Harish-Chandra's Tempered Representations and Geometry I Is rep theory useful for global analysis on a manifold? — Multiplicity: Approach from PDEs #### Toshiyuki Kobayashi The Graduate School of Mathematical Sciences The University of Tokyo http://www.ms.u-tokyo.ac.jp/~toshi/ 18th Discussion Meeting in Harmonic Analysis (In honour of centenary year of Harish Chandra) Indian Institute of Technology Guwahati, India, 12 December 2023 G: real reductive groups G: real reductive groups *G*: real reductive groups #### **Plan of Lectures** Talk 1: Is rep theory useful for global analysis? —Multiplicity: Approach from PDEs G: real reductive groups #### Plan of Lectures Talk 1: Is rep theory useful for global analysis? —Multiplicity: Approach from PDEs Talk 2: Tempered homogeneous spaces —Dynamical approach Talk 3: Classification theory of tempered G/H —Combinatorics of convex polyhedra Talk 4: Tempered homogeneous spaces —Interaction with topology and geometry # Is rep theory useful for global analysis on manifolds? $$G \cap X$$ \leadsto $G \cap C^{\infty}(X)$ Geometry Functions #### Basic Problem 1 Does the group G "control well" the function space $C^{\infty}(X)$? ## Warming up: Analysis and Synthesis Philosophy — Analysis and Synthesis: Try to understand - how things are built up from the "smallest" objects; - what are the "smallest" ones. - <u>Chemistry</u>: understand a substance from the "smallest particle" (molecule, atom, ···). - Lie groups: "built up" from simple Lie groups $(SL(n,\mathbb{R}),SO(p,q),\cdots)$ and one-dimensional ones $(\mathbb{R} \text{ or } \mathbb{T}).$ - Representations: "decompose" into irreducible representations. - Functions: "expand" functions into "basic" functions. # First viewpoint · · · Spectral Analysis on Riemannian manifolds Without "group theory" $$X$$: complete Riemannian manifold \longleftrightarrow $\Delta_X = -\operatorname{div} \circ \operatorname{grad}$ (Laplacian) The Laplacian Δ_X is <u>essentially self-adjoint</u> on $L^2(X)$. $$\leadsto$$ $L^2(X) \simeq \int_0^\infty \mathcal{H}_{\lambda} d\tau(\lambda)$ (spectral decomposition of Δ_X). \cdots any L^2 -function on X can be expanded into eigenfns of Δ_X . ## Second viewpoint · · · Group Representation 1 Without specific geometric structure such as Riemannian structure. $$G \curvearrowright X$$ (manifold) $\leadsto G \curvearrowright C^{\infty}(X), L^2(X), \cdots$ Geometry Functions $$G^{\wedge}C^{\infty}(X)$$ One defines a rep of G on $C^{\infty}(X)$ by $\pi_X(g)$: $f(x) \mapsto f(g^{-1}x)$. $$G^{\sim}L^2(X)$$ - If X has a G-invariant Radon measure μ_X , then G acts unitarily on $L^2(X) := L^2(X, \mu_X)$. - More generally, let \mathcal{L} be the half density bundle of X. $$\rightsquigarrow$$ G acts unitarily on $L^2(X) := L^2(X, \mathcal{L})$. # Second viewpoint · · · Group Representation 1 $$G \curvearrowright X$$ (manifold) $\leadsto G \curvearrowright L^2(X)$ Geometry Functions $$G^{\sim}L^2(X)$$ - Let \mathcal{L} be the half density bundle of X. - \rightsquigarrow G acts unitarily on $L^2(X) := L^2(X, \mathcal{L})$. #### Alternative definition # $G^{\sim}L^2(X)$ (multiplier representation) We set $L^2(X) := L^2(X, \mu_X)$ by choosing a volume form μ_X on X. One defines a unitary operator $\pi_X(g)$: $L^2(X) \to L^2(X)$ by $$(\pi_X(g)f)(x) := c(g,x)^{\frac{1}{2}}f(g^{-1}x) \in L^2(X),$$ where c(g,x) is defined by $g_*\mu_X=c(g,x)\mu_X$ (Radon-Nykodim derivative). $\rightsquigarrow \pi_X$ gives a unitary representation of G on $L^2(X)$. # Second viewpoint — Group Representation 2 Fact (Mautner) Any unitary rep Π of G can be disintegrated into irreducibles: $$\Pi \simeq \int_{\widehat{G}}^{\oplus} \underline{m_{\pi}} \pi d\mu(\pi) \qquad \text{(direct integral)}$$ $$\widehat{G} := \{ \text{irreducible unitary representations} \} / \sim \quad \text{(unitary dual)}, \\ m : \widehat{G} \to \mathbb{N} \cup \{\infty\}, \quad \pi \mapsto \underline{m_{\pi}} \quad \text{(multiplicity)}.$$ $$\underline{m_{\pi}}^{\pi} = \underline{\pi \oplus \cdots \oplus \pi}$$ In our setting $$G \curvearrowright X$$ (manifold) $\leadsto G \curvearrowright L^2(X)$ (Hilbert space) $$L^2(X) \simeq \int_{\widehat{G}}^{\oplus} m_{\pi} \pi d\mu(\pi)$$ (Plancherel-type theorem) ## Connection of the two viewpoints (Without group theory) X: pseudo-Riemannian manifold Symmetry: $$G \curvearrowright X$$ (No geometric structure specified) Example Special cases for which both settings occur: $G = \text{Isom}(X) \cdots$ the groups of isometries of a pseudo-Riemannian manifold X. ## Example: Spherical harmonics expansion on S^n Two viewpoints give the same expansion for $X = \underline{S^n}$ or H^n : (1) (Spectral analysis: eigenfunctions of the Laplacian Δ_{S^n}) Any $f \in C^{\infty}(S^n)$ has an eigenfunction expansion: $$f = \sum_{j=0}^{\infty} \varphi_j$$ where $\Delta_{S^n} \varphi_j = j(n+j-1) \varphi_j (^{\forall} j)$. (2) (Representation theory: Irreducible decomposition) O(n+1) acts unitarily on $L^2(S^n)$, which decomposes $$O(n+1)^{\frown}L^2(S^n)\simeq \bigoplus_{i=0}^{\infty}\mathcal{H}_j$$ (multiplicity-free irreducible decomposition). Likewise for $G = O(n, 1)^{n} H^{n}$ (hyperbolic space). # **Laplacian** $\Delta_X \rightsquigarrow$ **Invariant differential operators** Generalization of Δ_X by using "symmetry" Setting $$G \curvearrowright X$$ (manifold) $\leadsto G \curvearrowright C^{\infty}(X), L^2(X), \cdots$ X: no geometric structure specified. Definition A differential operator $$D$$ on X is G -invariant if $$D \circ \pi_X(g) = \pi_X(g) \circ D \qquad \text{on } C^\infty(X), \forall g \in G.$$ Note: $$D, \pi_X(g) \in \operatorname{End}(C^{\infty}(X))$$. $\mathbb{D}_G(X) := \text{ring of } G\text{-invariant differential operators on } X$ Example For a (pseudo-)Riemannian manifold X, take $G := \text{Isom}(X) \cdots$ the group of isometries of X. (1) $\Delta_X \in \mathbb{D}_G(X)$. (2) For $$X = S^n$$, $G \simeq O(n+1)$ and $\mathbb{D}_G(X) \simeq \mathbb{C}[\Delta_X]$. $$G \curvearrowright X$$ \leadsto $G \curvearrowright C^{\infty}(X)$ Geometry Functions #### Basic Problem 1 Does the group G "control well" the function space $C^{\infty}(X)$? $$G \curvearrowright X$$ \leadsto $G \curvearrowright C^{\infty}(X)$ Geometry Functions #### Basic Problem 1 Does the group G "control well" the function space $C^{\infty}(X)$? #### Formulation Consider the dimension of $$\operatorname{Hom}_G(\pi, C^{\infty}(X))$$ for $\pi \in \operatorname{Irr}(G)$. $$G \cap X$$ \leadsto $G \cap C^{\infty}(X)$ Geometry Functions #### Basic Problem 1 Does the group G "control well" the function space $C^{\infty}(X)$? #### Formulation Consider the dimension of $$\operatorname{Hom}_G(\pi, C^{\infty}(X))$$ for $\pi \in \operatorname{Irr}(G)$. infinite, finite, bounded, 0 or 1 # Smooth admissible representations G: real reductive linear Lie gp $\supset K$: max. compact, g: Lie alg Example $$G = GL(n, \mathbb{R}) \supset K = O(n), g = M(n, \mathbb{R})$$ Analytic rep theory (Fréchet space, Hilbert space, ···) $\widehat{G} := \{ \text{ irred } \text{ unitary } \text{ representations of } G \} / \sim (\text{ unitary dual })$ $$\widehat{G} \hookrightarrow \operatorname{Irr}(G), \quad \pi \mapsto \pi^{\infty} \quad \text{(smooth rep)}$$ $Irr(G)_f := \{ \text{ irred } finite-dim'l reps of } G \}.$ $G_{\mathbb{C}}$ complex reductive $forall X_{\mathbb{C}}$ complex manifold (connected) <u>Definition</u> $X_{\mathbb{C}}$ is <u>spherical</u> if a Borel subgroup B of $G_{\mathbb{C}}$ has an open orbit in $X_{\mathbb{C}}$. <u>Example</u> Grassmannian varieties, flag varieties, symmetric spaces, complexification of weakly symmetric spaces (à la Selberg), · · · are spherical. $G_{\mathbb{C}}$ complex reductive $\supset H_{\mathbb{C}}$ complex subgroup <u>Definition</u> $G_{\mathbb{C}}/H_{\mathbb{C}}$ is <u>spherical</u> if a Borel subgroup B of $G_{\mathbb{C}}$ has an open orbit in $G_{\mathbb{C}}/H_{\mathbb{C}}$. $G_{\mathbb{C}}$ complex reductive $\supset H_{\mathbb{C}}$ complex subgroup <u>Definition</u> $G_{\mathbb{C}}/H_{\mathbb{C}}$ is <u>spherical</u> if a Borel subgroup B of $G_{\mathbb{C}}$ has an open orbit in $G_{\mathbb{C}}/H_{\mathbb{C}}$. G real reductive $\supset H$ subgroup <u>Definition</u>** We say G/H is real spherical if a minimal parabolic P of G has an open orbit in G/H. ^{**} T. Kobayashi, Introduction to harmonic analysis on spherical homogeneous spaces, 22–41, 1995. $G_{\mathbb{C}}$ complex reductive $\supset H_{\mathbb{C}}$ complex subgroup <u>Definition</u> $G_{\mathbb{C}}/H_{\mathbb{C}}$ is <u>spherical</u> if a Borel subgroup B of $G_{\mathbb{C}}$ has an open orbit in $G_{\mathbb{C}}/H_{\mathbb{C}}$. G real reductive $\supset H$ subgroup <u>Definition</u>** We say G/H is real spherical if a minimal parabolic P of G has an open orbit in G/H. G/H symmetric space $\rightleftarrows G_{\mathbb{C}}/H_{\mathbb{C}}$ spherical $\rightleftarrows G/H$ real spherical ^{**} T. Kobayashi, Introduction to harmonic analysis on spherical homogeneous spaces, 22-41, 1995. $G_{\mathbb{C}}$ complex reductive $\supset H_{\mathbb{C}}$ complex subgroup <u>Definition</u> $G_{\mathbb{C}}/H_{\mathbb{C}}$ is <u>spherical</u> if a Borel subgroup B of $G_{\mathbb{C}}$ has an open orbit in $G_{\mathbb{C}}/H_{\mathbb{C}}$. $$\iff$$ # $(B \setminus G_{\mathbb{C}}/H_{\mathbb{C}}) < \infty$ (Brion, Vinberg) (~1986) G real reductive $\supset H$ subgroup <u>Definition</u> We say G/H is <u>real spherical</u> if a minimal parabolic P of G has an open orbit in G/H. \iff # $(P \setminus G/H) < \infty$ (Kimelfeld, Matsuki, Bien) (~1990s) G/H symmetric space $\rightleftarrows G_{\mathbb{C}}/H_{\mathbb{C}}$ spherical $\rightleftarrows G/H$ real spherical $G_{\mathbb{C}}$ complex reductive $\supset H_{\mathbb{C}}$ reductive subgroup <u>Definition</u> $G_{\mathbb{C}}/H_{\mathbb{C}}$ is **spherical** if a Borel subgroup B of $G_{\mathbb{C}}$ has an open orbit in $G_{\mathbb{C}}/H_{\mathbb{C}}$. G real reductive $\supset H$ reductive subgroup <u>Definition</u> We say G/H is real spherical if a minimal parabolic P of G has an open orbit in G/H. For reductive H, Tanaka recently settled* a conjecture since '95: G/H real spherical $\iff G = K^{\exists}AH$ ^{*} Y. Tanaka, A Cartan decomposition for a reductive real spherical homogeneous space, Kyoto J. Math., 95–102, (2022). ^{**} T. Kobayashi, Introduction to harmonic analysis on spherical homogeneous spaces, 22-41, 1995. $$G \curvearrowright X \longrightarrow G \curvearrowright C^{\infty}(X)$$ Geometry Functions #### Basic Problem 1 Does the group G "control well" the function space $C^{\infty}(X)$? Formulation Consider the dimension of $$\operatorname{Hom}_G(\pi, C^{\infty}(X))$$ for $\pi \in \operatorname{Irr}(G)$. control better $G \supset H$ real reductive linear groups, X := G/H (algebraic) Theorem A* (i) and (ii) are equivalent on (G,X) = (G,G/H). - (i) (Analysis and Rep Theory: finite multiplicities) dim $\operatorname{Hom}_G(\pi, C^{\infty}(X)) < \infty$ ($^{\forall} \pi \in \operatorname{Irr}(G)$). - (ii) (Geometry) X is real spherical. Recall X real spherical $\Leftrightarrow P \cap X = G/H$ has an open orbit $\Leftrightarrow H \cap G/P$ has an open orbit ^{*} T. Kobayashi and T. Oshima, Adv. Math., 248 (2013), 921-944. G: real reductive groups $G \supset H$ real reductive linear groups, X := G/H (algebraic) Theorem A* (i) and (ii) are equivalent on (G,X) = (G,G/H). - (i) (Analysis and Rep Theory: finite multiplicities) $\dim \operatorname{Hom}_G(\pi, C^{\infty}(X)) < \infty \qquad (^{\forall} \pi \in \operatorname{Irr}(G)).$ - (ii) (Geometry) X is real spherical. ## Methods of proof (ii) ⇒ (i) Reduction to geometry of boundaries Equivariant compactification + hyperfunction-valued boundary maps for a system of partial differential equations. (i) ⇒ (ii) Construction of integral intertwining operators from boundaries (Cf. Knapp–Stein, Poisson–Fourier, Jacquet integral, . . .) $G \supset H$ real reductive linear groups, X := G/H (algebraic) Theorem A* (i) and (ii) are equivalent on (G,X) = (G,G/H). - (i) (Analysis and Rep Theory: finite multiplicities) $\dim \operatorname{Hom}_G(\pi, C^\infty(X)) < \infty \qquad ({}^\forall \pi \in \operatorname{Irr}(G)).$ - (ii) (Geometry) X is real spherical. ### Remark 1) Theorem A holds in a more general setting: - non-reductive H, - sections for any *G*-equivariant vector bundle $\mathcal{V} \to X$. - 2) ("qualitative results" (Thm A) \simple "quantitative estimate") Upper/lower estimates of the multiplicities are obtained. ^{*} T. Kobayashi, T. Oshima, Adv. Math., 248 (2013), 921-944. $G \supset H$ real reductive linear groups, X := G/H (algebraic) Theorem A* (i) and (ii) are equivalent on (G,X) = (G,G/H). - (i) (Analysis and Rep Theory: finite multiplicities) dim $\operatorname{Hom}_G(\pi, C^{\infty}(X)) < \infty$ ($^{\forall} \pi \in \operatorname{Irr}(G)$). - (ii) (Geometry) X is real spherical. #### Remark 1) Theorem A holds in a more general setting: - non-reductive H, - sections for any *G*-equivariant vector bundle $\mathcal{V} \to X$. - 2) ("qualitative results" (Thm A) \rightsquigarrow " quantitative estimate") Upper/lower estimates of the multiplicities are obtained. Ex. Kostant-Lynch theory ('79) for Whittaker model, when H :=maximal unipotent subgroup ^{*} T. Kobayashi, T. Oshima, Adv. Math., 248 (2013), 921-944. $G \supset H$ real reductive linear groups, X := G/H (algebraic) Theorem A* (i) and (ii) are equivalent on (G, X) = (G, G/H). (i) (Analysis and Rep Theory: finite multiplicities) $\dim \operatorname{Hom}_G(\pi, C^\infty(X)) < \infty \qquad ({}^\forall \pi \in \operatorname{Irr}(G)).$ (ii) (Coorder to) Win made whereast (ii) (Geometry) X is real spherical. G: real reductive groups G: real reductive groups # When does the group "control" better the function space? $G \supset H$ real reductive linear groups, X := G/H (algebraic). <u>Theorem B</u> *The following conditions are all equivalent: - (i) (Analysis & rep theory) There exists C > 0 s.t. $\dim \operatorname{Hom}_G(\pi, C^{\infty}(X)) \leq C$ for all $\pi \in \operatorname{Irr}(G)$. - (ii) (Complex geometry) $X_{\mathbb{C}}$ is $G_{\mathbb{C}}$ -spherical. - (ii)' (Algebra) The ring $\mathbb{D}_G(X)$ is commutative. - (ii)" (Algebra) The ring $\mathbb{D}_G(X)$ is a polynomial ring. The equivalence (ii) \sim (ii)" is classical (Vinberg, Knop, \cdots). The main point that we emphasize on here is an interaction of - (i) Analysis ← (ii)~(ii)" Algebra & Geometry. - Surprisingly, uniform boundedness of the multiplicity in $C^{\infty}(X)$ is detected only by the complexification $X_{\mathbb{C}} = G_{\mathbb{C}}/H_{\mathbb{C}}$. ^{*} T. Kobayashi, T. Oshima, Adv. Math., 248 (2013), 921-944. ### $X_{\mathbb{C}} = G_{\mathbb{C}}/H_{\mathbb{C}}$ detects "bounded multiplicity property" The uniform boundedness of the multiplicity in $C^{\infty}(X)$ is detected, surprisingly, only by the complexification $X_{\mathbb{C}} = G_{\mathbb{C}}/H_{\mathbb{C}}$. #### Example. Let $n \ge 2m$, and consider $$\overline{G/H} = SL(n,\mathbb{R})/Sp(m,\mathbb{R}), \ SU(n)/Sp(m), \\ SU(p,q)/Sp(p',q') \ (p+q=n,p'+q'=m,p\geq 2p',q\geq 2q'), \\ SU^*(\frac{n}{2})/Sp(p',q') \ (n \text{ even},\ p'+q'=m), \dots$$ These homogeneous spaces have the isomorphic complexification $G_{\mathbb{C}}/H_{\mathbb{C}} = SL(n,\mathbb{C})/Sp(m,\mathbb{C})$. The bounded multiplicity property for $C^{\infty}(G/H)$ holds $\iff n = 2m \text{ or } 2m + 1$ (depending only on $G_{\mathbb{C}}/H_{\mathbb{C}}$). Remark Finite multiplicity property depends on real forms. $$P_1 f = P_2 f = \cdots = P_{\ell} f = 0$$ System of partial differential eqns $$P_1 f = P_2 f = \cdots = P_{\ell} f = 0$$ System of partial differential eqns $f|_{\partial X}$ "boundary value" $$P_1f = P_2f = \cdots = P_\ell f = 0 \implies f|_{\partial X}$$ System of partial differential eqns "boundary value" (Idea of Sato (1928–2023)). $$P_1f = P_2f = \cdots = P_\ell f = 0 \implies f|_{\partial X}$$ System of partial differential eqns "boundary value" # Classical example: $\Delta f = \lambda f$ in the Poincaré disc Poincaré disc $D = \{z \in \mathbb{C} : |z| < 1\}$ $ds^2 = \frac{4(dx^2 + dy^2)}{(1 - |z|^2)^2}$ Laplacian $$\Delta = -\frac{1}{4}(1-x^2-y^2)^2(\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2})$$ $\sim -\frac{1}{4}(\theta^2-2\theta)$ near the boundary $(s=0)$ where $\theta=s\frac{\partial}{\partial s}, \quad s:=\sqrt{1-x^2-y^2}$ Suppose $\triangle f = \lambda f$ in D and f is K-finite. Look at near the boundary ∂D . The theory of ODE with regular singularity tells us $$f(\sqrt{1-s^2}(\cos\varphi,\sin\varphi)) = {}^{\exists}A(s,\varphi)s^{1+\sqrt{1-4\lambda}} + {}^{\exists}B(s,\varphi)s^{1-\sqrt{1-4\lambda}}$$ for generic $$\lambda$$ correspondingly to $(-\frac{1}{4}(\theta^2 - 2\theta) - \lambda)s^{1\pm\sqrt{1-4}\lambda} = 0$. $$\rightsquigarrow$$ $A(0,\varphi), B(0,\varphi) \cdots$ "boundary values" of f . ### Helgason's conjecture · · · symmetric case # Geometry $$X = G/K$$ $\xrightarrow{\text{compactification}} \partial X$ Riemannian symmetric space normal crossing # Helgason's conjecture · · · symmetric case #### simple prototype Helgason's conjecture (theorem) · · · Kashiwara-Okamoto-Oshima et al. G/P # Geometry $$X = G/K$$ compactification \rightsquigarrow Riemannian symmetric space ∂X normal crossing #### Analysis $$f \in \mathcal{A}(G/K) \text{ s.t.} \qquad \begin{array}{c} \text{Poisson transform} \\ \\ Df = \lambda_{(D)} f \ (^\forall D \in \mathbb{D}(G/K)) \\ \text{"boundary map"} \end{array} \\ \text{"}f|_{G/P} \text{"} \in \mathcal{B}(G/P, \mathcal{L}_{\lambda})$$ micro-local analysis, PDE with regular singularities # Helgason's conjecture · · · symmetric case #### simple prototype Helgason's conjecture (theorem) ... Kashiwara-Okamoto-Oshima et al. ∂X G/P ### Geometry $$X = G/K$$ compactification \longrightarrow Riemannian symmetric space normal crossing #### Analysis $$f \in \mathcal{A}(G/K) \text{ s.t.} \qquad \text{Poisson transform} \\ Df = \lambda_{(D)} f \ (^\forall D \in \mathbb{D}(G/K)) \qquad \text{"boundary map"} \qquad \text{"} f|_{G/P} \text{"} \in \mathcal{B}(G/P, \mathcal{L}_{\lambda})$$ micro-local analysis, PDE with regular singularities with K-finiteness assumption \cdots goes back to Harish-Chandra #### Sketch of proof of Theorem A General case : G/H $HP \underset{\text{open}}{\subset} G$, H possibly non-reductive • Consider $\tau: H \to GL(V)$ $$\mathcal{V} := G \times_H V \to G/H$$ $$\leadsto G \cap C^{\infty}(G/H, \mathcal{V}) \subset \mathcal{B}(G/H, \mathcal{V})$$ • $U(\mathfrak{g}) \supset Z(\mathfrak{g})$: center of enveloping algebra #### Sketch of proof of Theorem A General case : G/H $HP \underset{\text{open}}{\subset} G$, H possibly non-reductive Fix $\chi: Z(\mathfrak{g}) \to \mathbb{C}$ infinitesimal character $$\mathcal{B}_{\chi}(G/H;\mathcal{V}) := \{ f \in \mathcal{B}(G/H;\tau) : Df = \chi(D)f \, (^{\forall}D \in Z(\mathfrak{g})) \}$$ #### Sketch of proof of Theorem A General case : G/H $HP \subset G$, H possibly non-reductive Fix $\chi: Z(\mathfrak{g}) \to \mathbb{C}$ infinitesimal character $$\mathcal{B}_{\chi}(G/H;\mathcal{V}) := \{ f \in \mathcal{B}(G/H;\tau) : Df = \chi(D)f \, (^{\forall}D \in Z(\mathfrak{g})) \}$$ By using an appropriate compactification, $\exists (g, K)$ -filtration $$\mathcal{B}_{\chi}(G/H;\mathcal{V})_K \equiv \mathcal{B}^0 \supset \mathcal{B}^1 \supset \cdots \supset \mathcal{B}^N = \{0\}$$ such that $$\mathcal{B}^{j}/\mathcal{B}^{j+1} \underset{\text{"boundary map"}}{\hookrightarrow} \mathcal{B}(HP/P; {}^{\exists}\sigma_{j})$$ # Sketch of proof of Theorems A and B General case : G/H $HP \subset G$, H possibly non-reductive Fix $\chi: Z(\mathfrak{g}) \to \mathbb{C}$ infinitesimal character $$\mathcal{B}_{\chi}(G/H;\mathcal{V}) := \{ f \in \mathcal{B}(G/H;\tau) : Df = \chi(D)f \ (^{\forall}D \in Z(\mathfrak{g})) \}$$ By using an appropriate compactification, $\exists (g, K)$ -filtration $$\mathcal{B}_{\chi}(G/H;\mathcal{V})_K \equiv \mathcal{B}^0 \supset \mathcal{B}^1 \supset \cdots \supset \mathcal{B}^N = \{0\}$$ such that $$\mathcal{B}^{j}/\mathcal{B}^{j+1} \hookrightarrow \mathcal{B}(HP/P; \exists \sigma_{j})$$ "boundary map" Corollary $\mathcal{B}_{\chi}(G/H;\mathcal{V})_K$ is of finite length as a (\mathfrak{g},K) -module for $^{\forall}\chi$ and $^{\forall}\tau$, namely #(irred. subquotients) $<\infty$ ### **Induction** $H \uparrow G$ *vs* **Restriction** $G \downarrow H$ Let $H \subset G$. So far, we have discussed "Basic Problem" for the "induction" $$C^{\infty}(G/H) = \operatorname{Ind}_{H}^{G}(\mathbf{1})^{\infty}$$. We may also think of the "restriction" $G \downarrow H$ ("branching problem") which is much more involved. <u>Basic Problem 2</u> Single out nice pairs (G, H) for which detailed study of the restriction $G \downarrow H$ ("branching problem") is "fruitful". #### **Comparison:** $GL(n,\mathbb{R}) \downarrow O(n)$ *vs* $GL(n,\mathbb{R}) \downarrow O(p,n-p)$ Harish-Chandra's admissibility theorem concerns the restriction with respect to a Riemannian symmetric pair $G\supset K,$ e.g., $GL(n,\mathbb{R})\supset O(n)$ and asserts $|\Pi|_K:\pi|<\infty \qquad ^\forall \Pi\in \mathrm{Irr}(G), ^\forall \pi\in \mathrm{Irr}(K).$ #### In contrast, For a reductive symmetric pair $$G \supset G'$$, e.g., $GL(n,\mathbb{R}) \supset O(p,n-p)$ it may happen that $[\Pi|_{G'}:\pi]=\infty$ for some $\Pi\in \mathrm{Irr}(G)$ and $\pi\in \mathrm{Irr}(G')$. # **Branching problems** # **Branching problems** $$G \xrightarrow{\pi} GL(V)$$ $$\cup$$ $$G'$$ ### **Branching problems** Branching problem (in a wider sense than the usual) wish to understand how the restriction $\pi|_{G'}$ behaves as a G'-module. $G \supset G'$ reductive groups $$\begin{array}{ccc} G &\supset & G' & \text{ reductive groups} \\ \operatorname{irred} & & & \searrow \operatorname{irred} \\ \pi & & \tau & \end{array}$$ $$\begin{array}{ccc} G &\supset G' & \text{reductive groups} \\ \operatorname{irred} \zeta & & \nearrow \operatorname{irred} \\ \pi & ---- \tau \end{array}$$ symmetry breaking operator (continuous *G'*-homomorphism) $\operatorname{Hom}_{G'}(\pi|_{G'},\tau) := \{ \text{ symmetry breaking operators } \}$ In general, the dimension of $\operatorname{Hom}_{G'}(\pi|_{G'},\tau)$ might be infinite even when G' is a maximal reductive subgroup in G. $$\begin{array}{ccc} G &\supset G' & \text{reductive groups} \\ \operatorname{irred} \zeta & & \geqslant \operatorname{irred} \\ \pi & \xrightarrow{} \tau \end{array}$$ ^{*} T. Kobayashi, Shintani functions, real spherical manifolds, ..., Perspective Math. (2014). $$\begin{array}{ccc} G &\supset G' & \text{reductive groups} \\ \operatorname{irred} \zeta & & \nearrow \operatorname{irred} \\ \pi & ---- \tau \end{array}$$ ^{*} T. Kobayashi, Shintani functions, real spherical manifolds, ..., Perspective Math. (2014). $$\begin{array}{ccc} G &\supset G' & \text{reductive groups} \\ \operatorname{irred} \zeta & & \geqslant \operatorname{irred} \\ \pi & ---- \tau \end{array}$$ Theorems C and D (criterion for finite / bounded mult.) - 1) $\operatorname{Hom}_{G'}(\pi|_{G'}, \tau)$ is finite-dimensional $({}^{\forall}\pi \in \operatorname{Irr}(G), {}^{\forall}\tau \in \operatorname{Irr}(G'))$ $\iff (G \times G') / \operatorname{diag}(G')$ is real spherical. - 2) $\exists C > 0$, dim $\operatorname{Hom}_{G'}(\pi|_{G'}, \tau) \leq C \ (\forall \pi \in \operatorname{Irr}(G), \ \forall \tau \in \operatorname{Irr}(G'))$ $\iff (G_{\mathbb{C}} \times G'_{\mathbb{C}}) / \operatorname{diag}(G'_{\mathbb{C}}) \text{ is spherical}.$ $$\leftarrow$$ classification of (G, G') satisfying (1) techniques: linearization, prehomogeneous sp., quivers $$\begin{array}{ccc} G &\supset G' & \text{reductive groups} \\ \operatorname{irred} \zeta & & \supsetneq \operatorname{irred} \\ \pi & -\!\!\!-\!\!\!-\!\!\!-\!\!\!- \tau \end{array}$$ #### Theorems C and D (criterion for finite / bounded mult.) - 1) $\operatorname{Hom}_{G'}(\pi|_{G'}, \tau)$ is finite-dimensional $({}^{\forall}\pi \in \operatorname{Irr}(G), {}^{\forall}\tau \in \operatorname{Irr}(G'))$ $\iff (G \times G') / \operatorname{diag}(G')$ is real spherical. - 2) $\exists C > 0$, dim $\operatorname{Hom}_{G'}(\pi|_{G'}, \tau) \leq C$ ($\forall \pi \in \operatorname{Irr}(G), \forall \tau \in \operatorname{Irr}(G')$) $\iff (G_{\mathbb{C}} \times G'_{\mathbb{C}}) / \operatorname{diag}(G'_{\mathbb{C}})$ is spherical. Example 1 * $$(G,G') = (GL(n+1,\mathbb{F}), GL(n,\mathbb{F}) \times GL(1,\mathbb{F}))$$ $\mathbb{F} = \mathbb{R}, \mathbb{C} \cdots \text{ both (1) and (2) hold.}$ $\mathbb{F} = \mathbb{H} \cdots (1) \text{ holds, but (2) fails.}$ T. Kobayashi–T. Matsuki, Transformation Groups, 2014 (Dynkin volume). $$\begin{array}{ccc} G &\supset G' & \text{reductive groups} \\ \operatorname{irred} \zeta & & \supsetneq \operatorname{irred} \\ \pi & ---- \tau \end{array}$$ #### Theorems C and D (criterion for finite / bounded mult.) - 1) $\operatorname{Hom}_{G'}(\pi|_{G'}, \tau)$ is finite-dimensional $({}^{\forall}\pi \in \operatorname{Irr}(G), {}^{\forall}\tau \in \operatorname{Irr}(G'))$ $\iff (G \times G') / \operatorname{diag}(G')$ is real spherical. - 2) ${}^{\exists}C > 0$, dim $\operatorname{Hom}_{G'}(\pi|_{G'}, \tau) \le C$ (${}^{\forall}\pi \in \operatorname{Irr}(G)$, ${}^{\forall}\tau \in \operatorname{Irr}(G')$) $\iff (G_{\mathbb{C}} \times G'_{\mathbb{C}}) / \operatorname{diag}(G'_{\mathbb{C}})$ is spherical. # Classification Theory (classical) compact (G, G') satisfying (2) - · · · Cooper (Kostant), Krämer (1970s) - \cdots $(G_{\mathbb{C}}, G'_{\mathbb{C}}) \approx (GL_n(\mathbb{C}), GL_{n-1}(\mathbb{C}))$ or $(O_n(\mathbb{C}), O_{n-1}(\mathbb{C}))$. - cf. Gan–Gross–Prasad conjecture for (GL_n, GL_{n-1}) or (O_n, O_{n-1}) . #### Theorems C and D (criterion for finite / bounded mult.) - 1) $\operatorname{Hom}_{G'}(\pi|_{G'}, \tau)$ is finite-dimensional $({}^{\forall}\pi \in \operatorname{Irr}(G), {}^{\forall}\tau \in \operatorname{Irr}(G'))$ $\iff (G \times G') / \operatorname{diag}(G')$ is real spherical. - 2) $\exists C > 0$, dim $\operatorname{Hom}_{G'}(\pi|_{G'}, \tau) \leq C$ ($\forall \pi \in \operatorname{Irr}(G), \forall \tau \in \operatorname{Irr}(G')$) $\iff (G_{\mathbb{C}} \times G'_{\mathbb{C}}) / \operatorname{diag}(G'_{\mathbb{C}})$ is spherical. - $\xi \leftarrow \text{classification of } (G, G')$ #### **Further Problem** - (1) Construct explicitly symmetry breaking operators - (2) Gan–Gross–Prasad conjecture for (GL_n, GL_{n-1}) or (O_n, O_{n-1}) . # Induction $H \uparrow G$ vs Restriction $G \downarrow H$ $$X := G/H$$ $$G \curvearrowright X$$ \leadsto $G \curvearrowright C^{\infty}(X)$ Geometry Functions # Basic Problem 1 Does the group G "control well" the function space $C^{\infty}(X)$? Basic Problem 2 Single out nice pairs (G, H) for which detailed study of the restriction $G \downarrow H$ ("branching problem") is "fruitful". #### Four assumptions Theorems A-D P_H and B_H are minimal parabolic and Borel for H and $H_{\mathbb{C}}$, respectively. #### Four assumptions Theorems A-D #### Four assumptions Theorems A-D Finite multiplicity theorems Bounded multiplicity theorems ### Reductive homogeneous space G/H G: real reductive groups We shall also discuss when G and H are not nesssarily reductive. # Reductive homogeneous space G/H G: real reductive groups We shall also discuss when G and H are not nesssarily reductive. #### **Plan of Lectures** Talk 1: Is rep theory useful for global analysis? —Multiplicity: Approach from PDEs #### Plan of Lectures Talk 1: Is rep theory useful for global analysis? —Multiplicity: Approach from PDEs - Talk 2: Tempered homogeneous spaces —Dynamical approach - Talk 3: Classification theory of tempered G/H —Combinatorics of convex polyhedra integrate decreases and an analysis of the second decreases and decrease and analysis of the second decreases t Talk 4: Tempered homogeneous spaces —Interaction with topology and geometry Thank you for your attention!