Hidden Symmetry and Spectral Analysis on Locally Pseudo-Riemannian Symmetry Spaces

Toshiyuki Kobayashi

Graduate School of Mathematical Sciences The University of Tokyo http://www.ms.u-tokyo.ac.jp/~toshi/

Intertwining Operators and Geometry during the thematic trimester Representation Theory and Noncommutative Geometry Institut Henri Poincaré, Paris, France, 20–24 January 2025

Introduction: Spectral analysis on $\Gamma \setminus G/H$

Spectral analysis of the Laplace–Beltrami operator Δ on a closed Riemann surface Σ_g

$$= \begin{cases} \mathbb{R}^2 / \mathbb{Z}^2 & (g = 1) \\ \pi_1(\Sigma_g) \backslash SL(2, \mathbb{R}) / SO(2) & (g \ge 2) \end{cases}$$

§ more generally

What if beyond the classical Riemannian setting?

・ロト・日本・モト・モト・ ヨー のへぐ

Discrete isometry groups beyond the Riemannian setting

X: Riemannian manifold

 Γ : torsion-free, discrete group of isometries of X

 \rightarrow The Γ-action on *X* is properly discontinuous, and the quotient space *X*_Γ := Γ*X* becomes a Riemannian manifold: $X \rightarrow X_{\Gamma}$ (isometric covering).

However, the positivity is crucial in this result:

X: indefinite Riemannian manifold

 Γ : torsion-free, discrete group of isometries of X

 \rightsquigarrow The Γ-action on *X* is not necessarily properly discontinuous, and the quotient space $X_{\Gamma} = \Gamma \setminus X$ is not always Hausdorff.

Discrete group of isometries of Lorentzian manifolds

Lorentzian manifolds with constant sectional curvature κ :

(1) $(\kappa > 0)$ dSⁿ = SO(n + 1, 1)/SO(n, 1) ··· de Sitter space, (2) $(\kappa < 0)$ AdSⁿ = SO(n, 2)/SO(n, 1) ··· anti-de Sitter space

<u>Example 1</u> (Calabi–Markus phenomenon) There does not exist an infinite discrete group of isometries that acts properly discontinuously on the de Sitter space dS^n .

<u>Example 2</u> (anti-de Sitter manifold) There exists a discrete group Γ of isometries that acts properly discontinuously and cocompactly on the anti-de Sitter space AdS^{*n*} if and only if *n* is odd.

Reminder ··· Proper Action (Topology)

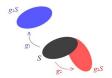
Suppose that G' acts on a manifold X continuously.

<u>Definition</u> We say the *G*'-action is proper if the map $G' \times X \to X \times X$, $(g, x) \mapsto (x, gx)$ is proper.

This means that for every compact subset $S \subset X$,

$$\{g \in G' : gS \cap S \neq \emptyset\}$$

is compact.



◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

The G'-action on X is called properly discontinuous if G' is discrete and the action is proper.

Formulation in terms of group languages $\Gamma \subset G \supset H$

Let $G \supset H$ be a pair of Lie groups.

Consider an action of a subgroup Γ on X = G/H.

We remark, for non-compact H:

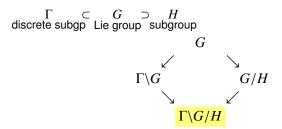
Γ is discrete in G.

↓ ↑

The Γ-action on X = G/H is properly discontinuous.

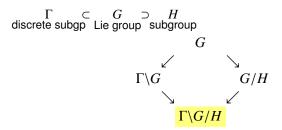
◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Quotient space $X_{\Gamma} = \Gamma \setminus G/H$ in the general setting

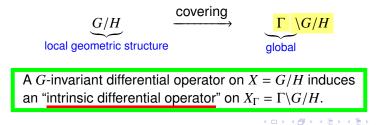


Suppose that the Γ -action on *X* is properly discontinuous and free.

Quotient space $X_{\Gamma} = \Gamma \setminus G/H$ in the general setting



Suppose that the Γ -action on *X* is properly discontinuous and free.



ъ

Standard locally homogeneous spaces $\Gamma \backslash G/H$

X = G/H with non-compact subgroup $H \subset G$.

<u>Question</u> How can we find a discrete subgroup Γ acting properly discontinuously on X = G/H?

Observation

- Any discrete subgroup Γ will do if *H* is compact.
- Any lattice Γ will never work if H is non-compact.

Idea (discrete \leftrightarrow continuous)

Definition Take any subgroup *G'* of *G* acting on *X* properly. Then any discrete subgroup Γ of *G'* acts properly discontinuously on *X*. Such a quotient space $\Gamma \setminus X = \Gamma \setminus G/H$ is referred to as a standard quotient of *X*, when *G'* is reductive.

Example of compact standard quotients X_{Γ}

Example 4 (compact anti-de Sitter manifold) Let $AdS^{2m+1} = SO(2m, 2)/SO(2m, 1).$ Take G' := U(m, 1). Then, for any torsion-free, cocompact, discrete subgroup Γ of G', $\Gamma \setminus AdS^{2m+1}$ is a compact Lorentzian manifold with negative constant sectional curvature.

Example 5 (3-dimensional indefinite-Kähler manifold) Let $X := \{z \in \mathbb{C}^4 : |z_1|^2 + |z_2|^2 > |z_3|^2 + |z_4|^2\}/\mathbb{C}^{\times}$ $\simeq SU(2,2)/U(2,1) (=: G/H).$ Take $G' := Spin(4,1) (\subset G)$. Then, for any torsion-free cocompact discrete subgroup Γ of G', $X_{\Gamma} = \Gamma \backslash G/H$ is a compact indefinite-Kähler manifold.

Locally pseudo-Riemannian symmetric space

Let *G* be a real reductive Lie group, σ an involutive automorphism of *G*, and *H* an open subgroup of G^{σ} . Then X = G/H is called a symmetric space.

Let Γ be a subgroup of *G*, which acts properly discontinuously and freely on X = G/H. Then the quotient space

$$X_{\Gamma} = \Gamma \backslash G / H$$

is a locally symmetric space.

Example 3 X = G/K: Riemannian symmetric space, $\rightsquigarrow X_{\Gamma} = \Gamma \setminus G/K$ is a locally Riemannian symmetric space.

ション 小田 マイビット ビー シックション

 $\begin{array}{ccc} \Gamma & \subset & G & \supset & H \\ \text{discrete subgp} & \text{Lie group subgroup}, \end{array} X := G/H, \quad X_{\Gamma} := \Gamma \backslash G/H.$

 $\mathbb{D}_G(X) := \text{ring of } G \text{-invariant differential operators on } X$

<u>Problem</u> Find spectral decomposition of $C_c^{\infty}(X_{\Gamma})$ and $L^2(X_{\Gamma})$ for "intrinsic differential operators" on X_{Γ} induced from $\mathbb{D}_G(X)$.

We explore Problem when G/H is a reductive symmetric space. Then $\mathbb{D}_G(X)$ is a commutative ring, which contains the pseudo-Riemannian Laplace-Beltrami operator.

<u>Problem</u> Find spectral decomposition of $C_c^{\infty}(X_{\Gamma})$ and $L^2(X_{\Gamma})$ for "intrinsic differential operators" on X_{Γ} induced from $\mathbb{D}_G(X)$.

Special cases (classical cases) are already deep and rich.

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

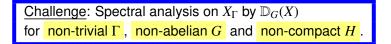
- $\Gamma = \{e\}$
- H compact
- $G = \mathbb{R}^{p,q}$

<u>Problem</u> Find spectral decomposition of $C_c^{\infty}(X_{\Gamma})$ and $L^2(X_{\Gamma})$ for "intrinsic differential operators" on X_{Γ} induced from $\mathbb{D}_G(X)$.

Special cases (classical cases) are already deep and rich.

- $\Gamma = \{e\} \cdots$ non-commutative harmonic analysis on $L^2(G/H)$ Gelfand, Harish-Chandra, S. Helgason, Flensted-Jensen, T. Oshima, Delorme, ...
- *H* compact, Γ arithmetic ··· automorphic forms (local theory) Siegel, Selberg, Piateski-Shapiro, Langlands, Arthur, Sarnak, Müller, ...
- $G = \mathbb{R}^{p,q}$ (abelian, but non-Riemannian), $\Gamma = \mathbb{Z}^{p+q}$, $H = \{e\}$ Oppenheim conjecture, Dani, Margulis, Ratner, Eskin, Mozes, $A = \{e\}$

 $\begin{array}{ll} \Gamma & \subset & G & \supset & H \\ \text{discrete subgp} & \text{Lie group} & \text{subgroup}, \end{array} \quad X := G/H, \quad X_{\Gamma} := \Gamma \backslash G/H.$

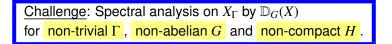


・ロト・日本・日本・日本・日本・日本

New difficulties arise

- (<u>geometry</u>)
- (analysis)
- (representation theory)

 $\begin{array}{ll} \Gamma & \subset & G & \supset & H \\ \text{discrete subgp} & \text{Lie group} & \text{subgroup}, \end{array} \quad X := G/H, \quad X_{\Gamma} := \Gamma \backslash G/H.$

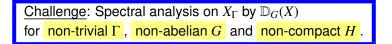


・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

New difficulties arise

- (geometry) existence of good geometry Γ\X?
 … "local to global" beyond the Riemannian setting
- (<u>analysis</u>)
- (representation theory)

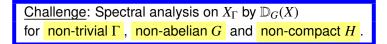
 $\begin{array}{ccc} \Gamma & \subset & G & \supset & H \\ \text{discrete subgp} & \text{Lie group subgroup}, \end{array} X := G/H, \quad X_{\Gamma} := \Gamma \backslash G/H.$



New difficulties arise

- (geometry) existence of good geometry Γ\X?
 … "local to global" beyond the Riemannian setting
- (analysis) The Laplacian □ is no more elliptic. Not obvious whether □ is essentially self-adjoint on L²(Γ\X).
- (representation theory) $vol(\Gamma \setminus G) = \infty$ even when $\Gamma \setminus X$ is compact

 $\begin{array}{ccc} \Gamma & \subset & G & \supset & H \\ \text{discrete subgp} & \text{Lie group subgroup}, \end{array} X := G/H, \quad X_{\Gamma} := \Gamma \backslash G/H.$



ション 小田 マイビット ビー シックション

New difficulties arise

→ need to change methods for the study!

Plan

• Spectral analysis on $\Gamma \setminus G/H$ beyond the Riemannian setting.

- Admissible restriction to reductive subgroups.
- Bounded/finite multiplicities in the branching laws.
- Restriction of *H*-distinguished representations.
- Three rings of invariant differential operators.
- Main theorem: Spectral Analysis on $\Gamma \setminus G/H$.

Towards Spectral Analysis for $X_{\Gamma} = \Gamma \setminus G/H$

Ideas and Methods

- (• generalized Poincaré series)
- Branching of the restriction $G \downarrow G'$

 $H \nearrow G \searrow G'.$

- Discrete decomposability
- Uniformly bounded Multiplicities.
- Transfer of spectrum
 - Structure of the rings of invariant differential operators.

Plan

- Spectral analysis on $\Gamma \setminus G/H$ beyond the Riemannian setting.
- Admissible restriction to reductive subgroups.
- Bounded/finite multiplicities in the branching laws.
- Restriction of *H*-distinguished representations. $\begin{array}{c} H \nearrow G \searrow G' \\ \hline H \nearrow G \searrow G' \end{array}$
- Three rings of invariant differential operators.
- Main theorem: Spectral Analysis on $\Gamma \setminus G/H$.

G'-admissible restriction — for non-compact subgroup G'

- $G \supset G'$ real reductive Lie groups,
- $\Pi \in \widehat{G}$ irred unitary rep of *G*.

Definition The restriction $\Pi|_{G'}$ is said to be G'-admissible if

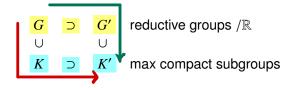
$$\begin{split} \Pi|_{G'} &\simeq \sum_{\pi \in \widehat{G'}} {}^{\oplus} m_{\pi} \pi \quad (\text{ discrete sum }) \\ \text{with } \frac{m_{\pi} := [\Pi|_{G'} : \pi] < \infty}{m_{\pi} := [\Pi|_{G'} : \pi] < \infty} \text{ for all } \pi \in \widehat{G'} \end{split}$$

- Condition: No continuous spectrum & finite multiplicity
- (G' = K case) Any Π ∈ G is <u>K-admissible</u> in our terminology, if K is a max compact subgroup of G (Harish-Chandra's admissibility theorem).

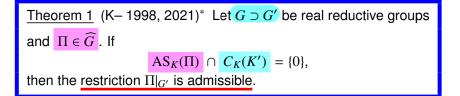
Restriction $G \downarrow G'$

 $G \supset G'$ reductive groups $/\mathbb{R}$ Consider the restriction $\Pi|_{G'}$ for $\Pi \in \widehat{G}$.

Idea: We derive useful information for the restriction $G \downarrow G'$ from $G \downarrow K'$. There are two paths to reach K' from G:



Criterion for admissible restrictions $G \downarrow G'$



Two closed cones in the dual $\sqrt{-1}t^*$ of a Cartan subalg $t \subset t$:

 $AS_K(\Pi)$: asymptotic *K*-support of Π ,

 $C_K(K')$: momentum set of $T^*(K/K') \rightarrow \sqrt{-1}t^*$.

<u>Remark.</u> When G' = K, the assumption $C_K(K') = \{0\}$ is obvious, and the conclusion corresponds to Harish-Chandra's admissibility.

* Kobayashi, Ann Math 1998; see also Kobayashi, Proc. ICM 2002; PAMQ 2021 (Kostant memorial issue).

Plan

• Spectral analysis on $\Gamma \setminus G/H$ beyond the Riemannian setting.

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

- Admissible restriction to reductive subgroups.
- Bounded/finite multiplicities in the branching laws.
- Restriction of *H*-distinguished representations.
- Three rings of invariant differential operators.
 - Main theorem: Spectral Analysis on $\Gamma \setminus G/H$.

Plan

• Spectral analysis on $\Gamma \setminus G/H$ beyond the Riemannian setting.

ション 小田 マイビット ビー シックション

- Admissible restriction to reductive subgroups.
- Bounded/finite multiplicities in the branching laws.
- Restriction of *H*-distinguished representations.
- Three rings of invariant differential operators.
- Main theorem: Spectral Analysis on $\Gamma \setminus G/H$.

Restriction under good control

$$G \supset G'$$
 and $\Pi \in \widehat{G}$ ($\subset \operatorname{Irr}(G)$).

A. Admissible restriction $\Pi|_{G'}$ (Theorem 1) (discretely decomposable with finite multiplicity).

Allow continuous spectrum & non-unitary reps

B. Finite multiplicity restriction $\Pi|_{G'}$

$$[\Pi|_{G'}:\pi]<\infty\qquad {}^{\forall}\pi\in\operatorname{Irr}(G').$$

C. Bounded multiplicity restriction $\Pi|_{G'}$

$$\sup_{\pi\in\operatorname{Irr}(G')}[\Pi|_{G'}:\pi]<\infty.$$

ション 小田 マイビット ビー シックション

Multiplicity of the restriction $\Pi|_{G'}$ including non-unitary case

G : real reductive Lie group

u

 $\mathcal{M}(G)$: smooth admissible reps of *G* of finite length with moderate growth (defined on Fréchet spaces) Irr(G): irreducible objects

$$\widehat{G} \hookrightarrow \operatorname{Irr}(G), \quad \Pi \mapsto \Pi^{\infty}.$$

 $G \supset G'$: real reductive groups

<u>Definition</u> (multiplicity) For $\Pi \in Irr(G)$ and $\pi \in Irr(G')$, we set

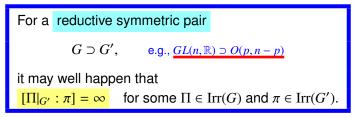
 $\operatorname{Hom}_{G'}(\Pi|_{G'}, \pi) := \{ \text{symmetry breaking operators} \}$

 $[\Pi|_{G'}:\pi] := \dim_{\mathbb{C}} \operatorname{Hom}_{G'}(\Pi|_{G'},\pi) \in \mathbb{N} \cup \{\infty\}$

Comparison: $GL(n,R) \downarrow O(n)$ vs $GL(n,R) \downarrow O(p,n-p)$

Harish-Chandra's admissibility theorem concerns the restriction with respect to a maximal compact subgroup $G \supset K$, e.g., $\underline{GL(n, \mathbb{R}) \supset O(n)}$ and asserts $[\Pi|_{K}: \pi] < \infty$ $\forall \Pi \in Irr(G) \text{ and } \forall \pi \in Irr(K).$

In contrast,



Spherical Space

 $G_{\mathbb{C}}$ complex reductive $\frown X_{\mathbb{C}}$ complex manifold (connected)

<u>Definition</u> $X_{\mathbb{C}}$ is <u>spherical</u> if a Borel subgroup *B* of $G_{\mathbb{C}}$ has an open orbit in $X_{\mathbb{C}}$.

<u>Example</u> Grassmannian manifolds, flag manifolds, symmetric spaces are spherical spaces.

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Restriction $G \downarrow G'$ with <u>uniformly bounded multiplicity property</u>

 $\begin{array}{l} \underline{\text{Theorem 2}} \ (\text{Uniformly bounded multiplicity criterion}) \\ \\ \text{For a pair } G \supset G' \ \text{ of real reductive groups, (i)} \Leftrightarrow (\text{ii}) \ (\text{also (ii)}' \ \text{ or (ii)}''). \\ (\text{i)} \ (\begin{array}{c} \text{Rep} \end{array}) \ & \sup_{\Pi \in \operatorname{Irr}(G)} \sup_{\pi \in \operatorname{Irr}(G')} \left[\Pi|_{G'} : \pi\right] < \infty. \\ \\ (\text{ii}) \ (\begin{array}{c} \text{Geometry} \end{array}) \ (G_{\mathbb{C}} \times G'_{\mathbb{C}}) / \operatorname{diag}(G'_{\mathbb{C}}) \ \text{is spherical.} \\ \\ (\text{ii})' \ (\begin{array}{c} \text{Ring} \end{array}) \ & \text{The ring } U(\mathfrak{g}_{\mathbb{C}})^{G'_{\mathbb{C}}} \ \text{is a polynomial ring.} \end{array} \end{array}$

- The equivalence (i) \Leftrightarrow (ii) is proved in [TK–T. Oshima]^{*}.
- A stronger estimate for (ii) \Rightarrow (i), namely, multiplicity-free theorem holds for most of (not all of) the cases (Sun–Zhu)^{**}.
- Classification for (ii): $(\mathfrak{g}_{\mathbb{C}}, \mathfrak{g}'_{\mathbb{C}})$ is $(\mathfrak{sl}(n, \mathbb{C}), \mathfrak{gl}(n-1, \mathbb{C}))$, $(\mathfrak{so}(n, \mathbb{C}), \mathfrak{so}(n-1, \mathbb{C}))$, or up to direct product, abelian factors, or automorphisms (Cooper, Kostant, Krämer).

^{*} T. Kobayashi–T. Oshima, "Finite multiplicity theorems for induction and restriction", Adv. Math., (2013), 921–943.

^k Sun-Zhu, "Multiplicity one theorems: the Archimedian case", Ann. of Math., (2012), 23-449 🕨 🧃 👘 🦉 🖉 🔍 🖓 🔍 🖓

Plan

• Spectral analysis on $\Gamma \setminus G/H$ beyond the Riemannian setting.

ション 小田 マイビット ビー シックション

- Admissible restriction to reductive subgroups.
- Bounded/finite multiplicities in the branching laws.
- Restriction of *H*-distinguished representations.
- Three rings of invariant differential operators.
- Main theorem: Spectral Analysis on $\Gamma \setminus G/H$.

Plan

- Spectral analysis on $\Gamma \setminus G/H$ beyond the Riemannian setting.
- Admissible restriction to reductive subgroups.
- Bounded/finite multiplicities in the branching laws.
- Restriction of *H*-distinguished representations. *H* ≥ G ⊆ G'
 Three rings of invariant differential operators. *H* ≥ G ⊆ G'

ション 小田 マイビット ビー シックション

• Main theorem: Spectral Analysis on $\Gamma \setminus G/H$.

Restriction of *H*-distinguished rep $H \nearrow G$

<u>Definition</u> Suppose H is a closed subgroup of G.

We say $\Pi \in Irr(G)$ is an <u>*H*-distinguished rep</u> of G, if $(\Pi^{-\infty})^H \neq \{0\}$, or equivalently, if

 $\operatorname{Hom}_{G}(\Pi, C^{\infty}(G/H)) \neq \{0\}.$

We set

Irr(G)_{*H*} := {*H*-distinguished irreducible admissible reps} \subset Irr(G).

ション 小田 マイビット ビー シックション

Borel subgroup $B_{G/H}$ for a symmetric space G/H

Let G/H be a reductive symmetric space defined by an involution σ of G.

<u>Definition</u>^{*} (Borel subalg $\mathfrak{b}_{G/H}$)

A Borel subalgebra $\mathfrak{b}_{G/H}$ for G/H is a parabolic subalgebra

of $\mathfrak{g}_{\mathbb{C}}$ defined by a generic semisimple element in $\mathfrak{g}_{\mathbb{C}}^{-\sigma}$ or its conjugate.

<u>Remark</u> • Our "Borel subalgebra" $\mathfrak{b}_{G/H}$ is not necessarily solvable.

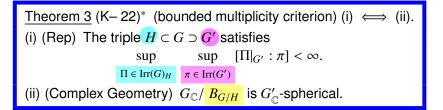
▲ 骨 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ の Q ()

• $\mathfrak{b}_{G/H}$ is determined by the complexified symmetric pair $(\mathfrak{g}_{\mathbb{C}}, \mathfrak{h}_{\mathbb{C}})$.

* T. Kobayashi, Multiplicity in restricting small representations, Proc. Acad. Japan (2022).

Bounded multiplicity theorem for *H*-distinguished reps

- (G, H) reductive symmetric pair
- G' reductive subgroup of G.



* T. Kobayashi, Bounded multiplicity for induction and restriction, J. Lie Theory, (2022); Proc. Japan Academy., (2022).

Special case of Theorem 3: $diag(G) \nearrow G \times G \searrow G' \times G'$ Observe that

$$\operatorname{Irr}(G) \simeq \operatorname{Irr}(G \times G)_{\operatorname{diag} G}$$

$$\pi \leftrightarrow \pi \boxtimes \pi^{\vee}$$

Theorem 2 is a special case of Theorem 3. $Irr(G) Irr(G)_H$ II $Irr(G \times G)_{\text{diag }G}$

Theorem 2 (Uniformly bounded multiplicity criterion)							
For a pair $G \supset G'$	of real reductive groups, (i)⇔(ii).						
(i) (<mark>Rep</mark>)	$\sup_{\Pi \in \operatorname{Irr}(G)} \sup_{\pi \in \operatorname{Irr}(G')} [\Pi _{G'} : \pi] < \infty.$						
	$(G_{\mathbb{C}} \times G'_{\mathbb{C}})/\operatorname{diag}(G'_{\mathbb{C}})$ is spherical.						

T. Kobayashi–T. Oshima, "Finite multiplicity theorems for induction and restriction", Adv. Math., (2013), 921–943. * T. Kobayashi, Bounded multiplicity for induction and restriction, J. Lie Theory, (2022); Proc. Japan Academy., (2022)

Bounded multiplicity triple $H \nearrow G \searrow G'$ — Classification

Classification: All the triples $H \subset G \supset G'$ having the bounded multiplicity property:

$$\sup_{\Pi \in \operatorname{Irr}(G)_{H}} \sup_{\pi \in \operatorname{Irr}(G')} [\Pi|_{G'} : \pi] < \infty$$
(*)

ション 小田 マイビット ビー シックション

was classified in $[K-22]^*$. This extends the classification of Cooper, Krämer, Kostant in the case where G/H is a group manifold.

Example Let $p_1 + p_2 = p$, $q_1 + q_2 = q$, and (*H*, *G*, *G'*) = (O(p - 1, q), O(p, q), $O(p_1, q_1) \times O(p_2, q_2)$). Then one has the bounded multiplicity property (*).

^{*} Kobayashi, Adv. Math., (2021), Bounded multiplicity theorem for induction and restriction, J. Lie Theory (2022) 197–238.

Question: $H \nearrow G \searrow G'$

Induction: $H \nearrow G$: For $H \subset G$, we set X = G/H. $G \curvearrowright C^{\infty}(X) = C^{\infty}(G/H)$.

Restriction: $G \searrow G'$ For $G \supset G'$, we consider the restriction of actions. $G' \ (\subset G) \frown \Pi \in Irr(G).$

H \nearrow *G* \searrow *G*['] : Consider the restriction $\Pi|_{G'}$ when $\Pi \in Irr(G)_H$, that is, when Π occurs in *C*[∞](*G/H*).

Question What if the G'-action on X = G/H is proper?

Proper action and Admissible restriction $\underline{H} \nearrow G \searrow \underline{G'}$

Setting:
$$G' \subset G \supset H$$
 real reductive, $X := G/H$.
reductive symmetric space

Theorem 4^{*} Suppose
$$G' \cap X$$
 proper and $X_{\mathbb{C}}$ is $G'_{\mathbb{C}}$ -spherical.
If $\Pi \in \widehat{G}$ is *H*-distinguished, then the restriction $\Pi|_{G'}$ is *G'*-admissible and the multiplicities are uniformly bounded.

Cf. Theorem 1 (admissibility criterion) is formulated purely by representation theory. The proof of Theorem 4 is geometric and interacts with a structure of three rings of invariant differential operators.

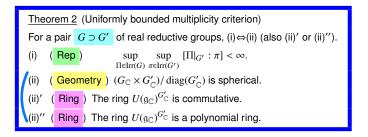
* T. Kobayashi, Global analysis by hidden symmetry, Progr. Math., **323** (2017), 359–397; Kassel–TK, Lecture Notes in Math. (2015).

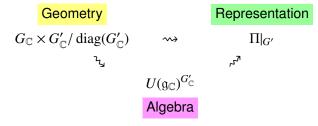
- Spectral analysis on $\Gamma \setminus G/H$ beyond the Riemannian setting.
- Admissible restriction to reductive subgroups.
- Bounded/finite multiplicities in the branching laws.
- Restriction of *H*-distinguished representations. $H \nearrow G \searrow G'$
- Three rings of invariant differential operators. $H \nearrow G \searrow G'$

ション 小田 マイビット ビー シックション

• Main theorem: Spectral Analysis on $\Gamma \setminus G/H$.

Good Control of Restriction $G \downarrow G'$





◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

* T. Kobayashi, T. Oshima, Adv. Math., 248 (2013), 921–944 for (i) ⇔ (ii).

- Spectral analysis on $\Gamma \setminus G/H$ beyond the Riemannian setting.
- Admissible restriction to reductive subgroups.
- Bounded/finite multiplicities in the branching laws.
- Restriction of *H*-distinguished representations. $\begin{array}{c|c} H \nearrow G \searrow G' \\ \hline H \nearrow G \searrow G' \end{array}$

ション 小田 マイビット ビー シックション

- Three rings of invariant differential operators.
 - Main theorem: Spectral Analysis on $\Gamma \setminus G/H$.

Ring structure of $\mathbb{D}_{G'_{\mathcal{C}}}(X_{\mathbb{C}})$ **for** H $\stackrel{\text{ind}}{\sim} G \searrow^{\text{rest}} G'$

We focus on two rings of differential operators on $X_{\mathbb{C}} = G_{\mathbb{C}}/H_{\mathbb{C}}$.

- (1) $\mathcal{P} := \mathbb{D}_{G_{\mathbb{C}}}(X_{\mathbb{C}})$: $G_{\mathbb{C}}$ -invariant differential operators;
- (2) $\mathcal{R} := dl(Z(\mathfrak{g}_{\mathbb{C}}))$: induced from the center $Z(\mathfrak{g}_{\mathbb{C}})$ of $U(\mathfrak{g}_{\mathbb{C}})$.

$$\mathcal{P} \quad \rightsquigarrow \Pi \in \operatorname{Irr}(G)_H,$$
$$\mathcal{R} \quad \rightsquigarrow \pi \in \operatorname{Irr}(G').$$

Understanding the relation between \mathcal{P} and \mathcal{R} will help us to understand branching $G \downarrow G'$.

Hidden Symmetries and Invariant Differential Operators

We recall $G'_{\mathbb{C}} \subset G_{\mathbb{C}} \frown X_{\mathbb{C}}$.

We shall see a "hidden symmetry" of the algebra $Z(g_{\mathbb{C}})$ in the space of joint eigenfunctions for the algebra $\mathbb{D}_G(X_{\mathbb{C}})$:

$$Z(\mathfrak{g}_{\mathbb{C}}') \quad \mathbb{D}_{G_{\mathbb{C}}}(X_{\mathbb{C}}) \stackrel{\sim}{\sim} C^{\infty}(X; \mathcal{M}_{\lambda}).$$

・ロト・日本・日本・日本・日本・日本

under the assumption is that $X_{\mathbb{C}}$ is $G'_{\mathbb{C}}$ -spherical.

Geometry for H ind $G \searrow$ G'

Let $H \subset G \supset G'$ be real reductive Lie groups. Assume that $G' \curvearrowright X = G/H$ proper and that $X_{\mathbb{C}} = G_{\mathbb{C}}/H_{\mathbb{C}}$ is $G'_{\mathbb{C}}$ -spherical.

Ε	G'	-fibration	F	\rightarrow	X	\rightarrow	Y
	Sig	nature	(0,q)		(p,q)		(p,0)

Example
$$(G, G') = (SO(2m, 2), U(m, 1))$$

anti de Sitter space Hermitian ball
 $S^1 \rightarrow AdS^{2m+1} \rightarrow \{z \in \mathbb{C}^m : |z| < 1\}.$

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

* TK, Invent. Math., 1994.

$$G' \qquad \qquad X = G/H$$

$$\rightsquigarrow \exists G'$$
-fibration $F \to X \to Y$.

$$G' \qquad \qquad X = G/H$$

$$\rightsquigarrow \exists G'$$
-fibration $F \to X \to Y$.

Two subalgebras of $\mathbb{D}_{G'}(X)$

$$\mathcal{P} := \mathbb{D}_G(X)$$
, $Q := \iota(\mathbb{D}_{K'}(F))$, $\mathcal{R} := dl(Z(\mathfrak{g}_{\mathbb{C}}'))$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

$$F = K'/H' \hookrightarrow X = G/H \to Y = G'/K'$$
 (fibration)

 $\rightsquigarrow \exists G'$ -fibration $F \to X \to Y$.

Three Two subalgebras of $\mathbb{D}_{G'}(X)$

$$\mathcal{P} := \mathbb{D}_G(X), \quad \mathbf{Q} := \iota(\mathbb{D}_{K'}(F)), \quad \mathcal{R} := dl(Z(\mathfrak{g}_{\mathbb{C}}))$$

<u>Theorem 5</u> (Kassel–TK,19)* Assume $X_{\mathbb{C}}$ is $G'_{\mathbb{C}}$ -spherical. (1) The commutative algebra $\mathbb{D}_{G'}(X)$ is generated by \mathcal{P} and \mathcal{R} .

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

* F. Kassel-K, Invariant differential operators on spherical homogeneous spaces ..., JLT (2019).

$$F = K'/H' \hookrightarrow X = G/H \to Y = G'/K'$$
 (fibration)

 $\rightsquigarrow \exists G'$ -fibration $F \to X \to Y$.

Three Two subalgebras of $\mathbb{D}_{G'}(X)$

$$\mathcal{P} := \mathbb{D}_G(X), \quad \mathbf{Q} := \iota(\mathbb{D}_{K'}(F)), \quad \mathcal{R} := dl(Z(\mathfrak{g}_{\mathbb{C}}'))$$

<u>Theorem 5</u> (Kassel–TK,19)* Assume X_C is G'_C-spherical.
(1) The commutative algebra D_{G'}(X) is generated by *P* and *R*. Let K' be a maximal subgroup of G' containing H'.
(2) D_{G'}(X) is generated by *P* and *Q*, too.
(3) D_{G'}(X) is generated by *Q* and *R*, in the quotient field.

* F. Kassel-K, Invariant differential operators on spherical homogeneous spaces ..., JLT (2019).

- Spectral analysis on $\Gamma \setminus G/H$ beyond the Riemannian setting.
- Admissible restriction to reductive subgroups.
- Bounded/finite multiplicities in the branching laws.
- Restriction of *H*-distinguished representations. $\begin{array}{c|c} H \nearrow G \searrow G' \\ \hline H \nearrow G \searrow G' \end{array}$

ション キョン キョン キョン しょう

- Three rings of invariant differential operators.
 - Main theorem: Spectral Analysis on $\Gamma \setminus G/H$.

- Spectral analysis on $\Gamma \setminus G/H$ beyond the Riemannian setting.
- Admissible restriction to reductive subgroups.
- Bounded/finite multiplicities in the branching laws.
- Restriction of *H*-distinguished representations. $H \nearrow G \searrow G'$
- Three rings of invariant differential operators. $H \nearrow G \searrow G'$

 $\Gamma \subset G'$

ション キョン キョン キョン しょう

• Main theorem: Spectral Analysis on $\Gamma \setminus G/H$.

Application of branching problem $G \downarrow G'$

We apply these results to the spectral analysis of

standard, pseudo-Riemannian locally symmetric space $\Gamma \setminus G/H$

beyond the Riemannian setting:

• (G, H) is a reductive symmetric pair with H non-compact.

- G' acts properly on X = G/H.
- Γ is a torsion-free discrete subgroup of G'.

Spectral analysis of standard locally symmetric space $\Gamma \setminus G/H$ Let X = G/H be a reductive symmetric space. We set

$$\mathbb{D}_{G}(X)^{\wedge} := \operatorname{Hom}_{\mathbb{C}\text{-alg}}(\mathbb{D}_{G}(X), \mathbb{C}) \ni \lambda$$

$$\rightsquigarrow \mathcal{M}_{\lambda} : Df = \lambda(D)f \quad \forall D \in \mathbb{D}_{G}(X).$$

<u>Problem</u> Find spectral decomposition of $C_c^{\infty}(X_{\Gamma})$ and $L^2(X_{\Gamma})$ for "intrinsic differential operators" on X_{Γ} induced from $\mathbb{D}_G(X)$.

Spectral analysis of standard locally symmetric space $\Gamma \backslash G/H$

Let X = G/H be a reductive symmetric space. We set

$$\mathbb{D}_G(X)^{\wedge} := \operatorname{Hom}_{\mathbb{C}\text{-alg}}(\mathbb{D}_G(X), \mathbb{C}) \ni \lambda$$

$$\rightsquigarrow \mathcal{M}_{\lambda} : Df = \lambda(D)f \quad \forall D \in \mathbb{D}_G(X).$$

Suppose that a reductive subgroup G' acts on X properly such that $X_{\mathbb{C}}$ is $G'_{\mathbb{C}}$ -spherical. Take any discrete subgroup Γ of G'.

<u>Main Theorem</u> (expansion into eigenfunctions, Kassel–TK^{*}, 2025) There exist measure μ on $\mathbb{D}_G(X)^{\wedge}$ and a measurable family of maps $\mathcal{F}_{\lambda} \colon C_c^{\infty}(\Gamma \setminus X) \to C^{\infty}(\Gamma \setminus X; \mathcal{M}_{\lambda})$

s.t. any $f \in C_c^{\infty}(\Gamma \setminus X)$ is expanded into joint eigenfunctions on $\Gamma \setminus X$:

$$f = \int_{\mathbb{D}_G(X)^{\wedge}} \mathcal{F}_{\lambda} f \, d\mu(\lambda),$$

$$\|f\|_{L^2(\Gamma \setminus X)}^2 = \int_{\mathbb{D}_G(X)^\wedge} \|\mathcal{F}_{\lambda}f\|_{L^2(\Gamma \setminus X)}^2 d\mu(\lambda).$$

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

* F. Kassel-K, Spectral analysis on standard locally homogeneous spaces. Lecture Notes in Math. 2025, 126 pages. (in

press).

- Spectral analysis on $\Gamma \setminus G/H$ beyond the Riemannian setting.
- Admissible restriction to reductive subgroups.
- Bounded/finite multiplicities in the branching laws.
- Restriction of *H*-distinguished representations. $H \nearrow G \searrow G'$
- Three rings of invariant differential operators. $H \nearrow G \searrow G'$

 $\Gamma \subset G'$

ション キョン キョン キョン しょう

• Main theorem: Spectral Analysis on $\Gamma \setminus G/H$.

Strategy for Spectral Analysis on $\Gamma \setminus G/H$

1. Standard quotient

$$\Gamma \subset \mathbf{G'} \subset \mathbf{G} \xrightarrow{\sim} X \quad \rightsquigarrow \quad \Gamma \backslash X = \Gamma \backslash G / H$$

2. (Hidden symmetry) If $G'_{\mathbb{C}} \curvearrowright X_{\mathbb{C}}$ is spherical, one has (Theorems 2, 3, 5)

$$Z(\mathfrak{g}_{\mathbb{C}}') \quad \mathbb{D}_{G_{\mathbb{C}}}(X_{\mathbb{C}}) \stackrel{\text{hidden symmetry}}{\longrightarrow} C^{\infty}(X; \mathcal{M}_{\lambda}).$$

3. (Branching law $G \downarrow G'$) If $G' \curvearrowright X$ proper, then any $\pi \in Irr(G)$ realized in $C^{\infty}(X)$ is G'-admissible (Theorem 4).

Thank you very much!

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

References

1. Geometric Part (Discontinuous Groups)

T. Kobayashi, Proper action on homogeneous spaces..., Math Ann 1989

2. Admissible Restrictions

T.Kobayashi, Invent Math 1994, Annals of Math 1998; Invent. Math 1998; Proc ICM2002; PAMQ 2021

3. Bounded Multiplicity Theorems

T.Kobayashi, Introduction to analysis on real spherical spaces, 1995

T.Kobayashi - T.Oshima, Advances in Math 2013,

T. Kobayashi, J. Lie Theory 2022.

4. Hidden Symmetry and Ring of Invariant Differential Operators

T.Kobayashi Progress Math 2017 (in honor of R. Howe)

T.Kobayashi-F.Kassel, J Lie Theory 2019

5. Analysis on Pseudo-Riemannian Locally Symmetric Spaces

F.Kassel-T.Kobayashi, Lecture Notes in Mathematics, 126 pages, Springer Nature. In Press. To appear in February 2025.

