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Institut Henri Poincaré, Paris, France, 13–17 January 2025



Branching in Representation Theory
Lecture 1

Toshiyuki Kobayashi

The Graduate School of Mathematical Sciences
The University of Tokyo

http://www.ms.u-tokyo.ac.jp/ ˜ toshi/

Minicourses: branching problems and symmetry-breaking
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Example (tensor product of two representations)

G1 ×G1
π′ ! π′′−−−−−−−−−−−−−−−−−→

outer tensor product
GL(V ′ ⊗ V ′′)

∪
π′ ⊗ π′′

diag G1
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• Branching law = Irreducible decomposition of π|G′ .
Fusion rule is the special case of the branching law, that is, the
irreducible decomposition of the tensor product rep π′ ⊗ π′′.

– There exists an “algorithm” when G is a compact Lie group.

– Challenging when G is non-compact.



Branching law of unitary representations

Ĝ := {irreducible unitary representations of G} (unitary dual).

Mautner: Any unitary rep Π of a locally compact group can be
disintegrated into irreducibles.

Π ≃
∫ ⊕

Ĝ
mππ dµ(π) (direct integral)

m : Ĝ → N ∪ {∞}, π *→ mπ (multiplicity).
mππ = π ⊕ · · · ⊕ π︸!!!!!!!︷︷!!!!!!!︸

mπ

Branching Law (unitary case)
For G ⊃ G′ and Π ∈ Ĝ,

Π|G′ ≃
∫ ⊕

Ĝ′ mππ dµ(π).



Branching problems in the general setting

G
π−−−−−−−−−→

irreducible
GL(V)

∪
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Branching problem (in a broader sense than the usual)
· · · wish to understand

how the restriction π|G′ behaves as a G′-module.











Nice and bad features in the infinite dim'I rep 
• Tensor product 冗1 ®厄for G = SL(n，良）

·�· of irreducible unitary reps in the decomposition

Bad case • • • n 2".: 3 (K-'86) 
--

し一ユ

(X)or O for any tempered n1,厄EG

• Restriction rrlc, for (G, G') = (GL(p + q皇），GL(p，尺）x GL(q皇））

·�· of irreducible unitary reps in the branching laws

Bad case.．．� (K-'86) 
← ● → 

oo or O for any tempered 冗 EG

• Even worse example • • • in the discrete spectrum

(G,G') = (S0(5,C), S0(3,2)) � 

:� 



A Program: Stage ABC for Branching Problem

Stage A .

Abstract Feature of Restriction
• spectrum: discrete or continuous?/ support?
• multiplicities: infinite, finite, bounded, or one, . . . ?

Stage B .

Branching Laws
• (irreducible) decomposition of representations

Stage C .

Construction of SBOs/HOs
SBO · · · Symmetry Breaking Operator
HO · · · Holographic Operator
• decomposition of vectors

Ref. T. Kobayashi, “A program for branching problems in rep theory. . . ”, Progress in Mathematics, 312, (2015).
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Symmetry Breaking Ops/Holographic Ops

G ⊃ G′

Π ∈ Irr(G), π ∈ Irr(G′).

A G′-homomorphism
T : Π→ π

is called a symmetry breaking operator (SBO).

A G′-homomorphism
S : π→ Π

is called a holographic operator (HS).
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Example. Holomorphic discrete rep of S L(2,R)

S L(2,R)!H = {z ∈ C : Im z > 0}

z %→ az + b
cz + d

S L(2,R)! (L2
λ ∩ O)(H) (⊂ O(H))

f (z) %→ (πλ(g) f )(z) := (cz + d)−λ f ( az+b
cz+d )

for g−1 =

(
a b
c d

)
∈ S L(2,R)

L2
λ(H) := { f (z) :

∫
H | f (x + iy)|2yλ−2dy < ∞}

πλ: irreducible unitary rep of G if λ = 2, 3, 4, · · ·
( holomorphic discrete series rep of lowest weight λ)
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Ex. Tensor product rep · · · branching for G ×G ↓ diag G

πλ : holomorphic discrete rep of G = SL(2,R), lowest weight λ ≥ 2

Abstract feature
πλ′ ⊗ πλ′′ : decomposes discretely and multiplicity-freely

Branching law (Repka, Molchanov)
πλ′ ⊗ πλ′′ ≃

⊕

a∈N
πλ′+λ′′+2a

Construction of SBOs (Rankin–Cohen bidifferential operator)
RCλ′′′λ′ ,λ′′ : πλ′ ⊗ πλ′′ → πλ′′′ when λ′′′ − λ′ − λ′′ =: 2a ∈ 2N

RCλ
′′′
λ′ ,λ′′ ( f1 ⊗ f2)(z) =

a∑

ℓ=0

(−1)ℓΓ(λ′ + a)Γ(λ′′ + a)
ℓ! (a − ℓ)!Γ(λ′ + a − ℓ)Γ(λ′′ + ℓ)

∂a−ℓ f1
∂a−ℓz

∂ℓ f2
∂zℓ

Realization of πλ : SL(2,R)! (L2
λ ∩ O)(H) ⊂ O(H)

by f (z) %→ (cz + d)−λ f ( az+b
cz+d ) for g−1 =

(
a b
c d

)
and z ∈ H = {Im z > 0}
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Here are a few survey papers from various perspectives. See also references therein. 
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unitary representation theory, Translations, Series II,  vol. 183, Amer. Math. Soc., 
1998, pp. 1-31, (Original article was published in Sugaku 46 (1994), 124-143, Math 
Soc. Japan.)

T. Kobayashi. Restrictions of unitary representations of real reductive groups. In J.-P. 
Anker and B. Ørsted, editors, Lie Theory: Unitary Representations and 
Compactifications of Symmetric Spaces, pages 139-207. Progress in Mathematics 229, 
Birkhäuser, 2005.

T. Kobayashi. A program for branching problems in the representation theory of real 
reductive groups. In M. Nevins and P. Trapa, editors, Representations of Reductive 
Groups: In Honor of David A. Vogan, Jr. on his 60th Birthday, volume 312 of Progress 
in Mathematics, pp. 277-322. Birkhäuser, 2015.

T. Kobayashi. Recent advances in branching problems of representations. Sugaku 
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