Galois representation in arithmetic geometry.

1. Local-global in arithmetic.

"An ℓ -adic representation is described by its *L*-function". An analogy between algebraic curve and Spec \mathbb{Z} .

function field K	:	\mathbb{Q}
closed points	:	prime numbers and infinite places
$K \subset$ local field K_x	:	$\mathbb{Q} \subset p$ -adic field \mathbb{Q}_p and $\mathbb{R} = \mathbb{Q}_\infty$

Two features:

Each point p is a "circle" since the fundamental group $\operatorname{Gal}(\overline{\mathbb{F}}_p/\mathbb{F}_p)$ of Spec \mathbb{F}_p is a pro-cyclic group generated by the Frobenius.

A global representation is uniquely determined by the local data by the Cebotarev density theorem: The Frobenius conjugacy classes form a dense open subset of the global Galois group.

 ℓ -adic representations.

A continuous representation $G_{\mathbb{Q}} = \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to GL_n(\mathbb{C})$ has open kernel and finite image. Not useful to study arithmetic geometry. An ℓ -adic representation is a continuous representation $G_{\mathbb{Q}} = \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to GL_n(\mathbb{Q}_\ell)$ unramified outside finite set of prime numbers, where ℓ denotes a prime number. Except finitely many primes, eigenpolynomials

$$\det(1 - \varphi_p t : V) \in \mathbb{Q}_{\ell}[t]$$

is defined. Consequence of the Cebotarev density theorem: upto semi-simplification, an ℓ -adic representation V is determined by the local L-factors $L_p(V,t) = \det(1-\varphi_p t : V) \in \mathbb{Q}_{\ell}[t]$ at primes p where V is unramified. In most cases, $\det(1-\varphi_p t : V)$ is in $\mathbb{Q}[t]$ and is independent of ℓ , i.e. ℓ -adic representation is a member of a compatible system. L-function of V:

$$L(V,s) = \prod_{p} L_{p}(V, p^{-s})^{-1}.$$

Example 1. E elliptic curve over \mathbb{Q} e.g. $E = X_0(11)$ defined by the equation $y^2 = 4x^3 - 4x^2 - 40x - 79$. $T_{\ell}E = \lim_{\ell \to \infty} {}_{n}E[\ell^n](\overline{\mathbb{Q}})$. $T_{\ell}E$ is an ℓ -adic representation of $G_{\mathbb{Q}}$. If one forget the $G_{\mathbb{Q}}$ -action, it is isomorphic to \mathbb{Z}_{ℓ}^2 as a module. For a prime number p prime to the discriminant of E,

$$\det(1 - \varphi_p t : T_\ell E) = 1 - a_p(E)t + pt^2$$

where $a_p(E)$ is an integer defined by $\sharp E(\mathbb{F}_p) = 1 - a_p(E) + p$.

$$L(E,s) = \prod_{p} (1 - a_p(E)p^{-s} + p^{1-2s})^{-1}.$$

Example 2. $f(\tau) = \sum_{n=1}^{\infty} a_n(f)q^n \ (q = \exp 2\pi\sqrt{-1}\tau)$ normalized eigen cusp form of weight 2 with trivial character that is an eigenvector for every Hecke operator e.g. $f_{11}(\tau) = q \prod_{n=1}^{\infty} (1-q^n)^2 (1-q^{11n})^2$. V_f ℓ -adic representation associated to f For pprime to the level of f,

$$\det(1-\varphi_p t:V_f)=1-a_p(f)t+pt^2.$$

$$L(f,s) = \sum_{n=1}^{\infty} a_n n^{-s} = \prod_p (1 - a_p(f)p^{-s} + p^{1-2s})^{-1}.$$

Taniyama-Shimura Conjecture. (proved by Wiles-Taylor-Diamond-Conrad-Breuil) An ℓ -adic representation of type in Example 1 is necessarily of type in Example 2. Or, equivalently, for an elliptic curve E, there exists a cusp form f such that

$$L(E,s) = L(f,s).$$

The other implication was established by Eichler-Shimura.

E.g. For E in Example 1, f_{11} in Example 2 works.

2. Etale cohomology as an ℓ -adic representation.

"The Weil conjecture implies that the L-function of the etale cohomology is the Hasse-Weil L-function."

X projective smooth algebraic variety over \mathbb{Q} . Etale cohomology $H^m(X_{\bar{\mathbb{Q}}}, \mathbb{Q}_{\ell})$ is defined. As a vector space, simply $H^m(X_{\bar{\mathbb{Q}}}, \mathbb{Q}_{\ell}) = H^m(X^{\mathrm{an}}, \mathbb{Q}) \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell}$. The ℓ -adic representation $H^m(X_{\bar{\mathbb{Q}}}, \mathbb{Q}_{\ell})$ is unramified at a prime p where X has good reduction. The *L*-function of the ℓ -adic representation $H^m(X_{\bar{\mathbb{Q}}}, \mathbb{Q}_{\ell})$ is the Hasse-Weil *L*-function $L(H^m(X), s)$.

Example 1. If E is an elliptic curve over \mathbb{Q} , we have $H^1(E_{\overline{\mathbb{Q}}}, \mathbb{Q}_{\ell}) = Hom(T_{\ell}E, \mathbb{Q}_{\ell})$. In other words,

$$L(H^1(E), s) = L(E, s).$$

Example 2. For an integer $N \geq 1$, let $X_0(N)$ be the modular curve of level N. $(X_0(N)^{\text{an}} \text{ is a compactification of } \Gamma_0(N) \setminus H \text{ where } \Gamma_0(N) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}) | c \equiv 0 \mod N \}. \}$ Then,

$$H^1(X_0(N)_{\bar{\mathbb{Q}}}, \mathbb{Q}_\ell) = \bigoplus_{f:N_f|N} Hom(V_f, \mathbb{Q}_\ell)^{\oplus \sharp\{d|N/N_f\}}.$$

Decomposition is given by Hecke operators. In other words,

$$L(H^{1}(X_{0}(N), s)) = \prod_{f:N_{f}|N} L(f, s)^{\sharp\{d|N/N_{f}\}}.$$

Hasse-Weil *L*-function. Let $X \mod p$ be the reduction modulo a good prime p, that is a projective smooth variety over \mathbb{F}_p . Let

$$Z(X \mod p, t) = \exp\left(\sum_{n=1}^{\infty} \frac{\sharp X(\mathbb{F}_{p^n})}{n} t^n\right)$$

denote the congruence ζ -function. By the Weil conjecture proved by Deligne, we have

$$Z(X \mod p, t) = \frac{P_1(X \mod p, t) \cdots P_{2d-1}(X \mod p, t)}{P_0(X \mod p, t) \cdot P_2(X \mod p, t) \cdots P_{2d}(X \mod p, t)}$$

where $d = \dim X$, $P_m(X \mod p, t) \in \mathbb{Z}[t]$. The decomposition is characterized by the property that, if we put $P_m(X \mod p, t) = \prod_i (1 - \alpha_{i,p,m}t)$, the complex eigenvalue of $\alpha_{i,p,m}$ is $p^{\frac{m}{2}}$. This is an analogue of the Riemann hypothesis.

$$L(H^m(X), s) = \prod_p P_m(X \mod p, p^{-s})^{-1}.$$

Note: Bad factors are missing.

Further, we have

$$\det(1 - Fr_p t : H^m(X_{\bar{\mathbb{Q}}}, \mathbb{Q}_\ell)) = P_m(X \bmod p, t)$$

and consequently,

$$L(H^m(X_{\bar{\mathbb{O}}}, \mathbb{Q}_\ell), s) = L(H^m(X), s).$$

The local factor at a prime of good reduction is determined by the Weil conjecture, upto semi-simplicification.

Semi-simplicity conjecture: (Tate) The action of Fr_p on $H^m(X_{\bar{\mathbb{Q}}}, \mathbb{Q}_\ell)$) is semi-simple.

The semi-simplicity conjecture implies that, the ℓ -adic representation $H^m(X_{\bar{\mathbb{Q}}}, \mathbb{Q}_{\ell}))$ of $G_{\mathbb{F}_p}$ is determined by $\det(1 - Fr_p t : H^m(X_{\bar{\mathbb{Q}}}, \mathbb{Q}_{\ell})).$

The Hasse-Weil functions are conjectured to have analytic continuation and to satisfy a functional equation. To formulate a function equation, we need to include the bad primes and to introduce the Γ -factor that is a contribution of the infinite place.

 Γ -factor:(Serre) $V = H^m(X^{\mathrm{an}}, \mathbb{Q})$ is a pure Hodge structure of weight m with $\operatorname{Gal}(\mathbb{C}/\mathbb{R}) = \langle \sigma \rangle$ -action. Put $\Gamma_{\mathbb{R}}(s) = \pi^{-s/2}\Gamma(s/2)$ and $\Gamma_{\mathbb{C}}(s) = 2(2\pi)^{-s}\Gamma(s)$. Define

$$\Gamma_{\mathbb{R}}(H^{m}(X),s) = \prod_{p < m/2} \Gamma_{\mathbb{C}}(s-p)^{h^{p,q}} \Gamma_{\mathbb{R}}(s-m/2)^{h^{+}} \Gamma_{\mathbb{R}}(s-m/2+1)^{h^{-}}.$$

If m is odd, we have only the first term. If m is even h^{\pm} is the dimension of the subspace of $V^{\frac{m}{2},\frac{m}{2}}$ where σ acts as $(-1)^{n/2}$.

3. Primes of bad reduction.

Bad factors of the Hasse-Weil *L*-function.(Serre)

 $P_p(H^m(X), t) = \det(1 - Fr_p t : H^m(X_{\bar{\mathbb{Q}}}, \mathbb{Q}_\ell)_p^I)$ where I^p indicates the inertia fixed part.

Functional equation.(Serre)

Put $\Lambda(H^m(X), s) = L(H^m(X), s) \cdot \Gamma_{\mathbb{R}}(H^m(X), s)$. Define $N = \prod_{\text{bad } p} p^{f_p}$ where f_p is the Artin conductor of $H^m(X_{\bar{\mathbb{Q}}}, \mathbb{Q}_{\ell})$ at p. Then we expect to have a function equation

$$\Lambda(H^{m}(X), s) = \pm N^{\frac{m+1}{2}-s} \Lambda(H^{m}(X), m+1-s).$$

Question.(Serre) Are $P_p(H^m(X), t)$ and f_p well-defined?

This question fits in more general problems.

(i) Description of local Galois representation.

"The monodromy-weight conjecture together with a part of the Tate conjecture implies an affirmative answer to Question."

(ii) Invariants of ramification.

"We have a geometric formula computing the conductor."

(i) Absolute Galois group of a local field. To

$$\mathbb{Q}_p \subset \mathbb{Q}_p^{\mathrm{ur}} = \mathbb{Q}_p(\zeta_n \ (p \nmid n)) \subset \mathbb{Q}_p^{\mathrm{tr}} = \mathbb{Q}_p^{\mathrm{ur}}(p^{\frac{1}{n}} \ (p \nmid n)) \subset \overline{\mathbb{Q}}_p,$$

corresponds

$$G_{\mathbb{Q}_p} = \operatorname{Gal}(\bar{\mathbb{Q}}_p/\mathbb{Q}_p) \supset I = \operatorname{Gal}(\bar{\mathbb{Q}}_p/\mathbb{Q}_p^{\operatorname{ur}}) \supset P = \operatorname{Gal}(\bar{\mathbb{Q}}_p/\mathbb{Q}_p^{\operatorname{tr}}) \supset 1.$$

I is called the inertia and P is called the wild inertia. The quotients $G_{\mathbb{Q}_p}/I = G_{\mathbb{F}_p}$ and $I/P = \varprojlim_{p \nmid n} \mu_n(\bar{\mathbb{F}}_p)$ are pro-cyclic and P is a huge pro-p group. Take an isomorphism $\varprojlim_n \mu_{\ell^n} \to \mathbb{Z}_\ell$ and let $t_\ell : I \to \mathbb{Z}_\ell$ denote the composition. Also take a lifting $F \in G_{\mathbb{Q}_p}$ of Fr_p . The inverse image $W_{\mathbb{Q}_p} = \langle F, I \rangle$ of $\langle Fr_p \rangle \subset G_{\mathbb{F}_p}$ is called the Weil group.

We assume $\ell \neq p$. The *p*-adic Hodge theory deals with the case $\ell = p$ (Faltings's Kuwait lecture on 28 October 2003, Fontaine's Kuwait lecture on 26 February 2003)

Semi-simplicity conjecture.(Tate) The action of F on $H^m(X_{\overline{\mathbb{O}}}, \mathbb{Q}_{\ell})$ is semi-simple.

Monodromy theorem.(Grothendieck) Let ℓ be a prime number different from p and $\rho : G_{\mathbb{Q}_p} \to GL_n(\mathbb{Q}_\ell)$ be a continuous representation. Then, there exists a pair of representation $\rho' : W_{\mathbb{Q}_p} \to GL_n(\mathbb{Q}_\ell)$ and a nilpotent endomorphism $N \in M_n(\mathbb{Q}_\ell)$ such that $\rho(F^n \sigma) = \rho'(F^n \sigma) \exp(t_\ell(\sigma)N)$.

 ρ is uniquely determined by $(\rho',N).~\rho'$ is determined by Tr ρ' upto semi-simplification.

Monodromy filtration: For N an nilpotent endomorphism of V ($N^{n+1} = 0$), the filtration $W_r V = \sum_{p-q=r} \operatorname{Ker} N^{p+1} \cap \operatorname{Im} N^q$ is the unique increasing filtration satisfying the following property:

 $N(W_rV) \subset W_{r-2}V$ for all $r \in \mathbb{Z}$, $W_nV = V, W_{-n-1}V = 0$, and the induced map $N^r : Gr_r^WV \to Gr_{-r}^WV$ is an isomorphism for $r \ge 0$.

Monodromy-weight conjecture: (Deligne) The eigenvalues of F on $Gr_r^W H^m(X_{\bar{\mathbb{Q}}}, \mathbb{Q}_\ell)$ are of weight m+r. Namely are an algebraic integer and their complex absolute values are $p^{\frac{m+r}{2}}$.

MWC is an analogue of the Weil conjecture for a variety over a local field. MWC is know if $m \leq 2$. MWC implies that N is determined by ρ' . Further Semi-simplicity conjecture implies that ρ' on $H^m(X_{\bar{\mathbb{Q}}}, \mathbb{Q}_{\ell})$ is determined by Tr $\rho = \text{Tr } \rho'$ on $H^m(X_{\bar{\mathbb{Q}}}, \mathbb{Q}_{\ell})$.

Theorem 1. Assume WMC and further assume that the projectors to the Künneth components are algebraic. Then, $P_p(H^m(X), t)$ and f_p are well-defined. More precisely, the function Tr $(\sigma, (\text{Ker}N :)H^m(X_{\bar{\mathbb{Q}}}, \mathbb{Q}_{\ell}))$ on $\sigma \in W_{\mathbb{Q}_p}$ is \mathbb{Q} -valued and is independent of ℓ .

Proof. Alteration and the weight spectral sequence (Steenbrink-Rapoport-Zink). (ii) Conductor.

$$f_p = \dim H^m(X_{\bar{\mathbb{Q}}}, \mathbb{Q}_\ell) - \dim H^m(X_{\bar{\mathbb{Q}}}, \mathbb{Q}_\ell)^{I_p} + \operatorname{Sw}_p H^m(X_{\bar{\mathbb{Q}}}, \mathbb{Q}_\ell).$$

Take a regular proper model $X_{\mathbb{Z}}$ and put

$$\operatorname{Art}_p(X) = \chi(X_{\bar{\mathbb{Q}}}, \mathbb{Q}_{\ell}) - \chi(X_{\bar{\mathbb{F}}_p}, \mathbb{Q}_{\ell}) + \sum_{m=0}^{2d} (-1)^m \operatorname{Sw}_p H^m(X_{\bar{\mathbb{Q}}}, \mathbb{Q}_{\ell}).$$

 $SwV = \sum_{v} v \times \dim V^{G^{v+}} / V^{G_v} G_v$ filtration by ramification groups. SwV = 0 if and only if P acts trivially on V.

Theorem 2 (Kato-T). If the closed fiber $X_{\mathbb{F}_p}$ has normal crossings as a divisor of X, we have

$$\operatorname{Art}_p(X) = \deg(-1)^d c_{d+1}^X_{X_{\mathbb{F}_p}}(\Omega_{X/\mathbb{Z}}).$$

The right hand side is the degree of a 0-cycle class supported on the closed fiber. Theorem 2 is conjectured by S. Bloch without the extra assumption. A generalization of the conductor-discriminant formula in algebraic number theory. The Tate-Ogg formula for an elliptic curve is a special case.

Tomorrow: A related formula in a more geometric setting.