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Plan of Lectures

Talk 1: Is rep theory useful for global analysis? ‘

—Multiplicity: Approach from PDEs

Talk 2: Tempered homogeneous spaces
—Dynamical approach

Talk 3: Classification theory of tempered G/H
—Combinatorics of convex polyhedra

Talk 4: Tempered homogeneous spaces
—Interaction with topology and geometry




Is rep theory useful for global analysis on manifolds?

G VX o~ GTYCPX)
Geometry Functions

Basic Problem 1
Does the group G “ control well ” the function space C*(X)?




Warming up: Analysis and Synthesis

Philosophy — Analysis and Synthesis : Try to understand
e how things are built up from the “smallest” objects;
e what are the “smallest” ones.

e Chemistry: understand a substance from the “smallest particle”
(molecule, atom, ---).

e Lie groups: “built up” from simple Lie groups (SL(n,R), SO(p, ¢), - --)
=€ groups
and one-dimensional ones (R or T).

e Representations: “decompose” into irreducible representations.

e Functions: “expand” functions into “basic” functions.



First viewpoint - -- Spectral Analysis on Riemannian manifolds

Without “group theory”

X : comEIete Riemannian manifold

~> Ay = —divograd (Laplacian)

The Laplacian Ay is essentially self-adjoint on L*(X).

~y L*(X) ~ fow Hydr(d)  (spectral decomposition of Ay).

- any L?-function on X can be expanded into eigenfns of Ay .



Second viewpoint - - - Group Representation 1
Without specific geometric structure such as Riemannian structure.

G X (manifold) ~» G C®(X), L*(X),---

Geometry Functions

G C™(X)
One defines a rep of G on C*(X) by nx(g): f(x) — f(g~'x).

GV LA(X)
e |f X has a G-invariant Radon measure uy, then
G acts unitarily on L2(X) := L*(X, ux).

e More generally, let £ be the half density bundle of X.
~s G acts unitarily on L*(X) := L*(X, £).




Second viewpoint - - - Group Representation 1
G ™ X (manifold) ~ G L*(X)
Geometry Functions

G Y LA(X)
e Let £ be the half density bundle of X.
~s G acts unitarily on L*(X) := L*(X, £).

Alternative definition

G“YL*X) (multiplier representation)
We set L*(X) := L*(X, ux) by choosing a volume form ux on X.
One defines a unitary operator x(g): L*(X) — L*(X) by
1
(mx(Q))(x) = c(g, 07 f(g7 x) € LA(X),
where ¢(g, x) is defined by g.ux = c(g, x)ux (Radon-Nykodim derivative).

~> 7y gives a unitary representation of G on L*(X).




Second viewpoint — Group Representation 2

Fact (Mautner) Any unitary rep I1 of G can be disintegrated
into irreducibles:

= [ % murdu(r)  (direct integral)

G := {irreducible unitary representations}/ ~  (unitary dual),

m: G - NU{eo}, 7> my (multiplicity).

%ﬂ':ﬂ@“-@ﬂ'
My

In our setting
e

G X (manifold) ~» G”YL2(X) (Hilbertspace)

LX) ~ E)mnndu(n) (Plancherel-type theorem)




Connection of the two viewpoints
(Without group theory)

X : pseudo-Riemannian manifold

Spectral analysis of Ax: L*(X) ~ [ Hadr().
“generalize” § %ifm, =1

Representation Theory:  L*(X) ~ E\B mardu(n).

Symmetry: G"¥X
(No geometric structure specified)

Example Special cases for which both settings occur:
G = Isom(X) --- the groups of isometries
of a pseudo-Riemannian manifold X.



Example: Spherical harmonics expansionon S”
Two viewpoints give the same expansion for X = S" or H":

(1) (Spectral analysis: eigenfunctions of the Laplacian Agn)
Any f e C™(S") has an eigenfunction expansion:

where Agn ¢; = jin+j—1) ¢; (V)).
(2) (Representation theory: Irreducible decomposition)
O(n + 1) acts unitarily on L*(S"), which decomposes

On+1)"YL*S") ~ @ H; (multiplicity-free irreducible decomposition).
Jj=0

Likewise for G = O(n, 1)~ H" (hyperbolic space).



Laplacian Ax ~ Invariant differential operators
Generalization of Ay by using “symmetry”

Setting G”YX (manifold) ~» G C®(X), L*(X), - -

X: no geometric structure specified.

Definition A differential operator D on X is G-invariant if
Donx(g) =nx(®)eD  onC™(X),'g€G.

Note: D, nx(g) € End(C™(X)).

D¢(X) := ring of G-invariant differential operators on X

Example For a (pseudo-)Riemannian manifold X,
take G := Isom(X) - - - the group of isometries of X.
(1) Ax € DG(X).

(2) ForX =S",G ~O(n+ 1) and Dg(X) = C[Ax].
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Multiplicities in regular representations

G¥X  ~w GTYCRX)
Geometry Functions

Basic Problem 1
Does the group G “ control well ” the function space C*(X)?

Formulation Consider the dimension of

Homg(r, C¥(X)) for x € Trr(G).

infinite, finite, bounded, Oori

control better



Smooth admissible representations

G : real reductive linear Lie gp © K : max. compact, g : Lie alg

Example G =GLm,R) > K =O0(n), g= M(n,R)

e Analytic rep theory (Fréchet space, Hilbert space, - - -)

Irr(G):= { irred admissible reps of G of moderate growth}/ ~

G :={irred unitary representations of G}/ ~ (‘unitary dual )

G — Irr(G), n+— 7™ (smooth rep)

Irr(G)y := {irred finite-dim’l reps of G}.



Spherical vs real spherical
Gec complex reductive > Xc complex manifold (connected)

Definition Xc is spherical if a Borel subgroup B of G¢
has an open orbit in X¢.

Def. Borel subgroup B of G¢

= maximal connected solvable subgp of G¢.
e

% % %

e.g. B={[0 * ok
0 0 =

} € GL(3,C) = G¢.

Example Grassmannian varieties, flag varieties, symmetric spaces,
complexification of weakly symmetric spaces (a la Selberg), - - -
are spherical.




Spherical vs real spherical
Gc complex reductive D He complex subgroup

Definition G¢/Hc is spherical if a Borel subgroup B of G¢
has an open orbit in G¢/Hc.
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real spherical spaces

spherical spaces
(and their real forms)

symmetric spaces



Spherical vs real spherical
Gc complex reductive D He complex subgroup

Definition G¢/Hc is spherical if a Borel subgroup B of G¢
has an open orbit in G¢/Hc.

G real reductive > H subgroup

Definition** We say G/H is real spherical if
a minimal parabolic P of G has an open orbit in G/H.

|~ redustive homogeneous spaces

real spherical spaces

spherical spaces
(and their real forms)

symmetric spaces

** T. Kobayashi, Introduction to harmonic analysis on spherical homogeneous spaces, 22-41, 1995.



Spherical vs real spherical
Gc complex reductive D He complex subgroup

Definition G¢/Hc is spherical if a Borel subgroup B of G¢
has an open orbit in G¢/Hc.

G real reductive > H subgroup

Definition** We say G/H is real spherical if
a minimal parabolic P of G has an open orbit in G/H.

©N

G/H symmetric space 2 Gc/Hc spherical 22 G/H real spherical

** T. Kobayashi, Introduction to harmonic analysis on spherical homogeneous spaces, 22-41, 1995.



Spherical vs real spherical
Gc complex reductive D He complex subgroup

Definition G¢/Hc is spherical if a Borel subgroup B of G¢
has an open orbit in G¢/Hc.

« #(B\G¢c/Hc) < oo (Brion, Vinberg) (~1986)

G real reductive > H subgroup

Definition ~ We say G/H is real spherical if
a minimal parabolic P of G has an open orbit in G/H.

— #(P\G/H) < o (Kimelfeld, Matsuki, Bien) (~1990s)

G/H symmetric space £ 2 Gc/Hc spherical =’G/H real spherical



Spherical vs real spherical
Gc complex reductive > Hc reductive subgroup

Definition G¢/Hc is spherical if a Borel subgroup B of G¢
has an open orbit in G¢/Hc.

G real reductive D H reductive subgroup

Definition ~ We say G/H is real spherical if
a minimal parabolic P of G has an open orbit in G/H.

For reductive H, Tanaka recently settled” a conjecture since '95:

G/H real spherical &< G = K'AH

* Y. Tanaka, A Cartan decomposition for a reductive real spherical homogeneous space, Kyoto J. Math., 95-102, (2022).

** T. Kobayashi, Introduction to harmonic analysis on spherical homogeneous spaces, 22-41, 1995.



Multiplicities in regular representations

G X  w GTYCRX)
Geometry Functions

Basic Problem 1
Does the group G “ control well ” the function space C*(X)?

Formulation Consider the dimension of

Homg(r, C* (X)) for xr € Irr(G).

infinite, finite, bounded, Oor1

control better



Answer to Basic Problem 1 (multiplicity)

G > H real reductive linear groups, X := G/H (algebraic)

Theorem A* (i) and (ii) are equivalent on (G, X) = (G, G/H).
(i) (Analysis and Rep Theory: finite multiplicities )

dim Homg(r, C*(X)) < o (Y € Irr(G)).
(i) (Geometry) X is real spherical .

Recall X real spherical & P” X = G/H has an open orbit
& H"Y G/P has an open orbit

* T. Kobayashi and T. Oshima, Adv. Math., 248 (2013), 921-944.
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Answer to Basic Problem 1 (multiplicity)

G > H real reductive linear groups, X := G/H (algebraic)

Theorem A* (i) and (ii) are equivalent on (G, X) = (G, G/H).
(i) (Analysis and Rep Theory: finite multiplicities )

dim Homg(r, C¥(X)) < 00 (Y7 € Irr(G)).
(i) (Geometry) X is real spherical .

Methods of proof

(i) = (i) Reduction to geometry of boundaries

(i) = (ii)

Construction of integral intertwining operators from boundaries



Answer to Basic Problem 1 (multiplicity)

G > H real reductive linear groups, X := G/H (algebraic)

Theorem A* (i) and (ii) are equivalent on (G, X) = (G, G/H).
(i) (Analysis and Rep Theory: finite multiplicities )

dim Homg(r, C®(X)) < c0 (Y7 € Irr(G)).
(i) (Geometry) X is real spherical .

Remark 1) Theorem A holds in a more general setting:
e non-reductive H,
e sections for any G-equivariant vector bundle V — X.

* T. Kobayashi, T. Oshima, Adv. Math., 248 (2013), 921-944.



Answer to Basic Problem 1 (multiplicity)

G > H real reductive linear groups, X := G/H (algebraic)

Theorem A* (i) and (ii) are equivalent on (G, X) = (G, G/H).
(i) (Analysis and Rep Theory: finite multiplicities )

dim Homg(r, C¥(X)) < 00 (Y € Irr(G)).
(i) (Geometry) X is real spherical .

Remark 1) Theorem A holds in a more general setting:
e non-reductive H,
e sections for any G-equivariant vector bundle V — X.
2) (“qualitative results” (Thm A) ~» “ quantitative estimate”)
Upper/lower estimates of the multiplicities are obtained.
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When does the group “control” better the function space?
G D H real reductive linear groups, X := G/H (algebraic).

Theorem B *The following conditions are all equivalent:

() (Analysis & rep theory) There exists C > 0 s.t.
dim Homg(mr, C* (X)) < C for all & € Irr(G).

(i) (Complex geometry) Xc is Gc-spherical.

()" (Algebra) The ring Dg(X) is commutative.

(ii)” (Algebra) The ring Dg(X) is a polynomial ring.

The equivalence (ii) ~ (ii)” is classical (Vinberg, Knop, - - -).
The main point that we emphasize on here is an interaction of

(i) Analysis <= (ii)~(ii)” Algebra & Geometry.

e Surprisingly, uniform boundedness of the multiplicity in C*(X)
is detected only by the complexification X¢ = Ge/Hc.

* T. Kobayashi, T. Oshima, Adv. Math., 248 (2013), 921-944.



Xc = G¢/Hce detects “bounded multiplicity property”
The uniform boundedness of the multiplicity in C*(X) is detected,
surprisingly, only by the complexification X¢ = G¢/He.

Example. Letn > 2m, and consider

G/H =SL(n,R)/Sp(m,R), SU(n)/Sp(m),
SUp,9)/Sp(p’.q) (p+q=n,p' +q =m,p=2p',q=2q),
SU*(3)/Sp(p’.q') (neven, p’ +q =m),...

These homogeneous spaces have the isomorphic complexification
Gc/He = S L(n,C)/Sp(m, C).

The bounded multiplicity property for C*(G/H) holds
— n=2mor2m+ 1 (depending only on G¢/Hcg).

| Remark Finite multiplicity property depends on real forms.
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Idea of prooéf){or Theorems A and B --- PDEs

/X
/// 4 \ boundaries
—
Pif=Pyf =---=Pf=0 = Slax
System of partial differential eqns “boundary value”
Example X = unit disk, X = S!
0 0
(a—x‘Fia—y)f(x,y):O = flox
holomorphic function “hyperfunction”

(Idea of Sato (1928-2023)).



Idea of prooéf){or Theorems A and B --- PDEs

///%_\

< boundaries
Pif=Pyf=---=Pf=0 = Slax
System of partial differential eqns “boundary value”
Example X = unitdisk, X = S!
9? 0*

(@‘Fa—)ﬂ)f(x,y):() = flax

harmonic function “hyperfunction”
(Idea of Sato (1928—-2023)).

U U

— distributions

Hardy space «—  L*functions
‘e «— continuous functions



Classical example: Af = Af in the Poincaré disc

2, 3.2
Poincaré disc D={z€C: <1} ds*= 4(51\:;?2)

Laplacian A =— 1(1—x2— 2)2‘(6—2+—2
P 4 T dy?

~ —3(6* - 20) near the boundary (s = 0)

0
where 0= s—, s:= {/1-22—-)?
os

Suppose Af = Af in D and f is K-finite.
Look at near the boundary dD.
The theory of ODE with regular singularity tells us

F(V1 = s2(cos g, sing)) = A(s, p)s' V1= 4 AB(s, )5~ V14
for generic A correspondingly to (—1(67 — 20) — 2)s'=Vi=#1 =0,
~> A0, ), B(0, ) - -- “boundary values” of f.



Helgason’s conjecture - -- s etric case

. ///////% Is—llvggl:le r(’)stoctomeectufe (theorem

K

/////////




Helgason’s conjecture - - - symmetric case

simple prototype
Helgason’s conjecture (theorem)
- - - Kashiwara—Okamoto—Oshima et al.

‘9 G/P

Geometry
compactification
X=G/K ~ 0X
Riemannian symmetric space normal crossing
Analysis
Poi f

f c ﬂ(G/K) st mssonftr\ans orm “flG/P” . B(G/P ‘5/1)

Df = Apyf ("D € D(G/K)) wpoungary map’ ’
)

micro-local analysis, PDE with regular singularities




Helgason’s conjecture - - - symmetric case

Helgason’s conjecture (theorem)

G/P
Geometry
compactification
X=G/K ~ 0X
Riemannian symmetric space normal crossing
Analysis
Poi f
f c ﬂ(G/K) st mssonftr\ans orm “flG/P” . B(G/P ‘5/1)
Df = Apyf ("D € D(G/K)) wpoungary map’ ’
)

micro-local analysis, PDE with regular singularities

with K-finiteness assumption - - - goes back to Harish-Chandra



Sketch of proof of Theorem A
Generalcase : G/H HP 0pcen G, H possibly non-reductive

e Consider r: H —» GL(V)
V.=GxygV —>G/H
~ GV C¥(G/H, V) c B(G/H,V)
e U(g) D Z(g): center of enveloping algebra



Sketch of proof of Theorem A
Generalcase : G/H HP 0pcen G, H possibly non-reductive

Fix y:Z(g) — C infinitesimal character

BY(G/H;V) = {f € B(G/H;7) : Df = x(D)f ("D € Z(3))}
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such that
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“boundary map”



Sketch of proof of Theorems A and B
General case : G/H HP opcen G, H possibly non-reductive

Fix y:Z(g) — C infinitesimal character

BY(G/H;V) = {f € B(G/H;7) : Df = x(D)f ("D € Z(3))}

By using an appropriate compagctification, (g, K)-filtration
B(G/H;V)k =8>8 ' 5...5 8" = {0}
such that

B/ /B < B(HP/P; o)
“boundary map”

Corollary  8,(G/H; V)i is of finite length as a (g, K)-module
for Yy and Y, namely
#(irred. subquotients) < oo




Induction H T G vs Restriction G | H
Let H C G.

So far, we have discussed “Basic Problem” for the “induction”

C*¥(G/H) = Ind%(1)™.

Basic Problem 1 GTX o GTNCR0
Does the group G “ control well ” the function space C*(X)? Geometry Functions

We may also think of the “restriction” G | H (“branching problem”)
which is much more involved.

Basic Problem 2 Single out nice pairs (G, H) for which detailed
study of the restriction G | H (“branching problem”) is “fruitful”.




Comparison: GL(n,R) | O(n) vs GL(n,R) | O(p,n — p)

Harish-Chandra’s admissibility theorem concerns the restriction

with respect to a Riemannian symmetric pair
G DK, e.g., GL(n,R) > O(n)

and asserts
Mg : 7] <o " eIrr(G),"n € Irr(K).

In contrast,

For a reductive symmetric pair
Go(G, e.g., GLm,R) > O(p,n — p)

it may happen that
[Hjgr : 7] = o for some II € Irr(G) and r € Irr(G’).




Branching problems

G — " 5 GLw)
irreducible
U 7

""""" et
G/



Branching problems

G — " 5 GLw)
irreducible

Example (tensor product of two representations)
ﬂ', E ﬂ'"
G X G GL(V)
outer tensor product
U e >
__________ ren’

diag G,




Branching problems

G —— GLV)
irreducible
U —’_,W

Gl

Branching problem (in a wider sense than the usual)
wish to understand
how the restriction n|;» behaves as a G’-module.




Application of Thms A & B (Induction) to branching problems

G > G reductive groups



Application of Thms A & B (Induction) to branching problems

G > G reductive groups
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T T



Application of Thms A & B (Induction) to branching problems

G > G reductive groups
irred Qirred
oo T

symmetry breaking operator
(continuous G’-homomorphism)

Homg (7|, 7) := { symmetry breaking operators }

In general,
the dimension of Hom; (n|¢;7, 7) might be infinite

even when G’ is a maximal reductive subgroup in G.



Application of Thms A & B (Induction) to branching problems

G > G reductive groups
irred Qirred
oo T

Theorem C* (criterion for finite multiplicity)
Homg (¢, 7) is finite-dimensional (" € Irr(G), Y7 € Irr(G))
— (G x G")/ diag(G") is (G x G’)- real spherical .

* T. Kobayashi, Shintani functions, real spherical manifolds, ..., Perspective Math. (2014).



Application of Thms A & B (Induction) to branching problems

G > G reductive groups
irred Qirred
oo T

Theorem C* (criterion for finite multiplicity)
Homg (¢, 7) is finite-dimensional (" € Irr(G), Y7 € Irr(G))
— (G x G")/ diag(G") is (G x G’)- real spherical .

Theorem D* (criterion for bounded multiplicity)
AC > 0, dimHomg/ (ntlr,7) < € (Y7 € Irr(G), Y1 € Irr(G"))
— (Gc X Gp)/ diag(Gy,) is (Ge X G.)- spherical .

* T. Kobayashi, Shintani functions, real spherical manifolds, ..., Perspective Math. (2014).



a priori estimate ~> construction

G > G reductive groups
irred Qirred
oo T

Theorems C and D (criterion for finite / bounded mult.)
1) Homg (|, 7) is finite-dimensional ("7 € Irr(G), Yt € Irr(G"))
< (G x G")/ diag(G") is real spherical .
2) IC > 0, dimHomg (7|, 7) € C ("7 € Irr(G), V1 € Irr(G"))
< (Gc X Gp)/ diag(Gy,) is spherical .

$ « classification of (G,G") satisfying (1)

techniques: linearization, prehomogeneous sp.,
quivers




a priori estimate ~> construction

G > G reductive groups
irred Qirred
oo T

Theorems C and D (criterion for finite / bounded mult.)
1) Homg (ntlg, 7) is finite-dimensional ("7 € Irr(G), Y1 € Irr(G”))
— (G x G")/ diag(G") is real spherical .
2) IC > 0, dimHomg (ntlg,7) £ C (Y7 € Irr(G), V1 € Irr(G"))
& (Gc X Gp)/ diag(Gy,) is spherical .

$ « classification of (G,G’) satisfying (1)

Example 1 * (G,G’) = (GL(n + 1,F), GL(n,F) x GL(1,F))
F=R,C---both (1) and (2) hold.
F=H ---(1) holds, but (2) fails.

* T. Kobayashi—T. Matsuki, Transformation Groups, 2014 (Dynkin volume).



a priori estimate ~> construction

G > G reductive groups
irred Qirred
oo T

Theorems C and D (criterion for finite / bounded mult.)
1) Homg (|, 7) is finite-dimensional ("7 € Irr(G), Yt € Irr(G"))
< (G x G")/ diag(G") is real spherical .
2) C > 0, dimHomg (7|, 7) € C ("7 € Irr(G), V7 € Irr(G"))
< (Gc X Gp)/ diag(Gy,) is spherical .

Classification Theory (classical) compact (G, G”) satisfying (2)
.-+ Cooper (Kostant), Kramer (1970s)
-+ (Ge, Gp) = (GLy(C), GL,1(C)) or (0,(C), 0,1 (C)).

cf. Gan—Gross—Prasad conjecture for (GL,,GL,_1) or (O,, O,_1).




a priori estimate ~> construction

G > G reductive groups
irred Qirred
oo T

Theorems C and D (criterion for finite / bounded mult.)
1) Homg (|, 7) is finite-dimensional ("7 € Irr(G), Yt € Irr(G"))
< (G x G")/ diag(G") is real spherical .
2) IC > 0, dimHomg (7|, 7) € C ("7 € Irr(G), V1 € Irr(G"))
— (Gc X Gp)/ diag(Gy,) is spherical .

$  « classification of (G,G")

Further Problem
(1) Construct explicitly symmetry breaking operators
(2) Gan—Gross—Prasad conjecture for (GL,,GL,_1) or (O,, 0,_1).




Induction H T G vs RestrictionG | H

X =G/H

GYX w GTYC™X)
Geometry Functions

Basic Problem 1
Does the group G “ control well ” the function space C*(X)?




Four assumptions Theorems A-D

Assumption A
H"YG/P open

n

Assumption C
Hc"YGe/B open

S

~

H not necessarily reductive

Assumption B
Py G/P open

l

Assumption D
Bu"Y Gc/B open

\J

)

H reductive

Py and By are minimal parabolic and Borel for H and Hc,
respectively.



Four assumptions Theorems A-D

Theorem A
H" G/P open

n

Theorem C
Hc"Y Ge/B open

Theorem B
Py G/P open

~N

m

Theorem D
Bu"Y Gc/B open

\J

Induction
Homg; (, Indg T)
dimt < o0

W

~/

Restriction
Homp (7|x, 7)
Allow dim 7 = o



Four assumptions Theorems A-D
Finite multiplicity theorems

Theorem A

dim Homg (r, Ind$;7) < o0
(Ym € Irr(G), Y7 € Irr(H) )

Theorem B

dim Homg (71|, T) < o0
(Y € Irr(G), V1 € Irr(H))

il

il

Theorem C

sup sup dimHomg(r, Ind%7)
nel(G)relr(H)
< o0

Theorem D

sup sup dim Homg(n|y, 1)
nelr(G)relrr(H)
< 0

Bounded multiplicity theorems



Reductive homogeneous space G/H

real reductive groups
reductive subgroup

T Q

reductive homogeneous spaces

real spherical spaces

spherical spaces
(and their real forms)

symmetric spaces

We shall also discuss when G and H are not nesssarily reductive.
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Plan of Lectures

Talk 1: Is rep theory useful for global analysis? ‘

—Multiplicity: Approach from PDEs

Talk 2: Tempered homogeneous spaces
—Dynamical approach

Talk 3: Classification theory of tempered G/H
—Combinatorics of convex polyhedra

Talk 4: Tempered homogeneous spaces
—Interaction with topology and geometry




Thank you for your attention!



