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Branching problems in the general setting

T
G — GLV)
irreducible,
U
-7 nler

Gl

Branching problem (in a broader sense than the usual)
wish to understand
how the restriction 7|5 behaves as a G’-module.




A Program: Stage ABC for Branching Problem

Stage A . Abstract Feature of Restriction

® spectrum: discrete or continuous?/ support?
* multiplicities: infinite, finite, bounded, or one, LL?

Stage B.. Branching Laws
¢ (irreducible) decomposition of representations

Stage C. Construction of SBOs/HOs
SBO - -- Symmetry Breaking Operator
HO --- Holographic Operator

® decomposition of vectors

Ref. T. Kobayashi, “A program for branching problems in rep theory...”, Progress in Mathematics, 312, (2015).
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SBO - -- Symmetry Breaking Operator
HO --- Holographic Operator

® decomposition of vectors

Ref. T. Kobayashi, “A program for branching problems in rep theory...”, Progress in Mathematics, 312, (2015).



Notation

-

Throughout this talk, G: real reductive Lie gp
EX.

G O K: max compact subgp GL(n,R) D O(n)

o |
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Notation
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Throughout this talk, G: real reductive Lie gp
EX.

G O K: max compact subgp GL(n,R) D O(n)

J} more general

GG O H: reductive symmetric pair | GL(n,R) D O(p,n — p)

o |

Branching Problems for Zuckerman'’s Derived Functor Modules — p.6/69



Notation

-

Throughout this talk, G: real reductive Lie gp
EX.

G O K: max compact subgp GL(n,R) D O(n)

J} more general

GG O H: reductive symmetric pair | GL(n,R) D O(p,n — p)

l.e. @ reductive Lie gp
o € Aut(G), o? =id
H = any open subgp of GG°

o |
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Notation

-

Throughout this talk, G: real reductive Lie gp
EX.

G O K: max compact subgp GL(n,R) D O(n)

|} more general

(G O H: reductive symmetric pair | GL(n,R) D O(p,n — p)

|} more general

G O G’ real reductive subgp GL(n1 + ny + n3, R)

D GL(??,l, R)XGL(??,Q, R)XGL(??B, R)

o |

Branching Problems for Zuckerman'’s Derived Functor Modules — p.6/69



Decomposition into irreducible reps

- N

G;: locally compact group
G = unitary dual
= {irreducible unitary reps}/ ~

Fact (Mautner '50—Teleman ’76)
Any unitary rep = can be decomposed into
a direct integral of irreducible unitary reps:

D
v [ a7 deto)
G ~— N——"

~ multiplicity Borel measure

unitary dual m

N U {oo}

o |
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Very good case: Restriction G | G’
B -

€ G, G D G (reductive subgp)



Very good case: Restriction G | G’
B -

€ G, G D G (reductive subgp)

Def Restriction 7| is discretely decomposable if

T~ Z@HW(T)T (discrete Hilbert sum).

o |

Branching Problems for Zuckerman’s Derived Functor Modules — p.12/69



Very good case: Restriction G | G’
B -

€ G, G D G (reductive subgp)

Def Restriction 7| is discretely decomposable if
hs — Y e RO

T~ nr(7)r  (discrete Hilbert sum).

¢ strengthen

Def Restriction 7| is G’-admissible if

7 Is dicretely decomposable, and
ny (1) <oo (Yre€G’). (finite mult.)

o |
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Very good case: Restriction G | G’

Stage A . Abstract Feature of Restriction

® spectrum:'discrete or continuous?/ support?

* multiplicities: infinite; finite, bounded, or one, ... 7
Stage B.. Branching Laws

¢ (irreducible) decomposition of representations

Stage C. Construction of SBOs/HOs
SBO - -- Symmetry Breaking Operator
HO --- Holographic Operator

® decomposition of vectors

Ref. T. Kobayashi, “A program for branching problems in rep theory...”, Progress in Mathematics, 312, (2015).



When is the restriction GG'-admissible?

- G'c G- GLe(H) N
N__/ lrred.

Broken symmetries



When is the restriction GG'-admissible?

- G'c G- GLe(H) N
N__/ lrred.

Broken symmetries

Ex. 1 G is compact.

o |
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When is the restriction GG'-admissible?

- G'c G- GLe(H) N
N__/ lrred.

Broken symmetries

Ex. 1 G is compact.

Ex. 2 (Harish-Chandra’s admissibility theorem, 1950s)

G' = K, a maximal compact subgp of a reductive G

o |
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When is the restriction GG'-admissible?

- G'c G- GLe(H) N
N__/ lrred.

Broken symmetries

Ex. 1 G is compact.

Ex. 2 (Harish-Chandra’s admissibility theorem, 1950s)
G' = K, a maximal compact subgp of a reductive G

Ex. 3 (Howe, 1970s) x : Weil rep
G = Mpn,R), G =G, G, : dualpair, G compact

| |
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When is the restriction GG'-admissible?

| G'c G- GLe(H) .
N__/ lrred.

Broken symmetries

Ex. 1 G is compact.

Ex. 2 (Harish-Chandra’s admissibility theorem, 1950s)
G' = K, a maximal compact subgp of a reductive G

Ex. 3 (Howe, 1970s) x : Weil rep
G = Mpn,R), G =G, G, : dualpair, G compact

Ex. 4 (S. Martens, Jakobsen, Vergne, 1970s)

7 . holomorphic discrete series, G'/K' C G/K
Herm('t\'an sﬁm sp J
It
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When is the restriction G'-admissible?

fStrange example: T

Ex. 5 (K-1988) (G,G) =(5S0(4,2), SO(4,1))
m: discrete series, Gelfand—Kirillov dim = 5
(neither holomorphic nor anti-holomorphic disc. ser.)
— 7| IS G'-admissible

Tessellation of R? —

L Tessellation of SL(2,R)/SO(2) — J
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Analytic approach

letreGand &' c G.

reductive

Question
When does the restriction 7| become G’-admissible?

When does the restriction 7| decompose

"S- | discretely with finite multiplicities ?

|
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Analytic approach

letreGand &' c G.

reductive

Question
When does the restriction 7| become G’-admissible?

reductive groups /R

max compact subgroups

|
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Two closed cones

| N

GG O K DO T

max compact max torus

Example

SL(n,R) > SO(n) o TL2l.

| |
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Two closed cones

- N

GG O K DO T

max compact max torus

Define two closed cones in v/ —1t*:

o |
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Two closed cones

| .

GG O K DO T

max compact max torus

Define two closed cones in /—1t*:

GO G

L |
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Two closed cones

| N

GG O K DO T

max compact max torus

Define two closed cones in /—1t*:

G>m~ ASk(m) asymptotic K-support
N (invariant of )

V-1t

| |
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Two closed cones

- . -
|

G D K D T > reductive groups /R

G
U U
max compact max torus K > K

?

max compact subgroups

Define two closed cones in /—1t*:

G > m~ ASk(r) asymptotic K-support
(invariant of )

GDG ~ Cg(K') Hamiltonian action
TcK ™ T*K/K')

o |
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Two closed cones

- N

GG O K DO T

max compact max torus

Define two closed cones in /—1t*:

G > m~ ASk(r) asymptotic K-support
(invariant of )

GDG ~ Cg(K') momentum image

T*(K/K') — v/—1t*
- .
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Asymptotic cone

R’n

»n C
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Asymptotic cone

R"™ R™
U U  closed cone
S — Soo (asymptotic cone)

|
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Asymptotic cone

R"™ R™
U U  closed cone
S — Soo (asymptotic cone)

Soo = {y € R": ayj e S, aej }0st lim g;y; =y}
J]—00

|
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Asymptotic cone

R™ R™
U U  closed cone
S — Soo (asymptotic cone)

Soo = {y € R": Hyj e S, ng }0st lim g;y; =y}
J]—00

S > S0

|
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Asymptotic cone

R™ R™
U U  closed cone
S — Soo (asymptotic cone)

Soo = {y € R": Hyj e S, ng }0st lim g;y; =y}
J]—00

S Soo

|
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Asymptotic cone

R™ R™
U U  closed cone
S — Soo (asymptotic cone)

Soo = {y € R": Hyj e S, ng }0st lim g;y; =y}
J]—00

S Soo

|
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Asymptotic cone

R™ R™
U U  closed cone
S — Soo (asymptotic cone)

Soo = {y € R": Hyj e S, ng }0st lim g;y; =y}
J]—00

S Soo

y? —z2>1,y>0
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Asymptotic cone

R™ R™
U U  closed cone
S — Soo (asymptotic cone)

Soo = {y € R": Hyj e S, ng }0st lim g;y; =y}
J]—00

S Soo
\/ — l
y>:1:2

\/ y=v=w
y? — 22 >1,y>0 —
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Asymptotic K-support

- N

Cartan—Weyl’s highest weight theory for compact gp K

o |
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Asymptotic K-support

- N

Cartan—Weyl’s highest weight theory for compact gp K

K DT maxtorus, Fix AT(¢t)

o |

Branching Problems for Zuckerman’s Derived Functor Modules — p.18/69



Asymptotic K-support

- N

Cartan—Weyl’s highest weight theory for compact gp K

K DT maxtorus, Fix AT(¢t)

[? ~ A_|_ i Cfﬂ C_|_ C \/—1t*
dominant
N N chamber

T <— )\

o |
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Asymptotic K-support

- N

Cartan—Weyl’s highest weight theory for compact gp K

K DT maxtorus, Fix AT(gt)

[? ~ A_|_ i fﬂ C_|_ C \/—1t*
dominant
% U chamber

T <— )\

G D K DO T

max compact max torus

m repof G

|
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Asymptotic K -support

- N

Cartan—Weyl’s highest weight theory for compact gp K

K DT maxtorus, Fix AT(g¢)

[? ~ A_|_ i Cfﬂ C_|_ C \/—1t*
dominant
N N chamber

T <— )\

G D K DO T

max compact max torus

m repof G

~ Suppg () = {\ € v—1t": Hompg (1), 7|K) # 0}

|
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Asymptotic K -support

- N

Cartan—Weyl’s highest weight theory for compact gp K

K DT maxtorus, Fix AT(g¢)

[? ~ A_|_ i Cfﬂ C_|_ C \/—1t*
dominant
N N chamber

T <— )\

G D K DO T

max compact max torus

m repof G

~ Suppg(m) == {\ € vV—1t*: Hompg (1), 7|r) # 0}
~+ ASg () := Suppg(m)oo  (Asymptotic K-support)

|
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Example of SL(2,R) = &

© 2 fo kK = Sow)
m Supp () ASk(m) Series
1 trivial rep.
T\ principal ser.
T holo. discrete ser.
Tn anti-holo discrete ser.

Branching Problems for Zuckerman’s Derived Functor

|
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Example of 5L(2. ) G

K ~ g 7£m K = S0(z) T
m Supp () ASk(m) Series
1 {0} trivial rep.
T 27, principal ser.
| {n,n+2,n+4,---} holo. discrete ser.
7, | {-n,—nm—2,—n—4---} anti-holo discrete ser.

|
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Example of SL(2, R)

T Supp () ASk(m) Series

1 {0} {0} trivial rep.

T 27, R principal ser.
| {n,n+2,n+4,---} R~ holo. discrete ser.
T, |[{-n,—nmn—-2,—n—-4---} | Rgg anti-holo discrete ser.

|
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Criterion of admissible restriction

f Theorem 2 (Criterion) (K— Ann Math 98 )
Let G’ c GandreG. If

reductive
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Criterion of admissible restriction
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Let G’ c GandreG. If
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Criterion of admissible restriction

f Theorem 2 (Criterion) (K— Ann Math 98 ) T
Let G’ c GandreG. If

reductive /_

s

|
(%) Cr(K') N ASk(m) = {0} in /=1t

then 7| is K'-admissible.

D reductive groups /R

G G’
U U
K > K’ {Jmax compact subgroups
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Criterion of admissible restriction

f Theorem 2 (Criterion) (K— Ann Math '98, Progr Math '05 ) T
Let G’ c GandreG. If

reductive /_

s

|
(%) Cr(K')NASg(m) = {0} in+/—1t*
then 7| is K'-admissible.
The converse also holds.

o |
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Criterion of admissible restriction

f Theorem 2 (Criterion) (K— Ann Math '98, Progr Math '05 ) T
Let G’ c GandreG. If

reductive /_

s

|
(%) Cr(K') N ASk(m) = {0} in /-1t
then 7| is K'-admissible.
The converse also holds.
In particular, the restriction = | is G’-admissible

D reductive groups /R

G G’
U U
K > K’ {Jmax compact subgroups
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Criterion of admissible restriction

f Theorem 2 (Criterion) (K— Ann Math '98, Progr Math '05 ) T
Let G’ c GandreG. If

reductive /_

s

|
(%) Cr(K') N ASk(m) = {0} in /-1t
then 7| is K'-admissible.
The converse also holds.
In particular, the restriction 7| is G’-admissible

No continuous spectrum & finite multiplicity
in the irred. decomp. of «|q.

o |
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Special cases of Theorem 2

Ex1 Cg(K')={0}<—= G DK
— Harish-Chandra’s admissibility thm

Ex.2 ASk(m)={0} <= dim7 < o0
— Complete reducibility of finite dim’l unitary rep

| |
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Special cases of Theorem 2

Ex1 Cg(K')={0}<—= G DK
— Harish-Chandra’s admissibility thm

Ex.2 ASk(m)={0} <= dim7 < o0

— Complete reducibility of finite dim’l unitary rep

Ex.3 (S. Martens, Jakobsen, Vergne, 1970s)

7. holomorphic discrete series
G'/K' ¢ G/K holomorphic embedding

| |
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Special cases of Theorem 2

Ex1 Cg(K')={0}<—= G DK
— Harish-Chandra’s admissibility thm

Ex.2 ASk(m)={0} <= dim7 < o0
— Complete reducibility of finite dim’l unitary rep

Ex.3 (Jakobsen—Vergne 1970)
7. holomorphic discrete series
G'/K' ¢ G/K holomorphic embedding

Ex.4 m = Aq()) (Zuckerman’s module)
(may be non-tempered/non-highest wt module)
—> ASg(m) C Ry-spanof A(unp,t)
(q=1I1+4+u, g==2t+p)
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Idea of Proof

- N

Restriction of a representation = to a subgroup G’

o |
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Idea of Proof

- N

Restriction of a representation = to a subgroup G’

i

Restriction of its character Trace = to a submfd

o |
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Idea of Proof
-

Restriction of a representation = to a subgroup G’

i

Restriction of its character Trace = to a submfd
distribution/hyperfunction

o |
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Idea of Proof

- N

Restriction of a representation = to a subgroup G’

i

Restriction of its character Trace = to a submfd
distribution/nyperfunction

i

wave front set/singularity spectrum of Trace =

o |

Branching Problems for Zuckerman’s Derived Functor Modules — p.23/69



-

Idea of Proof
-

Restriction of a representation = to a subgroup G’

i

Restriction of its character Trace = to a submfd
distribution/hyperfunction

)
ﬂ wave front set/singularity spectrum of Trace =«
)
ASK(T(')

Restriction of a holomorphic function to a complex
submfd

|
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Example of SL(2, R)

-

7'(' Supp g () ASg(m) | Tracem = Z 2
k€Suppg ()

1

UD)

s

Tp,
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Example of SL(2, R)

? = 7£0: K = EO/Z) T
7'(' Supp g () ASg(m) | Tracem = Z 2
k€Suppg ()
1 10}
T 27,
T {n,n+2,n+4,---}
T, | {—n,—n—2,—n—4---}




Example of SL(2, R)

-

7'(' Supp g () ASg(m) | Tracem = Z 2
k€Suppg ()
1 10} 10}
T 27, R
T {n,n+2,n+4,---} R
T, | {—n,—n—-2,—n—-4---}| Rgg




Example of SL(2, R)

-

7'(' Supp g () ASg(m) | Tracem = Z 2
kESupp g (7)
1 10} 10}
) 27, R
| {nn+2,n+4,---} R>0 @
T, | {—n,—n—2,—n—4---} R<q




Geometric quantization of elliptic orbits

-

reductive
Lie gp

elliptic
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Geometric quantization of elliptic orbits

- N

Ad”

O, = Ad*(G)\ | elliptic orbit G Vgt~g
reductive
Lie gp
0 elliptic

T unitary rep of GG
(Vogan, Wallach ’84)

L Geometric aspect of Zuckerman’s derived functor moduIeSJ
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Geometric quantization of elliptic orbits

- N

Ad”
O, = Ad*(G)\ | elliptic orbit Ke) gt~ g
) complex structure [?elé%'ve
Ly — Oy G-equiv. holo. line b'dle
elliptic

T unitary rep of GG
(Vogan, Wallach ’84)

L Geometric aspect of Zuckerman’s derived functor moduIeSJ
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Geometric quantization of elliptic orbits

- N

Ad”*
O, = Ad*(G)\ | elliptic orbit Ke) gt ~g
) complex structure [eie%%'ve
Ly — Oy G-equiv. holo. line b'dle
1 elliptic
nilpoten
Hg((’))\, L) G-module (Fréchet space) ‘)
maximal globalization N
(SChmId, Wong ’91) hyperbollc Mo

T unitary rep of G - -
(Vogan, Wallach ’84)

——————

L Geometric aspect of Zuckerman’s derived functor moduIeSJ
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Geometric quantization of elliptic orbits

- N

Ad”

Oy = Ad*(G)A | elliptic orbit G Vgt~g
) complex structure [eig%(g've

Ly — O, G-equiv. holo. line b'dle
1 elliptic

nilpoten
Hg((’))\, L) G-module (Fréchet space) ‘)
maximal globalization =7

U dense (Schmid, Wong '91) hyperbolic | ¢

s unitary rep of G “2I3r:
(Vogan, Wallach ’84)

——————

L Geometric aspect of Zuckerman’s derived functor moduIeSJ
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Geometric quantization of elliptic orbits

- N

Ad”*
O, = Ad*(G)\ | elliptic orbit Ke) gt ~g
) complex structure rLeieLé%tuve
Ly — Oy G-equiv. holo. line b'dle
1 elliptic
nilpoten
Hg((’))\, L) G-module (Fréchet space) ‘)
maximal globalization =7
U dense (Schmid, Wong '91) hyperbolic | ¢
oy unitary rep of G 7EIINNs
¥ dense (Vogan, Wallach’84) —  Nls----L
Ag(A)

L Geometric aspect of Zuckerman’s derived functor moduIeSJ
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Geometric quantization of elliptic orbits

- N

Ad”

O, = Ad*(G)\ | elliptic orbit G Vgt~g
reductive
) complex structure Lie gp
Ly, — Oy G-equiv. holo. line b'dle
1 elliptic
nilpoten
HA(Ox, Layp) G-module (Fréchet space) ‘)
maximal globalization N
U dense (Schmid, Wong '91) hyperbolic
Iy unitary rep of G “£I30%s
V Wallach ’
U dense (Vogan, Wallach’84) (N s----L
Ag(A=p)

L Geometric aspect of Zuckerman’s derived functor moduIeSJ
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Basic properties of )

| .

Oy = Ad*(G) - A elliptic orbit ~» 7y unitary rep of (7

L |
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Basic properties of )

| N

Oy = Ad*(G) - A elliptic orbit ~» 7y unitary rep of (7

A: sufficiently ‘positive’ — ), # 0, irreducible

| |
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Basic properties of )

| N

Oy = Ad*(G) - A elliptic orbit ~» 7y unitary rep of (7

A: sufficiently ‘positive’ — ), # 0, irreducible

Gy ={g:Ad*(g)A = A}

G compact ... Borel-Weil-Bott construction

(GG, compact torus --- 1, = discrete series
G, abelian ... m, = fundamental series

| |
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Basic properties of )

| N

Oy = Ad*(G) - A elliptic orbit ~» 7y unitary rep of (7

Geometry
g A~ C G

parabolic

| |
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Basic properties of )

| N

Oy = Ad*(G) - A elliptic orbit ~» 7y unitary rep of (7

Geometry
g A~ C G

parabolic

Gec/QQ DO Kc-o

closed

)
open (.,

| |

Branching Problems for Zuckerman’s Derived Functor Modules — p.35/69



Basic properties of )

| N

Oy = Ad*(G) - A elliptic orbit ~» 7y unitary rep of (7

Geometry
g A~ C G

parabolic

Gec/QQ DO Kc-o

closed
1 Matsuki duality
O

| |
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Basic properties of )

-

Oy = Ad*(G) - A elliptic orbit ~» 7y unitary rep of (7

Geometry
g A~ C G
parabolic
Ge/QQ DO  Kc-o ~» D-module iy (O .0(N))
closed

1 Matsuki duality ~ J HMSW duality

O

oper v~ H3(Ox Lary)
geometric
quantization

o |
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Basic properties of )

-

Oy = Ad*(G) - A elliptic orbit ~» 7y unitary rep of (7

Geometry
go3A~~»Q C G¢
parabolic
Ge/Q ID . Kc-o ~» D-module iy (O .0(N))
close
5 I Matsuki duality ~ J HMSW duality

o (G020~ HiOn Er
geometric i
quantization

Ag(A)

algebraic construction
(Zuckerman '76-"77)

o |
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Reductive symmetric pair

-

(G, G"): reductive symm. pair
c?=id, GJCG C@G°

g = g + g°"

U U U

b = & + ¢

U U U maximal
t = t7 + t°

o |
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Reductive symmetric pair

-

(G, G"): reductive symm. pair
c?=id, GJCG C@G°

g = g + g°"

U U U

b = & + ¢

U U U maximal
t = t7 + t°

S ) U {0} S5 AT ©) D A(un ke, t)

o |
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Discrete decomposability of )

- N

Oy = Ad*(G) - A elliptic orbit ~» 7y unitary rep of (7

q=Ic+u C gC
@-stable parabolic

(G, G"): reductive symmetric pair < o
goOEDt

o |
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Discrete decomposability of )

-

Oy = Ad*(G) - A elliptic orbit ~» 7y unitary rep of (7
q=Ic+u C gC
@-stable parabolic
(G,G"): reductive symmetric pair < o
goOEDt
Theorem® Equivalent:

(1) 7 is K’'-admissible.
2) 7y|q is alg. discretely decomposable.

(2)
(3) Ry-span A(un pe) N V=I(¢) =7 = {0}.
(4) pry_y (Ad(Kc)(u™ N pc)) C N,

ETK, Invent Math (1998)

Branching Problems for Zuckerman’s Derived Functor

|
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Approaches to admissible restrictions
Analytic Approaches®

e Wavefront set / singularity spectrum of characters.

Algebraic Approaches**

* grU(ac) =~ S(ac)
(nonn-commutative ~» commutative).

Geometric Approaches
e Complex geometry, Orbit philosophy.
o Symplectic geometry, D-modules’™.

* TK, Ann Math (1998);
** TK, Invent Math (1998); Gross—Wallach (2000);
T TK, Invent Math (1994); Duflo-Vargas, Proc. Japan Acad (2010);

¥ TK, Kostant Memorial Volume (2011); Y. Oshima, Progr. Math (2025); M. Kitagawa, Progr. Math.  (2025)



-

Beilinson—Bernstein localization

T
G=U(2,2)

U

K=U(2)xU(2)



GL(1,C) x GL(1,C)"YGL(2,C)/B
B -
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GL(1,C) x GL(1,C)"YGL(2,C)/B

T
=X dimension

. X Y 0

N = N/
° —Y U 1
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GL(2,C) x GL(2,C)"YGL(4,C)/B

dimension T

el e —ed N

WW
\/ f \/ :
I :
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K@mG@/B <reps of G = U(2,2)
-
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K@mG@/B <repsof G =U(2,2)

B B
@ @ @ @ @ @ discrete ser.
W W
s roRA
N(/ trivial rep

O discrete series for L*(G)

o |
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K@mG@/B = reps of G = U (2, 2)
-
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K@mG@/B = reps of G = U (2, 2)
-
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K@mG@/B = reps of G = U (2, 2)
o N

@@@@@@

WW

Z1

\/ f \/
S P
U

(O discrete series representations
e unitary highest weight modules
(® holomorphic (anti-holomorphic) discrete series

o |
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U(2,2) L U2,1) x U(1)
-

X1 X9 X3 Xy X5 Xg¢  discrete ser.

i / l \ A
N/
U trivial rep

e unitary highest weight modules
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U(2,2) L U2,1) x U(1)
- .

@ X9 X3 4 5 @ discrete ser.
@‘ Yy Y3\ /Y4 Y5 ‘@
DB W @ B

\@/ trivial rep

() restrictionto U(2,1) x U(1) is admissible

e unitary highest weight modules

o |
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U(2,2) 4 Sp(1,1) (= §m 5.0
f ~ (S0(42) |, S0(+1) wp 7o coverss, chel e /urm

X1 X9 X3 Xy X5 Xg¢  discrete ser.

el e —ed N
WW

Z1

- / l \ A
N/
U trivial rep

Note e unitary highest weight modules
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-

U(2,2) | Sp(1,1)
~ [ $O(¢2) L SOF () up A covery, ﬁ//m/fC%

X¢  discrete ser.

\@/ trivial rep

() restriction to Sp(1,1) (~ Spin(4,1)) is admissible

Note e unitary highest weight modules
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U(2,2) L U2,1) x U(1)
- .

@ X9 X3 4 5 @ discrete ser.
@‘ Yy Y3\ /Y4 Y5 ‘@
DB W @ B

\@/ trivial rep

() restrictionto U(2,1) x U(1) is admissible

e unitary highest weight modules

o |
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Admissible restriction II|;;, — classification
Theorem (+ algebraic criterion®) provides a family of the triples

IMMeG and G>G’
for which the restriction Il|g is G’-admissible | (discretely decomposable
with finite multiplicity) .

Some classification results****

e (K-Y. Oshima, 2012) G > G’ symmetric pair, I1x = A4(1),
e.g., I1 = Harish-Chandra’s discrete series rep .

( — , 2015) G > G’ symmetric pair, IT = minimal rep,

( — , 2015) II; ® I, for any I1;, Iy,

e (Duflo—Galina—Vargas, 2017) G’ = SL(2,R), I1 = discrete series .

New geometric examples (will be discussed next week)
-~ - arisen from locally symmetric spaces I'\G/H.

* T. Kobayashi, “Discrete decomposability of the restriction- - - I1I” Invent. Math. (1998);
** Kobayashi-Y. Oshima, “Classification of - - - ” Adv Math (2012) 2013-2047; Crelles (2015) 201-223;

** M. Duflo—E. Galina—J. Vargas, J. Lie Theory (2017), 1033—1056.



Thank you very much!



Branching in Representation Theory




Mini Courses (January 13-17, IHP, 2025)
Branching in Representation Theory
References for Lecture 2:

Discrete Decomposability and Admissible Restriction

The general theory of the main results are in
T.Kobayashi, Invent Math 1994, Annals of Mathematics, 1998, Invent Math 1998.
Duflo-Vargas, Proc. Japan Academy, 2010.

T.Kobayashi, Pure and Applied Mathematics Quarterly, 2021. (special issue: in

memory of Prof. Bertram Kostant).

Classification theory for admissible restrictions

T.Kobayashi-Y.Oshima, Adv Math 2013, Crelles 2015.

Surveys, see also references thereis:
T. Kobayashi. Advanced Study in Pure Mathematics vol. 26, pages 98-126, 2000.

T. Kobayashi. Recent advances in branching problems of representations. Sugaku

Expositions 37 (2024), 129-177, Amer Math Soc.

Further Readings, M.Kitagawa, Y.Oshima In: Symmetry in Geometry and Analysis,

Volumes 3, Progress in Mathematics, Birkhauser, 2025.





