Lie Groups and Representation Theory Seminar at the University of Tokyo

リー群論・表現論セミナー

DATE June 29 (Tue), 2021, 17:00–18:00

Place Online

SPEAKER Hidenori Fujiwara (藤原英徳)

TITLE 冪零リー群に対する多項式予想について

Polynomial conjectures for nilpotent Lie groups

Abstract

 $G = \exp \mathfrak{g}$ をリー環 \mathfrak{g} をもつ連結・単連結な冪零リー群とし、 $H = \exp \mathfrak{h}$ をリー環 \mathfrak{h} をも つ G の解析部分群、 χ を H のユニタリ指標とし、G の単項表現 $\tau = \operatorname{ind}_H^G \chi$ を考える。こ のとき、τの既約分解における重複度は一様に有界であるかまたは一様に ∞ に等しいこと が知られている。前者の場合 τ は有限重複度をもつという。さて、データ (H, χ) に伴う G/H 上の直線束に作用する G-不変微分作用素の環を $D_{\tau}(G/H)$ で表す。 τ が有限重複 度をもつことと $D_{\tau}(G/H)$ が可換であることは同値である。1992 年 Corwin-Greenleaf は次の多項式予想を提出した:au が有限重複度をもつとき、環 $D_{ au}(G/H)$ は $\Gamma_{ au}$ 上の H-不変多項式環 $C[\Gamma_{\tau}]^H$ と同型であろう。ここで Γ_{τ} は \mathfrak{g} の双対ベクトル空間の元で h へ の制限が $-\sqrt{-1}d\chi$ を満たすものがなすアファイン部分空間である。群の表現論におい て2つの操作、誘導と制限、の間にはある種の双対性があることが良く知られている。そ こで表現の制限についても多項式予想を考えてみよう。 G をこれまで通り連結・単連結 な冪零リー群、 π をその既約ユニタリ表現とする。K を G の解析部分群とし π の K へ の制限 $\pi|_K$ を考える。今回もまた $\pi|_K$ の既約分解における重複度は一様に有界であるか または一様に ∞ に等しいことが知られている。前者の場合 $\pi|_{K}$ は有限重複度をもつと いい、我々はこれを仮定しよう。G のリー環 g の複素化の包絡環を $U(\mathfrak{q})$ とし、不変微 分作用素環 $(U((\mathfrak{g})/\ker\pi)^K$ を考える。つまり K-不変な元の全体である。すると、 $\pi|_K$ が有限重複度をもつことと $(U((\mathfrak{g})/\ker\pi)^K)$ が可換環であることは同値である。このとき 環 $(U((\mathfrak{g})/\ker\pi)^K$ は $\Omega(\pi)$ 上の K-不変多項式環 $C[\Omega(\pi)]^K$ と同型であろうか? ここで $\Omega(\pi)$ は π に対応する G の余随伴軌道である。 我々はこれら 2 つの多項式予想を証明し たい。

DATE June 29 (Tue), 2021, 17:00–18:00

Place Online

SPEAKER Hidenori Fujiwara

TITLE Polynomial conjectures for nilpotent Lie groups

Abstract

Let $G = \exp \mathfrak{g}$ be a connected and simply connected nilpotent Lie group with Lie algebra \mathfrak{g} . Let $H=\exp \mathfrak{h}$ be an analytic subgroup of G with Lie algebra \mathfrak{h} and χ a unitary character of H. We consider the monomial representation $\tau = \operatorname{ind}_H^G \chi$ of G. It is well known that the multiplicities in the irreducible disintegration of τ are either uniformly bounded or uniformly equal to ∞ . In the former case, we say that τ has finite multiplicities. Now let $D_{\tau}(G/H)$ be the algebra of the G-invariant differential operators on the fiber bundle over G/H associated to the data (H,χ) . This algebra is commutative if and only if τ has finite multiplicities. In 1992 Corwin–Greenleaf presented the following polynomial conjecture: when τ has finite multiplicities, the algebra $D_{\tau}(G/H)$ is isomorphic to the algebra $C[\Gamma_{\tau}]^H$ of the H-invariant polynomial functions on the affine subspace $\Gamma_{\tau} = \{l \in \mathfrak{g}^*; l|_{\mathfrak{h}} = -\sqrt{-1}d\chi\}$ of \mathfrak{g}^* . It is well known in the representation theory of groups that between the two operations of induction and restriction there is a kind of duality. So, we think about a polynomial conjecture for restrictions. Let G be as above a connected and simply connected nilpotent Lie group and π an irreducible unitary representation of G. Let K be an analytic subgroup of G, and we consider the restriction $\pi|_K$ of π to K. This time also it is known that the multiplicities in the irreducible disintegration of $\pi|_{K}$ are either uniformly bounded or uniformly equal to ∞ . In the former case, we say that $\pi|_K$ has finite multiplicities and we assume this eventuality. Let $U(\mathfrak{g})$ be the enveloping algebra of \mathfrak{g}_C , and we consider the algebra $(U(\mathfrak{g})/\ker\pi)_K$ of invariant differential operators. This means the set of the K-invariant elements. This algebra is commutative if and only if $\pi|_K$ has finite multiplicities. In this case, is the algebra $(U(\mathfrak{g})/\ker\pi)^K$ isomorphic to the algebra $C[\Omega(\pi)]^K$ of the K-invariant polynomial functions on $\Omega(\pi)$? Here, $\Omega(\pi)$ denotes the coadjoint orbit of G corresponding to π . We would like to prove these two polynomial conjectures.