

Basic Questions in Group-Theoretic Analysis on Manifolds

Toshiyuki Kobayashi

The Graduate School of Mathematical Sciences, The University of Tokyo http://www.ms.u-tokyo.ac.ip/~toshi/

Introductory school at CIRM (Marseille):

Methods in representation theory and operator algebras
6–10 January 2025

Basic Questions in Group-Theoretic Analysis on Manifolds

$$G \curvearrowright X$$
 \leadsto $G \curvearrowright C^{\infty}(X), L^2(X), \cdots$ Geometry Functions

- Plan
 - 1. Is representation theory useful to the global analysis on *X*?
 - 2. What can we say about the "spectrum" on $L^2(X)$?

IHP Minicourses: More details on two "young" areas

The forthcoming two mini-courses, designed for students and non-experts, will address two "young" research themes related to these questions, to be held in January and February at IHP, Paris.

1. Branching Problems and Symmetry Breaking

IHP Mini-Courses by B. Ørsted, M. Pevzner, B. Speh, and TK January 13–17, Paris,

2. "Tempered Spaces"

— "Geometry" for Tempered Representations

IHP Mini-Courses by TK February 17–21, Paris.

Regular Representation 1

$$G \curvearrowright X$$
 (manifold) $\leadsto G \curvearrowright C^{\infty}(X), L^2(X), \cdots$
Geometry Functions

$$G^{\wedge}C^{\infty}(X)$$

One deduces a rep of G on $C^{\infty}(X)$ by $f(x) \mapsto f(g^{-1}x)$.

$$G \stackrel{A_X}{\frown} L^2(X)$$
: the canonical unitary representation of G .

$$L^2(X) := L^2(X, \nu_X)$$
 if $^{\exists}G$ -invariant Radon measure ν_X .

More generally, define $L^2(X)$ by using the half-density bundle of X or by a multiplier rep built on the cocycle c(g,x), where $g_*\nu_X=c(g,x)\nu_X$ (Radon–Nykodim derivative).

Regular Representation 2

$$G \curvearrowright X$$
 (manifold) $\leadsto G \curvearrowright^{\lambda_X} L^2(X)$ (Hilbert space)

 $\widehat{G} := \{ \text{irreducible unitary representations} \quad \text{(unitary dual).}$

<u>Mautner</u>: Any unitary rep Π of G is disintegrated into irreducibles:

$$\Pi \simeq \int_{\widehat{G}}^{\oplus} \underline{m_{\pi}} \pi \, d\mu(\pi)$$
 (direct integral)

$$m \colon \widehat{G} \to \mathbb{N} \cup \{\infty\}, \quad \pi \mapsto m_{\pi} \quad \text{(multiplicity)}.$$

$$\underline{m_{\pi}} \pi = \underbrace{\pi \oplus \cdots \oplus \pi}_{m_{\pi}}$$

Simple Lie groups, Reductive Lie groups

Viewpoints from "Analysis and Synthesis"

- The "smallest units" of (unitary) representations are irreducible (unitary) representations.
- The "smallest units" of Lie groups are one-dimensional abelian groups and simple Lie groups.
 - Simple Lie groups:
 A Lie group G of dimension N (> 1) is a simple Lie group
 e.g. SL(n, ℝ), SL(n, ℂ), SO(p,q) (p + q ≠ 2,4),
 - Reductive Lie group \sqsubseteq abelian \times simple Lie groups e.g. $GL(n,\mathbb{R}), GL(n,\mathbb{C}), SO(p,q)$ (p,q: any), \cdots

Basic Questions in Group-Theoretic Analysis on Manifolds

- General questions on regular representations
 - 1. Does the group sufficiently control the space of functions?
 - 2. What can we say about the "spectrum" on $L^2(X)$?

Global analysis via representation theory

$$G \curvearrowright X$$
 \leadsto $G \curvearrowright C^{\infty}(X), L^2(X), \cdots$ Geometry Functions

Basic Question 1

Is representation theory useful to the global analysis on X?

Connection of the two viewpoints

X: (pseudo-)Riemannian manifold

Spectral analysis of
$$\Delta_X$$
: $L^2(X) \simeq \int \mathcal{H}_{\lambda} d\tau(\lambda)$. "generalize" $\cite{1mm}$ $\cite{1mm}$ if $m_{\pi} = 1$

Representation Theory: $L^2(X) \simeq \int_{\widehat{G}}^{\oplus} m_{\pi} \pi d\mu(\pi)$.

Group action: $G \curvearrowright X$

$$\begin{array}{cccc} \underline{\text{Example}} & & & \\ \hline O(n+1) & \curvearrowright & \mathbb{S}^n, \\ O(n,1) & \curvearrowright & \mathbb{H}^n & \text{(hyperbolic space),} \\ O(p,q) & \curvearrowright & \text{Space form} & \text{(pseudo-Riemannian).} \end{array}$$

Multiplicities in regular representations

$$G \cap X$$
 \leadsto $G \cap C^{\infty}(X), L^2(X), \cdots$ Geometry Functions

Basic Question 1

Is representation theory useful to the global analysis on X?

Hint for rigorous formulation. In group representations:

- -strong point: Can distinguish inequivalent irreducible reps even they are infinite-dimensional.
- -weak point: Multiplicity.

(cannot distinguish a multiple of the same irreducible reps)

Multiplicities in regular representations

$$G \cap X$$
 \leadsto $G \cap C^{\infty}(X)$ (regular rep)

Geometry Functions

Basic Question 1

Does the group G "control well" the function space $C^{\infty}(X)$?

Formulation Consider the multiplicity, i.e.,

the dimension of $\operatorname{Hom}_G(\pi, C^{\infty}(X))$ for $\pi \in \operatorname{Irr}(G)$.

infinite, finite, bounded, 0 or 1

control better

Spherical manifold

 $G_{\mathbb{C}}$: a complex reductive Lie group.

= maximal connected solvable subgp of $G_{\mathbb C}$

e.g.
$$B = \{ \begin{pmatrix} * & * & * \\ 0 & * & * \\ 0 & 0 & * \end{pmatrix} \} \subset GL(3, \mathbb{C}) = G_{\mathbb{C}}$$

 $G_{\mathbb{C}}$ complex reductive $forall X_{\mathbb{C}}$ complex manifold (connected)

<u>Definition</u> $X_{\mathbb{C}}$ is **spherical** if a Borel subgroup B of $G_{\mathbb{C}}$ has an open orbit in $X_{\mathbb{C}}$.

<u>Example</u> Grassmannian varieties, flag varieties, symmetric spaces, are typical examples of spherical spaces.

Multiplicities in regular representations

$$G \curvearrowright X$$
 \leadsto $G \curvearrowright C^{\infty}(X)$ (regular rep)
Geometry Functions

Basic Question 1

Does the group G "control well" the function space $C^{\infty}(X)$?

<u>Formulation</u> Find a geometric estimate of the **multiplicity**

$$\dim_{\mathbb{C}} \operatorname{Hom}_{G}(\pi, C^{\infty}(X))$$
 for $\pi \in \operatorname{Irr}(G)$.

infinite, finite, bounded, 0 or 1

When does the group "control" well the function space?

For a pair of reductive Lie groups $G \supset H$, consider X = G/H.

Theorem A^* The following 4 conditions are equivalent:

- (i) (Global analysis & rep theory) There exists C > 0 s.t. $\dim \operatorname{Hom}_G(\pi, C^{\infty}(X)) \leq C$ for all $\pi \in \operatorname{Irr}(G)$.
- (ii) (Complex geometry) $X_{\mathbb{C}}$ is spherical.
- (ii)' (Algebra) The ring $\mathbb{D}_{G_{\mathbb{C}}}(X_{\mathbb{C}})$ is commutative.
- **(ii)**" (Algebra) The ring $\mathbb{D}_{G_{\mathbb{C}}}(X_{\mathbb{C}})$ is a polynomial ring.
- Remarkably, (i) uniform boundedness of the multiplicity is detected soley by the complexification $X_{\mathbb{C}} = G_{\mathbb{C}}/H_{\mathbb{C}}$ in (ii)-(ii)".
- The equiv (ii) ⇔ (ii)' ⇔ (ii)" was proven by Vinberg, Knop,
- The equivalence (i) ⇔ (ii) gives a strong tie between

Global analysis ← Algebra, Geometry,

which was proven in TK-T. Oshima*.

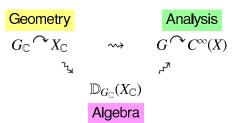
^{*} T. Kobayashi, T. Oshima, Adv. Math., 248 (2013), 921-944 for (i) ⇔ (ii).

When does the group "control" well the function space?

Theorem A* Let X = G/H, where $G \supset H$ are reductive Lie groups.

The following four conditions (i), (ii), (ii)' and (ii)" are equivalent:

- (i) (Global analysis & rep theory There exists C > 0 such that $\dim \operatorname{Hom}_G(\pi, C^\infty(X)) \leq C$ for all $\pi \in \operatorname{Irr}(G)$.
- (ii) (Complex geometry) $X_{\mathbb{C}}$ is spherical.
- (ii)' (Ring) The ring $\mathbb{D}_{G_{\mathbb{C}}}(X_{\mathbb{C}})$ is commutative.
- (ii)" (Ring) The ring $\mathbb{D}_{G_{\mathbb{C}}}(X_{\mathbb{C}})$ is a polynomial ring.



^{*} T. Kobayashi–T. Oshima, "Finite multiplicity theorems for induction and restriction", Adv. Math., (2013), for (i)⇔(ii).

Sketch of proof

(i) Global Analysis & Rep Theory \iff (ii) Complex Geometry $\dim \operatorname{Hom}_{\mathbb{C}}(\pi, C^{\infty}(X)) \leq C$ $G_{\mathbb{C}} \curvearrowright X_{\mathbb{C}}$ spherical

The original proof in [KO]* uses PDEs and integration.

Methods of proof*: Interpret (i) by means of PDEs

- $(i) \leftarrow (ii)$ (Differential equations)
- Determine "solutions to PDEs" by "boundary values"

 - Equivariant compactification
 - + hyperfunction-valued boundary maps for a system of PDEs.
- $(i) \Rightarrow (ii)$ (Integral operator)
- Construct "solutions to PDEs" from "data on boundaries"
 - Find integral operators from functions on boundaries (a generalization of the Poisson integral).

^{*} T. Kobayashi, T. Oshima, Adv. Math., 248 (2013), 921-944.

Induction vs. Restriction

$$H$$
 \subset G groups
$$\{H\text{-modules}\}$$

$$\{G\text{-modules}\}$$

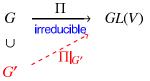
$$\{R\text{estriction} \}$$

Example (Induction)
$$\operatorname{Ind}_H^G(1) \simeq C^\infty(G/H), L^2(G/H), \cdots,$$
 (depending on the class of "Induction").

We now consider the H-module by Restriction:

$$\Pi|_H \equiv \operatorname{Rest}_H^G(\Pi)$$
 for $\Pi \in \operatorname{Irr}(G)$.

Branching problems in the general setting



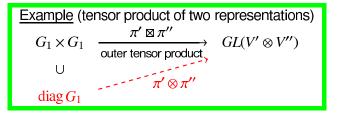
Branching problems in the general setting

$$G \xrightarrow{\text{II}} GL(V)$$

$$U$$

$$G'$$

$$GL(V)$$



Branching problems in the general setting

$$G \xrightarrow{\Pi} GL(V)$$

$$U \xrightarrow{\text{irreducible}} G$$

$$G'$$

Branching problem (in a broader sense than the usual) \cdots wish to understand how the restriction $\Pi|_{G'}$ behaves as a G'-module.

• For
$$\Pi \in Irr(G)$$
, $\pi \in Irr(G')$,
$$[\Pi|_{G'}:\pi] := \dim \operatorname{Hom}_{G'}(\Pi|_{G'},\pi).$$

Good Control of Restriction $G \downarrow G'$

<u>Theorem B</u> (Uniformly bounded multiplicity criterion)

For a pair $G \supset G'$ of real reductive groups, (i) \Leftrightarrow (ii) (\Leftrightarrow (ii)").

- (i) (Rep) $\sup_{\Pi \in \operatorname{Irr}(G)} \sup_{\pi \in \operatorname{Irr}(G')} [\Pi|_{G'} : \pi] < \infty.$
- (ii) (Geometry) $(G_{\mathbb{C}} \times G'_{\mathbb{C}}) / \operatorname{diag}(G'_{\mathbb{C}})$ is spherical.
- (ii)' (Ring) The ring $U(\mathfrak{g}_{\mathbb{C}})^{G'_{\mathbb{C}}}$ is commutative.
- (ii)" (Ring) The ring $U(\mathfrak{g}_{\mathbb{C}})^{G'_{\mathbb{C}}}$ is a polynomial ring.
- The equivalence (i) ⇔ (ii) is proved in (T. Kobayashi–T. Oshima)*.
- A stronger estimate for (ii) ⇒ (i), namely, multiplicity-free theorem holds for most of (not all of) the cases (Sun–Zhu)**.
- Classification for (ii): If G is simple, (g, g') is $(\mathfrak{sl}(n, \mathbb{C}), \mathfrak{gl}(n-1, \mathbb{C}))$, $(\mathfrak{so}(n, \mathbb{C}), \mathfrak{so}(n-1, \mathbb{C}))$, or their real forms up to automorphisms.

^{*} T. Kobayashi–T. Oshima, "Finite multiplicity theorems for induction and restriction", Adv. Math., (2013), 921–943.

^{**} Sun-Zhu, "Multiplicity one theorems: the Archimedian case", Ann. of Math., (2012), 23-44.

Good Control of Restriction $G \downarrow G'$

<u>Theorem B</u> (Uniformly bounded multiplicity criterion)

For a pair $G \supset G'$ of real reductive groups, (i) \Leftrightarrow (ii) (also (ii)' or (ii)").

- (i) (Rep) $\sup_{\Pi \in \operatorname{Int}(G')} \sup_{\pi \in \operatorname{Int}(G')} [\Pi|_{G'} : \pi] < \infty.$
- (ii) (Geometry) $(G_{\mathbb{C}} \times G'_{\mathbb{C}})$ / diag $(G'_{\mathbb{C}})$ is spherical.
- (ii)' (Ring) The ring $U(\mathfrak{g}_{\mathbb{C}})^{G_{\mathbb{C}}'}$ is commutative.
- (ii)" (Ring) The ring $U(\mathfrak{g}_\mathbb{C})^{G_\mathbb{C}}$ is a polynomial ring.

Geometry Representation $G_{\mathbb{C}} \times G'_{\mathbb{C}} / \operatorname{diag}(G'_{\mathbb{C}}) \qquad \leadsto \qquad \prod_{G'} \\ U(\mathfrak{g}_{\mathbb{C}})^{G'_{\mathbb{C}}} \\ \operatorname{Algebra}$

Basic Questions in Group-Theoretic Analysis on Manifolds

Plan

General questions on regular representations

$$G \curvearrowright X$$
 (manifold) $\leadsto G \curvearrowright C^{\infty}(X), L^2(X), \cdots$
Geometry Functions

- Does the group sufficiently control the space of functions on X?
- 2. What can we say about the "spectrum" on $L^2(X)$?

Second theme of this talk

 $G \cap X$ \leadsto $G \cap L^2(X)$ (regular rep)

Geometry Function Space

Basic Question 2 What can we say about the "spectrum" on $L^2(X)$?

Tempered representations

Let G be a locally compact group.

<u>Def</u> A unitary rep π of G is called <u>tempered</u> if $\pi < L^2(G)$.

weakly contained

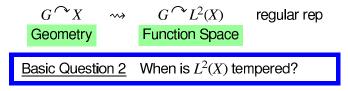
i.e., every matrix coefficient of π is a uniform limit on every compacta of G by a sequence of sum of coefficients of $L^2(G)$.

- $G \cap L^2(G)$ (regular rep) $L^2(G) \ni f(x) \mapsto f(g^{-1}x) \in L^2(G)$.
- For a unitary rep π of G on a Hilbert space H, matrix coefficients are functions on G defined by

$$\varphi_{u,v}(g) := (\pi(g)u, v)_{\mathcal{H}} \in C(G)$$

for $u, v \in \mathcal{H}$.

When is $L^2(X)$ tempered?



i.e., for which G-space X, does one have $L^2(X) < L^2(G)$?

Question: When is $L^2(X) \prec L^2(G)$?

"Young" research topics that have been recently explored from various disciplines such as

```
algebra (polyhedral combinatorics, \cdots);
analysis (functional analysis, L^p-matrix coefficients, \cdots);
geometry (dynamical system, geometric quantization, \cdots);
topology (limit algebras, quantification of proper actions, \cdots).
```

More details:

"Tempered Spaces"

"Geometry" for Tempered Representations

IHP Mini-Courses, February 17–21, Paris.

References Y. Benoist–TK, "Tempered Homogeneous Spaces" I (2015), II (2022), III (2021), IV (2023), $+\varepsilon$.

Temperedness under disintegration

Mautner: Any unitary rep II can be decomposed into irreducibles:

$$\Pi \simeq \int_{\widehat{G}}^{\oplus} m_{\pi} \, \pi \, d\mu(\pi) \qquad \text{(direct integral)}.$$

<u>Fact</u> Π is tempered \Leftrightarrow <u>irreducible</u> reps π are tempered for μ -a.e.

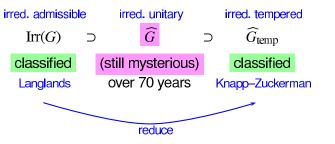
$$\widehat{G}$$
 = {irreducible unitary reps} \cup $\widehat{G}_{\mathrm{temp}}$ = \widehat{G}_r := {irreducible tempered reps}.

That is,

$$\Pi$$
 is tempered $\iff \int_{\widehat{G}_{\text{temp}}}^{\oplus} m_{\pi} \frac{\pi}{d\mu(\pi)}.$

Classification theory of the unitary dual \widehat{G}

Suppose *G* is a real reductive Lie group (e.g., $GL(n, \mathbb{R})$, O(p, q)).



Tempered representations (warming up)

```
V. Bargmann (1947): Irreducible unitary reps of SL(2,\mathbb{R})
= { 1 } \coprod { principal series } \coprod { complementary series } \coprod { discrete series } \coprod { limit of discrete series }
```

Tempered representations (warming up)

```
V. Bargmann (1947): Irreducible unitary reps of SL(2,\mathbb{R})
= { 1 } \coprod { principal series } \coprod { complementary series } \coprod { discrete series } \coprod { limit of discrete series }
```

 $-\frac{1}{2}$ Casimir operator acts on them as scalars

$$\{0\}$$
, $\left[\frac{1}{4}, \infty\right)$, $\left(0, \frac{1}{4}\right)$, $\left\{\frac{1}{4}(n^2 - 1) : n \in \mathbb{N}_+\right\}$, $\{0\}$

 Γ : congruence subgroup of $G = SL(2, \mathbb{R})$

Selberg's $\frac{1}{4}$ eigenvalue conjecture *:

All eigenvalues of Δ on Maas wave forms for $\Gamma \geq \frac{1}{4}$.

 \iff The unitary rep of $G \cap L^2_{\text{cusp}}(\Gamma \backslash G)$ is tempered.

Just one irred non-tempered rep would disprove the conjecture.

^{*} A. Selberg, On the estimate of Fourier coefficients of modular forms, Proc. Symp. Pure Math. 1965.

When is $L^2(X)$ tempered?

$$G \curvearrowright X \qquad \leadsto \qquad G \curvearrowright L^2(X) \qquad \text{regular rep}$$
 Geometry Function Space

Basic Question 2 When is $L^2(X)$ tempered, that is, when is $L^2(X)$ weakly contained in $L^2(G)$?

- Even when X = G/H is a reductive symmetric space, this question involves a hard problem regarding vanishing conditions of cohomological parabolic inductions with singular parameters.
- How about more general (non-symmetric) space X = G/H?

→ A new machinery?

Examples of temperedness criterion

$$\begin{array}{c|c} \underline{\mathsf{Example}(2022^*)} & G = GL(p+q+r,\mathbb{R}) \\ & H & L^2(G/H) \text{ is tempered} \\ & p + q + r \\ p & & & \\ q & & & \\ r & & & \\ \end{array}$$

$$\begin{cases} p \leq q+r+1 \\ q \leq p+r+1 \\ r \leq p+q+1 \end{cases}$$

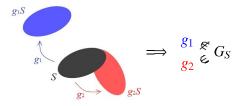
$$\begin{cases} p = 1 \\ q \leq r+1 \\ r \leq q+1 \end{cases}$$

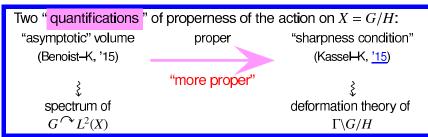
Why?

^{*} Y. Benoist-T. Kobayashi, Tempered homogeneous spaces II, In; Festschrift of Margulis, Chicago Univ. Press, (2022).

Topology (proper actions) → Quantification

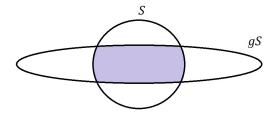
<u>Definition</u> A continuous action $G \cap X$ is called <u>proper</u> if the subset $G_S := \{g \in G : S \cap gS \neq \emptyset\}$ is compact for any compact subset $S \subset X$.





First key idea for temperedness criterion

• Study the asymptotic decay of $vol(S \cap gS)$ as $G \ni g$ tends to "infinity" when S is a compact subset in X.



Function $\rho_{\mathfrak{h}} \colon \mathfrak{h} \to \mathbb{R}_{\geq 0}$

Setting

η: Lie algebra

ad: $\mathfrak{h} \to \operatorname{End}_{\mathbb{R}}(\mathfrak{h})$: adjoint representation

We set

$$\rho_V \colon \mathfrak{h} \to \mathbb{R}_{\geq 0}, \quad Y \mapsto \frac{1}{2} \sum |\operatorname{Re} \lambda|$$

where the sum is taken over all eigenvalues λ of the complex linear extension $\tau(Y)_{\mathbb{C}} \in \operatorname{End}(\mathfrak{h}_{\mathbb{C}})$.

ullet Coincide with the usual ho on the dominant chamber.

Tempered criterion for G/H

Theorem C (2015*, 2022)*

Let H be a connected subgp of a real reductive Lie group G. Then (i) \Leftrightarrow (ii).

- (i) (Global analysis & rep theory) $L^2(G/H)$ is tempered.
- (ii) (Combinatorial geometry) $2\rho_{\mathfrak{h}}(Y) \leq \rho_{\mathfrak{g}}(Y)$, $\forall Y \in \mathfrak{h}$.

$$\rho_{\mathfrak{h}}$$
 is for ad: $\mathfrak{h} \to \operatorname{End}(\mathfrak{h})$,
$$\rho_{\mathfrak{g}}$$
 is for $\mathfrak{h} \hookrightarrow \mathfrak{g} \xrightarrow{\operatorname{ad}} \operatorname{End}(\mathfrak{g})$.

<u>Remark</u> The criterion can be used to detect whether $L^2(X)$ is tempered or not for any real algebraic variety X with algebraic G-action, even when the G-action on X is not transitive.

^{*} Y. Benoist-T. Kobayashi, Tempered homogeneous spaces I, II, Euro. J. Math. 17 (2015), pp. 3015-3036; Univ. Chicago

$$G/H = GL(p+q+r)/GL(p) \times GL(q) \times GL(r)$$

Example Equivalent (i) \iff (ii).

- (i) $2\rho_{\mathfrak{h}} \leq \rho_{\mathfrak{g}}$ (Temperedness Criterion).
- (ii) $2 \max(p, q, r) \le p + q + r + 1$.

<u>Proof</u> The condition $2\rho_{\rm b} \le \rho_{\rm a}$, amounts to:

$$\sum_{1 \leq i < j \leq p} \left| \begin{array}{c|c} x_i & - x_j \end{array} \right| + \sum_{1 \leq i < j \leq q} \left| \begin{array}{c|c} y_i & - y_j \end{array} \right| + \sum_{1 \leq i < j \leq r} \left| \begin{array}{c|c} z_i & - z_j \end{array} \right|$$

$$\leq \sum_{\substack{1 \leq i \leq p \\ 1 \leq j \leq q}} \left| \begin{array}{c|c} x_i & - y_j \end{array} \right| + \sum_{\substack{1 \leq j \leq q \\ 1 \leq k \leq r}} \left| \begin{array}{c|c} y_j & - z_k \end{array} \right| + \sum_{\substack{1 \leq k \leq r \\ 1 \leq i \leq p}} \left| \begin{array}{c|c} z_k & - x_i \end{array} \right|$$

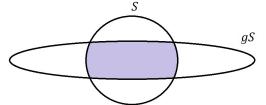
for all $(x_1, \dots, x_p, y_1, \dots, y_q, z_1, \dots, z_r) \in \mathbb{R}^{p+q+r}$ with $\sum x_i = 0, \sum y_j = 0, \sum z_k = 0$.

By some combinatorics on convex polyhedral cones, one sees

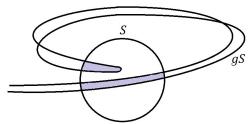
$$2\rho_{\mathfrak{h}} \leq \rho_{\mathfrak{q}} \iff 2 \max(p,q,r) \leq p+q+r+1$$
.

First key idea for temperedness criterion

• Study the asymptotic decay of $vol(S \cap gS)$ as $G \ni g$ tends to "infinity" when S is a compact subset in X = G/H.



Global picture



+ some further ideas for nonreductive *H*.

Collapsing Lie algebras

Definition (limit algebra) $\mathfrak{h} \subset \mathfrak{g}$ Lie algebras

We say h has a solvable limit in g if

 $\exists g_i \in G$ such that $\lim \operatorname{Ad}(g_i)$ is a solvable Lie algebra.

Example Let $n \ge 3$. $\mathfrak{h} = \mathfrak{so}(n)$ is a semisimple subalgebra

Take
$$g_j = \binom{n}{n-1} \cdot (j = 1, 2, \cdots).$$

Example: $\lim_{i \to \infty} \operatorname{Ad}(g_j)\mathfrak{h} \subset \mathfrak{g}$

$$G = GL(p + q + r)$$

$$\cup$$

$$H = GL(p) \times GL(q) \times GL(r)$$

The Lie algebra $\mathfrak h$ has a solvable limit in $\mathfrak g$,

i.e. \exists a sequence $g_j \in G$ such that $\lim_{j \to \infty} Ad(g_j)$ is solvable.

$$\iff$$
 2 max $(p, q, r) \le p + q + r + 1$.

Example $G/H = GL(p + q + r)/GL(p) \times GL(q) \times GL(r)$

<u>Theorem</u> The following conditions on (p, q, r) are equivalent:

- (i) (Rep Theory) $L^2(G/H)$ is a tempered representation of G.
- (ii) (Combinatorics: $2\rho_{\mathfrak{h}} \leq \rho_{\mathfrak{g}}$)

$$\sum_{1 \le i < j \le p} \left| \begin{array}{c|c} x_i - x_j \end{array} \right| + \sum_{1 \le i < j \le q} \left| \begin{array}{c|c} y_i - y_j \end{array} \right| + \sum_{1 \le i < j \le r} \left| \begin{array}{c|c} z_i - z_j \end{array} \right| \\
\le \sum_{1 \le i \le p} \left| \begin{array}{c|c} x_i - y_j \end{array} \right| + \sum_{1 \le j \le q} \left| \begin{array}{c|c} y_j - z_k \end{array} \right| + \sum_{1 \le k \le r} \left| \begin{array}{c|c} z_k - x_i \end{array} \right| \\
= \sum_{1 \le j \le q} \left| \begin{array}{c|c} x_i - y_j \end{array} \right| + \sum_{1 \le j \le q} \left| \begin{array}{c|c} y_j - z_k \end{array} \right| + \sum_{1 \le k \le r} \left| \begin{array}{c|c} z_k - x_i \end{array} \right|$$

for all
$$(x_1, \dots, x_p)$$
, y_1, \dots, y_q , z_1, \dots, z_r) $\in \mathbb{R}^{p+q+r}$ with $\sum x_i = 0, \sum y_j = 0, \sum z_k = 0$.

- (iii) (Collapsing Lie algebra) \exists a sequence g_j such that $\lim_{j\to\infty} \mathrm{Ad}(g_j)\mathfrak{h}$ is a solvable Lie algebra.
- (iv) (Classification) $2\max(p,q,r) \le p+q+r+1$.

Geometric quantization and temperedness

 $\operatorname{Ad}\colon G o GL_{\mathbb{R}}(\mathfrak{g})$ adjoint representation. Coadjoint orbit $O_{\lambda} := \operatorname{Ad}^*(G)\lambda$ for $\lambda \in \mathfrak{g}^*$. Every O_{λ} carries a symplectic structure (Kostant–Kirillov–Souriau).

"Geometric quantization":
$$g^* \supset O_{\lambda} = \operatorname{Ad}^*(G) \lambda \xrightarrow{?} \pi_{\lambda} \in \widehat{G}$$
symplectic mfd unitary rep

<u>Theorem</u> (2023*)

Suppose G is a complex reductive Lie group, and H a connected closed subgroup. Then (i) \Leftrightarrow (ii).

- (i) $G \cap L^2(G/H)$ is tempered.
- (ii) $\mathfrak{g}_{\text{reg}}^* \cap \mathfrak{h}^{\perp} \neq \emptyset$.

$$\begin{split} \mathbf{g}_{\mathrm{reg}}^* := & \{\lambda \in \mathbf{g}^* : \mathrm{Ad}^*(G) \cdot \lambda \text{ is of maximal dimension} \} \\ \mathbf{b}^\perp := & \{\lambda \in \mathbf{g}^* : \lambda|_{\mathfrak{h}} \equiv 0\} \end{split}$$

^{*} Y. Benoist-T. Kobayashi, Tempered homogeneous spaces IV. J. Inst. Math. Jussieu, 22 (2023), 2879-2906.

Further interactions for "tempered spaces"

Theorem D (2023)* Let \mathfrak{g} be a complex reductive Lie algebra.

The following 4 conditions on a Lie subalgebra h are equivalent.

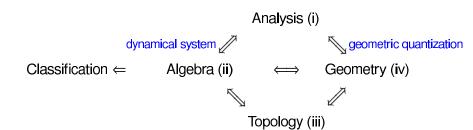
- (i) (unitary rep) $L^2(G/H)$ is tempered.
- (ii) (combinatorics) $2\rho_{\mathfrak{h}} \leq \rho_{\mathfrak{g}}$.
- (iii) (limit algebra) has a solvable limit in g.
- (iv) (orbit method) $\mathfrak{h}^{\perp} \cap \mathfrak{g}_{res}^* \neq \emptyset$ in \mathfrak{g}^* .

^{*} Y. Benoist-T. Kobayashi, Tempered homogeneous spaces IV, J. Inst. Math. Jussieu, 22 (2023), 2879-2906.

Equivalent characterization: Tempered spaces

 $\begin{array}{ll} \underline{\text{Thm (2023)}} \text{ Let } g \text{ be a complex reductive Lie algebra.} \\ \\ \overline{\text{The following 4 conditions on a Lie subalgebra } g \text{ are equivalent.} \\ \hline \text{(i) (unitary rep)} & L^2(G/H) \text{ is } \frac{\text{tempered}}{\text{tempered}}. \\ \\ \hline \text{(ii) (combinatorics)} & 2\rho_0 \leq \rho_3. \\ \\ \end{array}$

(iii) (limit algebra) \mathfrak{h} has a solvable limit in \mathfrak{g} . (iv) (orbit method) $\mathfrak{h}^{\perp} \cap \mathfrak{g}^*_{\text{nso}} \neq \emptyset$ in \mathfrak{g}^* .



Basic Questions in Group-Theoretic Analysis on Manifolds

$$G \curvearrowright X$$
 $\leadsto G \curvearrowright C^{\infty}(X), L^2(X), \cdots$ Geometry Function Space

Basic Question 1 (Multiplicity)

Does the group sufficiently control the space of functions?

Basic Question 2 (Tempered homogeneous spaces) Is $G
ightharpoonup L^2(X)$ a tempered representation?

Thank you very much!

References

The second topic is joint with Yves Benoist. For more details of the talk today, we discuss in IHP, February 17–21.

