Branching in Representation Theory Lecture 2. Discrete Decomposability and Admissible Restriction

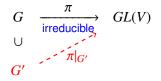
Toshiyuki Kobayashi

The Graduate School of Mathematical Sciences The University of Tokyo http://www.ms.u-tokyo.ac.jp/~toshi/

Minicourses: branching problems and symmetry-breaking

Thematic trimester Representation Theory and Noncommutative Geometry Organizers: Alexandre Afgoustidis, Anne-Marie Aubert, Pierre Clare, Haluk Şengün Institut Henri Poincaré, Paris, France, 15 January 2025

Branching problems in the general setting



Branching problem (in a broader sense than the usual)

··· wish to understand

how the restriction $\pi|_{G'}$ behaves as a G'-module.

A Program: Stage ABC for Branching Problem

- Stage A . Abstract Feature of Restriction
 - spectrum: discrete or continuous?/ support?
 - multiplicities: infinite, finite, bounded, or one, ...?

- Branching Laws
 - (irreducible) decomposition of representations

- Construction of SBOs/HOs
 - SBO ··· Symmetry Breaking Operator
 - HO ··· Holographic Operator
 - decomposition of vectors

A Program: Stage ABC for Branching Problem

- Stage A . Abstract Feature of Restriction
 - spectrum: discrete or continuous?/ support?
 - multiplicities: infinite, finite, bounded, or one, ...?

- Branching Laws
 - (irreducible) decomposition of representations

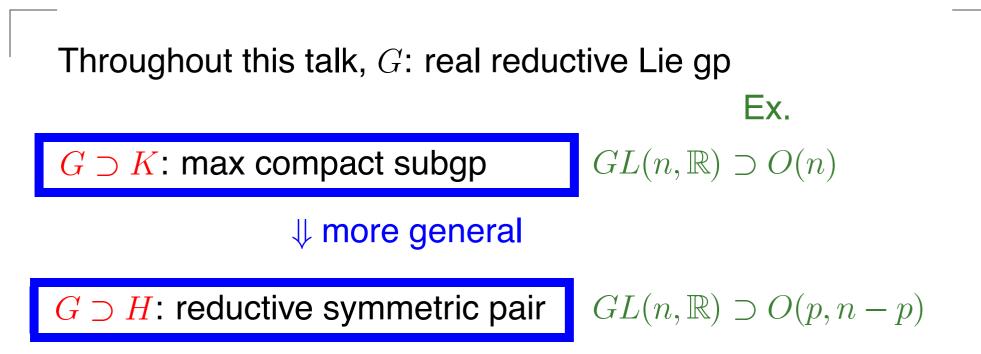
- Construction of SBOs/HOs
 - SBO ··· Symmetry Breaking Operator
 - HO ··· Holographic Operator
 - decomposition of vectors

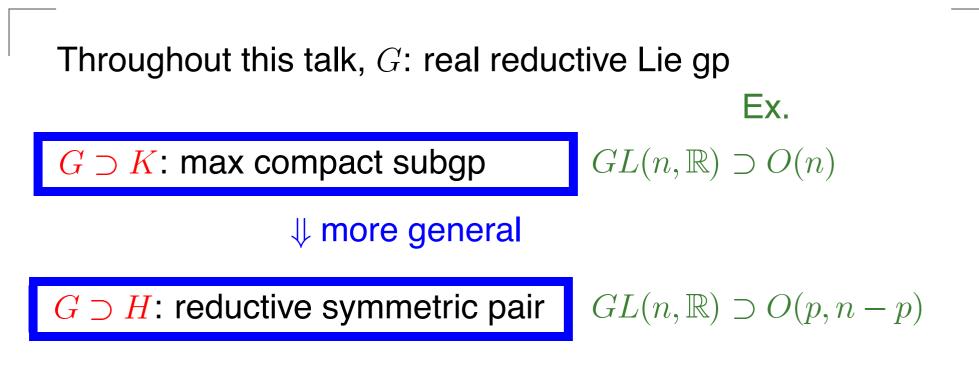
Throughout this talk, G: real reductive Lie gp

 $G \supset K$: max compact subgp

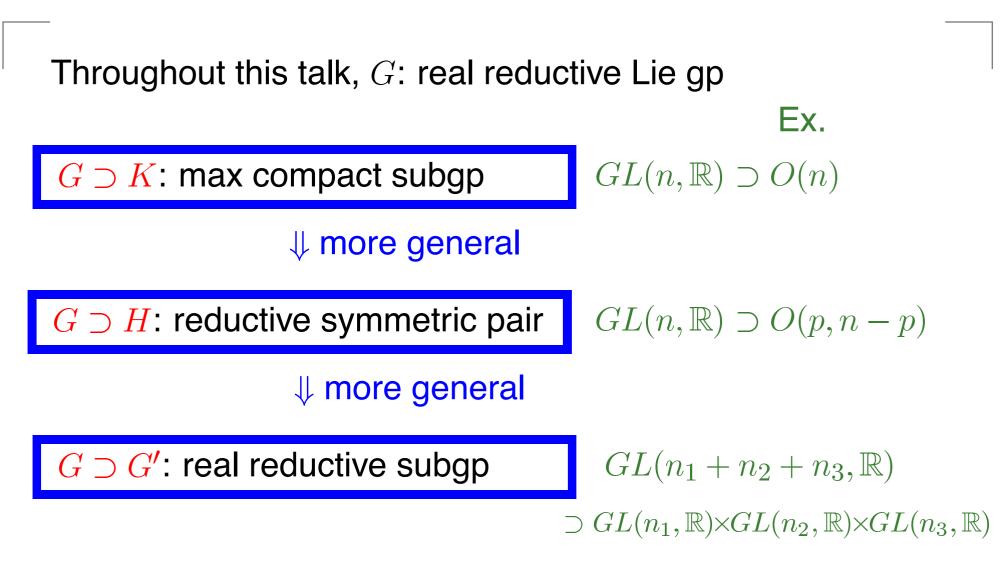
 $GL(n,\mathbb{R})\supset O(n)$

Ex.



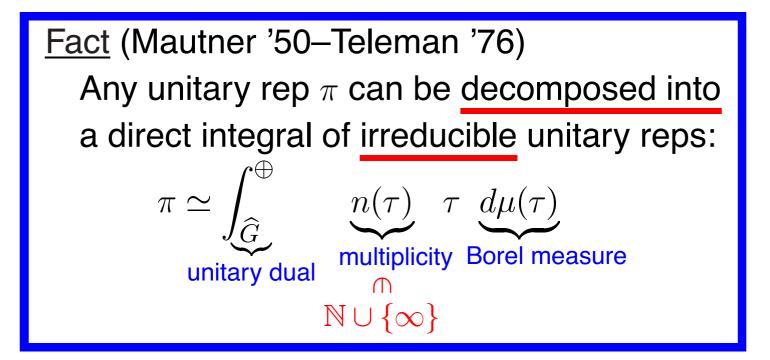


i.e.
$$G$$
 reductive Lie gp
 $\sigma \in \operatorname{Aut}(G), \ \sigma^2 = \operatorname{id}$
 $H = \operatorname{any}$ open subgp of G^{σ}



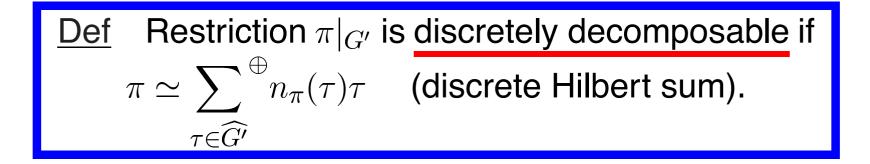
Decomposition into irreducible reps

- G: locally compact group
- $\widehat{G} =$ unitary dual
 - $= \{ \text{irreducible unitary reps} \} / \sim$

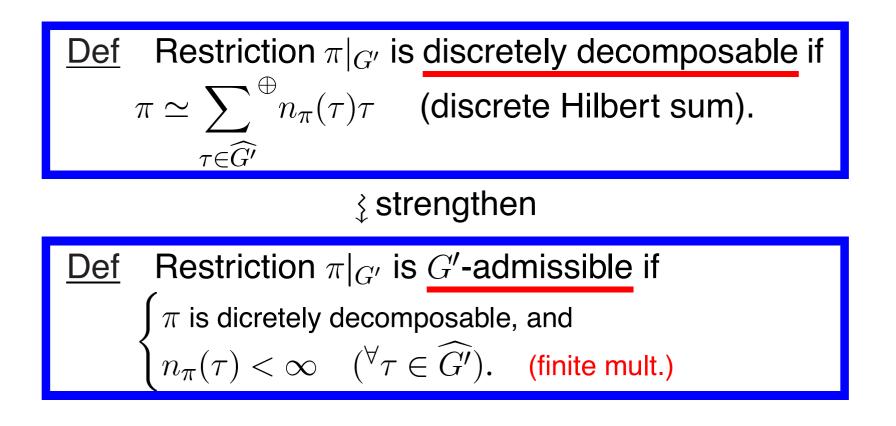


 $\pi \in \widehat{G}, G \supset G'$ (reductive subgp)

 $\pi \in \widehat{G}, G \supset G'$ (reductive subgp)



$\pi \in \widehat{G}, G \supset G'$ (reductive subgp)



Stage A . Abstract Feature of Restriction

- spectrum: discrete or continuous?/ support?
- multiplicities: infinite, finite, bounded, or one, ...?

Branching Laws

• (irreducible) decomposition of representations

- Construction of SBOs/HOs
 - SBO ··· Symmetry Breaking Operator
 - HO ··· Holographic Operator
 - decomposition of vectors

 $G' \subset G \xrightarrow{\pi} GL_{\mathbb{C}}(\mathcal{H})$

Broken symmetries

 $G' \subset G \xrightarrow{\pi} GL_{\mathbb{C}}(\mathcal{H})$

Broken symmetries

Branching Problems for Zuckerman's Derived Functor Modules – p.13/69

$$G' \subset G \xrightarrow{\pi} GL_{\mathbb{C}}(\mathcal{H})$$

Broken symmetries

<u>Ex. 1</u> G is compact.

Ex. 2 (Harish-Chandra's admissibility theorem, 1950s)

G' = K, a maximal compact subgp of a reductive G

$$G' \subset G \xrightarrow{\pi} GL_{\mathbb{C}}(\mathcal{H})$$

Broken symmetries

Ex. 1
$$G$$
 is compact.

Ex. 2 (Harish-Chandra's admissibility theorem, 1950s)

G' = K, a maximal compact subgp of a reductive G

Ex. 3 (Howe, 1970s)
$$\pi$$
: Weil rep
 $G = Mp(n, \mathbb{R}), \quad G' = G'_1 \cdot G'_2$: dual pair, G'_2 compact

$$G' \subset G \xrightarrow{\pi} GL_{\mathbb{C}}(\mathcal{H})$$

Broken symmetries

<u>Ex. 1</u> G is compact.

Ex. 2 (Harish-Chandra's admissibility theorem, 1950s)

G' = K, a maximal compact subgp of a reductive G

Ex. 3 (Howe, 1970s)
$$\pi$$
: Weil rep
 $G = Mp(n, \mathbb{R}), \quad G' = G'_1 \cdot G'_2$: dual pair, G'_2 compact

Ex. 4 (S. Martens, Jakobsen, Vergne, 1970s)

 π : holomorphic discrete series, $G'/K' \subset G/K$

 $G'/K' \subset G/K$ Hermitian symm sp

Strange example:

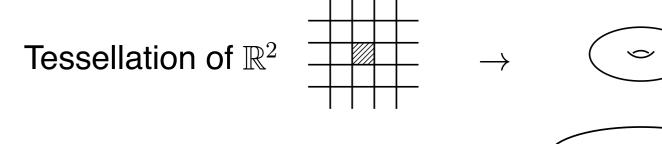
Ex. 5 (K-1988)
$$(G, G') = (SO(4, 2), SO(4, 1))$$

 π : discrete series, Gelfand–Kirillov dim = 5

(neither holomorphic nor anti-holomorphic disc. ser.)

 $\Rightarrow \pi|_{G'}$ is G'-admissible

Idea: Tessellation of indefinite Kähler mfd X $X = SO(4,2)/U(2,1) \quad (\underset{\text{open}}{\subset} \mathbb{P}^3\mathbb{C})$



Tessellation of $SL(2,\mathbb{R})/SO(2)$

くらくり

Analytic approach

Let $\pi \in \widehat{G}$ and $G' \subset G$. reductive

Question

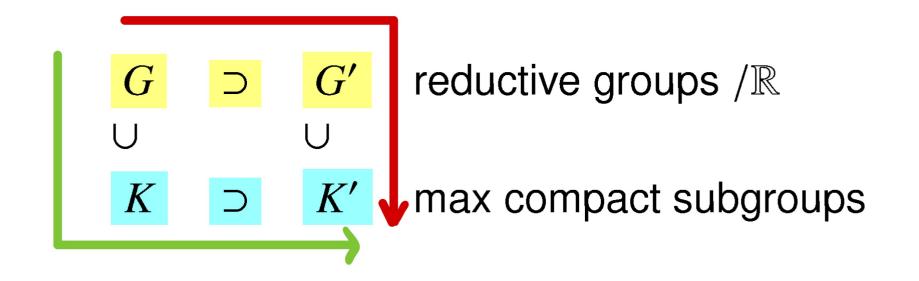
When does the restriction $\pi|_{G'}$ become G'-admissible?

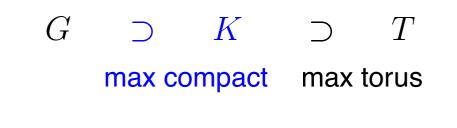
When does the restriction $\pi|_{G'}$ decompose discretely with finite multiplicities ?

Analytic approach

Let $\pi \in \widehat{G}$ and $G' \subset G$. reductive

<u>Question</u> When does the restriction $\pi|_{G'}$ become *G'*-admissible?





Example

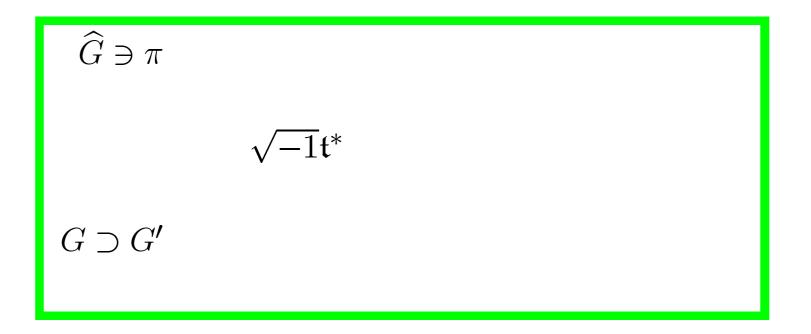
 $SL(n,\mathbb{R}) \supset SO(n) \supset \mathbb{T}^{\lfloor \frac{n}{2} \rfloor}.$

Branching Problems for Zuckerman's Derived Functor Modules - p.16/69

Define two closed cones in $\sqrt{-1}\mathfrak{t}^*$:

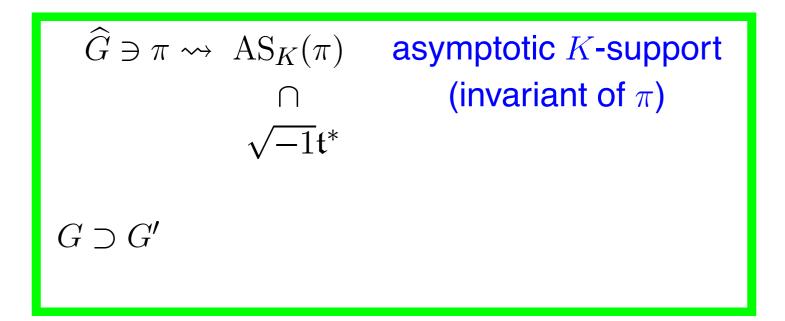
 $\begin{array}{ccc} G & \supset & K & \supset & T \\ & \max \text{ compact} & \max \text{ torus} \end{array}$

Define two closed cones in $\sqrt{-1}\mathfrak{t}^*$:



 $\begin{array}{cccc} G & \supset & K & \supset & T \\ & & \mathsf{max} \ \mathsf{compact} & \mathsf{max} \ \mathsf{torus} \end{array}$

Define two closed cones in $\sqrt{-1}\mathfrak{t}^*$:



Define two closed cones in $\sqrt{-1}\mathfrak{t}^*$:

 $\begin{array}{ll} \widehat{G} \ni \pi \rightsquigarrow \operatorname{AS}_{K}(\pi) & \text{asymptotic } K \text{-support} \\ \cap & (\text{invariant of } \pi) \\ \sqrt{-1}\mathfrak{t}^{*} & \cup \\ G \supset G' \rightsquigarrow \operatorname{C}_{K}(K') & \operatorname{Hamiltonian \ action} \\ & T \subset K \widehat{} T^{*}(K/K') \end{array}$

 $\begin{array}{cccc} G & \supset & K & \supset & T \\ & & \mathsf{max} \ \mathsf{compact} & \mathsf{max} \ \mathsf{torus} \end{array}$

Define two closed cones in $\sqrt{-1}\mathfrak{t}^*$:

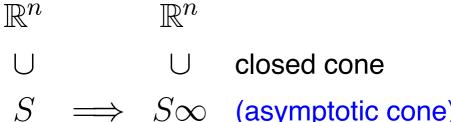
 $\begin{array}{ll} \widehat{G} \ni \pi \rightsquigarrow \operatorname{AS}_{K}(\pi) & \text{asymptotic } K\text{-support} \\ \cap & (\text{invariant of } \pi) \\ \sqrt{-1}\mathfrak{t}^{*} & \cup \\ G \supset G' \rightsquigarrow \operatorname{C}_{K}(K') & \operatorname{momentum image} \\ T^{*}(K/K') \to \sqrt{-1}\mathfrak{t}^{*} \end{array}$

 $\mathbb{R}^n \\ \cup \\ S$

 $\mathbb{R}^{n} \qquad \mathbb{R}^{n}$ $\cup \qquad \cup \qquad \text{closed cone}$ $S \implies S\infty \quad \text{(asymptotic cone)}$

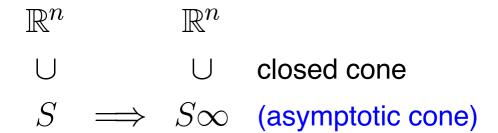
 $\mathbb{R}^{n} \qquad \mathbb{R}^{n}$ $\cup \qquad \cup \qquad \text{closed cone}$ $S \implies S\infty \quad \text{(asymptotic cone)}$

$$S\infty := \{ y \in \mathbb{R}^n \colon {}^\exists y_j \in S, \; {}^\exists \varepsilon_j \downarrow 0 \text{ s.t. } \lim_{j \to \infty} \varepsilon_j y_j = y \}$$

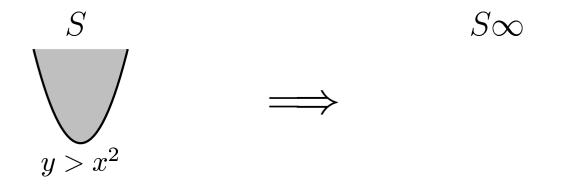


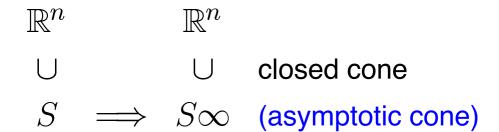
 \implies $S\infty$ (asymptotic cone)

$$S\infty := \{ y \in \mathbb{R}^n : \exists y_j \in S, \exists \varepsilon_j \downarrow 0 \text{ s.t. } \lim_{j \to \infty} \varepsilon_j y_j = y \}$$
$$S \qquad \qquad S \qquad \qquad$$

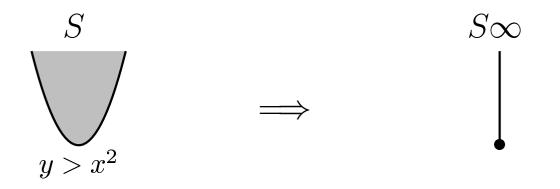


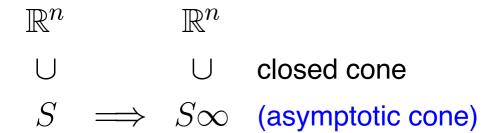
$$S\infty := \{ y \in \mathbb{R}^n \colon {}^\exists y_j \in S, \; {}^\exists \varepsilon_j \downarrow 0 \text{ s.t. } \lim_{j \to \infty} \varepsilon_j y_j = y \}$$



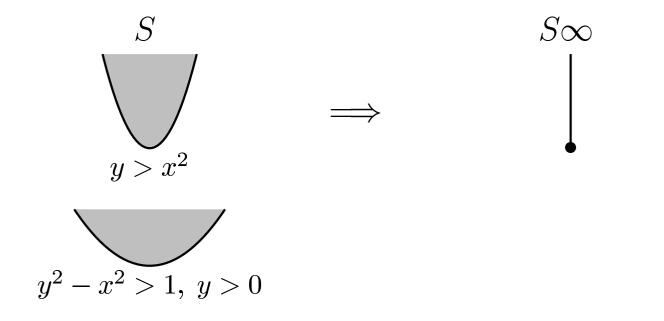


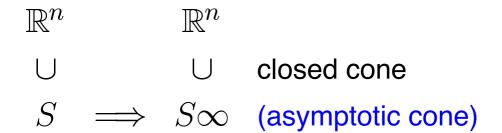
 $S\infty := \{ y \in \mathbb{R}^n \colon {}^\exists y_j \in S, \; {}^\exists \varepsilon_j \downarrow 0 \text{ s.t. } \lim_{j \to \infty} \varepsilon_j y_j = y \}$



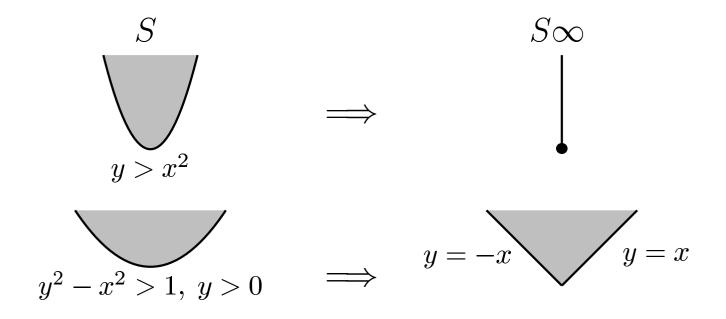


$$S\infty := \{ y \in \mathbb{R}^n \colon {}^\exists y_j \in S, \; {}^\exists \varepsilon_j \downarrow 0 \text{ s.t. } \lim_{j \to \infty} \varepsilon_j y_j = y \}$$





$$S\infty := \{ y \in \mathbb{R}^n \colon \exists y_j \in S, \ \exists \varepsilon_j \downarrow 0 \text{ s.t. } \lim_{j \to \infty} \varepsilon_j y_j = y \}$$



Asymptotic K-support

Cartan–Weyl's highest weight theory for compact gp K

Cartan–Weyl's highest weight theory for compact gp K

 $K \supset T$ max torus, Fix $\Delta^+(\mathfrak{k}, \mathfrak{t})$

Branching Problems for Zuckerman's Derived Functor Modules - p.18/69

Cartan–Weyl's highest weight theory for compact gp K

 $K \supset T$ max torus, Fix $\Delta^+(\mathfrak{k}, \mathfrak{t})$

 $\tau_{\lambda} \leftarrow \lambda$

Cartan–Weyl's highest weight theory for compact gp K

 $K \supset T$ max torus, Fix $\Delta^+(\mathfrak{k}, \mathfrak{t})$

 $\tau_{\lambda} \leftarrow \lambda$

 $\begin{array}{ccc} G & \supset K & \supset T \\ \max \ \text{compact} & \max \ \text{torus} \\ \pi & \operatorname{rep of} G \end{array}$

Cartan–Weyl's highest weight theory for compact gp K

 $K \supset T \text{ max torus, } \operatorname{Fix} \Delta^+(\mathfrak{k}, \mathfrak{t})$ $\widehat{K} \simeq \Lambda_+ := \widehat{T} \cap C_+ \subset \sqrt{-1}\mathfrak{t}^*$

Ψ

 $\tau_{\lambda} \leftarrow \lambda$

UJ

dominant chamber

 $G \supset K \supset T$ max compact max torus $\pi \operatorname{rep of} G$ $\rightsquigarrow \operatorname{Supp}_{K}(\pi) := \{\lambda \in \sqrt{-1}\mathfrak{t}^{*} \colon \operatorname{Hom}_{K}(\tau_{\lambda}, \pi|_{K}) \neq 0\}$

Cartan–Weyl's highest weight theory for compact gp K

 $K \supset T$ max torus, Fix $\Delta^+(\mathfrak{k}, \mathfrak{t})$

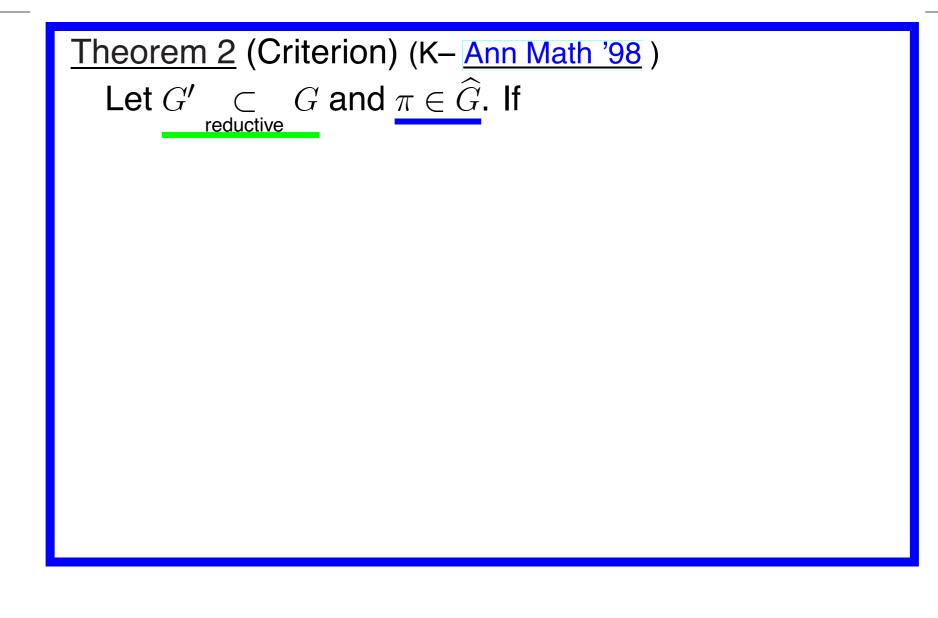
 $\tau_{\lambda} \leftarrow \lambda$

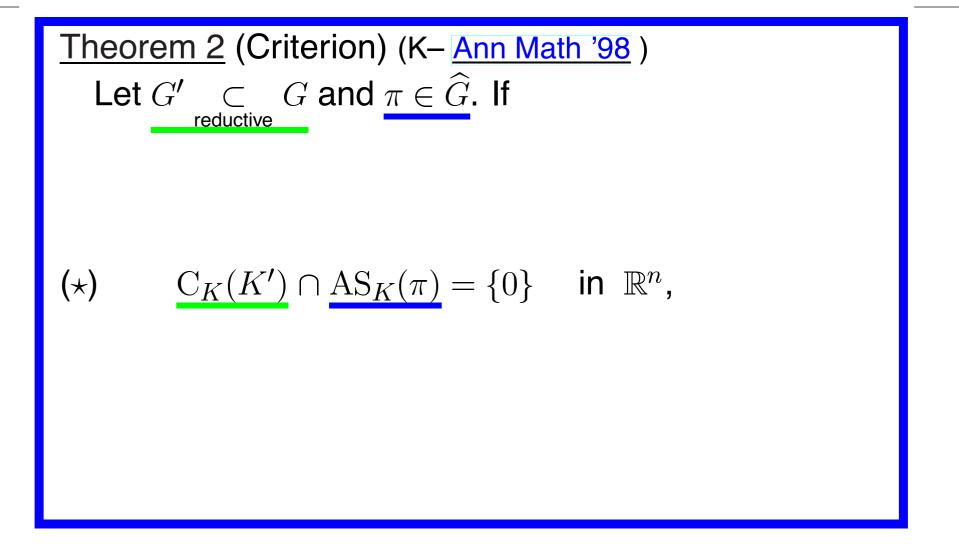
 $G \supset K \supset T$ max compact max torus $\pi \text{ rep of } G$ $\rightsquigarrow \operatorname{Supp}_{K}(\pi) := \{\lambda \in \sqrt{-1}\mathfrak{t}^{*} \colon \operatorname{Hom}_{K}(\tau_{\lambda}, \pi|_{K}) \neq 0\}$ $\rightsquigarrow \operatorname{AS}_{K}(\pi) := \operatorname{Supp}_{K}(\pi) \infty \text{ (Asymptotic K-support)}$

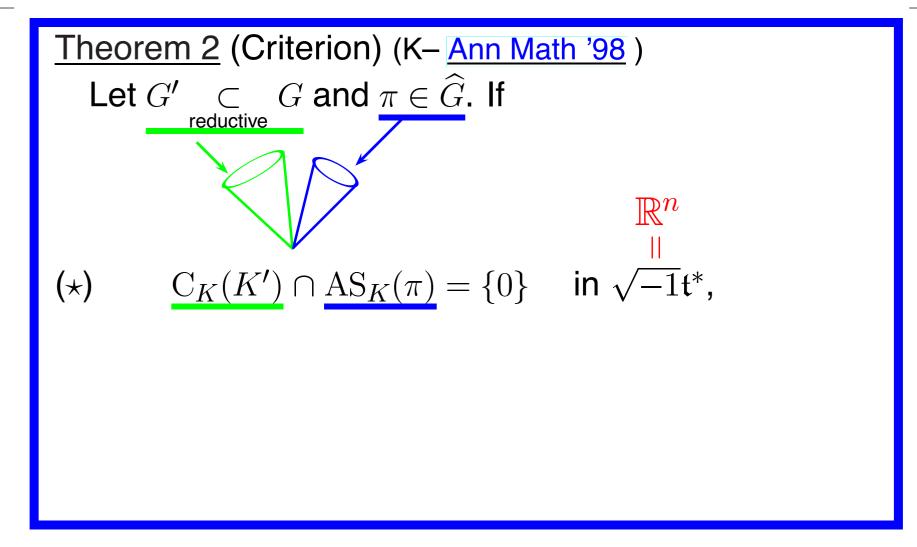
 $- \qquad \begin{array}{lllllllllllllllllllllllllllllllllll$					
π	$\operatorname{Supp}_K(\pi)$	$\mathrm{AS}_K(\pi)$	Series		
1			trivial rep.		
π_{λ}			principal ser.		
π_n^+			holo. discrete ser.		
π_n^-			anti-holo discrete ser.		

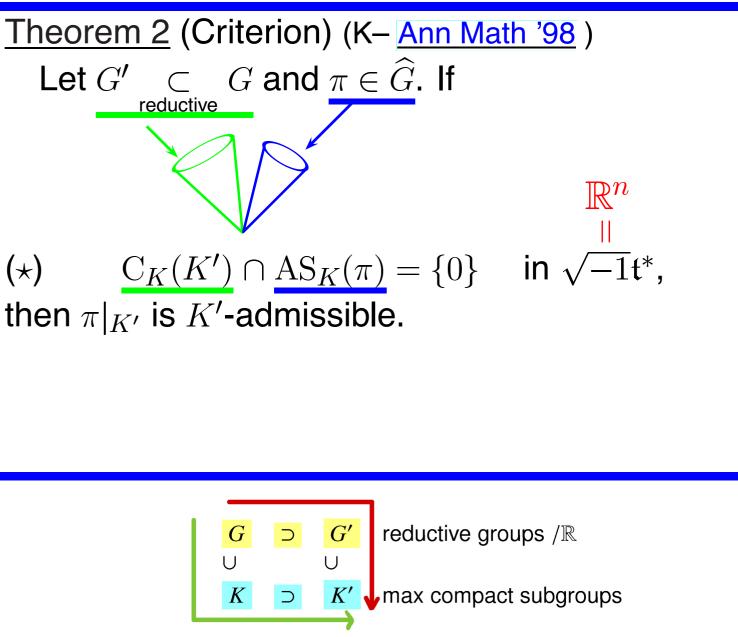
	$ = \frac{\mathbf{Example of } SL(2, \mathbb{R}) = G}{\mathcal{C} \simeq \mathbb{Z} f_{\alpha} \mathcal{K} = SO(2)} $				
-	π	$\operatorname{Supp}_K(\pi)$	$AS_K(\pi)$	Series	
	1	{0}		trivial rep.	
•	π_{λ}	2ℤ		principal ser.	
	π_n^+	$\{n, n+2, n+4, \cdots\}$		holo. discrete ser.	
	π_n^-	$\{-n, -n-2, -n-4, \cdots\}$		anti-holo discrete ser.	

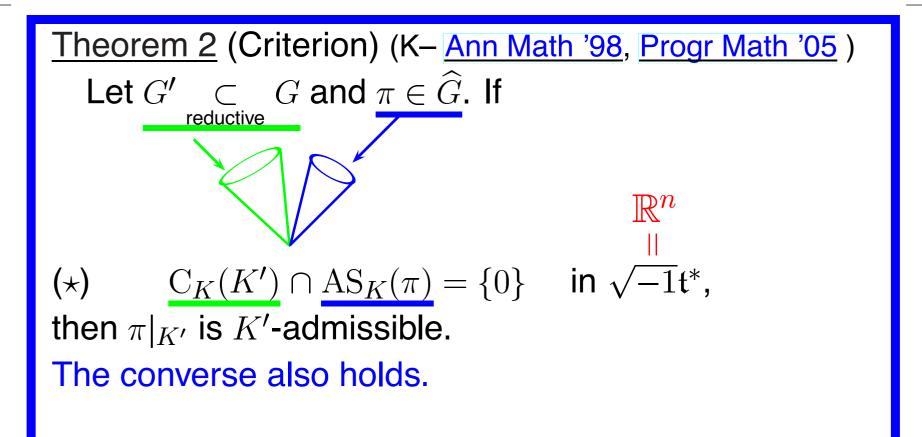
π	$\operatorname{Supp}_K(\pi)$	$AS_K(\pi)$	Series
1	{0}	{0}	trivial rep.
π_{λ}	2ℤ	\mathbb{R}	principal ser.
π_n^+	$\{n, n+2, n+4, \cdots\}$	$\mathbb{R}_{\geq 0}$	holo. discrete ser.
π_n^-	$\{-n, -n-2, -n-4, \cdots\}$	$\mathbb{R}_{\leq 0}$	anti-holo discrete ser.

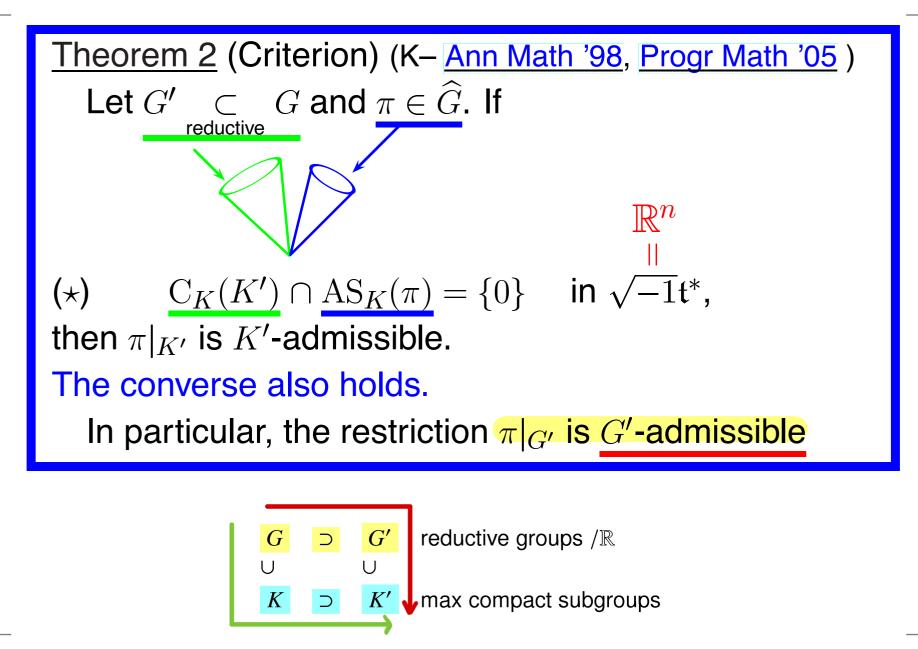


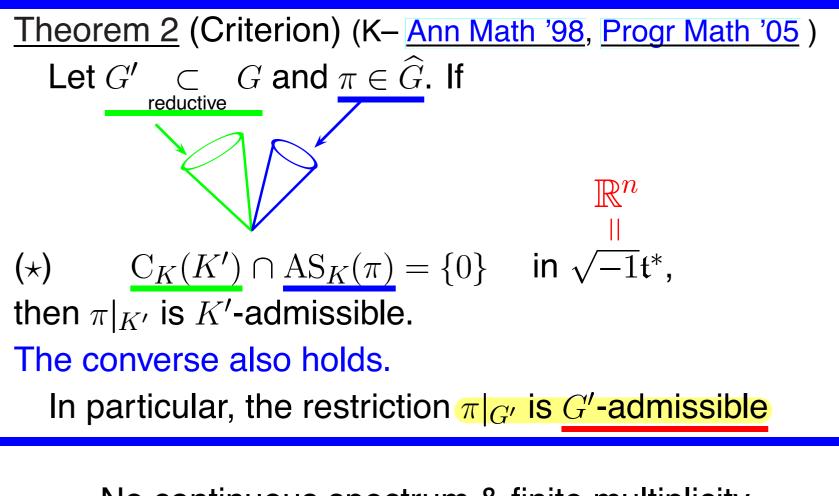






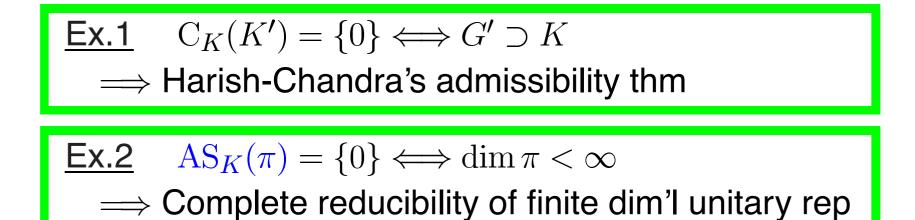




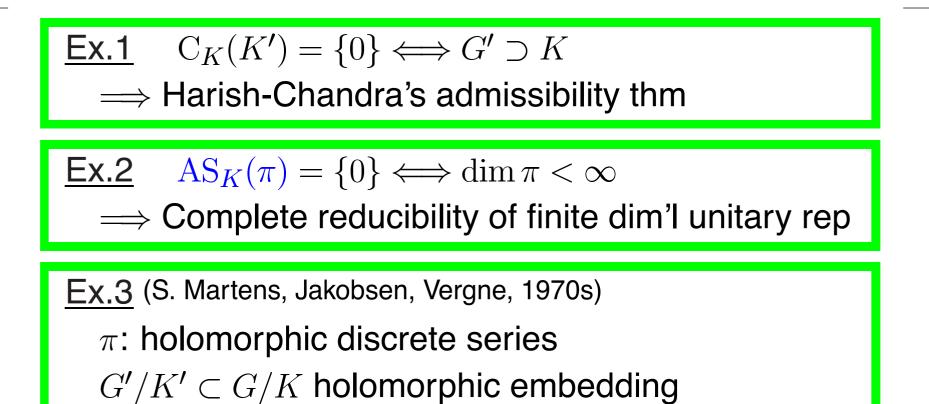


No continuous spectrum & finite multiplicity in the irred. decomp. of $\pi|_{G'}$.

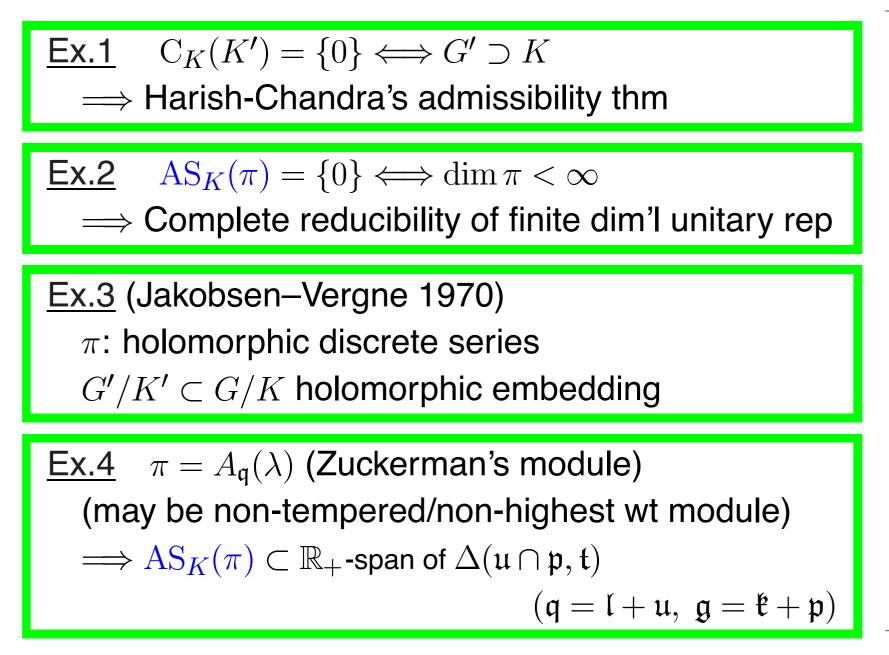
Special cases of Theorem 2



Special cases of Theorem 2



Special cases of Theorem 2

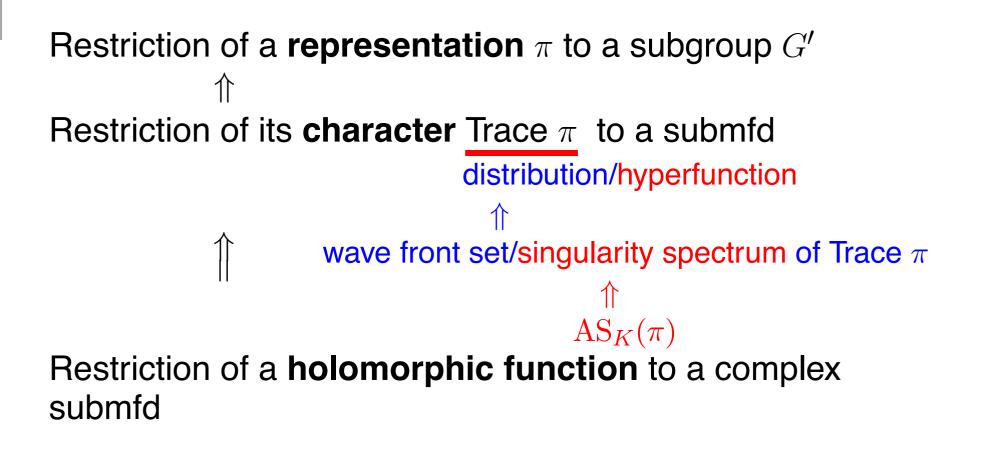


Restriction of a **representation** π to a subgroup G'

Restriction of a **representation** π to a subgroup G' \uparrow Restriction of its **character** Trace π to a submfd

Restriction of a **representation** π to a subgroup G' \uparrow Restriction of its **character** Trace π to a submfd distribution/hyperfunction

Restriction of a **representation** π to a subgroup G' \uparrow Restriction of its **character** Trace π to a submfd distribution/hyperfunction \uparrow wave front set/singularity spectrum of Trace π

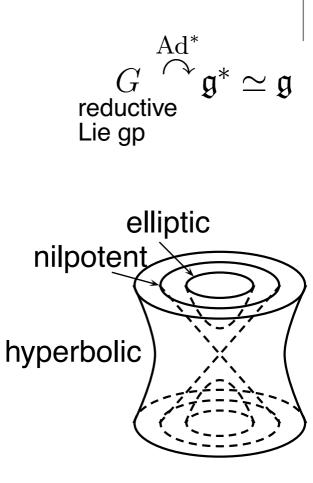


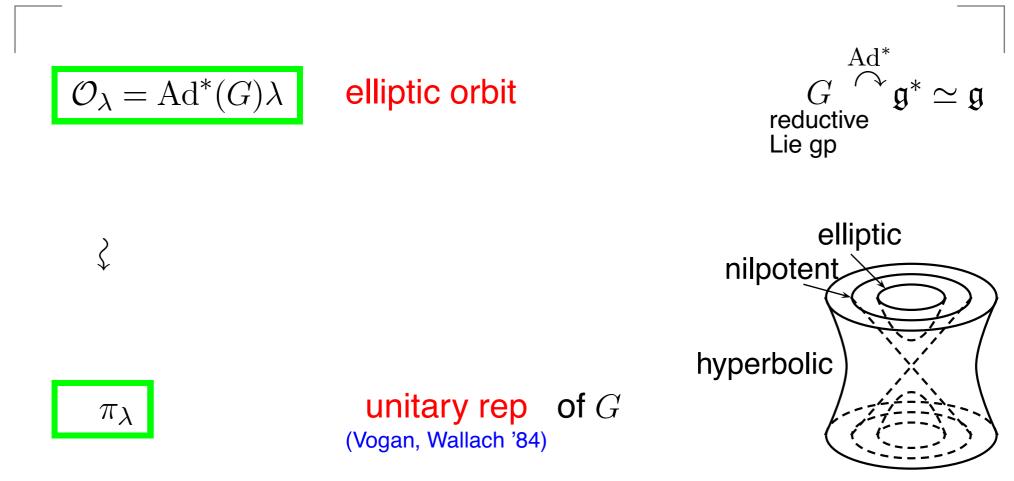
π	$\operatorname{Supp}_K(\pi)$	$\mathrm{AS}_K(\pi)$	Trace $\pi = \sum_{k \in \text{Supp}_K(\pi)} z^k$
1			
π_{λ}			
π_n^+			
π_n^-			

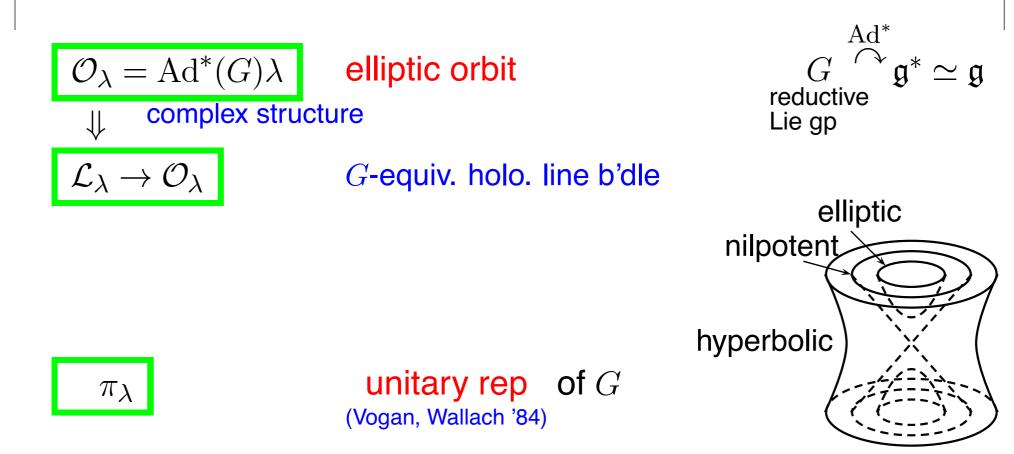
 $- \qquad \begin{array}{l} \mathbf{Example of } SL(2,\mathbb{R}) \\ \mathcal{E} \cong \mathbb{Z} \qquad f \mathbf{k} = SO(2) \end{array} \qquad - \end{array}$					
π	$\operatorname{Supp}_K(\pi)$	$\mathrm{AS}_K(\pi)$	Trace $\pi = \sum_{k \in \text{Supp}_K(\pi)} z^k$		
1	{0}				
π_{λ}	2ℤ				
π_n^+	$\{n, n+2, n+4, \cdots\}$				
π_n^-	$\{-n, -n-2, -n-4, \cdots\}$				

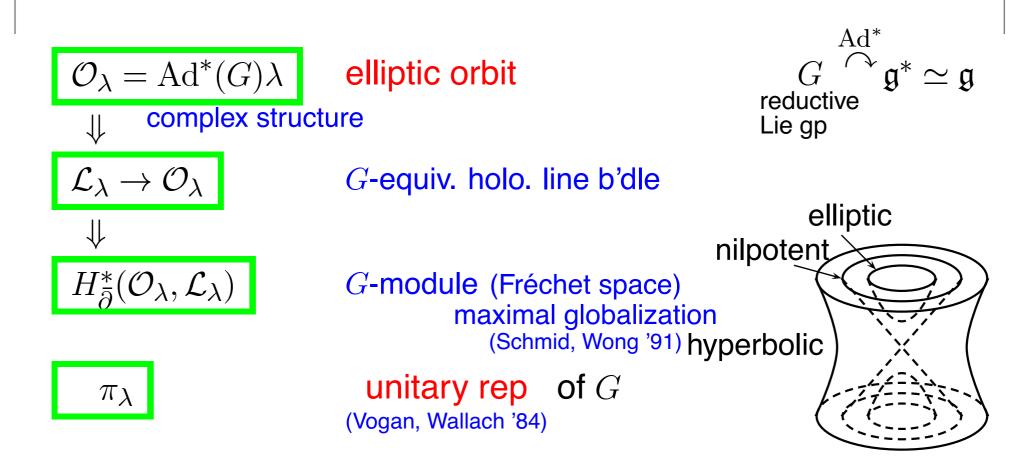
π	$\operatorname{Supp}_K(\pi)$	$\mathrm{AS}_K(\pi)$	Trace $\pi = \sum_{k \in \text{Supp}_K(\pi)} z^k$
1	{0}	{0}	
π_{λ}	2ℤ	$\mathbb R$	
π_n^+	$\{n, n+2, n+4, \cdots\}$	$\mathbb{R}_{\geq 0}$	
π_n^-	$\{-n, -n-2, -n-4, \cdots\}$	$\mathbb{R}_{\leq 0}$	

π	$\operatorname{Supp}_K(\pi)$	$\mathrm{AS}_K(\pi)$	Trace $\pi = \sum_{k \in \text{Supp}_K(\pi)} z^k$
1	{0}	{0}	
π_{λ}	2ℤ	\mathbb{R}	
π_n^+	$\{n, n+2, n+4, \cdots\}$	$\mathbb{R}_{\geq 0}$	
π_n^-	$\{-n, -n-2, -n-4, \cdots\}$	$\mathbb{R}_{\leq 0}$	



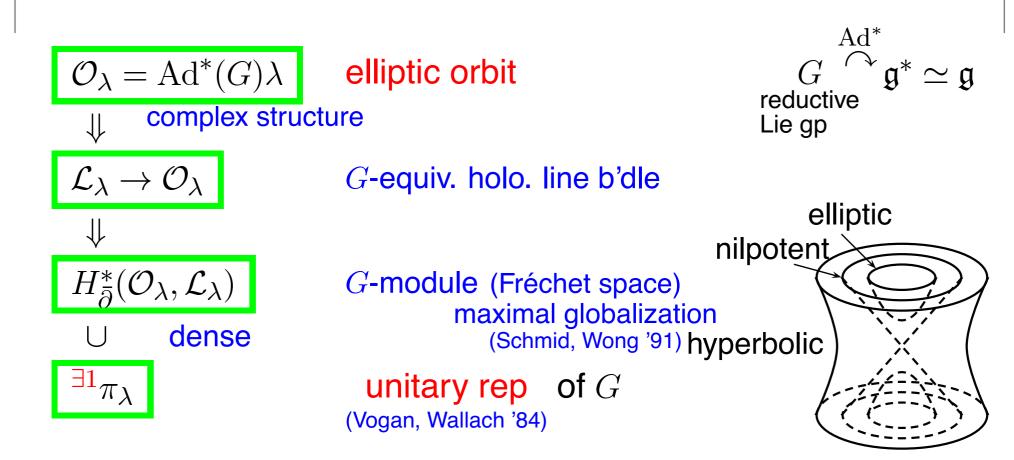


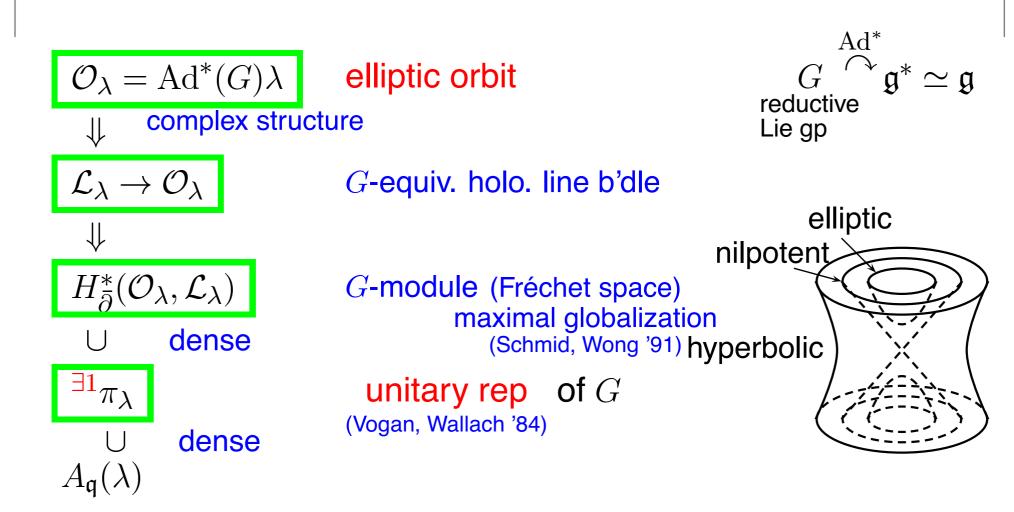


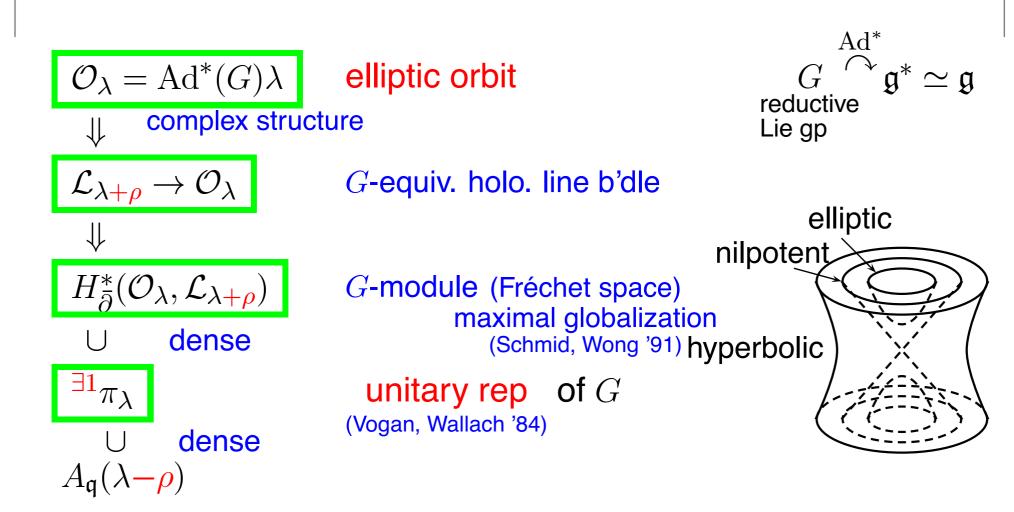


Geometric aspect of Zuckerman's derived functor modules

Branching Problems for Zuckerman's Derived Functor Modules – p.34/69







Basic properties of π_{λ}

 $\mathcal{O}_{\lambda} = \operatorname{Ad}^*(G) \cdot \lambda$ elliptic orbit $\rightsquigarrow \pi_{\lambda}$ unitary rep of G

Basic properties of π_{λ}

 $\mathcal{O}_{\lambda} = \operatorname{Ad}^*(G) \cdot \lambda$ elliptic orbit $\rightsquigarrow \pi_{\lambda}$ unitary rep of G

 λ : sufficiently 'positive' $\implies \pi_{\lambda} \neq 0$, irreducible

 $\mathcal{O}_{\lambda} = \operatorname{Ad}^*(G) \cdot \lambda$ elliptic orbit $\rightsquigarrow \pi_{\lambda}$ unitary rep of G

 λ : sufficiently 'positive' $\implies \pi_{\lambda} \neq 0$, irreducible

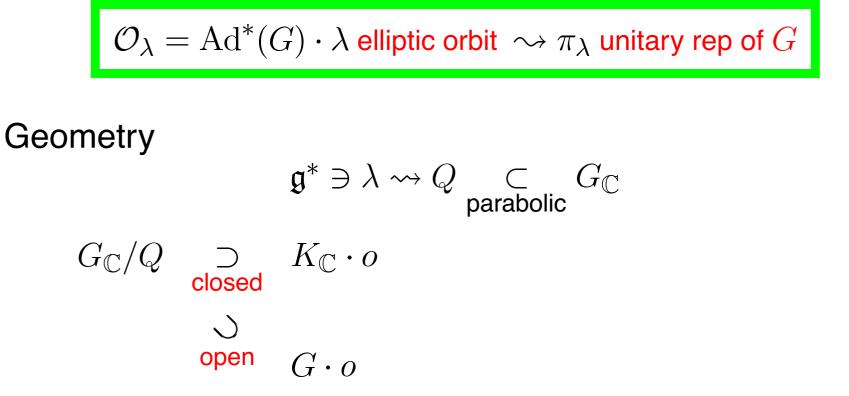
 $G_{\lambda} = \{g : \operatorname{Ad}^*(g)\lambda = \lambda\}$

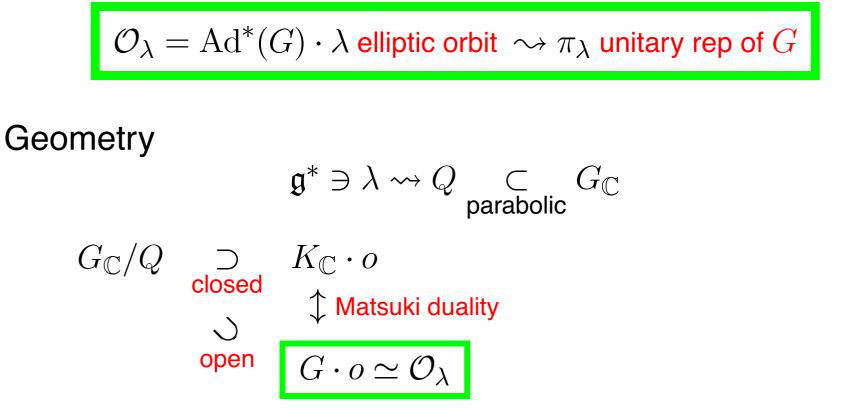
G compact \cdots Borel–Weil–Bott construction G_{λ} compact torus \cdots π_{λ} = discrete series G_{λ} abelian \cdots π_{λ} = fundamental series

 $\mathcal{O}_{\lambda} = \operatorname{Ad}^*(G) \cdot \lambda$ elliptic orbit $\rightsquigarrow \pi_{\lambda}$ unitary rep of G

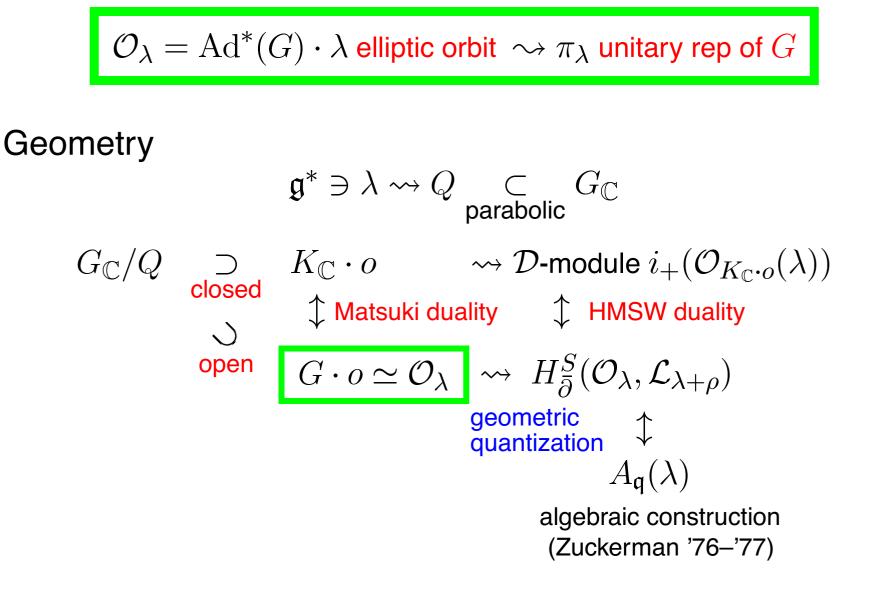
Geometry

$$\mathfrak{g}^* \ni \lambda \rightsquigarrow Q \underset{\text{parabolic}}{\subset} G_{\mathbb{C}}$$









Reductive symmetric pair

 $(G,G')\text{: reductive symm. pair}\\ \sigma^2=\mathrm{id}, \quad G_0^\sigma\subset G'\subset G^\sigma$

 $\mathfrak{g} = \mathfrak{g}^{\sigma} + \mathfrak{g}^{-\sigma} \\
\cup \quad \cup \quad \cup \\
\mathfrak{k} = \mathfrak{k}^{\sigma} + \mathfrak{k}^{-\sigma} \\
\cup \quad \cup \quad \cup \text{ maximal} \\
\mathfrak{t} = \mathfrak{t}^{\sigma} + \mathfrak{t}^{-\sigma}$

Reductive symmetric pair

 $(G,G')\text{: reductive symm. pair}\\ \sigma^2=\mathrm{id}, \quad G_0^\sigma\subset G'\subset G^\sigma$

 $\mathfrak{g} = \mathfrak{g}^{\sigma} + \mathfrak{g}^{-\sigma} \\
\cup \quad \cup \quad \cup \\
\mathfrak{k} = \mathfrak{k}^{\sigma} + \mathfrak{k}^{-\sigma} \\
\cup \quad \cup \quad \cup \text{ maximal} \\
\mathfrak{t} = \mathfrak{t}^{\sigma} + \mathfrak{t}^{-\sigma}$

 $\Sigma^+(\mathfrak{k},\mathfrak{t}^{-\sigma})\cup\{0\}\xleftarrow{\mathsf{rest.}}\Delta^+(\mathfrak{k},\mathfrak{t})\supset\Delta(\mathfrak{u}\cap\mathfrak{k}_{\mathbb{C}},\mathfrak{t})$

Discrete decomposability of π_{λ}

 $\mathcal{O}_{\lambda} = \operatorname{Ad}^*(G) \cdot \lambda$ elliptic orbit $\rightsquigarrow \pi_{\lambda}$ unitary rep of G

$$\mathfrak{q} = \mathfrak{l}_{\mathbb{C}} + \mathfrak{u} \underset{\theta \text{-stable parabolic}}{\subset} \mathfrak{g}_{\mathbb{C}}$$

(G, G'): reductive symmetric pair $\Leftarrow \sigma$

 $\mathfrak{g} \supset \mathfrak{k} \supset \mathfrak{t}$

Discrete decomposability of π_{λ}

$$\mathcal{O}_{\lambda} = \operatorname{Ad}^*(G) \cdot \lambda$$
 elliptic orbit $\rightsquigarrow \pi_{\lambda}$ unitary rep of G

$$\mathfrak{q} = \mathfrak{l}_{\mathbb{C}} + \mathfrak{u} \underset{\theta \text{-stable parabolic}}{\subset} \mathfrak{g}_{\mathbb{C}}$$

(G,G'): reductive symmetric pair $\Leftarrow \sigma$

 $\mathfrak{g} \supset \mathfrak{k} \supset \mathfrak{t}$

Theorem*Equivalent:(1) π_{λ} is K'-admissible.(2) $\pi_{\lambda}|_{G'}$ is alg. discretely decomposable.(3) \mathbb{R}_+ -span $\Delta(\mathfrak{u} \cap \mathfrak{p}_{\mathbb{C}}) \cap \sqrt{-1}(\mathfrak{t}^*)^{-\sigma} = \{0\}$.(4) $\operatorname{pr}_{\mathfrak{g} \to \mathfrak{g}'}(\operatorname{Ad}(K_{\mathbb{C}})(\mathfrak{u}^- \cap \mathfrak{p}_{\mathbb{C}})) \subset \mathcal{N}^*_{\mathfrak{g}'}.$

 * TK, Invent Math (1998)

Approaches to admissible restrictions

Analytic Approaches*

• Wavefront set / singularity spectrum of characters.

Algebraic Approaches**

• gr $U(\mathfrak{g}_{\mathbb{C}}) \simeq S(\mathfrak{g}_{\mathbb{C}})$ (nonn-commutative \rightsquigarrow commutative).

Geometric Approaches

- Complex geometry, Orbit philosophy[†].
- Symplectic geometry, *D*-modules^{††}.

* TK, Ann Math (1998);

** TK, Invent Math (1998); Gross-Wallach (2000);

[†] TK, Invent Math (1994); Duflo-Vargas, Proc. Japan Acad (2010);

^{††} TK, Kostant Memorial Volume (2011); Y. Oshima, Progr. Math (2025); M. Kitagawa, Progr. Math. (2025)

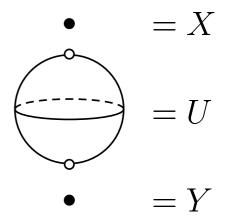
Beilinson–Bernstein localization

$$G = U(2, 2)$$

$$\cup$$

$$K = U(2) \times U(2)$$

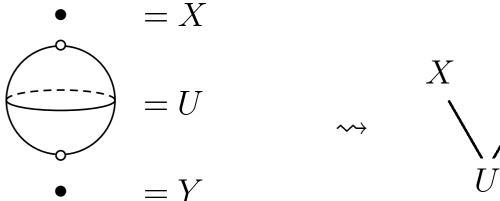
$GL(1,\mathbb{C}) \times GL(1,\mathbb{C}) \cap GL(2,\mathbb{C})/B$

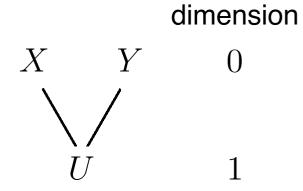


$\mathbb{P}^1\mathbb{C}\simeq GL(2,\mathbb{C})/B$

Branching Problems for Zuckerman's Derived Functor Modules - p.39/69

 $GL(1,\mathbb{C}) \times GL(1,\mathbb{C}) \overset{\leftarrow}{\to} GL(2,\mathbb{C})/B$

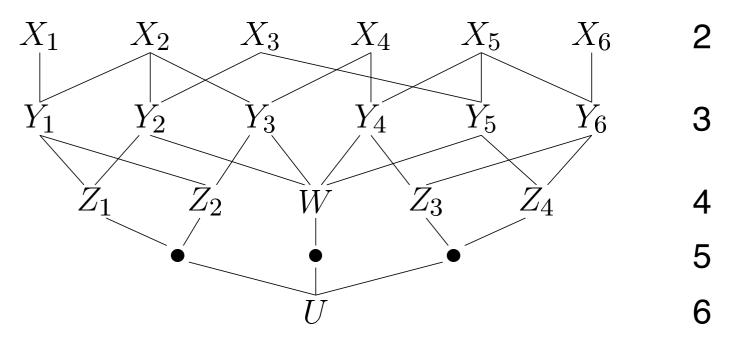




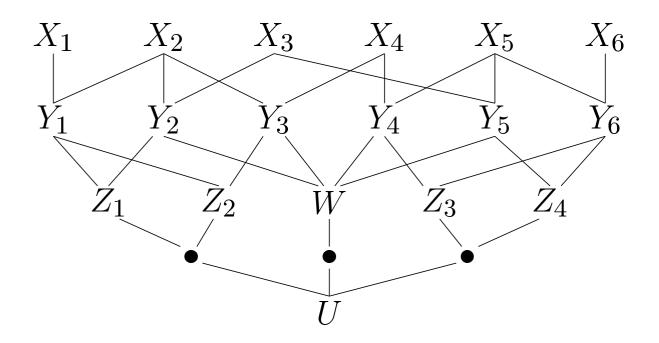
 $\mathbb{P}^1\mathbb{C}\simeq GL(2,\mathbb{C})/B$

 $GL(2,\mathbb{C}) \times GL(2,\mathbb{C}) \overset{\leftarrow}{\to} GL(4,\mathbb{C})/B$

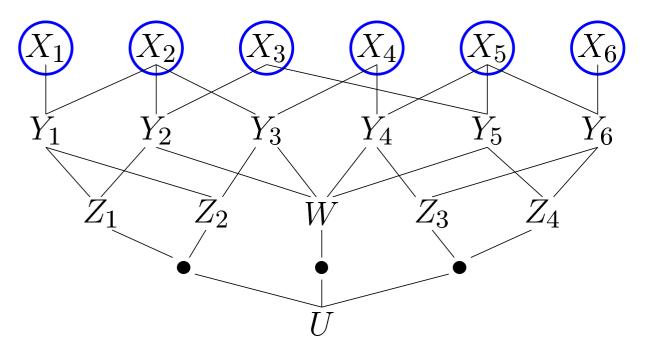
dimension



 $K_{\mathbb{C}} \cap G_{\mathbb{C}} / B \Leftarrow \operatorname{reps} \operatorname{of} G = U(2,2)$



 $K_{\mathbb{C}} \overset{\prime}{\to} G_{\mathbb{C}} / B \Leftarrow \operatorname{reps} \operatorname{of} G = U(2,2)$

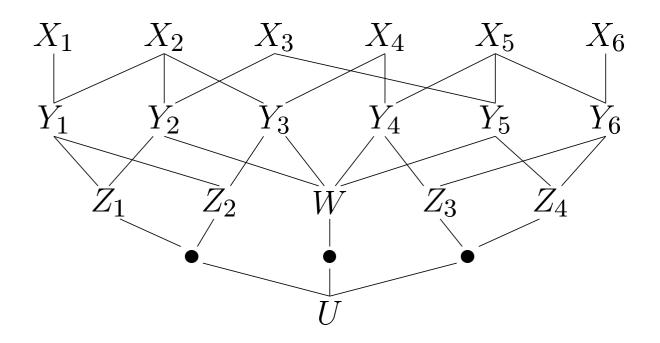


discrete ser.

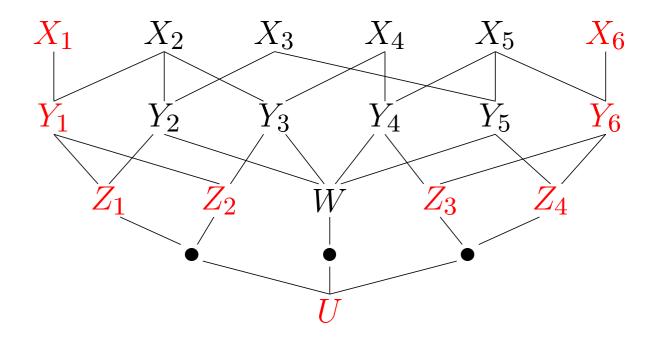
trivial rep

\bigcirc discrete series for $L^2(G)$

 $K_{\mathbb{C}} \overset{\prime}{\to} G_{\mathbb{C}} / B \Rightarrow \text{reps of } G = U(2,2)$

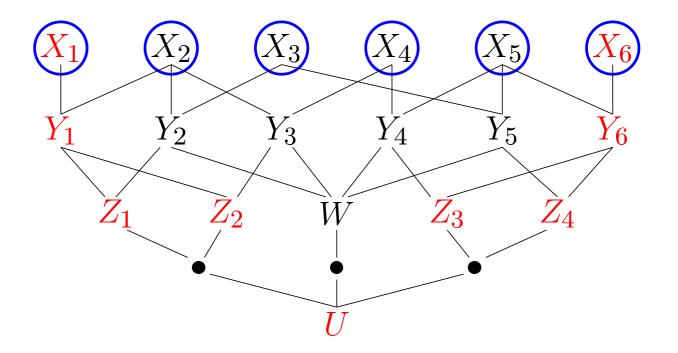


 $K_{\mathbb{C}} \overset{\prime}{\to} G_{\mathbb{C}} / B \Rightarrow \text{reps of } G = U(2,2)$



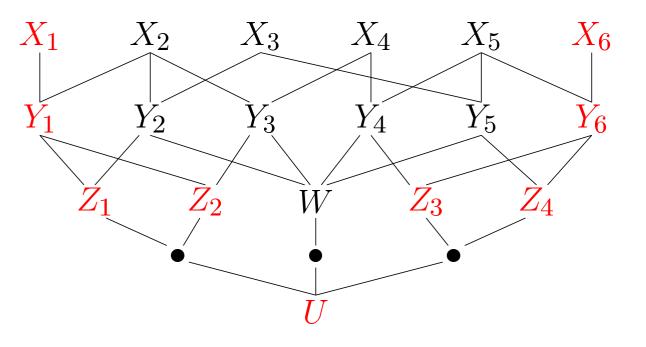
• unitary highest weight modules

 $K_{\mathbb{C}} \overset{\prime}{\to} G_{\mathbb{C}} / B \Rightarrow \text{reps of } G = U(2,2)$



discrete series representations
unitary highest weight modules
holomorphic (anti-holomorphic) discrete series

 $U(2,2) \downarrow U(2,1) \times U(1)$

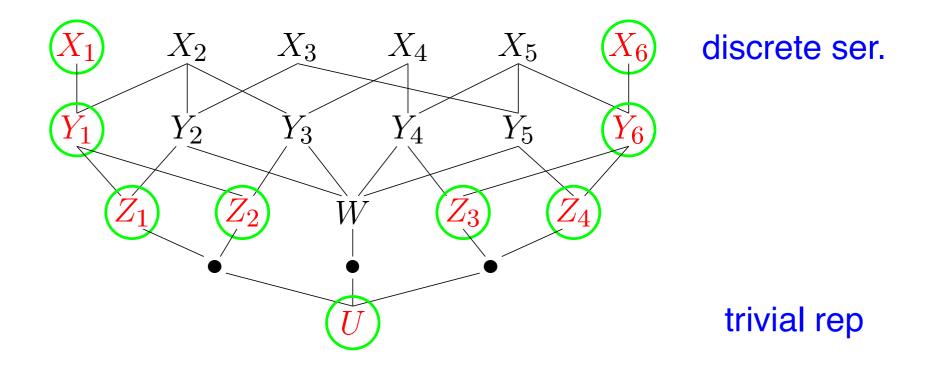


 X_6 discrete ser.

trivial rep

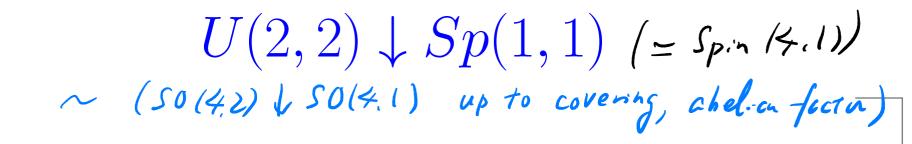
• unitary highest weight modules

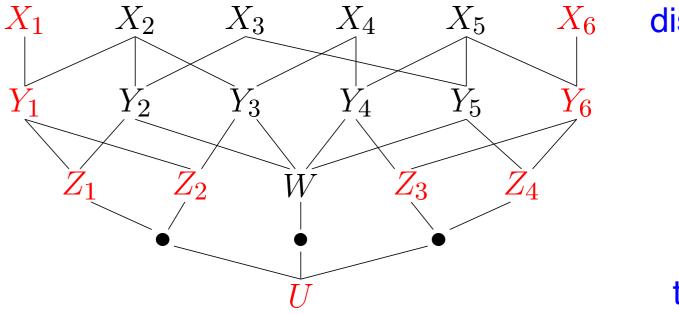
 $U(2,2) \downarrow U(2,1) \times U(1)$



) restriction to $U(2,1) \times U(1)$ is admissible

• unitary highest weight modules

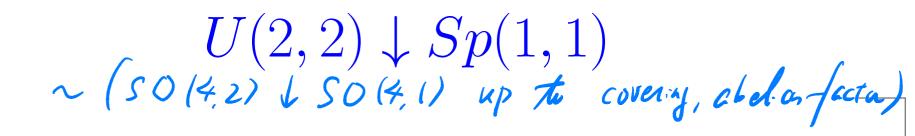


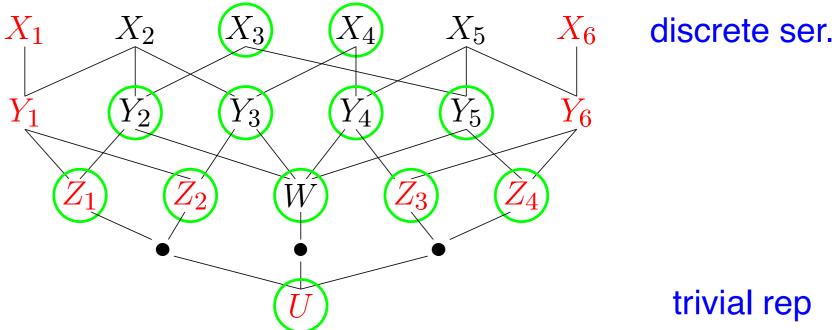


 X_6 discrete ser.

trivial rep

Note • unitary highest weight modules



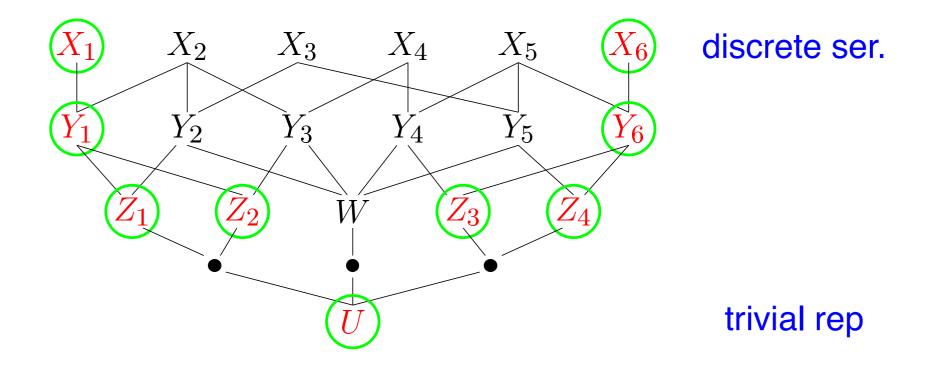


trivial rep

restriction to Sp(1,1) ($\simeq Spin(4,1)$) is admissible

 unitary highest weight modules Note

 $U(2,2) \downarrow U(2,1) \times U(1)$



) restriction to $U(2,1) \times U(1)$ is admissible

• unitary highest weight modules

Admissible restriction $\Pi|_{G'}$ — classification

Theorem (+ algebraic criterion*) provides a family of the triples $\Pi \in \widehat{G}$ and $G \supset G'$ for which the restriction $\Pi|_{G'}$ is $\underline{G'}$ -admissible (discretely decomposable with finite multiplicity).

Some classification results**,***

• (K–Y. Oshima, 2012) $G \supset G'$ symmetric pair, $\Pi_K = A_q(\lambda)$,

e.g., $\Pi =$ Harish-Chandra's discrete series rep.

- (..., 2015) $G \supset G'$ symmetric pair, Π = minimal rep,
- (, 2015) $\Pi_1 \otimes \Pi_2$ for any Π_1, Π_2 ,
- (Duflo–Galina–Vargas, 2017) $G' = SL(2, \mathbb{R}), \Pi = \text{discrete series}$.

<u>New geometric examples</u> (will be discussed <u>next week</u>) \cdots arisen from locally symmetric spaces $\Gamma \setminus G/H$.

- * T. Kobayashi, "Discrete decomposability of the restriction · · · III" Invent. Math. (1998);
- ** Kobayashi-Y. Oshima, "Classification of ··· " Adv Math (2012) 2013-2047; Crelles (2015) 201-223;
- *** M. Duflo-E. Galina-J. Vargas, J. Lie Theory (2017), 1033-1056.

Thank you very much!

Branching in Representation Theory

Mini Courses (January 13-17, IHP, 2025) Branching in Representation Theory References for Lecture 2: Discrete Decomposability and Admissible Restriction

The general theory of the main results are in

T.Kobayashi, Invent Math 1994, Annals of Mathematics, 1998, Invent Math 1998.

Duflo-Vargas, Proc. Japan Academy, 2010.

T.Kobayashi, Pure and Applied Mathematics Quarterly, 2021. (special issue: in memory of Prof. Bertram Kostant).

Classification theory for admissible restrictions

T.Kobayashi-Y.Oshima, Adv Math 2013, Crelles 2015.

Surveys, see also references thereis:

T. Kobayashi. Advanced Study in Pure Mathematics vol. 26, pages 98-126, 2000.

T. Kobayashi. Recent advances in branching problems of representations. Sugaku Expositions 37 (2024), 129-177, Amer Math Soc.

Further Readings, M.Kitagawa, Y.Oshima In: Symmetry in Geometry and Analysis, Volumes 3, Progress in Mathematics, Birkhäuser, 2025.