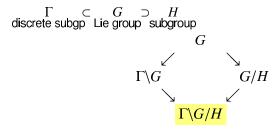
Branching Problems and Global Analysis of Locally Symmetric Spaces with Indefinite-Metric

Toshiyuki Kobayashi

The Graduate School of Mathematical Sciences
The University of Tokyo
http://www.ms.u-tokyo.ac.jp/~toshi/

International Congress of Basic Science at Beijing, July 25, 2024



discrete subgp Lie group subgroup
$$G$$

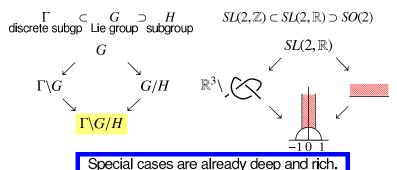
$$\Gamma\backslash G$$

$$G/H$$

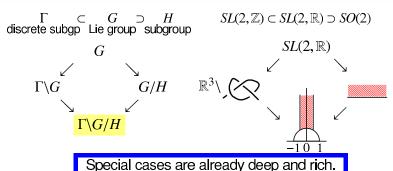
$$\Gamma\backslash G$$

$$\underbrace{G/H} \qquad \xrightarrow{\text{covering}} \qquad \underbrace{\Gamma \setminus G/H}$$
 local geometric structure
$$\qquad \qquad \text{global}$$

Consider "intrinsic differential operators" (*e.g.*, Laplacian) on $\Gamma \backslash G/H$.



- $\Gamma = \{e\}$
- H compact
- $G = \mathbb{R}^{p,q}$



- $\Gamma = \{e\} \cdots$ non-commutative harmonic analysis on $L^2(G/H)$ Gelfand, Harish-Chandra, Helgason, Flensted-Jensen, T. Oshima, Delorme, ...
- H compact, Γ arithmetic · · · · automorphic forms (local theory) Siegel, Selberg, Piateski-Shapiro, Langlands, Arthur, Sarnak, Müller, · · ·
- $G = \mathbb{R}^{p,q}$ (abelian, but non-Riemannian), $\Gamma = \mathbb{Z}^{p+q}$, $H = \{e\}$ Oppenheim conjecture, Dani, Margulis, Ratner, Eskin, Mozes, . . .

$$\begin{matrix} \Gamma & \subset & G & \supset & H \\ \text{discrete subgp} & \text{Lie group subgroup} \end{matrix}$$

New challenge: Spectral analysis on $\Gamma \backslash G/H$ by $\mathbb{D}_G(G/H)$ beyond the traditional Riemannian setting

 \cdots non-abelian G, non-trivial Γ and non-compact H.

$$\begin{matrix} \Gamma & \subset & G & \supset & H \\ \text{discrete subgp} & \text{Lie group subgroup} \end{matrix}$$

New challenge: Spectral analysis on $\Gamma \backslash G/H$ by $\mathbb{D}_G(G/H)$ beyond the traditional Riemannian setting

 \cdots non-abelian G, non-trivial Γ and non-compact H.

- (geometry)
- (analysis)
- (representation theory)

$$\begin{array}{ccc} \Gamma & \subset & G & \supset & H \\ \text{discrete subgp} & \text{Lie group subgroup} \end{array}$$

New challenge: Spectral analysis on $\Gamma \setminus G/H$ by $\mathbb{D}_G(G/H)$ beyond the traditional Riemannian setting \cdots non-abelian G, non-trivial Γ and non-compact H.

- (geometry) existence of good geometry Γ\G/H?
 "local to global" beyond Riemannian setting
- (analysis)
- (representation theory)

$$\begin{matrix} \Gamma & \subset & G & \supset & H \\ \text{discrete subgp} & \text{Lie group subgroup} \end{matrix}$$

New challenge: Spectral analysis on $\Gamma \backslash G/H$ by $\mathbb{D}_G(G/H)$ beyond the traditional Riemannian setting

 \cdots non-abelian G, non-trivial Γ and non-compact H.

- (geometry) existence of good geometry Γ\G/H?
 "local to global" beyond Riemannian setting
- (analysis) Laplacian is no more elliptic. No "Weyl's law."
- (representation theory)

$$\begin{matrix} \Gamma & \subset & G & \supset & H \\ \text{discrete subgp} & \text{Lie group subgroup} \end{matrix}$$

New challenge: Spectral analysis on $\Gamma \setminus G/H$ by $\mathbb{D}_G(G/H)$ beyond the traditional Riemannian setting \cdots non-abelian G, non-trivial Γ and non-compact H.

- (geometry) existence of good geometry $\Gamma \setminus G/H$? ... "local to global" beyond Riemannian setting
- (analysis) Laplacian is no more elliptic. No "Weyl's law."
- (representation theory) $vol(\Gamma \backslash G) = \infty$ even when $\Gamma \backslash G/H$ is compact

$$\begin{array}{ccc} \Gamma & \subset & G & \supset H \\ \text{discrete subgp} & \text{Lie group} & \text{subgroup} \end{array}$$

New challenge: Spectral analysis on $\Gamma \backslash G/H$ by $\mathbb{D}_G(G/H)$ beyond the traditional Riemannian setting

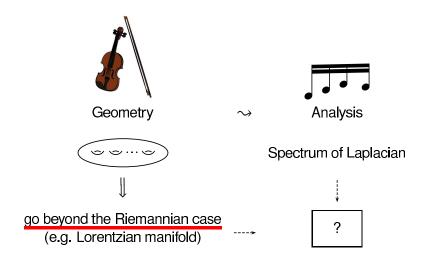
 \cdots non-abelian G, non-trivial Γ and non-compact H.

Further difficulties arise

 \rightarrow construct new geometry for the study:

- Standard quotients $\Gamma \backslash G/H$ Deforming $\Gamma \backslash G/H$ (Topic A)
 - (Topic B)
- → change methods for the study!
 - Counting Γ-orbits (uniform estimate)
 Branching of unitary rep G ↓ Γ (Topic C)
 - (Topic D)

locally symmetric spaces beyond Riemannian setting



Plan of talk— $\Gamma \backslash G/H$ beyond Riemannian setting

Geometry

A. Construct $\Gamma \backslash G/H$

(existence *vs.* obstruction of compact forms)

B. Deform $\Gamma^{\curvearrowright}G/H$

(rigidity vs. deformation)

Analysis

Hear?

C. Universal sound

(analysis on G/H + "counting" Γ -orbits)

D. Capture all sounds

(branching $G \downarrow \overline{\Gamma}$ (Zariski closure) + nonsymmetric spherical sp)

Plan of talk— $\Gamma \backslash G/H$ beyond Riemannian setting

Geometry

A. Construct $\Gamma \setminus G/H$ (existence vs. obstruction of compact forms)

B. Deform $\Gamma {}^{\frown} G/H$ (rigidity *vs.* deformation)

Analysis

Hear?

C. Universal sound (analysis on G/H + "counting" Γ -orbits)

D. Capture all sounds $(\text{branching } G \downarrow \overline{\Gamma} \ (\text{Zariski closure}) \\ + \text{nonsymmetric spherical sp})$

Local to global in Riemannian geometry

The study "from local to global in Riemannian geometry" has been a major trend in geometry since the 20th century with remarkable developments.

As a warming up, one may recall one of classic theorems by Bonnet and Myers:

Example (Myers 1941) A complete Riemannian manifold with Ricci curvature $\geq c(>0)$ is compact.

How about "local to global" in pseudo-Riemannian geometry such as Lorentzian geometry?

Reminder: pseudo-Riemannian manifold

<u>Definition</u> A <u>pseudo-Riemannian manifold</u> (X,g) is a manifold equipped with non-degenerate bilinear form

$$g_X \colon T_X X \times T_X X \to \mathbb{R} \quad (x \in X)$$

depending smoothly on $x \in X$.

The signature (p,q) of g_x is locally constant.

$$(X,g)$$
 is a Riemannian manifold if $q=0$, a Lorentzian manifold if $q=1$.

 $\bullet\,$ The Laplacian Δ is a second-order differential operator on X defined by

$$\Delta = \operatorname{div} \circ \operatorname{grad}$$
.

This is not an elliptic differential operator if g is indefinite.

The Calabi-Markus phenomenon (1962)

"Local to Global" in pseudo-Riemannian manifolds:

<u>Fact</u> (Calabi–Markus, 1962*) Any <u>de Sitter manifold</u> is non-compact.

de Sitter mfd = Lorentzian manifold with sectional curvature $\equiv 1$

This is an example of space form in pseudo-Riemannian geometry (the q=1 case in the next slide).

* E. Calabi-L. Markus, Relativistic space forms, Ann. Math., 75, (1962), 63-76.

Space forms in pseudo-Riemannian geometry (definition)

(M,g): pseudo-Riemannian manifold of signature (p,q).

Def* (M,g) is a space form if sectional curvature κ is constant.

Model space The hypersurface

$$\{(x_1,\ldots,x_{p+q+1}): \sum_{i=1}^{p+1} x_i^2 - \sum_{j=1}^q y_j^2 = 1\}$$
 in $\mathbb{R}^{p+1,q} = (\mathbb{R}^{p+q+1}, dx_1^2 + \cdots + dx_{p+1}^2 - dy_1^2 - \cdots - dy_q^2)$ has a pseudo-Riemannian structure of signature (p,q) with $\kappa \equiv 1$ or that of signature (q,p) with $\kappa \equiv -1$.

The model space is identified with the homogeneous space

$$G/H = O(p+1,q)/O(p,q).$$

^{*} J. A. Wolf, Spaces of Constant Curvature, 6th ed. AMS, 2011

Space forms (examples)

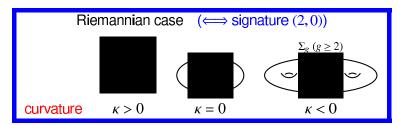
Space form ···

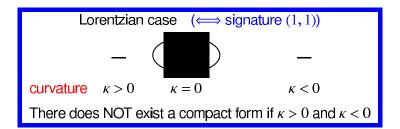
Signature
$$(n - q, q)$$
 of pseudo-Riemannian metric Curvature $\kappa \in \{+, 0, -\}$

$$O(n+1)/O(n)$$
 $O(n,1)/O(n)$

$$O(n,1)/O(n-1,1)$$
 $\mathbb{R}^{n-1,1}$ $O(n-1,2)/O(n-1,1)$

2-dim'l compact space forms





Local to global problem in pseudo-Riemannian geometry

Space Form Problem* in pseudo-Riemannian geometry

Local Assumption

signature (p,q), curvature $\kappa \in \{+,0,-\}$

 \downarrow

Global Results

- Do compact forms exist?
- What groups can arise as their fundamental groups?

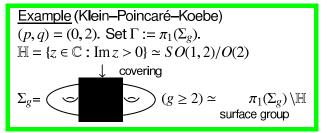
* T. Kobayashi, Conjectures on reductive homogeneous spaces, Lect. Notes in Math. 2313, 217–231, Springer, 2023. See also T. Kobayashi, Discontinuous groups for non-Riemannian homogeneous spaces. Mathematics Unlimited — 2001 and Beyond, pages 723–747. Springer-Verlag, 2001.

Formulation in group language (special case)

<u>Uniformization theorem*:</u> Any complete pseudo-Riemannian manifold M of signature (q,p) with $\kappa \equiv -1$ and $p \neq 1$ is of the form $\Gamma \backslash G/H$

where G = O(p+1,q), H = O(p,q), and Γ is a discrete subgroup of G such that Γ acts properly discontinuously and freely on G/H.

$$\underbrace{G/H}_{\text{local geometric structure}} \rightarrow \underbrace{\Gamma \setminus G/H}_{\text{global}}$$



^{*} J. A. Wolf, Spaces of Constant Curvature, 6th ed. AMS, 2011

Generalities: Proper action & properly discontinuous action

We recall a continuous action $L^{\curvearrowright}X$ is called proper if

$$L \times X \to X \times X$$
, $(g, x) \mapsto (x, gx)$

is a proper map, i.e., the full inverse of a compact set is compact.

properly discontinuous action = proper action when L is a discrete goup.

<u>General Problem 1</u> Let $L \subset G \supset H$. Detect whether the L-action on X := G/H is proper or not.

Symbolically written as " $L \cap H$ in G" when $L \cap G/H$ properly*.

^{*} T. Kobayashi, Criterion for proper actions on homogeneous spaces of reductive groups, J. Lie Theory, 6 (1996), 147–163.

G: real reductive Lie group

 $G = K \exp(\mathfrak{a})K$: Cartan decomposition

 $\nu: G \to \mathfrak{a}$: Cartan projection (up to Weyl group)

G: real reductive Lie group

 $G = K \exp(\mathfrak{a})K$: Cartan decomposition

 $\nu: G \to \mathfrak{a}$: Cartan projection (up to Weyl group)

E.g.
$$\nu$$
: $GL(n,\mathbb{R}) \to \mathbb{R}^n$

$$g \mapsto \frac{1}{2}(\log \lambda_1, \cdots, \log \lambda_n)$$
Here, $\lambda_1 \ge \cdots \ge \lambda_n (>0)$ are the eigenvalues of ${}^t gg$.

$$G = GL(n, \mathbb{R})$$

$$K = O(n)$$

$$\mathfrak{a} \simeq \mathbb{R}^n$$

Weyl group $\simeq S_n$

G: real reductive Lie group

 $G = K \exp(\mathfrak{a})K$: Cartan decomposition

 $\nu: G \to \mathfrak{a}$: Cartan projection (up to Weyl group)

Theorem A (properness criterion) * Let $L \subset G \supset H$.

 $L \pitchfork H \text{ in } G \quad \Longleftrightarrow \quad \nu(L) \pitchfork \nu(H) \text{ in } \mathfrak{a}.$

non-abelian

abelian

^{**} Kobayashi, Math. Ann., '89, J. Lie Theory, '96. Benoist, Ann. Math., '96.

G: real reductive Lie group

 $G = K \exp(\mathfrak{a})K$: Cartan decomposition

 $\nu: G \to \mathfrak{a}$: Cartan projection (up to Weyl group)

Theorem A (properness criterion) * Let $L \subset G \supset H$. $L \pitchfork H \text{ in } G \iff \nu(L) \pitchfork \nu(H) \text{ in } \mathfrak{a}$.

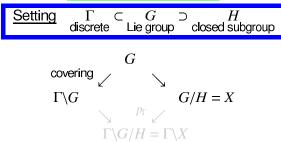
non-abelian abelian

Criterion for proper actions.

- Special case: for L, H reductive subgp, K-'89
- Quantitative estimate for properness

$$\Rightarrow \begin{cases} \bullet \text{ deformation theory of } \Gamma \\ \bullet \text{ "counting" } \Gamma\text{-orbits} \end{cases}$$
 (Topic B)

Kobayashi, Math. Ann., '89, J. Lie Theory, '96. Benoist, Ann. Math., '96.



• $\Gamma \backslash G$ and X = G/H are C^{∞} manifolds.

Setting
$$\Gamma \subset G$$
 $\Gamma \subset G$ $\Gamma \subset G$

- $\Gamma \backslash G$ and X = G/H are C^{∞} manifolds.
- The quotient $\Gamma X = \Gamma G/H$ is not necessarily Hausdorff.

It becomes a Hausdorff C^{∞} manifold with p_{Γ} being a covering, if Γ acts properly discontinuously and freely on X.

- $\Gamma \backslash G$ and X = G/H are C^{∞} manifolds.
- The quotient $\Gamma X = \Gamma G/H$ is not necessarily Hausdorff.

It becomes a Hausdorff C^{∞} manifold with p_{Γ} being a covering, if Γ acts properly discontinuously and freely on X.

<u>Definition</u> Such Γ is called a <u>discontinuous group for X = G/H</u>.

Global properties in pseudo-Riemannian geometry

Space form problem for $\kappa \equiv -1$, signature (q, p).

Fact (1962–2024)*** Let
$$G/H = O(p+1,q)/O(p,q)$$
.

- (1) (Calabi–Markus phenomenon) G/H admits an <u>infinite</u> discontinuous group if and only if p < q.
- (2) If G/H admits a cocompact discontinuous group, then either pq = 0 or "p < q and q is even".
- (3) G/H admits a <u>cocompact</u> <u>discontinuous group</u> for (p,q) below.

p	N	0	1	3	7
q	0	N	$2\mathbb{N}$	$4\mathbb{N}$	8

^{*} Calabi–Markus (1962), Wolf (1962), Kulkarni (1981), Kobayashi (1996), Tholozan (2015), Morita (2017),

T. Kobayashi, Conjectures on reductive homogeneous spaces, Lect. Notes Math. 2313, 217–231, Springer, 2023.

Basic question on discontinuous groups for G/H

$$\underbrace{G/H}_{\text{local geometric structure}} \to \underbrace{\Gamma \backslash G/H}_{\text{global}}$$

General Problem 3* Which homogeneous space G/H admits 'large' discontinuous groups Γ with the following properties?

- 1) $\#\Gamma = \infty$;
- 2) $\Gamma \backslash G/H$ is compact (or of finite volume) (topic A);
- 3) $\Gamma^{\frown}G/H$ is "deformable"/ "rigid" (topic B).
- The first problem (Calabi–Markus phenomenon 1962) is solved in the reductive case (K- 1989) by Thm A (properness criterion).

^{*} Problems in T. Kobayashi, Discontinuous groups for non-Riemannian homogeneous spaces. Mathematics Unlimited

²⁰⁰¹ and Beyond, pages 723–747. Springer-Verlag, 2001.

Plan of talk— $\Gamma \backslash G/H$ beyond Riemannian setting

Geometry

Prepare

A. Construct $\Gamma \setminus G/H$ (existence vs. obstruction of compact forms)

B. Deform $\Gamma \cap G/H$ (rigidity *vs.* deformation)

Analysis

Hear

C. Universal sound (analysis on G/H + "counting" Γ -orbits)

D. Capture all sounds (branching $G \downarrow G'$ + nonsymmetric spherical sp)

$\Gamma \backslash G/H$ is <u>not</u> Hausdorff if Γ is an arithmetic subgp of G.

• Borel-Harish-Chandra, Mostow-Tamagawa (1960~)

For a linear semisimple Lie group G, one can define arithmetic subgroups Γ of G (e.g., $\Gamma = SL(n, \mathbb{Z})$ in $G = SL(n, \mathbb{R})$)

- $vol(\Gamma \backslash G) < \infty$ for any arithmetic subgroup Γ ,
- ${}^{\exists}\Gamma$ such that $\Gamma \backslash G$ is compact (Borel 1962).

However, · · ·

• If H is a <u>non-compact</u> subgroup of G, then

 $\Gamma \backslash G/H$ is <u>not</u> Hausdorff in the quotient topology for any <u>arithmetic subgroup</u> Γ .

Idea of "standard quotient" $\Gamma \backslash G/H$

• Bad feature: The G-action on X = G/H is not proper whenever H is non-compact.

Construction: Standard quotients $\Gamma \setminus X = \Gamma \setminus G/H$

Let $G \supset H$ be a pair of real reductive Lie groups, and X := G/H.

$$\Gamma \subset G'$$
 properly isometry $X = G/H$ pseudo-Riemannian

<u>Definition</u> The resulting C^{∞} -manifold $\Gamma \setminus X = \Gamma \setminus G/H$ is called a <u>standard quotient</u> of X = G/H.

Theorem B* X = G/H admits a cocompact discontinuous group if there exists a reductive subgp G' acting properly and cocompactly on X.

^{*} T. Kobayashi, Proper action on a homogeneous space of reductive type, Math. Ann. (1989).

Local homogeneous structure admitting compact quotients

Application of Theorem B (compact standard quotients)

Example • Riemannian symmetric space G/K,

- odd-dimensional anti-de Sitter space,
- pseudo-Kähler manifolds SO(2n, 2)/U(n, 1),
- complex sphere $SO(8,\mathbb{C})/SO(7,\mathbb{C}),\cdots$.
- Criterion*
 - ··· properness criterion (Thm A) and cocompactness criterion.
- List of (G, H) having compact standard quotients $\Gamma \setminus G/H^{**}$ \cdots K- '89, K- '96, K-Yoshino (2005),
- Exhaustion***
 - ··· Tojo 2019, 2021; Bochenski-Jastrezebski-Tralle 2022

 ^{*} T. Kobayashi, Math. Ann. (1989);

^{**} TK, Euro School, (1996); TK-Yoshino, Pure and Apol, Math. Quarterly 1, (2005);

^{***} Tojo, Proc. Japan Academy (2019).

Conjecture: compact standard quotient

$$\Gamma \subset \underline{L}$$
 proper isometry pseudo-Riemannian $G \times X = G/H$

<u>Conjecture</u> $(K-'01)^*$ If X = G/H admits a cocompact discontinuous group, then X admits a compact standard quotient.

• Evidence of Conjecture*** · · · · Various methods (1962–2024) for the obstruction to the existence of compact discontinuous groups developed by Borel, Calabi–Markus, Wolf, Kulkarni, K-, K-Ono, Benoist, Labourie, Zimmer, Mozes, Margulis, Shalom, Okuda, Tholozan, Kassel, Morita, · · ·

^{*} Conjecture 4.3 in T. Kobayashi, Discontinuous groups for non-Riemannian homogeneous spaces, Mathematics Unlimited — 2001 and Beyond, pages 723–727. Springer-Verlag, 2001;

^{**} T. Kobayashi, Conjectures on reductive homogeneous spaces, Lect. Notes Math. 2313, 217-231, Springer, 2023.

Geometry



A. Construct $\Gamma \backslash G/H$

(existence *vs.* obstruction of compact forms)

B. Deform $\Gamma {}^{\frown} G/H$ (rigidity *vs.* deformation)

Analysis

Hear?

C. Universal sound

(analysis on G/H

 $+ \ \hbox{``counting''} \ \Gamma\hbox{-orbits'})$

D. Capture all sounds

(branching $G \downarrow G'$

+ nonsymmetric spherical sp)

Geometry

A. Construct $\Gamma \setminus G/H$ (existence *vs.* obstruction of compact forms)

B. Deform $\Gamma \curvearrowright G/H$ (rigidity *vs.* deformation)

Analysis

Hear?

C. Universal sound (analysis on G/H + "counting" Γ -orbits)

D. Capture all sounds (branching $G \downarrow G'$ + nonsymmetric spherical sp)

"Deformation" of a quotient $\Gamma \backslash G/H = \Gamma \backslash X$

Deformation of $\Gamma \backslash G/H$.*

$$\Gamma \qquad \stackrel{\varphi}{\hookrightarrow} \qquad \qquad G \curvearrowright X = G/H$$
fix
fix

T. Kobayashi, J. Geometry and Physics 1993; Discontinuous groups for non-Riemannian homogeneous spaces,
 Mathematics Unlimited — 2001 and Bevond, pages 723–747. Springer-Verlag, 2001.

"Deformation" of a quotient $\Gamma \backslash G/H = \Gamma \backslash X$

Deformation of $\Gamma \backslash G/H$.*

$$\begin{array}{ccc} \Gamma & \stackrel{\varphi}{\hookrightarrow} \\ \text{fix} & \text{discrete} \end{array} \qquad \underbrace{G \stackrel{\curvearrowright}{\curvearrowright} X = G/H}_{\text{fix}}$$

Vary an injective homomorphism φ \rightsquigarrow Can we say that $\varphi(\Gamma) \setminus X$ is a deformation of $\Gamma \setminus X$?

* T. Kobayashi, J. Geometry and Physics 1993; Discontinuous groups for non-Riemannian homogeneous spaces, Mathematics Unlimited — 2001 and Beyond, pages 723–747, Springer-Verlag, 2001.

"Deformation" of a quotient $\Gamma \backslash G/H = \Gamma \backslash X$

Deformation of $\Gamma \backslash G/H$.*

$$\Gamma \qquad \stackrel{\varphi}{\longleftrightarrow} \qquad \qquad G \curvearrowright X = G/H$$
fix
fix

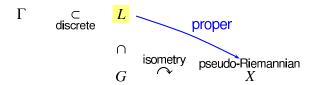
Vary an injective homomorphism φ \rightsquigarrow Can we say that $\varphi(\Gamma) \setminus X$ is a deformation of $\Gamma \setminus X$?

- Two major problems
 - nontrivial deformation of Γ may not exist?
 - deformation Γ may destroy proper discontinuity?

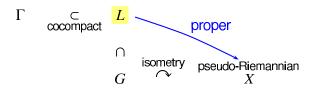
^{*} T. Kobayashi, J. Geometry and Physics 1993; Discontinuous groups for non-Riemannian homogeneous spaces, **Mathematics Unlimited — 2001 and Beyond**, pages 723–747, Springer-Verlag, 2001.

Formulation: Deformation of standard quotients of X = G/H

Formulation: Deformation of standard quotients of X = G/H



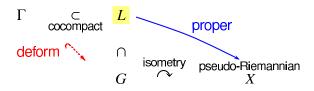
Formulation: Deformation of standard quotients of X = G/H



• There is not enough room for Γ to be deformed inside L.

Fact (Selberg–Weil rigidity) No non-trivial deformation of Γ inside a simple group L except for $L \approx SL(2, \mathbb{R})$.

Formulation: Deformation of standard quotients of X = G/H



- There is not enough room for Γ to be deformed inside L.
- There exists a larger room for Γ to be deformed in G.

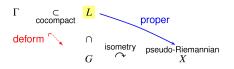
However, after a small deformation the Γ -action on X may not be properly discontinuous

Small deformation of Γ may distroy proper discontinuity

$$\Gamma \subset G^{\frown}X = G/H$$

• A small deformation of a discontinuous group Γ may not act properly discontinuously on X:

Goldman's conjecture on 3-dim'l anti-de Sitter mfd



<u>Conjecture</u> (Goldman 1985)* A small <u>deformation</u> of compact standard X_{Γ} is still a manifold when $X = \text{Ad}S^3 = O(2,2)/O(2,1)$.

Answer (K-1998)* Goldman's conjecture is true.

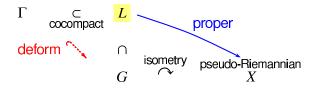
Proof: Use criterion for proper action. (\Leftarrow Theorem A) \rightsquigarrow deformation theory for higher dimensional $X_{\Gamma} = \Gamma \setminus X$

(followed further** work by Kassel, Guéritaud, Kannaka, ···)

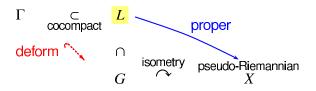
<u>E.g.</u> nontrivial deformations of 3D compact AdS mfd X_{Γ} is of dimension = 12g - 12 if rank $\Gamma/[\Gamma, \Gamma] = 2g$.

^{*} Goldman, J. Diff. Geom., 1985, K-, Math. Ann., 1998; ** Kassel, Math. Ann. 2012; Kannaka, Selecta Math. 2024.

Formulation: Deformation of standard quotients of X = G/H



Formulation: Deformation of standard quotients of X = G/H



- Theorem* (1) (rigidity) Local rigidity of cocompact discontinuous $\operatorname{gp} \Gamma$ for G/H still holds for some (G,H) with H noncompact.
- (2) (flexibility) For some other (G, H) with H noncompact, there exist cocompact discontinuous groups Γ that admit non-trivial continuous deformations to Zariski dense subgroups in G, but still keeping proper discontinuity.

^{*} Some classification theory is to appear.

Geometry

Prepare

A. Construct $\Gamma \backslash G/H$

(existence *vs.* obstruction of compact forms)

B. Deform $\Gamma^{\curvearrowright}G/H$

(rigidity vs. deformation)

Analysis

Hear

C. Universal sound

(analysis on G/H + "counting" Γ -orbits)

D. Capture all sounds

(branching $G \downarrow \overline{\Gamma}$ (Zariski closure) + nonsymmetric spherical sp)

Geometry Prepare

A. Construct $\Gamma \backslash G/H$ (existence vs. obstruction of compact forms)

B. Deform $\Gamma {}^{\frown} G/H$ (rigidity *vs.* deformation)

C. Universal sound (analysis on G/H + "counting" Γ -orbits)

D. Capture all sounds $(\text{branching } G \downarrow \overline{\Gamma} \ (\text{Zariski closure}) \\ + \text{nonsymmetric spherical sp})$

Formulation: Spectral analysis on $\Gamma \setminus X = \Gamma \setminus G/H$

General Problem Wish to understand joint eigenvalues and (wish to construct) joint eigenfunctions f on $\Gamma \setminus X$:

$$D_{\Gamma} f = \lambda(D) f$$
 for all $D \in \mathbb{D}_{G}(X)$,

where $\lambda: \mathbb{D}_G(X) \to \mathbb{C}$ is a \mathbb{C} -algebra homomorphism.

 $\mathbb{D}_G(X)$: ring of G-invariant differential operators on X

 $\lambda(D)$: joint eigenvalues for $D_{\Gamma} \in \mathbb{D}(\Gamma \backslash X)$

The above formulation makes reasonable sense if $\mathbb{D}_G(X)$ is commutative (e.g. X = G/H is a symmetric space)

Formulation: Spectral analysis on $\Gamma \setminus X = \Gamma \setminus G/H$

General Problem Wish to understand joint eigenvalues and (to construct) joint eigenfunctions f on $\Gamma \setminus X$:

$$D_{\Gamma} f = \lambda(D) f$$
 for all $D \in \mathbb{D}_{G}(X)$,

where $\lambda: \mathbb{D}_G(X) \to \mathbb{C}$ is a \mathbb{C} -algebra homomorphism.

 $\mathbb{D}_G(X)$: ring of G-invariant differential operators on X

$$\lambda(D)$$
: joint eigenvalues for $D_{\Gamma} \in \mathbb{D}(\Gamma \backslash X)$

The above formulation makes reasonable sense if $\mathbb{D}_G(X)$ is commutative (e.g. X = G/H is a symmetric space)

Geometry

Have prepared

A. Construct $\Gamma \backslash G/H$

(existence *vs.* obstruction of compact forms)

B. Deform $\Gamma \cap G/H$ (rigidity *vs.* deformation)

Analysis

Let us hear

C. Universal sound

(analysis on G/H

+ "counting" Γ -orbits)

D. Capture all sounds

(branching $G \downarrow G'$

+ nonsymmetric spherical sp)

Geometry

Analysis

Have prepared

Let us hear

- A. Construct $\Gamma \backslash G/H$ (existence *vs.* obstruction of compact forms)
- B. Deform $\Gamma \cap G/H$ (rigidity *vs.* deformation)
- C. Universal sound (analysis on G/H + "counting" Γ -orbits)
- D. Capture all sounds (branching $G \downarrow G'$ + nonsymmetric spherical sp)

classical

beyond Riemannian setting

Hyperbolic manifold \iff Riemannian manifold with sectional curvature $\equiv -1$

 $\frac{\underline{\mathsf{Def}}}{\bigoplus_{\mathsf{def}}} \ \, \underline{M}; \ \, \underline{\mathsf{anti-de}} \ \, \underline{\mathsf{Sitter}} \ \, \underline{\mathsf{manifold}} \\ \Longrightarrow_{\mathsf{def}} \ \, \mathsf{Lorentz} \ \, \underline{\mathsf{manifold}} \ \, \underline{\mathsf{with}} \ \, \underline{\mathsf{sectional}} \ \, \underline{\mathsf{curvature}} \equiv -1$

A classical theorem for Riemann surfaces says that eigenvalues of the Laplacian vary as functions on Teichmüller space.

In contrast, a new phenomenon in anti-de Sitter manifolds:

classical

beyond Riemannian setting

Hyperbolic manifold \iff Riemannian manifold with sectional curvature $\equiv -1$

A classical theorem for Riemann surfaces says that eigenvalues of the Laplacian vary as functions on Teichmüller space.

In contrast, a new phenomenon in anti-de Sitter manifolds:

Theorem C* For any 3-dimensional compact anti-de Sitter manifold M, the hyperbolic Laplacian Δ_M has countably many L^2 -eigenvalues $\{n(n-2): 2\mathbb{Z}\ni n\geq C_M\}$ which are stable locally as functions on "higher Teichmüller space".

classical

Hyperbolic manifold \iff Riemannian manifold with sectional curvature $\equiv -1$

beyond Riemannian setting

A classical theorem for Riemann surfaces says that eigenvalues of the Laplacian vary as functions on Teichmüller space.

In contrast, a new phenomenon in anti-de Sitter manifolds:

Theorem C* For any 3-dimensional compact anti-de Sitter manifold M, the hyperbolic Laplacian Δ_M has countably many L^2 -eigenvalues $\{n(n-2): 2\mathbb{Z} \ni n \geq C_M\}$ which are stable locally as functions on "higher Teichmüller space".

classical

Hyperbolic manifold \iff Riemannian manifold with sectional curvature $\equiv -1$

beyond Riemannian setting

A classical theorem for Riemann surfaces says that eigenvalues of the Laplacian vary as functions on Teichmüller space.

In contrast, a new phenomenon in anti-de Sitter manifolds:

<u>Theorem C*</u> For any 3-dimensional compact anti-de Sitter manifold M, the hyperbolic Laplacian Δ_M has countably many L^2 -eigenvalues $\{n(n-2): 2\mathbb{Z} \ni n \geq C_M\}$ which are stable locally as functions on "higher Teichmüller space".

'stable' = 'does NOT vary under deformation'
def of anti-de Sitter structure

The deformation space (modulo conjugation) of anti-de Sitter structure has dimension 12g - 12

Another special case: application to the group case

Theorem C can be generalized* to higher-dimensional symmetric spaces. Special cases include group manifolds $(G \times G)/\operatorname{diag}(G)$.

^{*} Kassel and Kobayashi, Poincaré series for non-Riemannian locally symmetric spaces, Adv. Math. 287, (2016), 123–236.

Another special case: application to the group case

Theorem C can be generalized* to higher-dimensional symmetric spaces. Special cases include group manifolds $(G \times G)/\operatorname{diag}(G)$. In this special case, our proof of Theorem C implies:

Corollary Assume G is a reductive group with $\operatorname{rank} G = \operatorname{rank} K$. Then, for any torsion-free discrete subgp Γ of G, $\operatorname{Hom}_G(\pi_\lambda, L^2(\Gamma \backslash G)) \neq 0$ for any discrete series $\operatorname{rep} \pi_\lambda$ of G with sufficiently regular λ .

^{*} Kassel and Kobayashi, Poincaré series for non-Riemannian locally symmetric spaces, Adv. Math. 287, (2016), 123-236.

Another special case: application to the group case

Theorem C can be generalized* to higher-dimensional symmetric spaces. Special cases include group manifolds $(G \times G)/\operatorname{diag}(G)$. In this special case, our proof of Theorem C implies:

Corollary Assume G is a reductive group with $\operatorname{rank} G = \operatorname{rank} K$. Then, for any torsion-free discrete subgp Γ of G, $\operatorname{Hom}_G(\pi_\lambda, L^2(\Gamma \backslash G)) \neq 0$ for any discrete series rep π_λ of G with sufficiently regular λ .

Remark Corollary sharpens earlier works given by Kazhdan '77, J.-S. Li '92, De George–Wallach '78 (Γ : cocompact), Clozel '86, Rohlfs–Speh '87 (Γ : non-compact lattice), which treated an arithmetic subgroup Γ replaced by a congruence subgp Γ' (possibly depending on π_{λ}).

Kassel and Kobayashi, Poincaré series for non-Riemannian locally symmetric spaces, Adv. Math. 287, (2016), 123–236.

Construction of L^2 -eigenfunctions of Laplacian on $\Gamma \backslash G/H$

- Step 1 Construction of (non-periodic) eigenfunctions
- Step 2 Holomorphic extension (to other real forms)
- Step 3 Construction of periodic eigenfunctions (Poincaré series)
 - Geometric estimate
 - Analytic estimate

Construction of L^2 -eigenfunctions of Laplacian on $\Gamma \backslash G/H$

$$\Delta f = \lambda f$$
 on $\Gamma \backslash G/H$

- Step 1 Construction of (non-periodic) eigenfunctions (integral geometry, Poisson transform)
- Step 2 Holomorphic extension (to other real forms)
 (Flensted-Jensen's duality)
- Step 3 Construction of periodic eigenfunctions (Poincaré series)
 - Geometric estimate for proper actions $\Gamma \cap G/H$ (Kazhdan–Margulis, K– , Benoist, Kassel–K, . . .)
 - Analytic estimate of eigenfunctions on G/H
 (systems of PDEs, micro-local analysis)
 (Sato–Kashiwara–Kawai, Oshima, ...)

Construction of L^2 -eigenfunctions of Laplacian on $\Gamma \backslash G/H$

$$\Delta f = \lambda f$$
 on $\Gamma \backslash G/H$

- Step 1 Construction of (<u>non-periodic</u>) eigenfunctions (integral geometry, Poisson transform)
- Step 2 Holomorphic extension (to other real forms)
 (Flensted-Jensen's duality)
- Step 3 Construction of periodic eigenfunctions (Poincaré series)
 - Geometric estimate for proper actions $\Gamma \cap G/H$ (Kazhdan–Margulis, K– , Benoist, Kassel–K, . . .)
 - Analytic estimate of eigenfunctions on G/H
 (systems of PDEs, micro-local analysis)
 (Sato–Kashiwara–Kawai, Oshima, . . .)

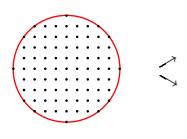
Counting: $\Gamma \cdot x \cap B_R$ in pseudo-Riemannian mfd

Counting (classical)

New setting

Riemannian

pseudo-Riemannian G/H



Kassel-K*, Kannaka**

discontinuous gp for X general

Count

$$\Gamma \cdot x \cap B(R)$$
 ball with radius R

 $\Gamma = \mathbb{Z}^2 \cap X = \mathbb{R}^2$

Kassel-Kobayashi, Adv. Math., 2016; Kannaka, Selecta Math. 2024.

Geometry

Have prepared

A. Construct $\Gamma \backslash G/H$

(existence *vs.* obstruction of compact forms)

B. Deform $\Gamma \cap G/H$ (rigidity *vs.* deformation)

Analysis

Let us hear

C. Universal sound

(analysis on G/H

+ "counting" Γ -orbits)

D. Capture all sounds

(branching $G \downarrow G'$

+ nonsymmetric spherical sp)

Geometry

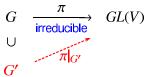
Analysis

Have prepared

Let us hear

- A. Construct $\Gamma \setminus G/H$ (existence *vs.* obstruction of compact forms)
- B. Deform $\Gamma \cap G/H$ (rigidity *vs.* deformation)
- C. Universal sound (analysis on G/H + "counting" Γ -orbits)
- D. Capture all sounds (branching $G \downarrow G'$ + nonsymmetric spherical sp)

Branching problems

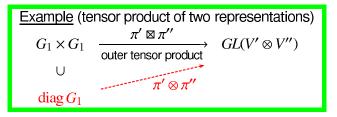


Branching problems

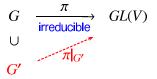
$$G \xrightarrow{\pi} GL(V)$$

$$\cup$$

$$G'$$



Branching problems



Branching problem (in a wider sense than the usual)

wish to understand how the restriction $\pi|_{G'}$ behaves as a G'-module.

Standard quotients $\Gamma \backslash G/H$: spherical assumption

Recall $\Gamma \setminus G/H$ is a standard quotient of X = G/H if

$$\Gamma \subset G' \qquad \text{proper}$$

$$\cap G \qquad X = G/H$$
 Assume
$$G' \curvearrowright X \qquad \text{properly.} \qquad (A)$$

Standard quotients $\Gamma \backslash G/H$: spherical assumption

Recall $\Gamma \setminus G/H$ is a standard quotient of X = G/H if

$$\Gamma \subset G' \text{ proper}$$

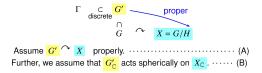
$$\cap G \cap X = G/H$$

Assume $G' \curvearrowright X$ properly.(A)

Further, we assume that $G'_{\mathbb{C}}$ acts spherically on $X_{\mathbb{C}}$ (B)

(i.e. Borel subgp of $G_{\mathbb{C}}'$ has an open orbit in $X_{\mathbb{C}}$)

Standard quotients $\Gamma \backslash G/H$: spherical assumption



Strategy Capture all the spectrum for

$$\Gamma \setminus X \simeq \Gamma \setminus G/H$$

by analyzing branching laws for the restriction of infinite-dimensional representations of G with respect to $G \downarrow G'$.

Theorem D * (Branching Theory) Assume (A) and (B) are satisfied. Then for any irred rep π of G occurring in $C^{\infty}(X)$, the restriction $\pi|_{G'}$ decomposes discretely into G'-irreducible modules.

^{*} T. Kobayashi, Global analysis by hidden symmetry, Progr. Math. (2017).

Techniques involved in the proof of Theorems D and E below

Branching of finite-dimensional reps for compact Lie groups

Theorem D

Structure theorem for the ring of differential operators

Branching of infinite-dimensional reps for reductive Lie groups Theorem E below

Analysis on $\Gamma \backslash G/H$ with H noncompact

^{*} Kassel-Kobayashi, Invariant differential operators on spherical homogeneous spaces with overgroups, J. Lie Theory 2019:

^{**} Kobayashi, Global analysis with hidden symmetry, Progr. Math. 2017.

Expansion into eigenfns on $\Gamma \setminus X$ with indefinite metric

Expansion into eigenfns on $\Gamma \setminus X$ with indefinite metric

$$C^{\infty}(\Gamma \backslash X; \mathcal{M}_{\lambda}) := \{ f \in C^{\infty}(\Gamma \backslash X) : D_{\Gamma}f = \lambda(D)f \ \forall D \in \mathbb{D}_{G}(X) \}$$

Theorem E (spectral theory)

 $\overline{\mathbb{P}}$ measure μ on $\widehat{\mathbb{D}_G(X)} = \{\lambda \colon \mathbb{D}_G(X) \to \mathbb{C}, \text{ alg. hom}\}$ and

[∃] measurable family of maps

$$\mathcal{F}_{\lambda} \colon C_{c}^{\infty}(\Gamma \backslash X) \to C^{\infty}(\Gamma \backslash X; \mathcal{M}_{\lambda}) \ (\subset C^{\infty}(\Gamma \backslash X))$$

$$f = \int_{\mathbb{D}_{G}(X)} \mathcal{F}_{\lambda} f \ d\mu(\lambda) \quad \forall \ f \in C_{c}^{\infty}(\Gamma \backslash X).$$

$$||f||^{2} = \int_{\mathbb{D}_{G}(X)} ||\mathcal{F}_{\lambda} f||^{2} \ d\mu(\lambda).$$

F. Kassel-T. Kobayashi, Spectral Analysis on Standard Locally Homogeneous Spaces, 118 pages, Lect. Notes in Math., Springer-Nature, to appear (cf. arXiv:1912.12601)

Plan of talk— $\Gamma \backslash G/H$ beyond Riemannian setting

Geometry

Have prepared

A. Construct $\Gamma \backslash G/H$

(existence *vs.* obstruction of compact forms)

B. Deform $\Gamma \cap G/H$ (rigidity *vs.* deformation)

Analysis

Let us hear

C. Universal sound

(analysis on G/H

+ "counting" Γ -orbits)

D. Capture all sounds

(branching $G \downarrow G'$

+ nonsymmetric spherical sp)

Plan of talk— $\Gamma \backslash G/H$ beyond Riemannian setting

Geometry

Analysis

Have prepared

Let us hear

- A. Construct $\Gamma \setminus G/H$ (existence *vs.* obstruction of compact forms)
- B. Deform $\Gamma \cap G/H$ (rigidity *vs.* deformation)
- C. Universal sound (analysis on G/H + "counting" Γ -orbits)
- D. Capture all sounds (branching $G \downarrow G'$ + nonsymmetric spherical sp)

Thank you very much!

References for Topic C

- T. Kobayashi,
 <u>Intrinsic sound of anti-de Sitter manifolds</u>, PROMS, 191 (2016), pp. 83–99.
- F. Kassel and T. Kobayashi,
 Poincaré series for non-Riemannian locally symmetric spaces.
 Adv. Math. 287, (2016), pp.123–236.
- K. Kannaka, 2021 (Ph. D. thesis, U. Tokyo)
 (3-dimensional AdS manifold: Selecta Math. 2024)

References for Topic D

T. Kobayashi,

- Discrete decomposability of the restriction of $A_q(\lambda)$ with respect to reductive subgroups I, Invent. Math. (1994); II Annals of Math. (1998); III Invent. Math. (1998).
- Global analysis by hidden symmetry, Progr. Math. vol. 323, pp. 359–397, 2017. (in honor of Roger Howe)

F. Kassel and T. Kobayashi

- Invariant differential operators on spherical spaces with overgroups, J. Lie Theory 29 (2019), pp. 663–754.
- Spectral analysis on standard locally homogeneous spaces, Proc. Japan Acad. 2020;
 full paper to appear in Lecture Notes in Math., Springer-Nature (available also at arXiv:1912.12601).