
Branching in Representation Theory
Lecture 2. Discrete Decomposability and

Admissible Restriction

Toshiyuki Kobayashi

The Graduate School of Mathematical Sciences
The University of Tokyo

http://www.ms.u-tokyo.ac.jp/ ˜ toshi/

Minicourses: branching problems and symmetry-breaking
Thematic trimester Representation Theory and Noncommutative Geometry
Organizers: Alexandre Afgoustidis, Anne-Marie Aubert, Pierre Clare, Haluk Şengün
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Branching problems in the general setting

G
π−−−−−−−−−→

irreducible
GL(V)

∪
π|G′

G′

Branching problem (in a broader sense than the usual)
· · · wish to understand

how the restriction π|G′ behaves as a G′-module.



A Program: Stage ABC for Branching Problem

Stage A . Abstract Feature of Restriction
• spectrum: discrete or continuous?/ support?
• multiplicities: infinite, finite, bounded, or one, . . . ?

Stage B . Branching Laws
• (irreducible) decomposition of representations

Stage C . Construction of SBOs/HOs
SBO · · · Symmetry Breaking Operator
HO · · · Holographic Operator
• decomposition of vectors

Ref. T. Kobayashi, “A program for branching problems in rep theory. . . ”, Progress in Mathematics, 312, (2015).
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Decomposition into irreducible reps

: locally compact group
unitary dual
irreducible unitary reps

Fact (Mautner ’50–Teleman ’76)
Any unitary rep can be decomposed into
a direct integral of irreducible unitary reps:

unitary dual multiplicity Borel measure
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Very good case: Restriction

, (reductive subgp)
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Very good case: Restriction

, (reductive subgp)

Def Restriction is discretely decomposable if
(discrete Hilbert sum).

strengthen

Def Restriction is -admissible if
is dicretely decomposable, and

(finite mult.)
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When is the restriction -admissible?

irred.
Broken symmetries

Ex. 1 is compact.

Ex. 2 (Harish-Chandra’s admissibility theorem, 1950s)
, a maximal compact subgp of a reductive

Ex. 3 (Howe, 1970s) Weil rep
dual pair compact

Ex. 4 (S. Martens, Jakobsen, Vergne, 1970s)
holomorphic discrete series,

Hermitian symm sp
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When is the restriction -admissible?
Strange example:

Ex. 5 (K– 1988)
: discrete series, Gelfand–Kirillov dim 5
(neither holomorphic nor anti-holomorphic disc. ser.)

is -admissible

Idea: Tessellation of indefinite Kähler mfd

open

Tessellation of

Tessellation of
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Analytic approach

Let and
reductive

.

Question
When does the restriction become -admissible?

i.e.
When does the restriction decompose
discretely with finite multiplicities ?

Branching Problems for Zuckerman’s Derived Functor Modules – p.15/69



Analytic approach

Let and
reductive

.

Question
When does the restriction become -admissible?

i.e.
When does the restriction decompose
discretely with finite multiplicities ?

Branching Problems for Zuckerman’s Derived Functor Modules – p.15/69



Two closed cones

max compact max torus

Branching Problems for Zuckerman’s Derived Functor Modules – p.16/69



Two closed cones

max compact max torus

Define two closed cones in :

Branching Problems for Zuckerman’s Derived Functor Modules – p.16/69



Two closed cones

max compact max torus

Define two closed cones in :

Branching Problems for Zuckerman’s Derived Functor Modules – p.16/69



Two closed cones
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(invariant of )
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Two closed cones

max compact max torus

Define two closed cones in :

asymptotic -support
(invariant of )

Hamiltonian action
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Two closed cones

max compact max torus

Define two closed cones in :

asymptotic -support
(invariant of )

momentum image
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Asymptotic cone
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Asymptotic -support

Cartan–Weyl’s highest weight theory for compact gp
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Asymptotic -support

Cartan–Weyl’s highest weight theory for compact gp

max torus, Fix

dominant
chamber

max compact max torus

rep of

(Asymptotic -support)
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Example of

Series

1 trivial rep.

principal ser.

holo. discrete ser.

anti-holo discrete ser.
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Series
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holo. discrete ser.
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Criterion of admissible restriction
Theorem 2 (Criterion) (K– Ann Math ’98 )
Let

reductive
and . If
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Criterion of admissible restriction
Theorem 2 (Criterion) (K– Ann Math ’98, Progr Math ’05 )
Let

reductive
and . If

( ) in ,
then is -admissible.
The converse also holds.
In particular, the restriction is -admissible

No continuous spectrum & finite multiplicity
in the irred. decomp. of .
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Special cases of Theorem 2
Ex.1

Harish-Chandra’s admissibility thm

Ex.2
Complete reducibility of finite dim’l unitary rep
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holomorphic embedding
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Special cases of Theorem 2
Ex.1

Harish-Chandra’s admissibility thm

Ex.2
Complete reducibility of finite dim’l unitary rep

Ex.3 (Jakobsen–Vergne 1970)
: holomorphic discrete series

holomorphic embedding

Ex.4 (Zuckerman’s module)
(may be non-tempered/non-highest wt module)

-span of
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Idea of Proof

Restriction of a representation to a subgroup
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Idea of Proof

Restriction of a representation to a subgroup

Restriction of its character Trace to a submfd
distribution/hyperfunction

wave front set/singularity spectrum of Trace

Restriction of a holomorphic function to a complex
submfd
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Geometric quantization of elliptic orbits

reductive
Lie gp

elliptic
nilpotent

hyperbolic
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Geometric quantization of elliptic orbits

elliptic orbit
reductive
Lie gp

elliptic
nilpotent

hyperbolic
unitary rep

(Vogan, Wallach ’84)
of

Geometric aspect of Zuckerman’s derived functor modules
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elliptic orbit unitary rep of

: sufficiently ‘positive’ , irreducible
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Basic properties of

elliptic orbit unitary rep of

: sufficiently ‘positive’ , irreducible

compact Borel–Weil–Bott construction
compact torus discrete series
abelian fundamental series
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Basic properties of

elliptic orbit unitary rep of

Geometry

parabolic
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Basic properties of

elliptic orbit unitary rep of

Geometry

parabolic

closed

open
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Basic properties of

elliptic orbit unitary rep of

Geometry

parabolic

closed
Matsuki duality

open
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Basic properties of

elliptic orbit unitary rep of

Geometry

parabolic

closed
-module

Matsuki duality HMSW duality

open

geometric
quantization
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Basic properties of

elliptic orbit unitary rep of

Geometry

parabolic

closed
-module

Matsuki duality HMSW duality

open

geometric
quantization

algebraic construction
(Zuckerman ’76–’77)
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Reductive symmetric pair

: reductive symm. pair

maximal
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Reductive symmetric pair

: reductive symm. pair

maximal

rest.
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Discrete decomposability of

elliptic orbit unitary rep of

-stable parabolic

: reductive symmetric pair
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Discrete decomposability of

elliptic orbit unitary rep of

-stable parabolic

: reductive symmetric pair

Theorem 5 Equivalent:
(1) is -admissible.
(2) is alg. discretely decomposable.
(3) -span .
(4) .
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Approaches to admissible restrictions
Analytic Approaches∗

• Wavefront set / singularity spectrum of characters.

Algebraic Approaches∗∗

• gr U(gC) " S (gC)
(nonn-commutative! commutative).

Geometric Approaches

• Complex geometry, Orbit philosophy†.

• Symplectic geometry, D-modules††.

∗ TK, Ann Math (1998);

∗∗ TK, Invent Math (1998); Gross–Wallach (2000);

† TK, Invent Math (1994); Duflo–Vargas, Proc. Japan Acad (2010);

†† TK, Kostant Memorial Volume (2011); Y. Oshima, Progr. Math (2025); M. Kitagawa, Progr. Math.



Beilinson–Bernstein localization
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dimension
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dimension
2

3

4
5
6

Branching Problems for Zuckerman’s Derived Functor Modules – p.40/69



reps of
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reps of

discrete ser.

trivial rep

discrete series for
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reps of

unitary highest weight modules
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reps of

discrete series representations
unitary highest weight modules
holomorphic (anti-holomorphic) discrete series
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discrete ser.

trivial rep

unitary highest weight modules
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discrete ser.

trivial rep

restriction to is admissible

unitary highest weight modules
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discrete ser.

trivial rep

Note unitary highest weight modules
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discrete ser.

trivial rep

restriction to is admissible

Note unitary highest weight modules
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discrete ser.

trivial rep

restriction to is admissible

unitary highest weight modules
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Admissible restriction Π|G′ — classification
Theorem (+ algebraic criterion∗) provides a family of the triples

Π ∈ Ĝ and G ⊃ G′

for which the restriction Π|G′ is G′-admissible (discretely decomposable

with finite multiplicity) .

Some classification results∗∗,∗∗∗

• (K–Y. Oshima, 2012) G ⊃ G′ symmetric pair, ΠK = Aq(λ),
e.g., Π = Harish-Chandra’s discrete series rep .

• ( — , 2015) G ⊃ G′ symmetric pair, Π = minimal rep,
• ( — , 2015) Π1 ⊗ Π2 for any Π1, Π2,
• (Duflo–Galina–Vargas, 2017) G′ = S L(2,R), Π = discrete series .

New geometric examples (will be discussed next week)
· · · arisen from locally symmetric spaces Γ\G/H.

∗ T. Kobayashi, “Discrete decomposability of the restriction· · · III” Invent. Math. (1998);

∗∗ Kobayashi–Y. Oshima, “Classification of · · · ” Adv Math (2012) 2013–2047; Crelles (2015) 201–223;

∗∗∗ M. Duflo–E. Galina–J. Vargas, J. Lie Theory (2017), 1033–1056.



Thank you very much!
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