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In classical theory of algebraic numbers, the conductor-discriminant
formula asserts that the discriminant of an extension of number fields
is the product of local invariants of ramification called the conductor.
The conductor of a Galois representation plays also a crucial role in
the quantitative formulation of the Langlands correspondences.

In this course, we discuss more geometric aspects of ramification, due
to the following reasons. Firstly, we have a clearer picture and more
complete theory in the geometric case. Secondly, in the arithmetic
case, even in the cases where results similar to the geometric case are
obtained, it usually requires more sophisticated technics.

A prototype of the geometric ramification theory is the Grothendieck-
Ogg-Shafarevich formula [10] that computes the Euler number of an
�-adic sheaf on a curve over an algebraically closed field of positive
characteristic different from �. The formula is a sheaf theoretic re-
finement of the Riemann-Hurwitz formula for a ramified covering of
algebraic curves, which is a geometric counterpart of the conductor-
discriminant formula, with the analogy between the discriminant of
a number field and the genus of a curve. In the Grothendieck-Ogg-
Shafarevich formula, the conductor appears as the local contribution
of ramification.

We will discuss generalizations of the GOS formula through the fol-
lowing three approaches:

1. Ramified coverings and log products.
2. Characteristic classes and characteristic cycles.
3. Blow-up at the ramification locus in the diagonal.

They are related to each other but can be discussed independently at
least in the beginning of the theory. All of the three approaches rely
essentially on constructions using the product that make the theory in
arithmetic case technically more complicated where we need to work
with some substitutes.

Here follows a more concrete description of the course. Using rami-
fied coverings and log products in the first approach, we introduce the
Swan class of an �-adic sheaf ramified along the boundary. The Swan
class is a generalization of the conductor and defined as an 0-cycle
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class supported on the boundary. It enables us to generalize the GOS
formula computing the Euler number to higher dimension.

For an �-adic sheaf on a variety, its characteristic class is defined as a
cohomology class using an abstract formalism and the Lefschetz trace
formula applied to a compactification asserts that its trace computes
the Euler number. Hence, a second approach to a generalization of the
GOS formula is the computation of the characteristic class. The theory
of D-modules suggests that the characteristic cycle [11] defined in the
cotangent bundle gives the class. We observe that this is the case for
rank 1 sheaf at least in a certain favorable situation.

The conductor of a Galois representation of a local field is defined by
the filtration of ramification groups on the Galois group. The definition
of the filtration is generalized to a local field with imperfect residue
field, first using rigid geometry. The interpretation of rigid geometry
in terms of blow-up inspired the third approach. We define the filtration
of ramification groups without using rigid geometry and observe how
the groupoid structure on a blow-up of the product allows us to study
the graded subquotients of the filtration.

The course is intended to make an introduction to the subjects dis-
cussed in a survey article [15]. More details are found in the following
articles; [13] for the first approach, [9], [12], [7], [14] for the second
approach and [5], [6], [14], [8] for the third approach.

The audiences are assumed to have some acquaintances to the fol-
lowing subjects:

Number theory ([1, Parties 1, 2]): Galois theory including infinite
Galois extensions, discrete valuation rings, ...

Algebraic geometry ([4, Exposés I, V], [3, Sections 1, 2]): schemes,
etale morphisms, etale sites, fundamental groups, cohomology, ...

Representations of finite groups ([2]).
We will briefly recall some basic terminologies on etale topology at

the beginning of the course.
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posé X, SGA 5, Springer LNM 589 (1977) 372-406.

[11] M. Kashiwara, P. Schapira, Sheaves on manifolds, Springer-Verlag (1990).
[12] K. Kato, Class field theory, D-modules, and ramification of higher dimensional

schemes, Part I, American J. of Math., 116 (1994), 757-784.
[13] K. Kato, T. Saito, Ramification theory for varieties over a perfect field, Ann.

of Math., 168 (2008), 33-96.
[14] T. Saito, Wild ramification and the characteristic cycle of an �-adic sheaf,

Journal de l’Institut de Mathematiques de Jussieu, (2009) 8(4), 769-829
[15] —–, Wild ramification of schemes and sheaves, Proceedings of the interna-

tional congress of mathematicians 2010 (ICM 2010) pp. 335-356.


