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Introduction: Spectral analysis on Γ\G/H

Spectral analysis of the Laplace–Beltrami operator ∆ on a closed
Riemann surface Σg

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

R2/Z2 (g = 1)

π1(Σg)\S L(2,R)/S O(2) (g ≥ 2)
! more generally

What if beyond the classical Riemannian setting?



Discrete isometry groups beyond the Riemannian setting

X: Riemannian manifold
Γ: torsion-free, discrete group of isometries of X

! The Γ-action on X is properly discontinuous, and
the quotient space XΓ := Γ\X becomes a Riemannian manifold:

X → XΓ (isometric covering).

However, the positivity is crucial in this result:

X: indefinite Riemannian manifold
Γ: torsion-free, discrete group of isometries of X

! The Γ-action on X is not necessarily properly discontinuous,
and the quotient space XΓ = Γ\X is not always Hausdorff.



Discrete group of isometries of Lorentzian manifolds

Lorentzian manifolds with constant sectional curvature κ:

(1) (κ > 0) dSn = S O(n + 1, 1)/S O(n, 1) · · · de Sitter space,
(2) (κ < 0) AdSn = S O(n, 2)/S O(n, 1) · · · anti-de Sitter space

Example 1 (Calabi–Markus phenomenon) There does not exist
an infinite discrete group of isometries that acts
properly discontinuously on the de Sitter space dSn.

Example 2 (anti-de Sitter manifold) There exists a discrete group Γ
of isometries that acts properly discontinuously and cocompactly
on the anti-de Sitter space AdSn if and only if n is odd.



Reminder · · · Proper Action (Topology)
Suppose that G′ acts on a manifold X continuously.

Definition We say the G′-action is proper if
the map G′ × X → X × X, (g, x) %→ (x, gx) is proper.

This means that for every compact subset S ⊂ X,

{g ∈ G′ : gS ∩ S " ∅}
is compact.

The G′-action on X is called properly discontinuous
if G′ is discrete and the action is proper.



Formulation in terms of group languages Γ ⊂ G ⊃ H

Let G ⊃ H be a pair of Lie groups.

Consider an action of a subgroup Γ on X = G/H.

We remark, for non-compact H:

• Γ is discrete in G.
/⇓ ⇑

• The Γ-action on X = G/H is properly discontinuous.



Quotient space XΓ = Γ\G/H in the general setting

Γ
discrete subgp

⊂ G
Lie group

⊃ H
subgroup

G
↙ ↘

Γ\G G/H
↘ ↙
Γ\G/H

Suppose that the Γ-action on X is properly discontinuous and free.

G/H︸︷︷︸
local geometric structure

covering
−−−−−−−−−→ Γ︸︷︷︸

global

\G/H
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local geometric structure
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global
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A G-invariant differential operator on X = G/H induces
an “intrinsic differential operator” on XΓ = Γ\G/H.



Standard locally homogeneous spaces Γ\G/H
X = G/H with non-compact subgroup H ⊂ G.

Question How can we find a discrete subgroup Γ
acting properly discontinuously on X = G/H?

Observation
• Any discrete subgroup Γ will do if H is compact.
• Any lattice Γ will never work if H is non-compact.

Idea (discrete↔ continuous)

Definition Take any subgroup G′ of G acting on X properly.
Then any discrete subgroup Γ of G′ acts
properly discontinuously on X.

Such a quotient space Γ\X = Γ\G/H is referred to as a
standard quotient of X, when G′ is reductive.



Example of compact standard quotients XΓ

Example 4 (compact anti-de Sitter manifold) Let
AdS2m+1 = S O(2m, 2)/S O(2m, 1).

Take G′ := U(m, 1). Then, for any torsion-free, cocompact,
discrete subgroup Γ of G′, Γ\AdS2m+1 is a compact
Lorentzian manifold with negative constant sectional curvature.

Example 5 (3-dimensional indefinite-Kähler manifold) Let
X := {z ∈ C4 : |z1|2 + |z2|2 > |z3|2 + |z4|2}/C×
≃ S U(2, 2)/U(2, 1) (=: G/H).

Take G′ := Spin(4, 1) (⊂ G). Then, for any torsion-free
cocompact discrete subgroup Γ of G′,
XΓ = Γ\G/H is a compact indefinite-Kähler manifold.



Locally pseudo-Riemannian symmetric space

Let G be a real reductive Lie group,
σ an involutive automorphism of G, and
H an open subgroup of Gσ.
Then X = G/H is called a symmetric space.

Let Γ be a subgroup of G, which acts properly discontinuously and
freely on X = G/H. Then the quotient space

XΓ = Γ\G/H
is a locally symmetric space.

Example 3 X = G/K: Riemannian symmetric space,
! XΓ = Γ\G/K is a locally Riemannian symmetric space.



Spectral analysis on Γ\G/H beyond Riemannian setting

Γ
discrete subgp

⊂ G
Lie group

⊃ H
subgroup

, X := G/H, XΓ := Γ\G/H.

DG(X) := ring of G-invariant differential operators on X

Problem Find spectral decomposition of C∞c (XΓ) and L2(XΓ) for
“intrinsic differential operators” on XΓ induced from DG(X).

We explore Problem when G/H is a reductive symmetric space.
Then DG(X) is a commutative ring, which contains the
pseudo-Riemannian Laplace-Beltrami operator.



Spectral analysis on Γ\G/H beyond Riemannian setting

Γ
discrete subgp

⊂ G
Lie group

⊃ H
subgroup

, X := G/H, XΓ := Γ\G/H.
SL(2,Z) ⊂ SL(2,R) ⊃ SO(2)

G
↙ ↘

Γ\G G/H
↘ ↙
Γ\G/H

SL(2,R)
↙ ↘

R3\
↘ ↙

1−1 0

Special cases (classical cases) are already deep and rich.

• Γ = {e}

· · · non-commutative harmonic analysis on L2(G/H)
Gelfand, Harish-Chandra, S. Helgason, Flensted-Jensen, T. Oshima, Delorme, . . .

• H compact

, Γ arithmetic · · · automorphic forms (local theory)
Siegel, Selberg, Piateski-Shapiro, Langlands, Arthur, Sarnak, Müller, . . .

• G = Rp,q

(abelian, but non-Riemannian), Γ = Zp+q, H = {e}
Oppenheim conjecture, Dani, Margulis, Ratner, Eskin, Mozes, . . .
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for non-trivial Γ , non-abelian G and non-compact H .

New difficulties arise

• (geometry)

existence of good geometry Γ\X?
· · · “local to global” beyond the Riemannian setting

• (analysis)

The Laplacian ! is no more elliptic.
Not obvious whether ! is essentially self-adjoint on L2(Γ\X).

• (representation theory)

vol(Γ\G) = ∞ even when Γ\X is compact
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Spectral analysis on Γ\G/H beyond Riemannian setting

Γ
discrete subgp

⊂ G
Lie group

⊃ H
subgroup

, X := G/H, XΓ := Γ\G/H.

SL(2,Z) ⊂ SL(2,R) ⊃ SO(2)

Challenge: Spectral analysis on XΓ by DG(X)
for non-trivial Γ , non-abelian G and non-compact H .

New difficulties arise
! need to change methods for the study!

Let G′ be the Zariski closure of Γ. We shall use⎧⎪⎪⎨
⎪⎪⎩
• Global analysis of G′C-spherical spaces
• Restricting reps of G to G′.



Plan

• Spectral analysis on Γ\G/H beyond the Riemannian setting.

• Admissible restriction to reductive subgroups.

• Bounded/finite multiplicities in the branching laws.

• Restriction of H-distinguished representations.

• Three rings of invariant differential operators.

• Main theorem: Spectral Analysis on Γ\G/H.



Towards Spectral Analysis for XΓ = Γ\G/H

Ideas and Methods
(• generalized Poincaré series)

• Branching of the restriction G ↓ G′

H ↗
induction

G ↘
restriction

G′.

– Discrete decomposability

– Uniformly bounded Multiplicities.

• Transfer of spectrum
– Structure of the rings of invariant differential operators.
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G′-admissible restriction — for non-compact subgroup G′

G ⊃ G′ real reductive Lie groups,

Π ∈ Ĝ irred unitary rep of G.

Definition The restriction Π|G′ is said to be G′-admissible if

Π|G′ ≃
∑

π∈Ĝ′
⊕mππ ( discrete sum )

with mπ := [Π|G′ : π] < ∞ for all π ∈ Ĝ′.

• Condition: No continuous spectrum & finite multiplicity

• (G′ = K case) Any Π ∈ Ĝ is K-admissible in our terminology,
if K is a max compact subgroup of G (Harish-Chandra’s
admissibility theorem).



Restriction G ↓ G′

G ⊃ G′ reductive groups /R

Consider the restriction Π|G′ for Π ∈ Ĝ.

Idea: We derive useful information for the restriction G ↓ G′

from G ↓ K′ . There are two paths to reach K′ from G:

G ⊃ G′ reductive groups /R
∪ ∪
K ⊃ K′ max compact subgroupsW

&



Criterion for admissible restrictions G ↓ G′

Theorem 1 (K– 1998, 2021)∗ Let G ⊃ G′ be real reductive groups

and Π ∈ Ĝ . If
ASK(Π) ∩ CK(K′) = {0},

then the restriction Π|G′ is admissible.

Two closed cones in the dual
√
−1t∗ of a Cartan subalg t ⊂ k:

ASK(Π) : asymptotic K-support of Π,

CK(K′) : momentum set of T ∗(K/K′)→
√
−1t∗.

Remark. When G′ = K, the assumption CK(K′) = {0} is obvious,
and the conclusion corresponds to Harish-Chandra’s admissibility.

∗ Kobayashi, Ann Math 1998; see also Kobayashi, Proc. ICM 2002; PAMQ 2021 (Kostant memorial issue).
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Restriction under good control

G ⊃ G′ and Π ∈ Ĝ (⊂ Irr(G)).

A. Admissible restriction Π|G′ (Theorem 1)
( discretely decomposable with finite multiplicity ).

"

Allow continuous spectrum & non-unitary reps

B. Finite multiplicity restriction Π|G′

[Π|G′ : π] < ∞ ∀π ∈ Irr(G′).

C. Bounded multiplicity restriction Π|G′

sup
π∈Irr(G′)

[Π|G′ : π] < ∞.



Multiplicity of the restriction Π|G′ including non-unitary case

G : real reductive Lie group

M(G): smooth admissible reps of G of finite length
with moderate growth (defined on Fréchet spaces)

Irr(G): irreducible objects

Ĝ
unitary dual

↪→ Irr(G), Π 3→ Π∞.

G ⊃ G′ : real reductive groups

Definition (multiplicity) For Π ∈ Irr(G) and π ∈ Irr(G′), we set

HomG′(Π|G′ , π) := {symmetry breaking operators}

[Π|G′ : π] := dimCHomG′(Π|G′ , π) ∈ N ∪ {∞}



Comparison: GL(n,R) ↓ O(n) vs GL(n,R) ↓ O(p,n-p)

Harish-Chandra’s admissibility theorem concerns the restriction
with respect to a maximal compact subgroup

G ⊃ K, e.g., GL(n,R) ⊃ O(n)
and asserts

[Π|K : π] < ∞ ∀Π ∈ Irr(G) and ∀π ∈ Irr(K).

In contrast,

For a reductive symmetric pair

G ⊃ G′, e.g., GL(n,R) ⊃ O(p, n − p)

it may well happen that
[Π|G′ : π] = ∞ for some Π ∈ Irr(G) and π ∈ Irr(G′).



Spherical Space

GC complex reductive ! XC complex manifold (connected)

Definition XC is spherical if a Borel subgroup B of GC
has an open orbit in XC.

Example Grassmannian manifolds, flag manifolds,
symmetric spaces are spherical spaces.



Restriction G ↓ G′ with uniformly bounded multiplicity property

Theorem 2 (Uniformly bounded multiplicity criterion)

For a pair G ⊃ G′ of real reductive groups, (i)⇔(ii) (also (ii)′ or (ii)′′).
(i) ( Rep ) sup

Π∈Irr(G)
sup
π∈Irr(G′)

[Π|G′ : π] < ∞.

(ii) ( Geometry ) (GC ×G′C)/ diag(G′C) is spherical.
(ii)′ ( Ring ) The ring U(gC)G′C is commutative.
(ii)′′ ( Ring ) The ring U(gC)G′C is a polynomial ring.

• The equivalence (i)⇔ (ii) is proved in [TK–T. Oshima]∗.
• A stronger estimate for (ii)⇒ (i), namely, multiplicity-free
theorem holds for most of (not all of) the cases (Sun–Zhu)∗∗.
• Classification for (ii): (gC, g′C) is (sl(n,C), gl(n − 1,C)),
(so(n,C), so(n − 1,C)), or up to direct product, abelian factors, or
automorphisms (Cooper, Kostant, Krämer).
∗

T. Kobayashi–T. Oshima, “Finite multiplicity theorems for induction and restriction”, Adv. Math., (2013), 921–943.

∗∗
Sun–Zhu, “Multiplicity one theorems: the Archimedian case”, Ann. of Math., (2012), 23–44.

I
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Restriction of H-distinguished rep H ↗ G

Definition Suppose H is a closed subgroup of G.

We say Π ∈ Irr(G) is an H-distinguished rep of G, if (Π−∞)H ! {0} ,
or equivalently, if

HomG(Π, C∞(G/H)) ! {0}.

We set

Irr(G)H := {H-distinguished irreducible admissible reps} ⊂ Irr(G).



Borel subgroup BG/H for a symmetric space G/H
Let G/H be a reductive symmetric space defined by an involution
σ of G.

Definition∗ (Borel subalg bG/H )
A Borel subalgebra bG/H for G/H is a parabolic subalgebra
of gC defined by a generic semisimple element in g−σC or its conjugate.

Remark • Our “Borel subalgebra” bG/H is not necessarily solvable.
• bG/H is determined by the complexified symmetric pair (gC, hC).

∗
T. Kobayashi, Multiplicity in restricting small representations, Proc. Acad. Japan (2022).



Bounded multiplicity theorem for H-distinguished reps

(G,H) reductive symmetric pair

G′ reductive subgroup of G.

Theorem 3 (K– 22)∗ (bounded multiplicity criterion) (i) ⇐⇒ (ii).
(i) (Rep) The triple H ⊂ G ⊃ G′ satisfies

sup
Π ∈ Irr(G)H

sup
π ∈ Irr(G′)

[Π|G′ : π] < ∞.

(ii) (Complex Geometry) GC/ BG/H is G′C-spherical.

∗ T. Kobayashi, Bounded multiplicity for induction and restriction, J. Lie Theory, (2022); Proc. Japan Academy., (2022).



Special case of Theorem 3: diag(G)↗ G ×G ↘ G′ ×G′
Observe that

Irr(G) ≃ Irr(G ×G)diag G

π ↔ π ! π∨

Theorem 2 is a special case of Theorem 3.

Irr(G) Irr(G)H

=

Irr(G ×G)diag G

I



Bounded multiplicity triple H ↗ G ↘ G′ — Classification

Classification: All the triples H ⊂ G ⊃ G′ having the bounded
multiplicity property:

sup
Π ∈ Irr(G)H

sup
π ∈ Irr(G′)

[Π|G′ : π] < ∞ (∗)

was classified in [K–22]∗. This extends the classification of Cooper,
Krämer, Kostant in the case where G/H is a group manifold.

Example Let p1 + p2 = p, q1 + q2 = q, and

( H ,G, G′ ) = (O(p − 1, q),O(p, q),O(p1, q1) × O(p2, q2)).
Then one has the bounded multiplicity property (∗).

∗
Kobayashi, Adv. Math., (2021), Bounded multiplicity theorem for induction and restriction, J. Lie Theory (2022) 197–238.



Question: H ↗ G ↘ G′

Induction: H ↗ G :
For H ⊂ G, we set X = G/H.

G!C∞(X) = C∞(G/H).

Restriction: G ↘ G′

For G ⊃ G′, we consider the restriction of actions.
G′ (⊂ G) !Π ∈ Irr(G).

H ↗ G ↘ G′ : Consider the restriction Π| G′ when Π ∈ Irr(G)H ,

that is, when Π occurs in C∞( G/H ).

Question What if the G′ -action on X = G/H is proper?



Proper action and Admissible restriction H ↗ G ↘ G′

Setting: G′ ⊂ G ⊃ H real reductive, X := G/H .
reductive symmetric space

Theorem 4∗ Suppose G′ ! X proper and XC is G′C -spherical.

If Π ∈ Ĝ is H-distinguished, then the restriction Π | G′ is
G′-admissible and the multiplicities are uniformly bounded.

Cf. Theorem 1 (admissibility criterion) is formulated purely by
representation theory. The proof of Theorem 4 is geometric and
interacts with a structure of three rings of invariant differential
operators.

∗ T. Kobayashi, Global analysis by hidden symmetry, Progr. Math., 323 (2017), 359–397; Kassel–TK, Lecture Notes in

Math. (2015).
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Good Control of Restriction G ↓ G′

Theorem 2 (Uniformly bounded multiplicity criterion)

For a pair G ⊃ G′ of real reductive groups, (i)⇔(ii) (also (ii)′ or (ii)′′).

(i) ( Rep ) sup
Π∈Irr(G)

sup
π∈Irr(G′)

[Π|G′ : π] < ∞.

(ii) ( Geometry ) (GC ×G′C)/ diag(G′C) is spherical.

(ii)′ ( Ring ) The ring U(gC)G′C is commutative.

(ii)′′ ( Ring ) The ring U(gC)G′C is a polynomial ring.

Geometry Representation

GC ×G′C/ diag(G′C) ! Π|G′
!

!
U(gC)G′C

Algebra
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Ring structure of DG′C(XC) for H ind↗ G ↘rest G′

We focus on two rings of differential operators on XC = GC/HC.
(1) P := DGC(XC) : GC-invariant differential operators;

(2) R := dl(Z(g′C)) : induced from the center Z(g′C) of U(g′C).

P ! Π ∈ Irr(G)H ,

R ! π ∈ Irr(G′).

Understanding the relation between P and R will help us to
understand branching G ↓ G′.



Hidden Symmetries and Invariant Differential Operators

We recall G′C ⊂ GC! XC.

We shall see a “hidden symmetry” of the algebra Z(g′C) in the

space of joint eigenfunctions for the algebra DG(XC) :

Z(gC)
hidden symmetry

DG(XC)!C∞(X;Mλ)

under the assumption is that XC is G′C -spherical.

&



Geometry for H ind↗ G ↘rest G′

Let H ⊂ G ⊃ G′ be real reductive Lie groups.
Assume that G′ ! X = G/H proper and that XC = GC/HC is
G′C-spherical.

∃ G′ -fibration F → X → Y

Signature (0, q) (p, q) (p, 0)

Example (G,G′) = (S O(2m, 2), U(m, 1) )

S 1 →
anti de Sitter space

AdS2m+1 →
Hermitian ball

{z ∈ Cm : |z| < 1} .

∗ TK, Invent. Math., 1994.



Invariant differential operator for overgroups

G′
proper, spherical

! X = G/H

→ Y = G′/K′ (fibration)

! ∃ G′ -fibration F → X → Y .

Two subalgebras of DG′(X)

P := DG(X) , Q := ι(DK′(F)), R := dl(Z(g′C))

Theorem 5 (Kassel–TK,19)∗ Assume XC is G′C-spherical.
(1) The commutative algebra DG′(X) is generated by P and R .

Let K′ be a maximal subgroup of G′ containing H′.
(2) DG′(X) is generated by P and Q, too.
(3) DG′(X) is generated by Q and R, too, if G is simple.

∗ F. Kassel–K, Invariant differential operators on spherical homogeneous spaces · · · , JLT (2019).
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Invariant differential operator for overgroups

F = K′/H′ ↪→ X = G/H → Y = G′/K′ (fibration)

! ∃ G′ -fibration F → X → Y .

Three Two subalgebras of DG′(X)

P := DG(X) , Q := ι(DK′(F)) , R := dl(Z(g′C))

Theorem 5 (Kassel–TK,19)∗ Assume XC is G′C-spherical.
(1) The commutative algebra DG′(X) is generated by P and R .

Let K′ be a maximal subgroup of G′ containing H′.
(2) DG′(X) is generated by P and Q, too.
(3) DG′(X) is generated by Q and R, in the quotient field.

∗ F. Kassel–K, Invariant differential operators on spherical homogeneous spaces · · · , JLT (2019).
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Application of branching problem G ↓ G′

We apply these results to the spectral analysis of

standard, pseudo-Riemannian locally symmetric space Γ \ G/H

beyond the Riemannian setting:

• (G,H) is a reductive symmetric pair with H non-compact.

• G′ acts properly on X = G/H.

• Γ is a torsion-free discrete subgroup of G′.



Spectral analysis of standard locally symmetric space Γ\G/H
Let X = G/H be a reductive symmetric space. We set

DG(X)∧ := HomC-alg(DG(X),C) ∋ λ
!Mλ : D f = λ(D) f ∀D ∈ DG(X).

X = G/H︸︷︷︸
local geometric structure

covering
−−−−−−−−→ Γ︸︷︷︸

global

\G/H = XΓ

Problem Find spectral decomposition of C∞c (XΓ) and L2(XΓ) for
“intrinsic differential operators” on XΓ induced from DG(X).



Spectral analysis of standard locally symmetric space Γ\G/H
Let X = G/H be a reductive symmetric space. We set

DG(X)∧ := HomC-alg(DG(X),C) ∋ λ
!Mλ : D f = λ(D) f ∀D ∈ DG(X).

Suppose that a reductive subgroup G′ acts on X properly such that
XC is G′C-spherical. Take any discrete subgroup Γ of G′.

Main Theorem (expansion into eigenfunctions, Kassel–TK∗, 2025)
There exist measure µ on DG(X)∧ and a measurable family of maps

Fλ : C∞c (Γ\X)→ C∞(Γ\X;Mλ)
s.t. any f ∈ C∞c (Γ\X) is expanded into joint eigenfunctions on Γ\X:

f =
∫

DG(X)∧
Fλ f dµ(λ),

∥ f ∥2L2(Γ\X) =
∫
DG(X)∧ ∥Fλ f ∥2L2(Γ\X)dµ(λ).

∗ F. Kassel–K, Spectral analysis on standard locally homogeneous spaces. Lecture Notes in Math. 2025, 126 pages. (in

press).
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Strategy for Spectral Analysis on Γ\G/H

1. Standard quotient

Γ ⊂
proper

G′ ⊂ G! X ! Γ\X = Γ\G/H

2. (Hidden symmetry) If G′C
! XC is spherical, one has

(Theorems 2, 3, 5)

Z(g′C)
hidden symmetry

DGC(XC)!C∞(X;Mλ).

3. (Branching law G ↓ G′ ) If G′ ! X proper, then any
π ∈ Irr(G) realized in C∞(X) is G′ -admissible (Theorem 4).



Thank you very much!
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