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Abstract

This note is based on a series of lectures given at the summer school held
on July 17-29, 2006 at IHES. The purpose of the lectures is to explain the basic
ideas in the geometric construction of the Galois representations associated to
elliptic modular forms of weight at least 2.

Motivation

The Galois representations associated to modular forms play a central role in the
modern number theory. In this introduction, we give a reason why they take such a
position.

A goal in number theory is to understand the finite extensions of Q. By Galois
theory, it is equivalent to understand the absolute Galois group Gg = Gal(Q/Q). One
may say that one knows a group if one knows its representations.

Representations are classified by the degrees. The class field theory provides us a
precise understanding of the representations of degree 1, or characters. By the theorem
of Kronecker-Weber, a continuous character Gg — C* is a Dirichlet character

Go — Gal(Q(¢n)/Q) — (Z/NZ)* — C*

for some integer N > 1. If we consider not only complex continuous characters but
also (-adic characters Gg — Q; for a prime ¢, we find more characters. For example,
the f-adic cyclotomic character is defined as the composition:

Gg — Gal(Q(Cer, n € N)/Q) = lim ,Gal(Q((en)/Q) — lim (Z/0"Z)* = Z¥ C Q.

The f(-adic characters “with motivic origin” are generated by Dirichlet characters and
(-adic cyclotomic characters:

{“geometric” f-adic character of Gg}

= (Dirichlet characters, (-adic cyclotomic characters)

if we use a fancy terminology “geometric”, that will not be explained in this note. For
the definition, we refer to [13].



When we leave the realm of class field theory, the first representations we encounter
are those of degree 2. For /-adic Galois representation of degree 2, we expect to have
(cf. [13]) a similar equality

{odd “geometric” ¢-adic representation of G of degree 2 of distinct Hodge-Tate weight }

= {(-adic representation associated to modular form of weight at least 2},

up to twist by a power of the cyclotomic character. In other words, the Galois repre-
sentations associated to modular forms are the first ones we encounter when we explore
outside the domain of class field theory.

In this note, we discuss only one direction D established by Shimura and Deligne
([21], [7]). We will not discuss the other direction C, which is almost established after
the revolutionary work of Wiles, although it has significant consequences including
Fermat’s last theorem, the modularity of elliptic curves, ete. ([24], [1]).

In Section 1, we recall the definition of modular forms and state the existence
of Galois representations associated to normalized eigen cusp forms. We introduce
modular curves defined over C and over Z[%] as the key ingredient in the construction of
the Galois representations, in Section 2. Then, we construct the Galois representations
in the case of weight 2 by decomposing the Tate module of the Jacobian of a modular
curve in Section 3. In the final Section 4, we briefly sketch an outline of the construction
in the higher weight case.

Proofs will be only sketched or omitted mostly. The author apologizes that he also
omits the historical accounts completely.

The author would like to thank the participants of the summer school for pointing
out numerous mistakes and inaccuracies during the lectures.
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1 Galois representations and modular forms

1.1 Modular forms

Let N > 1 and k > 2 be integers and € : (Z/NZ)* — C* be a character. We will define
C-vector spaces Sk(N,e) C Mg(N,¢) of cusp forms and of modular forms of level N,
weight k£ and of character e. We will see later in §3.4 that they are of finite dimension
by using the compactification of a modular curve. For e = 1, we write S(N) C Mg (N)
for Sp(N,1) C Mi(N,1). For a reference on this subsection, we refer to [12] Chapter
1.

A subgroup I' C SLy(Z) is called a congruence subgroup if there exists an integer
N > 1 such that I' D I'(V) = Ker(SLy(Z) — SLy(Z/NZ)). In this note, we mainly
consider the congruence subgroups

I (N) = { (CCL Z) € SL,(Z)

C To(N) = { (CCL Z) € SL,(Z)

CLEl,CEOIHOdN}

CEOmOdN}.

a b

We identify the quotient I'o(N)/T';(N) with (Z/NZ)* by (c d) — dmod N. The

indices are given by

[SLy(Z) : To(N)] = [ (0 + Dp” @™ = N (1 + %) :

p|N p|N

[SLy(Z) : T1(N)] = [ [(@* = Dp*+=D = N [ ] (1 - i) :

2
p
p|N p|N

The action of SLy(Z) on the Poincaré upper half plane H = {r € C|Im 7 > 0} is

defined by
at +b

et +d

v(7)
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b
d
a holomorphic function ~; f on H by

for v = (CCL € SLy(Z) and 7 € H. For a holomorphic function f on H, we define

() = ——=%
If k =2, we have v*(fdr) = ~v3(f)dr.

Definition 1.1 Let I' D I'(N) be a congruence subgroup and k > 2 be an integer. We
say that a holomorphic function f: H — C is a modular form (resp. a cusp form) of
weight k with respect to T, if the following conditions (1) and (2) are satisfied.

(1) vif=1f forallyel.
(2) For each v € SLo(Z), vif satisfies vif(T + N) = 5 f(7) and hence we have
a Fourier expansion v f(1) = Y 07 an (vif)ak where qv = exp(2miy;). We require
the condition
az(f) =0
be satisfied for n <0 (resp. n < 0) for every v € SLy(Z).

We put

Sk(D)e = {f|f is a cusp form of weight k w.r.t. I'}
C Mi(I)c ={f|f is a modular form of weight k& w.r.t. I'}

and define S,(N) = Si(Iy(N)). Since I'y(N) contains I'; (N) as a normal subgroup, the
group I'o(V) has a natural action on Si(I'1(N)) by f +— ~; f. Since I'; (IV) acts trivially
on Sk(I'1(N)), we have an induced action of the quotient I'o(N)/I'1(N) = (Z/N7Z)* on
Sp(T'1(NV)). The action of d € (Z/NZ)* on Sk(I';(N)) is denoted by (d) and is called
the diamond operator. The space Si(I'1(N)) is decomposed by the characters

STiN) = @ Sk(N,e)
e:(Z/NZ)*—CX
where Si(N,e) = {f € Sp(I'1(N))|(d) f = e(d)f for all d € (Z/NZ)*}. The fixed part
Sp(D(N)oN) = S (N, 1) is equal to Si(N) = Si(To(N)).
1.2 Examples

We give some basic examples following [19] Chapter VII. First, we define the Eisenstein
series. For an even integer k > 4, we put

1
Gi(T) = Z T T )

m,n€ZL,(m,n)#(0,0)

It is a modular form of weight k.



The g-expansion of an Eisenstein series is computed as follows. The logarithmic

oo
. . ™Y\ .
derivative of sinmr = 7TTH 1 —— ) gives

n=1 n
1 1 < 1 1
—2mi | = "l =— )
. <2+;q ) Loy ()
d 1 d
Applying k — 1-times the operator g— , one gets
dq omi dr
- —1)k(k —1)! 1
S = S S
n=1 nez
For k > 4 even, by putting o;,_;(n) = de d*=! and
Er(q) =1 —i— de 1(n)qg" € Q[[ql],
we deduce
(k—1)! (k—1)!

Griy ) = <2W-)k'<2<<k>+<Gk<T>—2<<k>>>

= +2Zak | = ((1 - k)Ex(q).
Recall that the special values of the Riemann zeta function at negative odd integers
1 1 1
_1 [ — — = — — = —

25—2’...

are non-zero rational numbers (cf. [19] p.71, Chapter VII Proposition 7). The C-algebra
of modular forms of level 1 are generated by the Eisenstein series: @, , My(1)c =
C[Ey, Eg] (cf. loc. cit. Section 3.2).

The Delta-function defined by

Al0) = s = B =a [0 - = 30

n=1

is a cusp form of weight 12 and of level 1 (see [19] Chapter VII Sections 4.4, 4.5). The
space of cusp forms of level 1 are generated by the Delta-function as a module over the
algebra of modular forms: ;- Sk(1)c = C[E4, Eg] - A.

The function f; defined by

fui(q —QH 1—¢")*(1—¢"")?

is a basis of the space of cusp forms S3(11)c of level 11 and of weight 2 (see [12]
Proposition 3.2.2).



1.3 Hecke operators

The space of modular forms has Hecke operators as its endomorphisms. More detail
on Hecke opeators can be found in [12] Chapter 5. For every integer n > 1, the Hecke
operator T, is defined as an endomorphism of Si(I'1(N)). Here we only consider the
case where n = p is a prime. The general case is discussed later in §2.6.

For a prime number p, we define the Hecke operator 7, by

Tpf(T):% = f(7+i)+{p’“‘1<p>f(pr) if pt N "

p 0 if p|N.

1=

In terms of the g-expansion f(7) =) a,(f)q", we have

k—1 n :
P an((p)f)g™ i pt N
T,f(r) = E Qn n/p 4 "
pf(7) o (f)a {0 if p| .
The Hecke operators on Si(I'1(/V)) are commutative to each other and formally satisfy
the relation

ZTnn_S = H(l —Tp™ + (p)p"p )7t x H(l —T,p~*)~ L.
n=1

PIN p|N

A cusp form f = > a,q" € Sk(N,¢) is called a normalized eigenform if T, f =
Anf for all n > 1 and if a; = 1. Since a1(T,,f) = a,(f), if f € Sk(N,¢) is a normalized
eigenform, we have \,, = a,,. For a normalized eigenform f =", a,q", the subfield
Q(f) = Q(an,n € N) C C is a finite extension of Q, as we will see later at the end of
§2.6.

Since S12(1) = C- A and S3(11) = C - fi1, the cusp forms A and fi; are examples
of normalized eigenforms.

For a cusp form f =Y a,q¢" € Sk(I'1(N)), the L-series is defined as a Dirichlet
series

L(f,s) = i a,n=°.
n=1

+1

It is known to converge absolutely on Re s > as a consequence of the Ramanujan

conjecture. If f =5" a,q" € Si(N,¢) is a normalized eigen form, the L-series L(f, s)
has an Euler product

L(f,s) = H(l —apyp ™ +e(p)pFipT) 7 x H(l —a,p )7

PIN pIN



1.4 Galois representations

To state the existence of a Galois representation associated to a modular form, we
introduce some terminologies on Galois representations (cf. [12] Chapter 9). Let p be
a prime number. A choice of an embedding @ — @, defines an embedding Go, =
Gal(Q,/Q,) — Gg = Gal(Q/Q). The Galois group Gg, thus regarded as a subgroup
of Gg is called the decomposition group. It is well-defined upto conjugacy.

The intermediate extension Q, C Q)" = Q,(Cm;p  m) C Q, defines a normal
subgroup I, = Gal(Q,/Q4") C Gy, called the inertia subgroup. The quotient Gg, /I, =
Gal(Qy/Q,) is canonically identified with the absolute Galois group Gg, = Gal(F,/F,)
of the residue field F,. The element ¢, € Gy, defined by ¢(a) = a? for all a € F, is
called the Frobenius substitution. It is a free generator of Gy, in the sense that the
map 7 = lim ,Z/nZ — Gr, defined by sending 1 to ¢, is an isomorphism.

Let ¢ be a prime, F\ be a finite extension of @Q; and V be an FE)-vector space
of finite dimension. We call a continuous representation Go — GLg,V an f-adic
representation of Gg. The group GLg, V is isomorphic to GL,(E)) as a topological
group if n = dimg, V.

We say that an f-adic representation is unramified at a prime number p if the
restriction to the inertia group I, is trivial. In the following, we only consider ¢-adic
representations unramified at every prime p { N/ for some integer N > 1. For a prime
p1 N¢, the polynomial det(1 — ¢t : V) € E\[t] is well-defined.

Definition 1.2 Let f = > a,q" € Sp(N,e) be a normalized eigen cusp form and
Q(f) — E\ be an embedding to a finite extension of Q. A 2-dimensional (-adic
representation V' over E) is said to be associated to f if, for every p + N{, V is
unramified at p and

Tr(py 0 V) = a,(f).
The goal in this note is to explain the geometric proof of the following theorem.

Theorem 1.3 Let N > 1 and k > 2 be integers and e : (Z/NZ)* — C* be a character.
Let f € Sp(N,€) be a normalized eigenform and A€ be place of Q(f). Then, there exists
an (-adic representation Vy\ over Q(f)x associated to f.

The following is a consequence of the geometric construction and the Weil conjec-
ture.

Corollary 1.4 (Ramanujan’s conjecture (see Corollary 4.5)) For every prime p,
we have

11
IT(p)| < 2p=.

Here is a reason why Frobenius’s are so important.

Theorem 1.5 (Cebotarev’s density theorem) Let L be a finite Galois extension
of Q and C C Gal(L/Q) be a conjugacy class. Then there exist infinitely many prime
p such that L is unramifed at p and that C' is the class of p,.
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If L = Q(Cn), this is equivalent to Dirichlet’s Theorem on Primes in Arithmetic
Progressions.

The following is a consequence of Theorem 1.5. Let V; and V5 be f-adic represen-
tations of Gg. If there exists an integer N > 1 such that

Tr((pp Vi) = Tr(@p : Va)

for every prime p 1 N/, the semi-simplifications V7 and VJ® are isomorphic to each
other. In particular, the f-adic representation associated to f is unique upto isomor-
phism, since it is known to be irreducible by a theorem of Ribet [17]. It also follows
that we may replace the condition Tr(yp, : V') = a,(f) in Definition 1.2 by a stronger
one

det(1 — @pt : V) =1 — a,(f)t +e(p)p" %

2 Modular curves and modular forms

Modular forms are defined as certain holomorphic functions on the Poincaré upper half
plane. To link them to Galois representations, we introduce modular curves. Modular
curves are defined as the moduli of elliptic curves.

2.1 Elliptic curves

We define elliptic curves. Basic references for elliptic curves are [22], [16] Chapter 2.
First, we consider elliptic curves over a field k of characteristic # 2, 3. An elliptic curve
over k is the smooth compactification of an affine smooth curve defined by

V=23 4+ar+b
where a, b € k satisfying 4a® + 27b* # 0. Or equivalently,
y* =42’ — gox — g

where ¢, g3 € k satisfying g3 — 27¢3 # 0.

More precisely, F is the curve in the projective plane P? defined by the homogeneous
equation Y2Z = X3 + aXZ? +bZ3. The point O = (0 : 1:0) € E(k) is called the
O-section. Precisely speaking, an elliptic curve is a pair (E, O) of a projective smooth
curve E of genus 1 and a k-rational point O. The embedding F — P? is defined by the
basis (z,y,1) of ['(E, Og(30)). For an elliptic curve E defined by y? = 42 — goz — g3,
the j-invariant is defined by

g5

(E) =123—22
B =12

We define an elliptic curve over an arbitrary base scheme S. An elliptic curve over
S is a pair (E,O) of a proper smooth curve f : F — S of genus 1 and a section

8



O:S5 — E. We have f,.Op = Og and f*Q}E/S = O*Q}E/S = wpg 1S an invertible
Og-module.

An elliptic curve has a commutative group structure. To define the addition, we
introduce the Picard functor ([2] Chapter 8). For a scheme X, the Picard group Pic(X)
is the isomorphism class group of invertible Oyx-modules. The addition is defined by
the tensor product. If X is a smooth proper curve over a field k, the Picard group
Pic(X) is equal to the divisor class group

Coker(div : k(X)X — & Z).

z:closed points of X

For a non-zero rational function f € k(X)*, its divisor divf is defined to be > ord, f-
[z]. The degree map deg : Pic(X) — Z is induced by the map € 7— 17,
whose z-component is the multiplication by [r(z) : k.

Let E be an elliptic curve over a scheme S. For a scheme T over S, the degree map
deg : Pic(E xgT) — Z(T) has a section Z(T) — Pic(E xgT) defined by 1 — [O(O)].
For an invertible Oy jr-module L, its degree deg L : T" — Z is the locally constant
function defined by deg L£(t) = deg(L|gx,¢). The pull-back O* : Pic(E xsT') — Pic(T)
also has a section f* : Pic(T") — Pic(E xg T'). Thus, we have a decomposition

z:closed points of X

Pic(E x5 T) = Z(T) & Pic(T) & Picl, 5(T)

and a functor PicY, /s ¢ (Schemes/S) — (Abelian groups) is defined. We define a

morphism of functors E — PicY, /s by sending P € E (T) to the projection of the class
[OET(P)] € PlC(E X g T)

Theorem 2.1 (Abel’s theorem) (cf. [16] Theorem 2.1.2) The morphism E — Pic%/s
of functors is an isomorphism.

The inverse Picl, g — E is defined as follows. For [£] € Pic%, (T, the support of
the cokernel of the natural map f fr.(£(0)) — L(O) defines a section T — E x5 T.

Since Pic% /s 1s a sheaf of abelian groups, the isomorphism E — PicY, /s defines a
group structure on the scheme E over S. For a morphism f : E — FE’, the pull-back
map f*: PicOE,/S — PicOE/S defines the dual f*: ' — E. The map f: F — E’' itself is
identified with the push-forward map f, : £ — E’ induced by the norm map recalled
later in §3.2. We have f o f* = [deg f|g and hence f* o f = [deg f]&.

If an elliptic curve E over a field k is defined by y? = 2® + ax + b, the addition on
E(k) is described as follows. Let P, @ € E(k). The line PQ meets E at the third point
R'. The divisor [P]+[Q]+[R'] is linearly equivalent to the divisor [O]+[R]+[R'], where
R is the opposite of R’ with respect to the z-axis. Thus, we have [P] + [Q] + [R] =
[O] + [R] + [R] in Pic(E) and ([P] — [0]) + ([Q] — [0]) = [R] — [O] in Pic’(E). Hence
we have P+ @Q = R in E(k).

We introduce the Weil pairing (cf. [16] Section 2.8). For an elliptic curve f : E —
S and an integer N > 1, the Weil pairing is a non-degenerate alternating pairing
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(, ) @ E[N] x E[N] — py. Here and in the following, E[N] and py denote the
kernels of the multiplications [N]: E — E and [N] : G,, — G,,. Non-degerate means
that the induced map E[N| — E[N]* = Hom(E[N], uy) to the Cartier dual (see [4]
Chapter V Section (3.8)) is an isomorphism of finite group schemes.

Let P € E[N]|(S) be an N-torsion point and £ be an invertible Og-module corre-
sponding to P. Since [[N]*L] = NP = 0, the invertible Og-module [N]*L is canonically
isomorphic to the pull-back of an invertible Og-module f,[N]*L. For another N-torsion
point Q € E[N](S), the translation Q+ satisfies [N]o (Q+) = [N]. Hence it induces an
automorphisms Q* of [N]*L and of f.[N]*L by pull-back. Thus we obtain a morphism
(P, ) : E[N] — pun C Gy, = Aut f[N]*L sending @ to Q*, that defines a bilinear
pairing (, )g : E[N] X E[N] — un.

2.2 Elliptic curves over C

To give an elliptic curve over C is equivalent to give a complex torus of dimension 1,
as follows. For more detail, see [22] Chapter VI and [12] Section 1.4.

Let E be an elliptic curve over C. Then, E(C) is a connected compact abelian
complex Lie group of dimension 1. The tangent space Lie E of E(C) at the origin is a C-
vector space of dimension 1. The exponential map exp : Lie £ — F/(C) is surjective and
the kernel is a lattice of E(C) and is identified with the singular homology H,(E(C),Z).
A lattice L of a complex vector space V of finite dimension is a free abelian subgroup
generated by an R-basis.

Conversely, let L be a lattice of C. The p-function is defined by

1 1 1
ezt ¥ (o)

Since

_dp(?) 1
V=g =GP

weL

they satisfy the Weierstrass equation
y* =42’ — gox — g

1 1
where g, = 60 Z — and g3 = 140 Z —- I L=Z+Zr for T € H, we have
w

w€eL,w#0 w€L,w#0
(2mi)* 1 (2mi)*
— 60G4(T) = 60 - B, = E
92 4(7) 3l 120017 12 v
(274)® 1 (274)°
—  140G4(7) = 140 - VB =-— E
g3 o(7) 5l 9252 ) G 0

and hence

12 L .
9 —27g3 = (QW)HE(EE’ — Eg) = (2mi)PA £ 0.
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Thus the equation y? = 423 — gox — g3 defines an elliptic curve E over C. The map
C/L — E(C) defined by z +— (p(2),¢'(2)) is an isomorphism of compact Riemann
surfaces.

We show that the Weil pairing (P, Q) € pun(C) for the N-torsion points P = +,Q =

+ € E=C/(1,7) is equal to exp % The elliptic function

__o(3) o(z = nlit+jT+ )
f(z) = o(z—1) ”:11_[ N o(z— (i +47))

is a basis of [N]*L for L = Og(P —O) where o denotes the Weierstrass’s o-function for
the lattice (1,7) (for the definition, see [22] p. 156). Hence, the Weil pairing (P, Q) is

+I 1) — ()1
f(ziN. We see that it is equal to exp M, by using the

f(2) N

o(z+w)o(w)
o(z)o(w+ w)
5.4 (b)). where n denotes the Dedekind n-function (for the definition, see loc. cit. p.
65). Thus the assertion follows from the Legendre relation n(1)7 — n(7)1 = 27y/—1

(loc. cit. Proposition 5.2 (d)).

equal to the ratio

formula = exp(n(w)(z—w)) for z,w € Cand w € (1, 7) (|23] Proposition

2.3 Modular curves over C

The set of isomorphism classes of elliptic curves over C has a one-to-one correspondence
with the quotient of the Poincaré upper half plane by SLs(Z). The j-invariant defines
an isomorphism SLy(Z)\H — C of Riemann surfaces. Modular curves over C are
defined as finite coverings of an algebraic curve SLo(Z)\H over C. More detail is
found in [12] Chapters 2 and 3.

We put

R = {lattices in C}, R = {(wi,ws) € (CXQ\Im% > 0}.
2

The multiplication defines an action of C* on R and on R. We consider the map
R — R sending (wq,ws) to the lattice (wy,ws) generated by wy,ws. A natural action

of SLy(Z) on R is defined by ((CL Z) (51) = (gjlizf) . It induces a bijection
2 1 2

SLy(Z)\R — R. The map H — R : 7 — (7,1) is compatible with the action of
SLy(Z) and induces bijections

H — C\R, SLy(Z)\H — (SLy(Z) x C*)\R — C*\R.

The map sending a lattice L to the isomorphism class of the elliptic curve C/L
defines bijections

SLy(Z)\H — C*\'R — {isomorphism classes of elliptic curves over C}.

11



The quotient Y (1)(C) = SLy(Z)\H is called the modular curve of level 1. The map
j:SLy(Z)\H — C
defined by the j-invariant

ga(7)° _ E_ff

I =18 — Sty A

is an isomorphism of Riemann surfaces ([19] Chapter 7 Proposition 5).
For an integer N > 1, similarly the map sending (w;,ws) € R to the pair (E, P) =
W2 e
<(C/<w1, wa), N) defines a bijection

II(N\H — (I1(N) x CN\R
isom. classes of pairs (F, P) of an elliptic curve
E over C and a point P € E(C) of order N

d
Note that %NCUQ = % mod (wy,ws) since ¢ = 0,d = 1 mod N for Z) e I'(N).
The quotient I'y (IV)\ H is denoted by Y7 (N)(C) and is called the modular curve of level
'1(N).

The diamond operators act on Y1(N)(C). For d € (Z/NZ)*, the action of (d)
is given by (d)(E,P) = (E,dP). The quotient I'o(N)\H = (Z/NZ)*\Y1(N)(C) is
denoted by Yy(N)(C) and is called the modular curve of level I'((N). We have a
natural bijection

over C and a cyclic subgroup C' C E(C) of order N

To(N)\H — { isom. classes of pairs (E,C) of an elliptic curve E } '
We have finite flat maps Y;(N) — Yy(N) — Y(1) = A! of open Riemann surfaces.
The degrees of the maps are given by

— et o2 N =3
AN Yo(V)] = H(Z/NZ)* {21} = {1 N
and [Yo(N) : Y(1)] = [SLa(Z) : To(N)]

Let X;(N) and Xo(N) be the compactifications of Y;(N) and Yy(N). The maps
Yi(N) — Yo(N) — Y(1) = A are uniquely extended to finite flat maps X;(N) —
Xo(N) — X(1) = P! of compact Riemann surfaces, or equivalently of projective
smooth curves over C.

We identify f € Sa(N) with f - 2midr € T(Xo(N), Q') and Sy(N) = T'(X,(N), Q).
Applying the Riemann-Hurwitz formula to the map j : Xo(N) — X (1) = P!, we
obtain the genus formula

9Xo(N)) = go(N) = 1+ T[S To(Z) : To(N)] = () = 56(N) = (V)

12



where

0 if 9|N or if Ip|N,p = —1 mod 3
vy = {Qﬂ{p’N 'p=1mod 3} if otherwise,

0 if 4| N or if Ip|N,p = —1 mod 4
) = {Qﬂ{p’N 'p=1modd} if otherwise.

and Yoo (NM) = 0o (N)poo(M) if (N, M) =1 and, for a prime p and e > 0,

() = ople—1)/2 if e odd
Foel) = (p+ 1)p?~1  if e even.

We have go(11) = 1 and hence X((11) is an elliptic curve, defined by the equation
y? = 4z® — g — 20 where A = (%)3 — 27 (%)2 = —11°. The space S(11) =
['(Xo(11), Q') of cusp forms of weight 2 and level 11 is generated by the differential

x
form — corresponding to fi.

The universal elliptic curves over the modular curves Y; (V) for N > 4 are defined
as follows. We consider the semi-direct product I';(N) Ziwith respect to the left
action by *y~!. We define an action of C* x T';(N) x Z* on R x C by

c((wr,w2),2) = ((cwr, cws), c2)
Y(wi,ws),2) = ((aw; + bws, cwy + dws), 2)
(m,n)((w1,ws),2) = ((w1,ws), 2z + mw; + nwy).

for c € C*, v = (z Z) € I'(N) and (m,n) € Z2. The projection R x C — R is
compatible with the projection C* x I'y(N) x Z? — C* x I';(N).
Assume N > 4. By taking the quotient, we obtain

By = (T1(N) x Z\(H x C) = Y;(N) = [y (N)\11.

The fiber at 7 € H is the elliptic curve C/Z+Zt. If N = 1,2, we have —1 € I';(N) and
the general fiber is the quotient of C/Z + Zt by the involution —1 and is isomorphic
to PL. For N = 3, the fibers at primitive cubic roots 7 = w,w™! are also isomorphic
to PL.

The universal elliptic curve Ey,(y) has the following modular interpretation.

Lemma 2.2 Assume N > 4. Let f : E — S be a holomorphic family of elliptic curve
and P : S — E be a section of exact order N. Then, there exists a unique morphism

S — Yi(N) such that (E, P) is isomorphic to the pull-back of the universal elliptic
curve By, (ny and the section defined by z = %

13



Sketch of Proof. Since the question is local on S, we may take basis of w = O*Q}E/S

and of R'f,Z. Then, they give a family of lattices in C parametrized by S and define
amap S — R. The induced map S — Y;(N) = (I'1(N) x C*)\R is well-defined and
satisfies the condition. [ |

2.4 Modular curves and modular forms

The definition of modular forms given in Section 1.1 is rephrased in terms of the
universal elliptic curves as follows. For more detail, we refer to [6] Chapitre VII,
Sections 3 and 4 and also [11] Sections 12.1, 12.3.

Let N > 4. Let wy,(n) be the invertible sheaf O*QEYl(N)/YI(N) where O : Yi(N) —
Ey, (n) is the 0-section of the universal elliptic curve. Then, we have

{f: H — C|f is holomorphic and satisfies (1) in Definition 1.1} = I'(Y;(N), w®")

by identifying f with f - (2my/—1dz)®*. By the isomorphism w®? — Qy,(x) sending
(2mv/—1d2)®? + 2m/—1dr, the left hand side is identified with T'(Yy(N),w® 2 ®

le( N))'
Assume N > 5. Then the universal elliptic curve Ey, vy — Yi(IV) is uniquely
extended to a smooth group scheme Ey,n) — Xl(N ) whose fibers at cusps are Gy,.

Let wx, (v = O* QEY /X1 (V) Since 2mv/—1dT = —, the isomorphism w®? — Qv (v

on Yi(N) is extended to an isomorphism w?}l(m — Qx, (v (log(cusps)) on X;(N). By

the isomorphism w?}f( vy — (v (log(cusps)), we may identify

M(T1(N)) = T(X1(N), ) D Sp(T1(N)) = D(X1(N), w7 @ Qx, (v))-

Since X7(N) is compact, the C-vector spaces My (I';(N)) and Si(I'1(N)) are of finite
dimension.

For N > 5, there exists a constant C satisfying degw = C' - [SLy(Z) : I';(N)]. The
isomorphism w®2 — O, (v (log cusps) implies

1 N
20(N) =2+ 5> ¢()p(d) = 2C - [SLy(Z) : T1(N)].
d|N
In particular, for p > 5, we have
201(p) =2+p—1=2C-(p* - 1).

Since ¢;(5) = 0, we have C' = 4, and

[SLQ( : ——Z(p if N> 5,
dim SQ(Fl(N)) == gl(N) == d|N
0 it N <A4.

14



By Riemann-Roch, we have

dim (T (N)) = deg(w®* 2 @ QY + x(X1(N),0) = (k — 2) degw + g1 (N) — 1

_ %[SLQ(Z) Ty (V)] — i dzj; cp(%)so(d)

for k > 3, N > 5.

2.5 Modular curves over Z[+/]
To construct Galois representations associated to modular forms, we descend the defi-
nition field of modular curves to QQ and consider their integral models over Z[%]

Let N > 1 be an integer and T be a scheme over Z[+]. We say a section P: T — E
of an elliptic curve E — T is exactly of order N, if NP = 0 and if P, € FEy(t) is of
order N for every point ¢ € 7. We define a functor M;(N) : (Scheme/Z[+]) — (Sets)

by

M(N)(T) = isomorphism classes of pairs (E, P) of an elliptic curve
' | E — T and a section P € E(T) exactly of order N

Theorem 2.3 ([16] Corollaries 2.7.3 and 4.7.1) For an integer N > 4, the functor
M, (N) is representable by a smooth affine curve over Z[~].

Namely, there exist a smooth affine curve Y1(N), 1y over Z[+] and a pair (E, P)

of elliptic curves £ — Yl(N)Z[%} and a section P : Yi(NN)y
such that the map

— F exactly of order N

~

HomScheme/Z[ﬁ}(T; le(N)Z[%}) - Ml(N) (T)

sending f: T — Yl(N)Z%] to the class of (f*E, f*P) is a bijection for every scheme T’
over Z[+].

If N < 3, the functor M;(N) is not representable because there exists a pair
(E, P) € M;(N)(T) with a non-trivial automorphism. More precisely, by étale descent,
there exist 2 distinct elements (E, P), (E’, P') € My(N)(T) whose pull-backs are the
same for some étale covering 7" — T'.

Proof of Theorem for N = 4. Let E — T be an elliptic curve over a scheme T
over Z[3] and P be a section of exact order 4. We take a coordinate of F so that
2P = (0,0),P = (1,1),3P = (1, —1) and let dy* = 2 + ax® + bx + ¢ be the equation
defining . Then the line y = x meets £ at 2P and is tangent to E at P. Thus we have
23+ (a — d)a® + bx + ¢ = z(z — 1)?. Namely, E is defined by dy* = 23 + (d — 2)2% + .

1
The moduli Y1 (4)7) is given by SpecZ|-][d, u

' ad = 4)]'
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To prove the general case, we consider the following variant. For an elliptic curve
E and an integer r > 1, let E[r] = Ker([r] : E — FE) denote the kernel of the
multiplication by . We define a functor M(r) : (Scheme/Z[1]) — (Sets) by

M@)(T) = isom. classes of pairs (F, (P, Q)) of an elliptic curve £ — T
" ~ | and P,Q € E(T) defining an isomorphism (Z/rZ)*> — E[r] |

Theorem 2.4 For an integer r > 3, the functor M(r) is representable by a smooth
affine curve Y (r),y over Z[1].

Sketch of Proof. 1f r = 3, the functor M(r) is representable by the smooth affine
curve Y (3) = Spec Z[3, G][1, ﬁ] over Spec Z[z]. The universal elliptic curve E C P?
is defined by X3 + Y3 + Z3 — 3uXY Z and the origin is O = (0,1, —1). The basis of
E[3] is given by P = (0,1, —w?) and @ = (1,0, —1).

Next we consider the case r = 4. Let E be the universal elliptic curve over Y;(4)
and P be the universal section of order 4. Then, the Weil pairing (P, ) defines a map
E[4] — p4. The modular curve Y (4) is the inverse image of the complement of the
open and closed subscheme py C fu4.

If r is divisible by s = 3 or 4, one can construct Y(T)Z[;l} as a finite étale scheme
over Y(S)Z[;l}. For general r > 5, the modular curve Y(T)Z[%] is obtained by patching
the quotient Y(T)Z%] = Y(sr)z[ﬁ/Ker(GLQ(Z/rsZ) — GLy(Z)rZ)) for s=3,4. N

By the Weil pairing, the scheme Y(T)Z[%] is naturally a scheme over Z[%, ¢]. For
r = 1,2, the modular curves Y(T)Z[%] are also defined by patching the quotients. The j-

invariant defines an isomorphism Y (1)7 — Al. The Legendre curve y* = z(z—1)(z—\)
defines an isomorphism SpecZ[$][A, ﬁ] = Y(2)zp.

By regarding P, € E[N] as a map (Z/NZ)?* — E[N], we define a natural right
action of GLy(Z/NZ) on M(N) and hence on Y (N) as that induced by the natural
action of GLy(Z/NZ) on (Z/NZ)>.

The modular curve Y; (N )Z[%} is constructed as the quotient

Y (N)y, /{ (‘2 Z) € GLy(Z/NZ)|a =1,c = 0} .

The modular curve Y; (N )Z[ﬁ} for N < 3 are also defined as the quotients.

The Atkin-Lehner involution wy : YI(N)Z[%,CN] — Y1(N)z ¢y is defined by send-
ing (E,P) to (E/(P),Q) where Q € E[N|/(P) C (E/{P))[N] is the inverse image of
(n € un by the isomorphism (P, ) : E[N]|/(P) — px.

The affine smooth curve Y3 (N )Z[ 1 is uniquely embedded in a proper smooth curve

X1(N)z2y over Z|+] ([6] Chapitre IV 4.14, [11] Section 9). The universal ellip-

tic curve EYI(N)Z[ L, over Yi(N )Z[ 1) s uniquely extended to a smooth group scheme
N

Exi(n),;, over XI(N)Z[%] such that the fiber at every geometric point in the com-
N
plement X1 (N)y 1)\ Y1(N)y1; is isomorphic to Gy, (loc. cit.). We define an invert-

ible sheaf WXL (N), (1, to be the inverse image O*Q}Exl(w)z[l]/xl(mz%]' The Q-vector

~
N
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space Si(I'1(N))g = L'(X1(N)g, w® 2@ Q) gives a Q-structure of the C-vector space
Sk(rl(N))(c = F(Xl(N)(C, Ww®k—2 X Ql)

2.6 Hecke operators

In this subsection, we give an algebraic definition of the Hecke operators. For more
detail, we refer to [12] Section 7.9.

For integers N,n > 1, we define a functor 7;(N, n)Z[ﬁ : (Schemes/Z[+:]) — (Sets)
by

T (N, n)y(T)

isom. classes of triples (E, P,C) of an elliptic curve E over T, a
= section P :T' — E exactly of order N and a subgroup scheme
C C E finite flat of degree n over T such that (P) N C = O

and a morphism s : Ty (N, 1)1 — Mi(N)y) of functors sending (E, P, C') to (E, P).
The functor 77 (N, n)Z[%] is representable by a finite flat scheme T3(N, n)Z[%] over
K(N)Z[%], if N > 4. The map T;(N, n)Z%] — Yl(N)Z%] is uniquely extended to
a finite flat map of proper normal curves s : T (N, n)Z[%] — Xl(N)Z[%}.

For an elliptic curve £ — T and a subgroup scheme C' C FE finite flat of degree
n, the quotient £’ = E/C is defined and the induced map E — E’ is finite flat of
degree n. The structure sheaf O is the kernel of pri — p* : Op — Ogx,c where
pri, i : B xp C — E denote the projection and the addition respectively. By this
construction, we may identify the set 71 (N, 1)y 1 1(T) with

isom. classes of pairs (¢ : E — E’, P) of finite flat morphism

¢ : E — E' of elliptic curves over T of degree n and a section
P :T — FE exactly of order N such that (P) N Ker(E — E') = O

We define a morphism ¢ : 7;(N, n)z1) — Mi(N)g1 of functors sending (¢ : £ —
E', P)to (E', ¢(P)), It also induces a finite flat map of proper curves t : T (N, n)Z[%} —
Xi(N)z -

For an integer n > 1, we define the Hecke operator T, : Sp(I'1(N)) — Sp(I'1(V))
as s, o @* ot*. Here

t*: Sp(TL(N)) = T(X1(N),w® 2 @ Q") — I'(T(N,n), t'w 2 o Q),

s, : T(T1(N,n),s*w® 2@ Q" — D(X1(N), w22 Q') = Si(T'1(N))

are induced by the maps s, : T1(N, n)Z[%] — X1(N)za defined above respectively.
The push-forward map s, is induced by the trace map. Since s*w = wg and t*w = wgy,
the map ¢ : £ — E’ induces

©* T(T1(N,n), w20 QY — T(T(N,n), s*w® 2 Qh).
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The group (Z/NZ)* has a natural action on the functor M;(N). Hence it acts on
Si(I'y(N)). For d € (Z/NZ)*, the action is denoted by (d) and called the diamond
operator.

We verify the equality (1) in §1.3 for 7,,. For 7 € H, the point P =
C/(1,7) is of order N. The elliptic curve E = C/(1,7) has p + 1 subgroups

0,...,p—1and (113> of order p. If pt N, each of them defines a point of T} (N, p) and
they are the inverse image of 7 € H by s. If p|N, the subgroup <1%> is a subgroup
of <%) and does not define a point of 77(N,p). The other p subgroups define points
of T1(N,p) and they are the inverse image of 7 € H by s. For i = 0,... ,p — 1, the

subgroups (%”} define £ — C/(1, TT“) and the image of P is +. Thus their images

E =

v €
<%>7é:

N
by t are TTH' If pt N, the subgroup <%> define £ — C/(%,T). The multiplication by
p induces an isomorphism (C/<I%,7'> — C/(1,pr) and the image of P is £. Thus its

image by t is (p)p7. From this the equality (1) follows immediately.
We define the Hecke algebra by

T (I (N)) =Q[T,,n € N,(d),d € (Z/NZ)*] C EndSi(I';(N)).
It is a finite commutative Q-algebra.
Proposition 2.5 The map
Sk(I'1(N))e — Homg(T3(I'1(N)), C) (2)

sending a cusp form f to the linear form T w— a1 (T f) is an isomorphism of Q-vector
spaces.

Proof. Suffices to show that the pairing S(I'1(N))c X Tk(I'1(N))c — C defined
by (T, f) — ai(Tf) is non-degenerate. If f € Si(I'y(N))c is in the kernel, a,(f) =
ar(Tf) = 0foralln and f = > an(f)¢" = 0. If T € Tp(I'1(N)) is in the kernel,
Tf is in the kernel for all f € Si(I'y(N))c since a1 (T'Tf) = a(TT'f) = 0 for all
T" € T(I'y(N)). Hence Tf =0 and T = 0. u

Corollary 2.6 The isomorphism (2) induces a bijection of finite sets
{f € Sk(I'1(N))c|normalized eigenform} — Homg aigebra (13 (I'1(V)), C) (3)

Proof. We prove the bijectivity. Let ¢ be the linear form corresponding to f. The
condition ¢(1) = 1 is equivalent to a;(f) = 1. If ¢ is a ring homomorphism, we have
an(Tf) = ay(TTf) = p(T,T) = $(T)p(T,) = G(T)ar(Tf) = p(T)an(f) for every
n > land for T € Tj,(T'1(N)). Thus, wehave T'f =" a,(Tf)q" =, o(T)an(f)q" =
©(T) f and f is a normalized eigenform. Conversely, if f is a normalized eigenform and
Tf = Apf for each T' € T(I'1(N)), we have o(T) = a1(Tf) = a1(Arf) = Arai(f) =
Ar. Thus ¢ is a ring homomorphism.

Since Ty (I'1(IV)) is finite over Q, the right hand side is a finite set. u

For a normalized eigenform f € Si(I'1(IV))c, the subfield Q(f) C C is the image of
the corresponding Q-algebra homomorphism ¢ : Tj,(I'1(/N)) — C and hence is a finite
extension of Q.
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3 Construction of Galois representations: the case
k=2

We will construct Galois representations associated to modular forms in the case k = 2,
using the Tate module of the Jacobian of a modular curve.

3.1 Galois representations and finite étale group schemes

To construct Galois representations, it suffices to define group schemes, in the following
sense. For a field K, we have an equivalence of categories

(finite étale commutative group schemes over K) — (finite G x-modules)

defined by A — A(K). The inverse is given by M + Spec(Homg, (M, K)).
In the case K = Q, it induces an equivalence

finite Gg-modules )

(finite étale commutative group schemes over Z[N]) — (unramiﬁe datpi N

for N > 1.

Lemma 3.1 Let N > 1 be an integer and A be a finite élale group scheme over

Spec Z[+]. For a prime number pt N, the action of ¢, on A(Q) = A(F,) is the same
as that defined by the geometric Frobenius endomorphism Fr : Ap, — Ap,.

Proof. Clear from the commutative diagram

]
To define an f-adic representation of Gg unramified at p t N/, it suffices to construct

an inverse system of finite étale Z/¢"Z-module group schemes over Z[%]

3.2 Jacobian of a curve and its Tate module

First, we consider the case go(N) = 1, e.g. N = 11. Then, £ = X,(N) is an elliptic
curve and the Tate module V;E' = Q; ® lim ,, E[("](Q) defines a 2-dimensional (-adic
representation. To construct the Galois representation for general N, we will introduce

the Jacobian.
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Let f : X — S be a proper smooth curve with geometrically connected fibers of
genus g. For simplicity, we assume f : X — S admits a section s: .S — X. We define
a functor Pic% /s * (Schemes/S) — (Abelian groups) by

_ Ker(deg : Pic(X xgT) — Z(T))
~ Im(f*: Pic(T) — Pic(X xgT))’

Pic5 15(T)

A section s : S — X provides a decomposition
Pic(X xgT) = Z(T) & Pic(T) @ Pick,s(T)
depending on the choice of a section.

Theorem 3.2 ([2| Proposition 9.4/4) The functor Picg(/s is representable by a proper
smooth scheme J = Jacx g with geometrically connected fibers of dimension g.

The proper group scheme (=abelian scheme) Jacy s is called the Jacobian of X. If
g = 1, Abel’s theorem says that the canonical map F — Jacg/g is an isomorphism.

Let f : X — Y be a finite flat morphism of proper smooth curves. The pull-
back of invertible sheaves defines the pull-back map f* : Jacy,s — Jacx,s. We also
have a push-forward map defined as follows. The norm map f. : f.G,x — Gny
defines a push-forward of G,,-torsors and a map Pic(X) — Pic(Y), for a finite flat
map f : X — Y of schemes (see [10] 7.1). They define a map of functors and hence
a morphism f, : Jacy,s — Jacy,g (see loc. cit. 7.2). The composition f, o f* is the
multiplication by deg f.

If f: X — Y is a finite flat map of proper smooth curves over a field, then the
isomorphism Coker(div : k(X)* — @, Z) — Pic(X) has the following compatibility.
The pull-back f* : Pic(Y) — Pic(X) is compatible with the inclusion f* : k(Y)* —
k(X)* and the map €@, Z — €D, Z sending the class [y] to >_, . e(z/y) - [¥] where
e(x/y) denotes the ramification index. The push-forward f, : Pic(X) — Pic(Y) is
compatible with the norm map f. : k(X)* — k(Y)* and the map B,Z — D,Z
sending the class [z] to [k(x) : k(y)] - [y] where y = f(z).

We define the Weil pairing. Let N > 1 be an integer invertible on S. Then, a non-
degenerate pairing Jx,s[N] X Jx/s[N] — pn of finite étale groups schemes is defined
as follows. First, we recall that, for invertible Ox-modules £ and M, the pairing
(L, M) is defined as an invertible Og-module. It is characterized by the bilinearity, the
compatibility with base change and by the property (£, M) = fp.(L|p)if M = Ox (D)
for a divisor D C X finite flat over S. If £ = f*L,, we have (£, M) = £ &M,

If N[£] = 0 € Pick,s(S), we have L&V = f*L, for some Ly € Pic(S). Hence,
for M € Pic(X) of degree 0, we have a trivialization (L, M)®N = (LN M) =
(f*Lo, M) = frLEYEM = Og. If NJM] = 0 € Pic’(X/S), we have another trivializa-
tion (£, M)®N = Og. By comparing them, we obtain an invertible function (£, M)y
on S, whose N-th power turns out to be 1. Thus the Weil pairing (£, M)y € T'(S, un)
is defined. In the case X = FE is an elliptic curve, this is the same as the Weil pairing
defined before.
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For a proper smooth curve over C, the Jacobian has an analytic description as a
compact complex torus (cf.[12] Sections 6.1, 6.2). Let X be a smooth proper curve
over C, or equivalently a compact Riemann surface. The canonical map

Hy(X,Z) — Hom(I'(X, ), C)

is defined by sending a 1-cycle v to the linear form w +— fyw. It is injective and the
image is a lattice. A canonical map

Pic’(X) = Jx(C) — Hom(['(X, Q),C)/Image H,(X,Z) (4)

is defined by sending [P] — [Q] to the class of the linear form w — | (5 w. This is an
isomorphism of compact complex tori. Thus, in this case, the N-torsion part Jacx,c[/N]
of the Jacobian is canonically identified with H,(X,Z) ® Z/NZ.

For a finite flat map f : X — Y of curves, the isomorphism (4) has the following
functoriality. The pull-back f* : Pic’(Y) — Pic’(X) is compatible with the dual of
the push-forward map f. : T'(X,Q) — I'(Y,Q) and the pull-back map H(Y,Z) —
H,(X,Z). The push-forward f, : Pic’(X) — Pic’(Y) is compatible with the dual of
the pull-back map f* : I'(Y,Q) — T'(X,) and the push-forward map H,(X,Z) —
Hy(Y,Z).

The isomorphism Jacx,c[N] — H1(X,Z) ® Z/NZ is compatible with the pull-back
and the push-forward for a finite flat morphism. By the isomorphism Jacy,c[N] —
Hy(X,Z)®7Z/NZ, the Weil pairing Jacy,c[N] x Jacx/c[N] — py is identified with the
pairing induced by the cap-product Hy(X,Z) x H{(X,Z) — Z.

Now, we introduce the Tate module of the Jacobian a curve. Let X be a proper
smooth curve over a field k& with geometrically connected fiber of genus g. For a prime
number ¢ invertible in k, we define the f-adic Tate module by

Ty Jacxe = lim ,Jacx/[("] (k) = lim ,, Pic(X;)[¢"]

—

and Vy Jacx/, = Qr ® Ty Jacx/y.

Corollary 3.3 Let N > 1 be an integer and X be a proper smooth curve over Z[%] with
geometrically connected fibers of genus g. Then, V; Jacx, g is an {-adic representation
of G of degree 2g unramified at pt N{.
Proof. The multiplication [("] : Jacy L) — Jacy g1y is finite étale. Hence
Jacx/o[("(Q) = Jacx/g[¢"](C) = Hy(X,Z) ® Z/{"Z is isomorphic to (Z/("Z)* as a
Z/¢"Z-module and V; Jacy,q is isomorphic to H(X,Z) ® Qp ~ Qgg as a Qg-vector
space. Since Jacy ;1 [¢"] is a finite étale scheme over Z[+;], the (-adic representation
Vi Jacxy g is unramified at p { N/. u
In the rest of the subsection, we will see that the zeta function of a curve is expressed
by the Tate module of the Jacobian. Let f : X — X be an endomorphism of a proper
smooth curve over a field k. Let I'y, A C X x X be the graphs of f and of the identity
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and let (I'f, Ax)xx,x € Z be the intersection number. Then, for a prime number ¢
invertible in k, the Lefschetz trace formula (cf. §4.1) gives us

(L, Ax)xxx =1 =Te(fi : TyJx) + deg f.

Assume k = F, and apply the Lefschetz trace formula to the iterates F™ of the
Frobenius endmorphism F': X — X. Then we obtain

Card X(Fpn) =1 —Te(F]' : T)Jx) + p".

Thus the zeta function defined by

Z(X’ t) — eXpZ wt”

n
n=1

satisfies
det(1 — Fit : T)Jx)

(1—t)(1—pt)
Thus, for a proper smooth curve X over Z[%] and a prime p{ N/, we have

Z(X,t) =

det(1 — it : ToJx) = Z(X @11 Fy t)(1 — £)(1 = pt).

Theorem 3.4 (Weil) Let a be an eigenvalue of ¢, on TyJx. Then, o is an algebraic
integer and its conjugates have complex absolute values \/p.

3.3 Construction of Galois representations

Now we construct a Galois representation associated to a modular form. For more
detail, we refer to [12] Chapter 9.
We recall the Eichler-Shimura isomorphism.

Proposition 3.5 The canonical isomorphism
Hl(Xl(N), Z) K7, R — HOIH(SQ(Fl(N)), (C) = HOIH(F(Xl(N), Q), (C)
is an isomorphism of To(I'1(N))r-modules.

Proof. The Ty(I'y(N))-module structure is defined by 7% on Sy(I';(N)) and is
defined by T, on Hy(X1(N),Q) for T' € To(I'1(N)). Thus, it follows from the equality
ff”w = f7 ffw. [ |

Define the integral Hecke algebra T5(I';(N))z to be the Z-subalgebra Z[T,,,n >
1; (d),d € (Z/NZ)*] C End H,(X;(N),Z). The Z-algebra T5(I';(N))z is commutative
and finite flat over Z. It follows from Proposition 3.5 that the Fourier coefficients a,,(f)
lie in the image of the ring homomorphism ¢y : T5(I'1(N))z — C for a normalized
eigenform f. Hence they are algebraic integers in the number field Q(f).

For an integer N > 1, let J;(IV) denote the Jacobian Jacx,(n)/q of the modular
curve X;(N) over Q.
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Corollary 3.6 (cf. [12] Lemma 9.5.3) The T5(I'1(N))q, -module Vi(J1(N)) is free of
rank 2.

Proof. By Propositions 2.5 and 3.5 and by fpqc descent, H;(X;(N),Q) is a free
T5(I'1 (V))g-module of rank 2. Hence Vy(J1(N)) = H1(X1(N),Q) ® Qy is also free of
rank 2. [ |

For a place A|¢ of Q(f), we put

Via = Vi(Ji(N)) @10, (v))g, Q(f)a-

The Q(f)s-vector space Vj, is a 2-dimensional (-adic representation unramified at
p1NL.

Theorem 3.7 (cf. [12] Theorem 9.5.4) The (-adic representation Vy  is associated to
f. Namely, for pt N¢, we have

det(1 — p,t : Vi) =1 — a,(f)t +ep(p)pt*.
Proof will be given in the next subsection.

Corollary 3.8 If we put 1 —a,(f)t+¢c;(p)pt? = (1 —at)(1—3t), the complex absolute
values of a and (3 are \/p.

Proof. By Lemma 3.1, the left hand side det(1—¢,t : V},,) is equal to det(1— Fryt :
Vi(Ji(N)r,) ® Q(f)x). Thus it follows from Theorem 3.4. u

Lemma 3.9 The map Hi(X1(N),Q) — Hom(H;(X1(N),Q), Q) sending « to the lin-
ear form 3 — Tr(aNwy() is an isomorphism of To(I'1(N))-modules.

Proof. Tt suffices to show T, ow = w o T*. We define w : T1(N,n) — T1(N,n) by

sending (£, P,C) — (E',Q',C") where E' = E/({(P)+C), Q" € (E/CIN])/(P) C E'[N]
is the inverse image of (y by the isomorphism (P, ) : (E/C[N])/(P) — pn where
P € E/C|N] is the image of P and C" is the kernel of the dual of E/(P) — E’. Then,

we have sow =wot,tow =wos and hence T, ow = w o T™. [ |

3.4 Congruence relation

Let S be a scheme over F, and E be an elliptic curve over S. The commutative diagram

E 2 B
L
g s, g

defines a map F : E — E® = Xs rrg S called the Frobenius. The dual V = F™* :
E® — [ is called the Verschiebung. We have V o F' = [p|g, F o V = [p|pw.
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Lemma 3.10
det(l — Fryt : Vi(J1(N)g,)) = det(1 = (p) Fryt : Vi(1(N)g, ))-
Proof. First, we show Frow = (p) ow o Fr. We have
Frow(E,P)=Fr(E/(P),Q) = (EV/(P"),Q"),

(p) ow o Fr(E, P) = (p) ow(E(p),P(p)) - (E(p)/<p(p)>,pQ/)

where Q' € E'[N] is characterized by (P® Q" )y = (P,Q)x. Since (P® QP)y =
(P,Q)% = (P®) . pQ")x, we have Frow = (p) ow o Fr. Hence, we have w o Fr =
Fro(p)~tow.

By Lemma 3.9, it suffices to show that (p)F r, is the dual of F'r, with respect to
the pairing (a, w3) on Vy.Ji(N)g,. For «, 8 € Ji(N)g, [("], we have

(Fra,wf) = (wo Fea, ) = {((wo F)., )
= ((Fro{p) ™ ow).a,B) = (o, w(p).F*f)

and the assertion follows.
Let N > 1 be an integer and pt N be a prime number. We define two maps

a,b . Ml(N)]Fp - ,]E(N7p)Fp

by sending (E, P) to (E,P,F : E — E®) and to (E®, P®) V : E® — E) respec-
tively. The compositions are given by

soa sob\ (id F (5)
toa tob) \F (p))’
The maps a,b : M;(N)r, — T1(N,p)r, induce closed immersions a,b : X;(N)g, —
TI(N7p)]Fp‘

Proposition 3.11 Let N > 1 be an integer and p ¥ N be a prime number. Then
s,t: T1(N,p) — X1(N) is finite flat of degree p+ 1.
The map
allb: Xi(N)g, X (N)g, = T1(N,p)r,

s an isomorphism on a dense open subscheme.
Proof. Since the maps a,b : Xi(N)s, — T1(N,p)s, are sections of projections
T1(N,p)s, — X1(N),, they are closed immersions. Since both (1, F) : X;(N)g, 1I

Xi(N)r, — Xi(N)g, and T1(N,p)r, — X1(N)g, are finite flat of degree p + 1, the
assertion follows. [}
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Corollary 3.12 (cf. [12] Theorem 8.7.2) The canonical isomorphism Pic’(X1(N))(Q)[¢"] —
Pic’(X1(N))(F,)[f"] makes the diagram

Pi(X (N)@)["]  ——  Pic”(X,(N))(@)[¢"]

l l

Pic® (X (V) (F,) 0] =255 picd (X, (V) (F,) [£7)
commutative.

Proof. By Proposition, we have a commutative diagram

. Tp=s4t* .
. toa)x« (soa)*+(tob)« (sob)* .
Pic(X(N)g) el lotHE-CW pie(X, (N)g)
By (5), the bottom arrow is F, + (p)F™*. u

Proof of Theorem 3.7. By Corollary 3.12, we have
(1= Ft)(1 = (p)F"t) = (1= Tpt + (p)pt?).
Taking the determinant, we get
det(1 — F.t)det(1 — (p)F*t) = (1 — Tt + (p)pt*)*.
By Lemma 3.10, we get
det(1 — F.t) =1 — Tyt + (p)pt>.

4 Construction of Galois representations: the case
k> 2

To cover the case k > 2, we introduce a construction generalizing the torsion part of
the Jacobian.

4.1 Etale cohomology

In this subsection, we will recall very briefly some basics on etale cohomology. For
more detail, we refer to [8] [Arcatal.
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For a scheme X, an étale sheaf on the small étale site is a contravariant functor
F : (Etale schemes/X) — (Sets) such that the map

F(U) e{ si) € [[F W)

el

pri(s;) = pry(s;) in F(U; xy U;) for 4,5 € I}

is a bijection for every family of étale morphisms (y; : U; — U);er satisfying U =
Uics vi(Us). An étale sheaf on X represented by a finite étale scheme over X is called
locally constant.

The abelian étale sheaves form an abelian category with enough injective objects.
The étale cohomology H?(X, ) is defined as the derived functor of the global section
functor I'(X, ). For a morphism f: X — Y of schemes, the higher direct image R?f,
is defined as the derived functor of f.. We write H%(X, Q) = Q; ® lim , H!(X, Z/("Z)
and R'f.Q, = Q ® lim ,R1f.Z/("Z.

Let f: X — S be a proper smooth morphism of relative dimention d and let F
be a locally constant sheaf on X. Then the higher direct image R?f,F is also locally
constant for all ¢ and is 0 unless 0 < ¢ < 2d and its formation commutes with base
change. More generally, assume f : X — S'is proper smooth, U C X is the complement
of a relative divisor D with normal crossings and F is a locally constant sheaf on U
tamely ramified along D. Let j : U — X be the open immersion. Then, the higher
direct image RYf,j.F is also locally constant and its formation commutes with base
change ([8] Appendice 1.3.3 by L. Illusie to [Th. finitude]).

If f: X — Sis a proper smooth curve and if N is invertible on S, we have a
canonical isomorphism R'f,un — Jacx,s[N].

If S = Spec k for a field k, the category of étale sheaves on S is equivalent to that
of discrete sets with continuous Gj-actions by the functor sending F to lim ;- F(L).
For a scheme X over k, the higher direct image R?f,F is the étale cohomology group
H9(Xj, F) with the canonical Gy-action. If k£ = C, we have a canonical isomorphism
HYX,Z)®2,Z/NZ — HY(X,Z/NZ) comparing the singular cohomology with the etale
cohomology.

Let X be a proper smooth variety over a field £ and f : X — X be an endomor-
phism. Then, for a prime number ¢ invertible in k, the Lefschetz trace formula ([§]
[Cycle] Proposition 3.3) gives us

2dim X

(T Ax)xxex = Y (=1)Tr(f*: HI(X5, Q).

q=0

Assume k = F, and apply the Lefschetz trace formula (loc. cit. Corollaire 3.8) to
the iterates of the Frobenius endmorphism F' : X — X. Then the zeta function is
expressed by the determinant:

2dim X
Z(X,t)= [ det(t — F*t: HI(X; Q) 0"

q=0
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Theorem 4.1 (the Weil conjecture [9]) Let v be an eigenvalue of F* on H1( X, Qy).
Then, o is an algebraic integer and its conjugates have complex absolute values p3.

4.2 Construction of Galois representations

We briefly sketch the construction in the higher weight case. For more detail, we refer
to [7].

Let N > 5 and k > 2. Proposition 3.5 is generalized as follows. Let f : Ey,(n) —
Y1(N) be the universal elliptic curve and j : Y;(N) — X;(NN) be the open immersion.

Proposition 4.2 There exists a canonical isomorphism
H'(X1(N)e, 5" 2R £,Q) ®g R — Si(I1(N))e
of Ti(T'1(N))r-modules.
Corollary 4.3 H'(X1(N)g, j.S" 2R f.Qy) is a free To(T'1(N))g, -module of rank 2.
For a place A|[¢ of Q(f), we put
Vix= Hl(X1(N)@,j*Sk72le*@e) T (11 (V)g, Q)

The Q(f)s-vector space Vj, is a 2-dimensional (-adic representation unramified at
p1t NC.

Theorem 4.4 The dual of the (-adic representation Vi is associated to f. Namely,
for pt N, we have

det(1 — gazjlt cVia) =1 —a,(f)t + Sf(p)pk’th.

Corollary 4.5 If we put 1 — a,(f)t + e;(p)p"~'t* = (1 — at)(1 — Bt), the complex
absolute values of o and 3 are p%.
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