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Branching laws —examples in the finitesdim’l case

GL(n,C) "~

GL(n,C) "~ SKC" (k=0,1,2,...)

irreducible representation
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Branching laws —examples in the finitedim’l case
e Tensor product 7y ® 7, for G = SL(2)

e Restriction 7| for (G,G’) = (GL(3), GL(2) X GL(1))



Branching laws —examples in the finitedim’l case
e Tensor product 7y ® 7, for G = SL(2)

A special case of Clebsch—Gordan formula:
SL(2) x SL(2) > SL(2)
S3CHR®SHCH = STHC*H+S>C?+S53(CH+S5(C?

e Restriction 7| for (G,G’) = (GL(3), GL(2) X GL(1))

A special case of Littlewood—Richardson’s rule:
GL(3) D GL(2) x GL(1)
S3(C3) ~ S3@C»H o+ SHC?» o+ SHCE? +5%C?)




Branching laws —examples in the finite~dim’l case
e Tensor product 7y ® 7, for G = SL(2)

A special case of Clebsch—Gordan formula:
SL(2) x SL(2) > SL(2)
S3(CH ®S4C? ST(C?) + S3(C?) + S3(C?) + SH(C?)

1

Dimension 4x5 =

B OO 80

e Restriction 7| for (G,G’) = (GL(3), GL(2) X GL(1))

A special case of Littlewood—Richardson’s rule:
GL(3) D GL(2) x GL(1)
S3(C3) ~ S3@C»H o+ SHC?» o+ SHCE? +5%C?)

Dimension 10 = 4 + 3 + 2 +1
(3, 22y, 1%, %) (Pxy, ) ez (ny)e7 2
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Example (tensor product of two representations)
n_/ g JTN
Gl X Gl GL(VI ® VN)
outer tensor produc})
U -
- en”

diag G,




Branching problems in the general setting

G —F 5 GLW)
irreducible,

U oc

- nler

G -
e Branching law = Irreducible decomposition of g .
Fusion rule is the special case of the branching law, that is, the
irreducible decomposition of the tensor product rep 7’ ® n”.
— There exists an “algorithm” when G is a compact Lie group.

— Challenging when G is non-compact.



Branching law of unitary representations

G := {irreducible unitary representations of G}  (unitary dual).

Mautner: Any unitary rep IT of a locally compact group can be
disintegrated into irreducibles.

M=~ [2 mgwdu(r)  (direct integral)
G

m: G > NU{w}, 7 m, (multiplicity).

nn=n®o---0&n

mr

Branching Law (unitary case)
ForG>G and I € G,
g ~ ]g mym du(rm). (direct integral)




Branching problems in the general setting

T
G — GLV)
irreducible,
U
-7 nler

Gl

Branching problem (in a broader sense than the usual)
wish to understand
how the restriction 7|5 behaves as a G’-module.




Nice and bad features in the infinite dim’l rep
e Tensor product 7y ® 7, for G = SL(n, R)

e Restriction 7| for (G,G’) = (GL(p + q,R), GL(p,R) X GL(q,R))
p q



Nice and bad features in the infinite dim’l rep

‘Multiplicities’

= the number of times that the same irreducible reps
occur in the decomposition
(to be precise, later)



Nice and bad features in the infinite dim’l rep
e Tensor product 7y ® 7, for G = SL(n, R)

‘Multiplicities’ of irreducible unitary reps in the decomposition

Nicecase--- n=2
(concrete formula: Pukéanszky 61, Williams, Repka '78)
at most 2 for any ny,m € G

e Restriction 7| for (G, G’) = (GL(p + ¢,R), GL(p,R) x GL(gq,R))
‘Multiplicities’ of irreducible reps for the restriction

Nice case --- g =1
(abstract results: K-T. Oshima; Sun—Zhu 2012)
uniformly bounded, at most 1 for any 7 € Ggm




Nice and bad features in the infinite dim’l rep
e Tensor product 7y ® 7, for G = SL(n, R)

Multiplicities’ of irreducible unitary reps in the decomposition

Badcase --- n >3 (K-'86)
oo or 0 for any tempered 7,71, € G

e Restriction 7| for (G,G’) = (GL(p + q,R), GL(p,R) X GL(q,R))

Multiplicities’ of irreducible unitary reps in the branching laws

P q

Bad case --- p,g >2 (K-'86) )
oo or 0 for any tempered r € G




Nice and bad features in the infinite dim’l rep
e Tensor product 71 ® 7, for G = SL(n, R)

Multiplicities’ of irreducible unitary reps in the decomposition

Badcase --- n >3 (K-'86)
oo or 0 for any tempered ny, 7, € G

e Restriction n|g: for (G,G") = (GL(p + gq,R), GL(p,R) X GL(g, R))
‘Multiplicities’ of irreducible unitary reps in the branching laws

Bad case - p,g =2 (K-'86) »
oo or 0 for any tempered 7 € G a

e Even worse example - - - in the discrete spectrum

(G,G") = (80(5,C), SO(3,2)) (K=2000)



A Program: Stage ABC for Branching Problem

Stage A .

Stage B .

Stage C .

Ref. T. Kobayashi, “A program for branching problems in rep theory...”, Progress in Mathematics, 312, (2015).
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A Program: Stage ABC for Branching Problem

Stage A . Abstract Feature of Restriction
® spectrum: discrete or continuous?/ support?

Stage B .

Stage C .

Branching Law (unitary case)
ForG> G’ and Il € G,
g =~ fGiB mymdu(m). (direct integral)
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Branching Law (unitary case)
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Mg ~ f;?m,rﬂd/.l(ﬂ) (direct integral)
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Stage A . Abstract Feature of Restriction
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Stage B. Branching Laws

Stage C .

Branching Law (unitary case)
ForG> G andIl € G,
Mg =~ fcﬁ?m,,nd,u(n) (direct integral)
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A Program: Stage ABC for Branching Problem

Stage A . Abstract Feature of Restriction

® spectrum: discrete or continuous?/ support?
* multiplicities: infinite, finite, bounded, or one, ... ?

Stage B. Branching Laws
® (irreducible) decomposition of representations

Stage C .

Branching Law (unitary case)
ForGo> G’ andl‘[e@,
g ~ f;mnndu(ﬂ) (direct integral)
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A Program: Stage ABC for Branching Problem

Stage A . Abstract Feature of Restriction

® spectrum: discrete or continuous?/ support?
* multiplicities: infinite, finite, bounded, or one, ... ?

Stage B. Branching Laws
® (irreducible) decomposition of representations

Stage C. Construction of SBOs/HOs
SBO --- Symmetry Breaking Operator
HO --- Holographic Operator

Ref. T. Kobayashi, “A program for branching problems in rep theory...”, Progress in Mathematics, 312, (2015).



Symmetry Breaking Ops/Holographic Ops

Go>G
II € Irr(G), n € Irr(G)).

A G’-homomorphism
T:1l->n
is called a symmetry breaking operator (SBO).

A G’-homomorphism
S:m—1I
is called a holographic operator (HS).




A Program: Stage ABC for Branching Problem

Stage A . Abstract Feature of Restriction

® spectrum: discrete or continuous?/ support?
* multiplicities: infinite, finite, bounded, or one, LL?

Stage B.. Branching Laws
¢ (irreducible) decomposition of representations

Stage C. Construction of SBOs/HOs
SBO - -- Symmetry Breaking Operator
HO --- Holographic Operator

® decomposition of vectors

Ref. T. Kobayashi, “A program for branching problems in rep theory...”, Progress in Mathematics, 312, (2015).



Example. Holomorphic discrete rep of SL(2,R)

SL2,R) " H ={zeC:Imz> 0}
az+b

Vel ad
cz+d




Example. Holomorphic discrete rep of SL(2,R)

SL2,R) " H ={zeC:Imz> 0}
az+b

Vel ad
cz+d

SL2,R)" (L2 N O)(H) (c O(H))

f@ = @@ N)R) = (cz + d)™ f(EE5)

for g~! = (‘C’ Z) e SL(2,R)

LYX(H) == {f(2) : [, If(x+iy)Py*2dy < oo}

my: irreducible unitary repof G if 1 = 2,3,4, - --
( holomorphic discrete series rep of lowest weight 1)



Ex. Tensor product rep - - - branching for G X G | diagG

7, - holomorphic discrete rep of G = SL(2,R), lowest weight 1 > 2

Realization of 7, : SL(2,R) "~ (L2 N O)(H) € O(H)
by f(z) - (cz + d)f(42L) for g7! = (g Z) andz € H = {Imz > 0}

cz+d




Ex. Tensor product rep - - - branching for G X G | diagG

my » holomorphic discrete rep of G = SL(2,R), lowest weight 2 > 2

Abstract feature

my @my : decomposes discretely and multiplicity-freely

Realization of 7, : SL(2,R) "~ (L2 N O)(H) € O(H)
by f(z) = (cz+d) ' f(<L) for g=! = (‘CZ Z) andz € H = {Imz > 0}

cz+d




Ex. Tensor product rep - - - branching for G X G | diagG
7, - holomorphic discrete rep of G = SL(2,R), lowest weight 1 > 2
Abstract feature

my @my - decomposes discretely and multiplicity-freely

Branching law  (Repka, Molchanov)

Ty @y = @”/1/+/{'/+2a

aeN

Realization of 7, : SL(2,R) "~ (L2 N O)(H) c O(H)
by f(z) > (cz+d) ™ f(£2L) for g7! = (‘C’ Z) andz € H = {Imz > 0}




Ex. Tensor product rep - - - branching for G X G | diagG
7, - holomorphic discrete rep of G = SL(2,R), lowest weight 1 > 2

ébstract feature

Ty ®my» . decomposes discretely and multiplicity-freely

Branching law  (Repka, Molchanov)

ny @y = (P mrirri

aeN

Construction of SBOs | (Rankin—Cohen bidifferential operator)
RCY'\,: my @y — myr When 77 — X = A7 =: 2a € 2N
a . .
oo DT + @A +a) 0t f 8y
RCy (i ® =
rar(h @ 1)) Z; 0 (a— 0T +a—-OTQ" + ) §Cz 67

Realization of 7, : SL(2,R) "~ (L2 N O)(H) € O(H)
by /() > (cz+ d) ' f(£28) for g™t = (4 h)and z € # = (1mz > 0)

cz+d
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References for Lecture 1: Overview

Here are a few survey papers from various perspectives. See also references therein.
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1998, pp. 1-31, (Original article was published in Sugaku 46 (1994), 124-143, Math
Soc. Japan.)
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Anker and B. Orsted, editors, Lie Theory: Unitary Representations and
Compactifications of Symmetric Spaces, pages 139-207. Progress in Mathematics 229,
Birkhauser, 2005.

T. Kobayashi. A program for branching problems in the representation theory of real
reductive groups. In M. Nevins and P. Trapa, editors, Representations of Reductive
Groups: In Honor of David A. Vogan, Jr. on his 60th Birthday, volume 312 of Progress
in Mathematics, pp. 277-322. Birkhauser, 2015.

T. Kobayashi. Recent advances in branching problems of representations. Sugaku

Expositions 37 (2024), 129-177, Amer Math Soc.





