
Automorphic forms and �-adic representations 4

Takeshi Saito

Friday, July 13, 11:00-

In Carayol’s note [4], a geometric construction of the Galois representations as-
sociated to Hilbert modular forms and the compatibility with the local Langlands
correspondence are discussed. In loc. cit., the compatibility is established in the case
� �= p where the Galois representation is an �-adic representation and p is the prime di-
vided by the prime p of the totally real field where the restriction to the decomposition
group is considered. The purpose of this note is to sketch the proof of the compatibility
in the remaining case p = �.

In this note, we only discuss the compatibility in the case where the Galois represen-
tation is constructed geometrically. Namely, we assume the condition (∗) in Theorem 1
in the text. We only give the main ideas of the proof and refer for the detail to [10]. In
other cases, there are alternative arguments using congruences. They cover the cases
where the level is prime to p [12] or the residual representation is absolutely irreducible
[6] Theorem (4.3). However, the general case still remains open.

1 Compatibility for p = �

The compatibility is stated as follows.

Theorem 1 [Deligne, Langlands, Carayol, S.] Let F be a totally real number field and
π =

⊗
v πv be a cuspidal automorphic representation of GL2(AF ) associated to a Hilbert

modular form of parallel weight k ≥ 2 satisfying the following condition:
(∗) If the degree [F : Q] = g is even, there exists a finite place v of F where πv is

essentially square integrable.
Let L be a number field on which the finite part

⊗
v�∞ πv is defined and, for a finite place

λ of L, let Vλ be the λ-adic represenation of the absolute Galois group GF = Gal(Q/F )
associated to f .

For a finite place p of F , let D�(Vλ) denote the representation of the Weil-Deligne
group WDF� = WF� �Ga associated to the restriction of Vλ to the decomposition group
GF� ⊂ GF and let σ(π�) be the F -semi-simple representation of the Weil-Deligne group
associated to the p-component π� by the local Langlands correspondence. Then, there
exists an isomorphism

D�(Vλ)
F -ss → σ(π�)
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of F -semi-simple representations of the Weil-Deligne group WDF� defined over L.

Under the condition (∗), the construction of the Galois representation Vλ is dis-
cussed in [4]. The representation D�(Vλ) of the Weil-Deligne group associated to a
local Galois representation is defined in Breuil’s note [1]. The superscript F -ss denotes
the Frobenius semi-simplification.

One can weaken the assumption that f is of parallel weight k by the parity condition
that f is of weight (k1, . . . , kg) where k1 ≡ · · · ≡ kg mod 2. However, for simplicity, we
assume the parallel weight condition in this note. For k = 2, the proof is much simpler.

In the rest of this section, we explain some preliminary reduction steps. Let l and
p denote the prime numbers divided by λ and p respectively. The case p �= � has been
discussed in [4]. We will derive the case p = � from the case p �= �. Take a finite place
μ of L above a prime number � �= p. Then, since we already know an isomorphism
D�(Vμ)

F -ss → σ(π�), it suffices to show an isomorphism

D�(Vλ)
F -ss → D�(Vμ)

F -ss.(1.1)

In other words, we compare the p-adic representation with the �-adic representation.
By a standard argument on two-dimensional representations of the Weil-Deligne

group, the isomorphism (1.1) is a consequence of the assertions (1) and (2) below. Let
n : WF� → Z denote the canonical surjection.

(1) For an arbitrary element σ ∈WF� such that n(σ) ≥ 0, we have an equality

Tr(σ : D�(Vλ)) = Tr(σ : D�(Vμ)).(1.2)

(2) For the monodromy operator N , we have an equivalence

N on D�(Vλ) is 0 ⇔ N on D�(Vμ) is 0.(1.3)

2 The key ingredients in the proof

We sketch the main steps of the proof. More details will be discussed in the later
sections respectively.

Step 1. The construction given in [4] is not geometric enough for our purpose. We
need a more geometric construction. Namely, we construct a projective smooth variety
X over F� and an algebraic correspondence Γ on X with coefficients in L satisfying the
following properties: Γ∗ acts on the étale cohomology of XF�

as an idempotent and we
have

Γ∗ ·Hq(XF�
, Lλ) =

{
Vλ(−(g − 1)(k − 2)) if q = (2g − 1)(k − 2) + 1

0 otherwise

for every finite place λ of L. This construction shows in particular that, if p does not
divide the level, the representation D�(Vλ) is pure of weight k − 1.
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Step 2. The equality (1.2) will follow from the equality

Tr(σ ◦ Γ∗ : D�H
∗(XF�

, Lλ)) = Tr(σ ◦ Γ∗ : D�H
∗(XF�

, Lμ))(2.1)

for finite places λ, μ of L. This is proved for an arbitrary X and Γ in [9] for λ � p
and μ � p. It is a consequence of a functoriality of the weight spectral sequence of
Rapoport-Zink [8] and of the Lefschetz trace formula, that is independent of �.

However, if λ | p or μ | p, we need to assume a condition on Γ, at least for the
moment. This conditional result suffices for our purpose but we need to verify that the
condition is actually satisfied. More precisely, we show that Γ is a linear combination
of algebraic correspondences extended to finite étale correspondences on a semi-stable
model. A recent work of Tsuji in progress on a new construction of the weight spectral
sequence of Mokrane [7] seems to imply the required functoriality in the proof of the
general case.

Step 3. Given Step 2, it suffices to show that (the traces of) the representations
of the Weil group determine the monodromy operator. Thus, it would follow from the
monodromy-weight conjecture.

Conjecture 2 Let M be the unique increasing filtration on D�H
q(XF�

, Q�) character-
ized by the following conditions:

(1) Mq = D�H
q(XF�

, Q�) and M−q−1 = 0.
(2) NMr ⊂Mr−2 for r ∈ Z.
(3) N r : GrM

r → GrM
−r is an isomorphism for r ∈ N.

Then, for a lifting σ ∈WF� of the geometric Frobenius, every eigenvalue α of σ acting
on GrM

r D�H
q(XF�

, Q�) is pure of weight q + r for r ∈ Z.

We say that α is pure of weight m if the complex absolute values of its conjugates are
Npm/2. It is known that there exists a unique increasing filtration W on D�H

q(XF�
, Q�)

stable under the action of the Galois group GF� satisfying (1) and (2) and the following
condition:

(4) For a lifting σ ∈WF� of the geometric Frobenius, every eigenvalue α of σ acting
on GrW

r D�H
q(XF�

, Q�) is pure of weight q + r.
This is a consequence of the Weil conjecture and its cristalline version, the weight
spectral sequences of Rapoport-Zink and of Mokrane, Tsuji’s comparison theorem and
de Jong’s alteration. Thus Conjecture 2 asserts that the filtration W satisfies the
condition (3).

Let α and β be the eigenvalues of a lifting σ of the geometric Frobenius acting
on D�(Vλ), that is known to be independent of λ in Step 2. The monodromy-weight
conjecture for D�(Vλ) implies that we have either of the following cases.

(i) Both α and β are pure of weight k − 1. In this case, we have N = 0.
(ii) One of the two is pure of weight k and the other is of weight k−2. In this case,

we have N �= 0.
Thus, together with Step 2, the monodromy-weight conjecture for D�(Vλ) implies the
equivalence (1.3). The implication in (i) follows from a property of N in the definition
of the Weil-Deligne group. Thus the non-trivial assertion is the implication in (ii).
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The monodromy-weight conjecture remains open in general. However, it is proved
for D�(Vλ), by studying the weight spectral sequence in detail.

3 Variant of the Kuga-Sato variety

In the case g = [F : Q] is even, we may assume that there exists a finite place v0 �= p
where πv0 is essentially square integrable, by taking a quadratic base change splitting at
v0 in the condition (∗). Let B be the quaternion algebra over F satisfying the following
conditions:

There exists only one infinite place where B splits. If g is odd, B is unramified at
every finite place. If g is even, v0 is the unique finite place where B is ramified.

We briefly recall the geometric construction in [4]. We consider the Shimura curve
M = M(G, X) defined by the reductive group G = ResF/�B× and the G(R)-conjugacy
class X = C \ R of the map S(R) = C× → G(R) = GL2(R) × H× g−1 : x + yi �→((

x −y
y x

)−1

, 1, . . . , 1

)
. Its canonical model is defined over the reflex field F . En-

larging L if necessary, we may assume that the representation
⊗

i:F→� Symk−2 : G →
GL(k−1)g is defined over L and we consider the corresponding smooth Lλ-sheaf Wλ on
M . Then, the Galois representation Vλ is defined by decomposing the étale cohomology
H1(MF , Wλ) by the action of the finite adeles G(Af).

The construction of Wλ is geometric in the sense that it is defined using a Barsotti-
Tate group (En)n on M . However, it is not geometric in the sense that it is not a
part of a higher direct image of a proper smooth family of varieties parametrized by
M . This is due to the fact that M is a so-called exotic model and is not a Shimura
variety of PEL-type. However, the argument by Carayol to show that the Barsotti-Tate
group (En)n is extended to the integral model of M shows that it admits a geometric
construction, in a stricter sense as follows.

We introduce more Shimura varieties. Let E0 be a quadratic imaginary field split
at p and put E = FE0. We consider the reductive group G′′ = ResF/�(B× · E×)
defined as the Weil restriction of B× · E× ⊂ (B ⊗F E)×. We define the fiber prod-
uct G′ = G′′ ×Gm,F

Gm with respect to the product B× · E× → F× of the reduced
norm B× → F× and the norm E× → F×. Let T and T0 denote the tori over Q
defined by E× and E×

0 . We consider the Shimura varieties M ′′ = M(G′′, X), M ′ =
M(G′, X+), N = M(T, ∗) and N0 = M(T0, ∗0). Here X+ ⊂ X denotes the conjugacy
classes of S(R) = C× → G′(R) ⊂ G′′(R) = GL2(R) ·C× × (H× ·C×)g−1 : z = x + yi �→((

x −y
y x

)−1

, z−1, . . . , z−1

)
, the symbol ∗ denotes the map S(R) = C× → T (R) =

C×g : z �→ (z−1, 1, . . . , 1) and ∗0 is the inverse S(R) = C× → T0(R) = C×. Their
canonical models are defined over the reflex fields E, E, E and E0 respectively.
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We consider a diagram

M
pr1←−−− M ×N

α−−−→ M ′′ ←−−− M ′

β

⏐⏐	
N0

of Shimura varieties. The map α : M ×N → M ′′ is induced by the map G×T → G′′ :
(b, e) �→ b⊗NE/E0(e) · e−1 and the map β is defined by NE/E0 ◦ pr2.

The Shimura varieties M ′ and N0 are of PEL-type and carry a universal family
A′ → M ′ of abelian varieties and a universal family A0 → N0 of CM elliptic curves.
The universal family A′ → M ′ is naturally extended to a family A′′ → M ′′. We consider
the fiber product f : X → M×N of the pull-backs (α◦pr12)

∗A′′g(k−2) and β∗A(g−1)(k−2)
0

over M ×N as a variant of Kuga-Sato variety.
One defines an algebraic correspondence Γ on X as a linear combination of en-

domorphisms of the universal abelian varieties and of the universal elliptic curves
and permutations of factors as in [11]. It acts on Rqf∗Lλ as the projector to a di-
rect summand pr∗1Wλ ⊗ pr∗2Lλ(−d′) ⊂ Rdf∗Lλ for q = d = (2g − 1)(k − 2) and for
d′ = (g− 1)(k− 2) and acts as 0 for the other q. By decomposing Γ∗ ·Hd+1(X�, Lλ) =
H1(M� , Wλ) ⊗ H0(N� , Lλ(−d′)) by the action of the adele group (G × T )(Af), we
recover the Galois representation Vλ ⊂ H1(ME , Wλ). This completes Step 1.

4 Weight spectral sequences

Recall that we say that a scheme XO over the integer ring O of a p-adic field K is
strictly semi-stable if it is Zariski locally étale over Spec O[T0, . . . , Td]/(T0 · · ·Tm−�)
for 0 < m ≤ d and for a prime element � of O. Let XO be a proper strictly semi-
stable scheme over O. Let Y1, . . . , Yn be the irreducible components of the closed fiber
and put Y (i) =

∐
1≤j0<···<ji≤n Yj0 ∩ · · · ∩ Yji

. The scheme Y (i) is proper and smooth of
dimension d − i over the residue field k = O/(�). By [8] and [7], we have spectral
sequences

Es,t
1 =

∞⊕
j=max(0,−s)

H t−2j(Y
(s+2j)

k̄
, Q�(−j)) ⇒ H∗(XK , Q�),(4.1)

Es,t
1 =

∞⊕
j=max(0,−s)

H t−2j
cris (Y (s+2j)/W )(−j)⊗W K0 ⇒ DKH∗(XK , Qp)(4.2)

for � �= p = char k, called the weight spectral sequences. Here W = W (k) is the ring
of Witt vectors and K0 ⊂ K is its fraction field.

We consider a general algebraic correspondence Γ on the generic fiber XK . There
exist algebraic correspondences Γ(i) on Y (i) such that Γ(i)∗ on the E1-terms are com-
patible with Γ∗ on the limit, for every � �= char k. This means that the alternat-
ing sum Tr(σ ◦ Γ∗ : H∗(XK , Q�)) for σ ∈ WK , n(σ) ≥ 0 is a linear combination of
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Tr(F n(σ) ◦σ∗
geom ◦Γ(i)∗ : H∗(Y (i)

k̄
, Q�(j))), where F denotes the Card(k)-th power Frobe-

nius and σgeom is a geometric endomorphism of Y (i). The latter is computed by using
the Lefschetz trace formula, that is indepenent of �. In other words, one can compute
the traces of actions of the Galois group in geometric terms. For p = char(k), the same
argument works if we assume that Γ is extended to a finite étale algebraic correspon-
dence on XO, since Mokrane’s weight spectral sequence is compatible with the trace
map for finite étale morphisms.

We go back to our case. Applying the stable reduction theorem to the Shimura
curve M , we obtain a strictly semi-stable model of M × N for a fixed level. By the
modular interpretation of A′ and A0, the Kuga-Sato family X → M × N is extended
to an abelian scheme over the strictly semi-stable model. Thus the total space also
has a strictly semi-stable model. The relevant algebraic correspondence Γ is a linear
combination of endomorphisms of abelian schemes whose degree are prime-to-p and
of Hecke operators whose level are prime-to-p. Thus they are extended to finite étale
algebraic correspondences on the strictly semi-stable model. This completes Step 2.

5 Weight-monodromy conjecture

We show that D�Vλ satisfies the monodromy-weight conjecture. To simplify the no-
tation, we sketch the proof for λ � p. The case λ | p is proved similarly with suitable
modifications. Since Vλ is a direct summand, it suffices to show the conjecture for
H1(MK , Wλ). If k = 2, Wλ is the constant sheaf on a curve M . Hence the monodromy-
weight conjecture is known in this case. Thus we may assume k > 2.

By cutting down the weight spectral sequences by Γ∗, we obtain a spectral sequence
converging to D�H

∗(ME , Wλ) whose E1-terms are given by

E−1,2
1 = H0(Y

(1)

k̄
, Wλ(−1))

d−1,2→ H2(Y
(0)

k̄
, Wλ)

H1(Y
(0)

k̄
, Wλ)

H0(Y
(0)

k̄
, Wλ)

d0,0→ E1,0
1 = H0(Y

(1)

k̄
, Wλ)

and their cristalline counterpart. The boundary map d−1,2 is the Gysin map and d0,0

is the restriction map.
We distinguish 2-types of the components of Y (0): ordinary or supersingular. For an

ordinary component, we prove H0 = H2 = 0, as an analogue of Igusa’s theorem. For a
supersingular component, the sheaf Wλ is geometrically constant. Thus the complexes
d0,0 : E0,0

1 → E1,0
1 and d−1,2 : E−1,2

1 → E0,2
1 admit purely combinatorial description.

We know that the monodromy operator N is induced by the identity E−1,2
1 (1)→ E1,0

1 .
The combinatorial description allows us to conclude that N being isomorphism on the
E1-terms implies the same on the E2-terms.

The filtration W is defined by the weight spectral sequence that degenerates at E2.
Hence, the fact that N is an isomorphism on the E2-terms implies that the filtration
W satisfies the condition (3) in Conjecture 2 and is equal to the filtration M . This
completes Step 3.
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