
Bad reduction of varieties over a local field ([33], [32], [19], [17], [15])

The stable reduction theorem for curves, proved by Deligne-Mumford, asserts that a proper
smooth curve over a local field has semi-stable reduction if and only if the ℓ-adic mon-
odromy action is unipotent. A new cohomological proof without using the Jacobian is
given in [32]. An equivalent condition for the ℓ-adic monodromy action to be tame is also
given. Another proof of the latter using log geometry is given in [15].

The trace of an automorphism on the space of vanishing cycles of a normal curve over
a dvr at an isolated singular point in the closed fiber is computed in [33]. The method
of proof using the semi-stable reduction theorem of curves is later used by Kato to prove
a generalization of the dimension formula by Deligne-Laumon for the space of vanishing
cycles. A certain inequality on the conductor of a curve over a dvr is proved in [19].

The weight spectral sequence defined by Rapoport-Zink is a basic tool in the study of
the monodromy of ℓ-adic cohomology. A new construction using perverse sheaves is given
in [17]. As an application, some results on the independence of ℓ of traces are deduced
from the Lefschetz trace formula. A p-adic counterpart is obtained by Tsuji.

A purity result proved in [15] asserts that a family of curves on the interior of a log
regular scheme has a log smooth extension if the monodromy is tame.

Conductor formula ([30], [29], [28], [14], [13], [2])

The Tate-Ogg formula for elliptic curve comparing the discriminant with the conductor
is reproved and is generalized to higher genus by using the Mumford isomorphism in [30],
as an application of the conductor formula of Bloch. For curves of genus 2, the Mumford
isomorphism is compared with the discriminant in [28].

The conductor formula is originally formulated by Bloch using the localized Chern
class. It is interpreted in terms of coherent sheaves in [29]. This approach was developed
as K-theoretic intersection product and eventually lead to a proof of large cases of the
conductor formula in [13]. Another key ingredient in the proof is the logarithmic method.
Some inaccuracies in [29] are corrected also in [13]. Shortly before the proof, the formula
modulo 2 was proved in [14].

The conductor formula is generalized to allow coefficient sheaves in [2], by developing
the method inaugurated in [13] and defining the Swan class of an ℓ-adic sheaf measuring
the wild ramification. It is generalized to an ℓ-adic Riemann-Roch formula and gives an
arithmetic analogue of [11]. The integrality of the Swan class is also proved for arithmetic
surfaces by the reduction to the rank one case.

Euler number and the characteristic class of an ℓ-adic sheaf on a
variety of positive characteristic ([31], [27], [12], [11], [9], [5], [1], [−1])

A conjecture of Serre on the Artin character of an isolated fixed point of an algebraic
surface is deduced in [31] from a trace formula proved by Shuji Saito. A proof of the
conjecture for arithmetic surface was annonced by Kato at ICM 90 and a proof is given
in [2].

A ramification theoretic formula for the Euler number of a rank one sheaf on an alge-
braic surface was first proved by Kato. It is generalized to higher dimension in [27] and
to higher rank in [9].
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The Euler number of an ℓ-adic sheaf is refined as the characteristic class. Using the
new method of blow-up at the ramification locus in the diagonal, the characteristic class
is computed for a rank 1 sheaf in [12]. The proof relies on computations on Witt vectors
in [10].

Using ideas from log geometry, the Swan class of an ℓ-adic sheaf is defined as an invari-
ant measuring the wild ramification in [11]. The Grothendieck-Ogg-Shafarevich formula
for the Euler number of a sheaf on a curve is generalized to higher dimension. The inte-
grality of the Swan class is also proved for surfaces by the reduction to rank one case. An
arithmetic version is given in [2]

After establishing a relation of the graded piece of the ramification group to differential
forms, the characteristic variety of an ℓ-adic sheaf of higher rank is defined in [9] using the
relation, under an assumption. The Euler number is computed as the intersection product
with the 0-section in the logarithmic cotangent bundle. This advances the project sketched
in [10]. It is refined and generalized in [5].

A non-logarithmic version of the results in [9], [5] is given in [−1]. In particular, the
characteristic cycle is defined as a cycle on the cotangent bundle and the Euler number is
computed as the intersection number with the 0-section, under a certain assumption. The
non-logarithmic version has an advantage to behave better with the method of cutting by
curves. For a sheaf on a surface, the characteristic cycle is defined unconditionally in [1]
using the result in [−1] and the Radon transform and formulas for the Euler number and
the total number of vanishing cycles are proved.

Filtration by ramification groups ([18], [16], [9], [6], [−1])

The upper numbering filtration of the absolute Galois group of a local field with not
necessarily perfect residue field is defined and studied in [18] and [16]. It is first defined in
[18] using rigid geometry. It is also proved in [18] that the jumps are rational numbers. In
[16], the graded pieces are proved to be abelian and are related to certain tangent spaces.
The graded pieces are shown to be killed by p and the character groups are related to
differential forms; in the equal characteristic case in [9] for the logarithmic version and
in [−1] for the non-logarithmic version; in the mixed characteristic case in [6] for the
logarithmic version. This description is used in [9] and [−1] to define the characteristic
cycle of an ℓ-adic sheaf.

Epsilon factors, the determinant and the Stiefel-Whitney class of
cohomology ([26], [25], [24], [23], [22], [7], [4])

The constant term of the functional equation of the L-function of an ℓ-adic sheaf on a
variety over a finite field gives a refinement of the Euler number. In the case where the
ramification is tame, a formula is proved in [26] by taking a Lefschetz pencil and applying
Laumon’s product formula.

The alternating sum of the inertia action on the cohomology of a variety over a local
field with ‘tame’ reduction is computed also in [26]. The epsilon factor of the cohomology
is computed using the fact that the local epsilon factor of a tamely ramified representation
of a local field is determined by the restriction to the inertia subgroup.

If we consider the Euler number as an invariant of degree 0, the determinant will be
an invariant of degree 1. For an ℓ-adic sheaf tamely ramified along the boundary, the
determinant of cohomology is computed in [25]. The ramification along the boundary
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contributes as the Jacobi sum. Since the constant term of the functional equation studied
in [26] is the determinant of the Frobenius, this is a generalization of the result there.

For the cohomology with constant coefficients, the determinant is compared with the
discriminant of the de Rham cohomology also in [25]. If the variety is a hypersurface, the
determinant is computed using the discriminant of the defining polynomial in [3]. If we
regard the determinant of the cohomology of the constant sheaf as an invariant of degree
1 modulo 2, an invariant of degree 2 will be defined as the second Stiefel-Whitney class.
A formula for the second Stiefel-Whitney class for a finite extension of a field was proved
by Serre. Some computation of the second Stiefel-Whitney class for a finite extension
of a local field is done in [24] and improved in [7]. The degree 2 version of the formula
comparing ℓ-adic cohomology with de Rham cohomology is studied in [4].

Deligne proved that the local epsilon factor of an orthogonal representation is essentially
the second Stiefel-Whitney class and deduced that the sign of the functional equation of an
Artin orthogonal L-function is positive. Using the Fontaine-Lafaille theory for the places
dividing p, it is generalized to an orthogonal motive of even weight in [23].

For Hodge structures, an analogue of Galois action is given by period integrals. By
transporting the method in [26], an analogous formula for periods is proved in [22].

The local Fourier transform of an ℓ-adic representation of the absolute Galois group of
a local field of characteristic p is computed explicitly in [7], under a certain assumption.
This gives a new geometric and local proof of the formula of Laumon for the local epsilon
factors. A computation of the epsilon factors module roots of unity of p-power orders is
given in [−2].

Galois representation associated to modular forms ([21], [20], [8])

For an ℓ-adic Galois representation associated to an elliptic modular form or to a Hilbert
modular form, the local-global compatibility was proved by Deligne-Langlands-Carayol at
the places prime to ℓ, under a certain condition in the case where the degree of the totally
real field is even. Using the p-adic Hodge theory, the compatibility at a place dividing ℓ is
similarly formulated. This compatibility is proved for elliptic modular forms in [21] and
some inaccuracies on F -isocrystals are corrected in [20]. It is proved for Hilbert modular
forms in [8].

The method relies on the comparison of p and ℓ using the weight spectral sequences. It
uses a purely geometric construction of the representation and on the proof of the weight-
monodromy conjecture proved using the fact that the base modular variety is a curve.
The condition in the case of even degree has been removed by Skinner and by Tong Liu
by different methods.
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