1 > Y1 > X > Y2 > 0> Yul > X




Wall for G vs Fence for G o G’

RY :
RZ :

(xeR":x; > > x,},

(xeR": x>+ > x,}.

This is viewed as the dominant Weyl chamber for gl,,.

Wall of RZ : the hyperplane defined by x; = x;y1 , corresponding
to an adjacent inequality x; > x4 .

Fence in RL x RY : shall be defined in the next slide.



Fence: definition

Definition An interlacing pattern D in RZ x RZ is a total order
among x = (x1,...,x,) €RZ and y=(y1,...,ym) € RZ.




Fence: definition

Definition An interlacing pattern D in RZ x RZ is a total order
among x = (x1,...,x,) €RZ and y=(y1,...,ym) € RZ.

Example Dy = {(x,) €R**?: x| > y1 > x2 > x3 > y },
Dy ={(x, ) €R™: yy >y > x > x> 13},
are examples of interlacing patterns in R2 x R2.




Fence: definition

Definition An interlacing pattern D in RZ x RZ is a total order
among x = (x1,...,x,) €RZ and y=(y1,...,ym) € RZ.

Example Dy = {(x,y) eR**?: x>y >x > x3> 2 ),
Dy={(x,y) €ER>*?: y; > ;>x > x2 > 53},
are examples of interlacing patterns in R3 x R2.

Definition A fence of an interlacing pattern D is the hyperplane
corresponding to the adjacent inequality between x; and y; .

Example D, has 3 fences: x; =y;, y1 =x,and x3 =y,
while D, has only one fence y; = x; .




Harish-Chandra modules, Casselman—Wallach globalization

Let G be a real reductive linear Lie group.

M(G): the category of admissible smooth representations of G
of finite length having moderate growth.
Irr(G): Irreducible objects in M(G).




Harish-Chandra modules, Casselman—Wallach globalization

Let G be a real reductive linear Lie group.

M(G): the category of admissible smooth representations of G
of finite length having moderate growth.
Irr(G): Irreducible objects in M(G).

K: maximal compact subgroup of G.

M(g, K): the category of (g, K)-modules of finite length.

There is a natural category equivalence (Casselman—Wallach):

M(G) = M(g, K).



Virtual (g, K)-modules: reminder

G: real reductive Lie group D K: max compact subgroup

M(g, K): the category of (g, K)-modules of finite length.

V(g, K): the Grothendieck group of M(g, K).
--- the abelian group generated by X € M(g, K)
modulo the equivalence relation
X~Y+Z
whenever there is a short exact sequence 0 - Y - X - Z — 0.

Similarly,

M(G): the category of admissible smooth representation of G
of finite length having moderate growth.

V(G): the Grothendieck group of M(G).




Reminder: Coherent family

G > J ( maximally split ) Cartan subgroup,

W: Weyl group for A(gc, ic),

A C i*: weight lattice of finite-dimensional reps of G.
( To be precise , A C ﬂ

Definition (Coherent family) Let ¢ € j.. A map

IM: £+ A = V(g,K)
is a coherent family if, for any x € £ + A,

(1) T, has infinitesimal character x € ji, mod W;

@) IL@F = 3 Iy inV(g,K)
ueA(F)

for any finite-dimensional rep F of G.

Similarly, one can define coherent families in V(G).



Coherent continuation: Basic property and examples

Fact (1) (Existence and Uniqueness) Let I1 be an irreducible rep
of G with non-singular infinitesimal character £ € j.. Then there
exists a unique coherent family

II: £+ A - V(G)
starting from Il + 0 := II.

(2) (Irreducibility) I, is irreducible aslongas x e é + Ais
non-singular and stays inside the same Weyl chamber containing &.




Coherent continuation: Basic property and examples

Fact (1) (Existence and Uniqueness) Let I1 be an irreducible rep
of G with non-singular infinitesimal character £ € j.. Then there
exists a unique coherent family

II: £+ A - V(G)
starting from Il + 0 := II.

(2) (Irreducibility) I, is irreducible aslongas x e é + Ais
non-singular and stays inside the same Weyl chamber containing &.

Example (1) (Finite-dim’l rep) Let F(u) denote an irreducible
finite-dim’l rep of G with highest weight u:
gy = FO(u) (u: dominant integral).
(2) (Principal series representations).
(3) (Discrete series representations).




“Fence Crossing” and “Symmetry Breaking”

LetII: £ + A — V(G) be a coherent family through the initial point
II; := II € Irr(G) at non-singular &.

¢ Representations (a single group G)
Many of representation-theoretic properties of I1, are stable,

if x € £+ A is (strictly) inside the same Weyl chamber with &.
e Symmetry Breaking (a pair of reductive groups G > G’)

The multiplicity [I1,|¢ : 7] can alter significantly
even if x € £ + A is inside the same Weyl chamber with &.
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“Fence Crossing” and “Symmetry Breaking”

LetII: £ + A — V(G) be a coherent family through the initial point
II; := II € Irr(G) at non-singular &.

¢ Representations (a single group G)
Many of representation-theoretic properties of I1, are stable,

if x € £+ A is (strictly) inside the same Weyl chamber with &.

e Symmetry Breaking (a pair of reductive groups G > G’)
The multiplicity [I1,|¢ : 7] can alter significantly
even if x € £ + A is inside the same Weyl chamber with &.

Wall Crossing ~» “Fence Crossing”
G GoG




Multiplicity for Symmetry Breaking G | G’

Let G > G’ be a pair of real reductive linear Lie groups.

For IT € Irr(G) and 7 € Irr(G’), the muItiEIicitx is defined by

(g : 7] := dim Homg/ (I, ) € {0} U Z, U {co},
where

Homg (I|¢r, ) := {symmetry breaking operators}.




Multiplicity for Symmetry Breaking G | G’

Let G > G’ be a pair of real reductive linear Lie groups.

For IT € Irr(G) and € Irr(G’), the multiplicity is defined by

(g : 7] := dim Homg/ (I, ) € {0} U Z, U {co},
where

Homg (Il ) := {symmetry breaking operators}.

TK-T. Oshima*
(Mg : 7] <o ('I1,77) &= (G xG’)/diag G’ is real spherical,

Mg :nl<C ('ILY7n) & (G- xGL)/diag G, is spherical,

Sun—-Zhu**
Mg : 7 €{0,1} (ILY7)  if(G,G")is

(GL(n,R),GL(n - 1,R)), (U(p,q), U(p — 1, q)), etc.

* TK, Proc. Summer School, 1995, TK-T. Oshima, Adv. Math. 2013; ** Sun—Zhu, Ann. Math. 2012.



Symmetry Breaking inside “Fence”

Let (G,G’) be real forms of (GL(n,C), GL(n — 1,C)).
E.g. (G,G') = (GL(n,R), GL(n — 1,R)) or (U(p,q), U(p — 1,9)).

7. irreducible rep of the subgroup G’ with infinitesimal character y .
I1: irreducible rep of G with non-singular infinitesimal character & .

LetIT: £ + A — V(G) be a coherent family starting at Iz, = I1.



Symmetry Breaking inside “Fence”

Let (G,G’) be real forms of (GL(n,C), GL(n — 1,C)).
E.g. (G,G') =(GLn,R),GL(n - 1,R)) or (U(p,q), U(p — 1,q)).

7. irreducible rep of the subgroup G’ with infinitesimal character y .
I1: irreducible rep of G with non-singular infinitesimal character & .

LetIT: £ + A — V(G) be a coherent family starting at Iz, = I1.

Theorem A Forany x € & + A suchthat (x, y) satisfies the same
interlacing pattern with (&, y ), one has

[T g : n]=[I|c: ]




Example: U(3) | U(2) revisited

Weyl's branching law: If & > 71 > & > 7 > &, then

[FUO(&, &, &)lue : FYP(11, )] = 1.

xl\ /n\ / ﬂ Theorem A

A simple and easy case



Example: U(3) | U(2) revisited

Weyl's branching law: If & > 71 > & > 7 > &, then
[FUOC&, & . &)luey : FYP(11, 1)l = 1.

‘\\ /“\ /“ ﬂ Theorem A
> ;

A simple and easy case:

[FYO(t, 1, &)lve : FYP(11, 1)l = 1.

The infinitesimal characters y and x of 7 and II, respectively:
T+ 5.12-3) = (1.)2)
(t1+ 1,72,& — 1) = (x1, x2, x3)
satisfies the interlacing pattern x; > y; > x > y» > x3.




Example: Gan—Gross—Prasad conjecture

* (G.G")=U(p.9),Up—1,9)
We review Harish-Chandra’s discrete series representations
for G and G’ in a simple setting where (p,q) = (2, 1).

e G=UQ,1)
Three families: for x = (x1, x2, x3) € Z2.

HhOlO(x)’ Hnon (x), Hanti (x) .

e G=U(,1)
Two families: for y = (y1,y2) € (Z + %)i

ﬂ'hO]O(y), ﬂ,anti (y)

Here, x, y stand for infinitesimal characters.



Inside Fence: Example: (G,G’) = (U(2,1),U(1, 1))

x=(x,x,0)€Z, y=0nLn)e@+H?.

o [II"°()lg : 2] = 1
— Yy > X1 > X2 > Yy > X3. -/ N/

. hol —
o [T (Wlgr = m°()] =1 -
& X1 >y > y) > X2 > x3 Or s
H. He*
XL > X2 > X3 > Y1 > Y. Xo—x —

N

D —

These conditions on parameters fit well with our general theorem:

Theorem A Forany x € & + A suchthat (x, y) satisfies the same
interlacing pattern with (&, y ), one has

Ulilgr : 7] = [Hlgr : 7]

* H. He, On the Gan-Gross—Prasad conjecture for U(p, q), Invent. Math., 209 (2017), 837-884.



Jumping Fence of Interlacing Pattern
Let (G,G’) be real forms of (GL(n,C), GL(n — 1,C)).

x: irreducible rep of G’ with infinitesimal character y .
IT: irreducible rep of G with non-singular infinitesimal character x .

Theorem A is derived from: let ¢* be a translation functor.

Theorem B Let x be non-singular. Then

Homg: (Mg, 7) ~ Homg: (¢ ()67, 7)

if x; ¢{y —%,..., Vn—1 —%}.

e Previous examples --- x; — y; € Z+ 1.
o If x; — y; €Z,then one can jump the fences!




Discrete series representations for G/H
G: the unitary dual of G.

Suppose that a homogeneous space G/H has a G-invariant
measure.

~> G L%(G/H) unitary representation.

The set of discrete series representations for G/H is defined by

Disc(G/H) :={I1 € G : Homg(I1, L*(G/H)) # {0}}.



Examples of discrete series reps for G/H

Disc(G/H) :={I1 € G : Homg(I1, L*(G/H)) # {0}

Example X = G/H = GL(n, R)/(GL(p,R) X GL(¢,R)) (p + q = n).
Disc(G/H) ~ (Il : A€ QZ+ D\, 4y > -+ > A, > O}

I1, is a cohomological parabolic induction from the Levi subgroup
L=~ (C)'xGL2n-¢,R), ¢:=min(p,q).
Our normalization: 3(gc)-inf character of I1, is
x:= 3. A =20-1,.., 1+ 20—n,-¢,-+ ,=A)) .




Examples of discrete series reps for G/H

Disc(G/H) :={I1 € G : Homg(I1, L*(G/H)) # {0}

Example X = G/H = GL(n,R)/(GL(p,R) X GL(q,R)) (p + g = n).
Disc(G/H) ~{II;: 1 e RQZ+ 1,41 > ---> 2, > 0).
I1, is a cohomological parabolic induction from the Levi subgroup
L=~ (C)xGL2n-t,R), {:=min(p,q).
Our normalization: 3(gc)-inf character of I1, is
x:= 3. A =20-1,.., 1+ 20—n,-¢,-+ ,=A)) .

Similarly for Y = G’/H' = GL(n — 1,R)/(GL(p,R) X GL(g — 1, R)).
Disc(G’/H') = {m, :ve RQZ+ D! ,vi > --- > vp > 0},
Here, ¢’ = min(p, g — 1). The 3(g;.)-inf character of , is
yi= 30, ve,n =20 =2,...,2420 —n,—vp, -+ ,—v1).




Period integral

I1 c L*(X) : discrete series representation for X = G/H
U
n c L*(Y) : discrete series representation for Y = G’ /H’

Consider a period integral:

B: I xn®° = C, (F,f)HfF7
Y

~> Tg € Homg (1%, 7%°) via 7 ~ .

Example (G,G’) = (GL(n,R),GL(n—1,R)) p+qg=n, 2p<n-—1.
H = GL(p,R) X GL(¢,R),
H =GL(p,R) x GL(g — 1,R).




Jumping Fence of Interlacing Pattern

Theorem For any I1 € Disc(G/H) and any n € Disc(G’/H")
with non-singular inf characters, we have

Mg : 7] = 1.
Xl — Xy — o X¢
yr —Y2 — ye

(no interlacing!)



Jumping Fence of Interlacing Pattern

Theorem For any I1 € Disc(G/H) and any n € Disc(G’/H")
with non-singular inf characters, we have
Mg : 7] = 1.

Proof. For simplicity, (G,G") = (GL(5,R), GL(4,R)) and p = 2.
The period integral does not vanish in the special setting
where (/11,/12) = (V],Vz) , thUS, [H/1|G/ Zﬂ'v] =1.

The interlacing property in this specific case is given as

X1 =Yy1 > X2 = y2.
~» One can jump fences for x; and y; , because

X; — y; €Z, whereas

Theorem B involves an “obstruction” only when x; — y; € Z + %



Another example: Branching of the Speh representation

(G,G") = (GL(2m,R),GL(2m - 1,R))

For simplicity of the slide, consider the case m = 2.

e G=GL(4,R)
Let p = (1, 2, 3, p1a) € (Z4)s.
II(u): coherent continuation of the Speh rep of G = GL(4,R).
Our normalization:
3(gac)-infinitesimal character x = u+ (3,-3,3.-3) .
u =, -, -6 ~» I(w) is the 2£-th Speh rep.

e G'=GL3.,R)
For 7 = (11,72, 73) € Z2, we consider a certain coherent family
n(t) € Irr(G”) having an infinitesimal character y = (71,72, 73) .



Another example: Branching of the Speh representation

() - -

a(t) .-

(Speh representation)
cohomological parabolic induction
L=GL0n,C)TG=GLQ2n,R)

cohomological parabolic induction
L' =GLn-1,C)xR* TG =GL2n-1,R)



Branching to Speh representation GL(2m) | GL2m — 1)

For simplicity, we consider the case m = 2. Let 7 € Z3.

Theorem Forany u; > 71 > o > (3 > 73 > g,

(ICpy , po s 435 pa)lgr 2 (1, 72, 13)] = 1.

This corresponds to the interlacing pattern of 3(g¢)-inf characters:
X1 > Y1 > Xp > X3 > Y3 > X4
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Theorem Forany u; > 71 > o > (3 > 73 > g,

(ICpy , po s 435 pa)lgr 2 (1, 72, 13)] = 1.

This corresponds to the interlacing pattern of 3(g¢)-inf characters:
X1 > Y1 > Xp > X3 > Y3 > X4



Branching to Speh representation GL(2m) | GL2m — 1)

For simplicity, we consider the case m = 2. Let 7 € Z3.

Theorem Forany u; > 71 > o > (3 > 73 > g,

(ICpy , po s 435 pa)lgr 2 (1, 72, 13)] = 1.

This corresponds to the interlacing pattern of 3(g¢)-inf characters:
X1 > Y1 > Xp > X3 > Y3 > X4

Theorem A ﬂ
Easier case: if u; > 71, 73 > 4, and u; + pq4 = 72, then

HICuy , 71, 73, 4l (71, 72, 13)] = 1.



Vanishing: Branching of Speh Representation

Changing the interlacing pattern
X1 > y1 > X > X3 > Y3 > X4,

for the non-vanishing, one has a vanishing result.

Corollary If the following interlacing
X1 > X2 > y1 > Y3 > X3 > X4
holds, then
HIwWlgr = m(7)] =

Here we recall x =pu+ 3(1,-1,1,-1), y=1.

Proof for the vanishing uses again Theorem B to extend an easier
and special case to the general case.



Scheme

Theorem A A Theorem B
é é (depending on parity)
Interlacing Pattern Jumping Fences

(inside fences)



Thank you very much!



