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Last year, I proved the conductor formula of
Bloch in higher dimension under a mild hypoth-
esis in a joint work with K.Kato. This year, I
wrote an article on this proof. Unfortunately, it
is not yet completed. While writing it, I made
progress on the following two points. One is a
generalization of the conductor formula to al-
gebraic correspondences. The original conduc-
tor formula is the special case where the cor-
respondence is the diagonal. For an algebraic
correspondence I' on an proper smooth scheme
Xk over a local field K, it Swan conductor
Sw(Xk,T') is defined by using the induced en-
domorphism I'* on ¢-adic etale cohomology. I

have shown that it is an integer independent

of ¢ and is equal to the logarithmic localized
intersection number [[I', X]]. This generalized
formula is applicable to an endomorphism of a
variety and should be useful in a potential gen-
eralization of the conductor formula with coef-
ficient sheaves. The proof is parallel to that of
the original conductor formula.

The other is a relation between the localized
intersection theory using Chow groups defined
by Bloch-Abbes our localized intersection the-
ory using K-groups. It follows form that the
excess intersection formula has the same form
in the both theory.

I also studied ramification of complete discrete
valuation fields with imperfect residue field. I

only succeeded to obtain some partial results.
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During the year 2000 I was working on two joint
projects with Lars Hesselholt (MIT, USA), who
came to visit me in Tokyo to give talks and to
work with me.

The first project is a calculation of the K-
theory with p-adic coefficients of power series
rings R = k[[T1,...,T,]] over fields k of char-
acteristic p. Previously, only trivial cases had
been known (like K; for i < 3). We were able
to show that if k£ has a finite p-base, then the p-
adic K-theory spectrum K (R, Z,) of R agrees
with the homotopy limit of the K-theory spec-



tra K(R/I’,Z,) of R/I’, where I is the max-
imal ideal of R. In partiular, the K-groups of
R can be expressed in terms of the K-groups
of the R/I7. In the proof one uses on the hand
that in the situation above, K-theory and Mil-
nor K-theory agree (this has been proven by
Marc Levine and myself), and on the other
hand the connection between K-theory, topo-
logical cyclic homology and the de Rham Witt
complex (which has been established by Hes-
selholt). A preprint on this work is available,
and has been submitted for publication.

In the second project, Hesselholt and I com-
pare K-theory and topological cyclic homology
on the closed fiber of a smooth scheme over
a discrete valuation ring | V' of mixed charac-
teristic (0,p). Our main theorem is that for a
Henselian local ring A of such a scheme at a
point of the closed fiber, K-theory and topo-
logical cyclic homology agree above the dimen-
sion of A, and they always agree if A is stricly
Henselian. In partiular, etale K-theory and
topological cyclic homology agree for a smooth
and proper scheme over V. The theorem is
known for A/p instead of A by previous joint
work of Hesselholt and myself. We generalize
the ”calculus of functors”, developed by Good-
willie, to show that this implies the theorem
for A/p’ for any j. Finally, we generalize a
theorem of Suslin to show that both theories
commute with inverse limits, to conclude the
theorem for A. Again, a preprint is available,

and has been submitted for publication.



