ℓ進層の特性類と分岐について

東京大学数理科学研究科 斎藤 毅

概要

 ℓ 進層に対し、特性類が定義される.特性類は ℓ -進層の暴分岐と結びついている.暴分岐を Galois 被覆で消すことで,特性類を Swan 類で表わせる.また,暴分岐を直積内の対角内の分岐因子でブローアップして消すことで,特性類の精密化として,特性サイクルが得られる.これは,分岐群の理論を用いて定義され, $\mathcal D$ 加群の超局所解析の類似である.

目次

特性類
Swan 類
分岐群
特性サイクル、超局所解析との類似

1 特性類

この節では, ℓ 進層に対し、特性類を定義し,その基本的な性質を記述する. ℓ 進層の特性類は,名前こそそのように呼ばれていないものの,実質的には [4] で定義されている.詳しくは,[3] で調べられている.

k を標数 p>0 の体とし, X を k 上有限型な分離スキームとする. $\ell\neq p$ を素数とし, \mathcal{F} を X 上の ℓ 進層とする. $a:X\to k$ を構造射とし, $K_X=a^!\mathbb{Q}_\ell$ とおく. \mathcal{F} の特性類

$$C(\mathcal{F}) \in H^0(X, K_X)$$

を下のように定義する .X が k 上スムーズかつ d 次元なら $,H^0(X,K_X)=H^{2d}(X,\mathbb{Q}_\ell(d))$ であり $,C(\mathcal{F})$ は $H^{2d}(X,\mathbb{Q}_\ell(d))$ の元として定義される .

 \mathcal{F} の恒等写像 $1 \in Hom(\mathcal{F}, \mathcal{F})$ を考える.標準的な同一視

$$\begin{array}{lcl} \operatorname{Hom}(\mathcal{F},\mathcal{F}) & = & H^0_X(X\times X,R\mathcal{H}om(p_2^*\mathcal{F},Rp_1^!\mathcal{F})) \\ & = & H^0_X(X\times X,R\mathcal{H}om(p_1^*\mathcal{F},Rp_2^!\mathcal{F})) \end{array}$$

と,自然なペアリング $R\mathcal{H}om(p_2^*\mathcal{F},Rp_1^!\mathcal{F})\otimes R\mathcal{H}om(p_1^*\mathcal{F},Rp_2^!\mathcal{F})\to K_{X\times X}$ によって定まるカップ積

$$\langle 1, 1 \rangle \in H_X^0(X \times X, K_{X \times X})$$

を考える.ここで,X は対角射 $X\to X\times X$ により, $X\times X$ の閉部分スキームと考える. $p_1,p_2:X\times X\to X$ は,射影を表わす.台つきコホモロジー $H^0_X(X\times X,K_{X\times X})$ は $H^0(X,K_X)$ と標準的に同一視されるので,次のように定義する.

定義 1 (cf. [4]) 特性類

$$C(\mathcal{F}) \in H^0(X, K_X)$$

を , カップ積 〈1,1〉として定義する .

スキームX がスムーズかつd 次元で,層 \mathcal{F} がスムーズかつ階数r なら,

$$C(\mathcal{F}) = r \cdot (X, X)_{X \times X} = r \cdot (-1)^d c_d(\Omega^1_{X/k})$$

である.まん中の式は , $X \times X$ の中での対角 X の自己交点積を表わす. c_d は d 次の Chern 類である.

X が固有なら,Lefschetz 跡公式 ([4])

Tr
$$C(\mathcal{F}) = \chi(X_{\bar{k}}, \mathcal{F})$$

により , Euler 数 $\chi(X_{\bar k},\mathcal F)=\sum_{q=0}^{2\dim X}(-1)^q\dim H^q(X_{\bar k},\mathcal F)$ が , 特性類のトレース射 $\mathrm{Tr}:H^0(X,K_X)\to\mathbb Q_\ell$ による像として計算できる .

devissage により , 特性類の計算は , スムーズ開部分スキーム $j:U\to X$ 上のスムーズ 進層 $\mathcal F$ に対する , 差

$$C(j_!\mathcal{F}) - \operatorname{rank} \mathcal{F} \cdot C(j_!\mathbb{Q}_\ell)$$

の計算に帰着される. \mathcal{F} の境界 $X\setminus U$ に沿っての分岐が穏なら,差は0 である.したがって,問題は暴分岐の扱いである.

暴分岐の寄与は,暴分岐を消し,その消え方をみることによって,調べることができる.暴分岐の消し方には,次の2通りがある.

- 1. **有限** Galois 被覆.
- 2. **直積内の対角での** blow-up

第1の方法は,古くからとられているものである.これによれば,特性類を Swan 類で表わせる.第2の方法は新しいもので,これにより,特性類を分岐群と結びつけて計算できる.第2の方法には, \mathcal{D} 加群の理論における超局所解析との類似がみられる.

2 Swan類

この節では, ℓ 進層の Swan 類の定義 [7] を紹介し,特性類との関係 [3] を与える. $j:U\to X$ を開埋め込みとし, $\mathcal F$ を U 上のスムーズ ℓ 進層とする. Swan 類 Sw $\mathcal F\in CH_0(X\setminus U)_{\mathbb Q}$ を,境界に台をもつ 0 輪体類として定義する.

簡単のため,有限エタール Galois 被覆 $V\to U$ で, $\mathcal F$ のひきもどしが定数層となるものが存在すると仮定する.M を, $\mathcal F$ に対応する Galois 群 G の表現とする.一般の場合の定義には,Brauer 跡を用いる.さらに簡単のため、曲線の場合に考える.高次元では,オルタレイションをとる必要がある.

 $X\supset U$ と $Y\supset V$ をスムーズなコンパクト化とする.境界の各点 $y\in Y\setminus V$ に対し,(y,y) での $Y\times Y$ のブローアップ $(Y\times Y)'\to Y\times Y$ を, \log ブローアップとよぶ.対角射 $T\to Y\times Y$ は, \log 対角射 $Y\to (Y\times Y)'$ をひきおこす. \log 対角射 $Y\to (Y\times Y)'$ の像を, Δ^{\log}_V で表わす.

Gの元 $\sigma \neq 1$ をとる . $(Y \times Y)'$ での , グラフ $\Gamma_\sigma \subset V \times V$ の閉包 $\widetilde{\Gamma}_\sigma$ は , 図のようになる . 図の右上のように , $\widetilde{\Gamma}_\sigma$ と \log 対角 Δ_V^{\log} が交わらない点での σ の分岐は穏であり ,

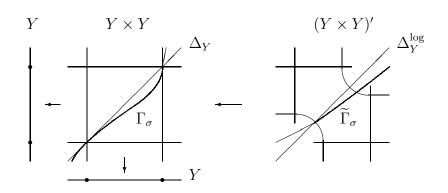


図 1: log ブローアップ

左下のように , $\widetilde{\Gamma}_\sigma$ と Δ_Y^{\log} の像が交わる点での , σ の分岐は暴である . Swan 指標類 $s_{V/U}(\sigma)\in CH_0(Y\setminus V)$ を ,

$$s_{V/U}(\sigma) = \begin{cases} -(\Gamma_{\sigma}, \Delta_Y^{\log})_{(Y \times Y)'} & \text{if } \sigma \neq 1\\ -\sum_{\tau \neq \sigma} s_{V/U}(\tau) & \text{if } \sigma = 1 \end{cases}$$

で定める.右辺は, \log ブローアップ $(Y\times Y)'$ の中での \log 対角 $Y=\Delta_Y^{\log}$ との交点積を,Y 上のサイクル類とみたものを表わす.

 Swan 類 Sw $\mathcal{F} \in CH_0(X \setminus U)_{\mathbb{Q}}$ は ,

Sw
$$\mathcal{F} = \frac{1}{|G|} \sum_{\sigma \in G} f_* s_{V/U}(\sigma) \text{Tr}(\sigma : M)$$

で定義される . f_* は , 射 $f:Y\to X$ による像を表わす . 曲線の場合には , Swan 類の定義は , Swan 導手の古典的な定義を幾何的に言いかえただけである .

 $\mathrm{cl}:CH_0(X\setminus U)_{\mathbb Q}\to H^0(X,K_X)$ をサイクル写像とすると,次がなりたつと考えられる.

予想 2

$$C(j_!\mathcal{F}) = \operatorname{rank} \mathcal{F} \cdot C(j_!\mathbb{Q}_\ell) - \operatorname{cl} \operatorname{Sw} \mathcal{F}.$$

この予想は,簡単な技術的仮定のもとで示されている [3] . この仮定は特異点の解消がなりたつかあるいは,U の有限エタール被覆で $\mathcal F$ のひきもどしが定数層となるものがあれば,みたされている.

予想の証明されている場合より, Grothendieck-Ogg-Shafarevich 公式の高次元化が仮定なしにしたがう.

系 3 [7]

$$\chi_c(U_{\bar{k}}, \mathcal{F}) = \operatorname{rank} \mathcal{F} \cdot \chi_c(U_{\bar{k}}, \mathbb{Q}_{\ell}) - \operatorname{deg Sw} \mathcal{F}$$

がなりたつ.

予想の証明の過程で,次の,開多様体に対する Lefschetz 跡公式が示される.記号を変えて,X を k 上の固有スムーズ多様体とし,U \subset X を単純正規因子 D の補開部分多様体とする. Γ を $U\times U$ の閉部分スキームとする. $\tilde{\Gamma}\subset (X\times X)'$ を \log ブローアップの中での閉包とし, $(D\times X)'$ と $(X\times D)'$ をそれぞれ $D\times X$ と $X\times D$ の固有変換とする.

定理 4 [7] $\tilde{\Gamma}\cap(D\times X)'\subset\tilde{\Gamma}\cap(X\times D)'$ と仮定する.このとき, $H^*_c(U_{\bar{k}},\mathbb{Q}_\ell)$ の自己 準同形 Γ^* が定義され,

$$\operatorname{Tr}(\Gamma^*: H_c^*(U_{\bar{k}}, \mathbb{Q}_\ell)) = (\tilde{\Gamma}, \Delta)_{(X \times X)'}$$

がなりたつ.

右辺は \log ブローアップ $(X \times X)'$ の中での交点数を表わす . 左辺は跡の交代和である .

3 分岐群

剰余体が一般の局所体の絶対 Galois 群の分岐群によるフィルトレイションが, [1], [2] で定義され調べられている.これまでにわかっていることを,簡単にまとめておく.分岐群について,いろいろなことを証明するには,リジッド幾何が必要になることが多いが,結果を述べるだけなら,代数幾何のことばで十分なことが多い.

X を k 上のスムーズ多様体とし,D をスムーズな既約因子とする. ξ を D の生成点とし, $S=\operatorname{Spec}\ \widehat{O}_{X,\xi}$ とおき,K を $\widehat{O}_{X,\xi}$ の分数体, $\eta=\operatorname{Spec}\ K$ とする.K は完備離散付値体であり, $\widehat{O}_{X,\xi}$ はその付値環である.絶対 $\operatorname{Galois}\$ 群 $G_K=\operatorname{Gal}(K^{\operatorname{sep}}/K)$ の, log 分岐群による減少フィルトレイション $G_K^{r,\log}$, $(r\in\mathbb{Q},r\geq0)$ は次の性質をもつ.有理数 $r\geq0$ に対し, $G_K^{r+,\log}=\overline{\bigcup_{s>r}G_K^{s+,\log}}$ とおく. $G_K^{0,\log}$ は惰性群 I であり, $G_K^{0+,\log}$ は暴惰性群,つまり I の $\operatorname{pro-p}$ 惰性群 P である.

 $\mathcal F$ を $U=X\setminus D$ 上のスムーズ ℓ 進層とする . $G_K^{0+,\log}$ が pro -p 群なので , G_K の ℓ 進表現 $\mathcal F_{\bar p}$ の直和分解

$$\mathcal{F}_{ar{\eta}} = igoplus_{r \geq 0, r \in \mathbb{Q}} \mathcal{F}_{ar{\eta}}^{(r)}$$

で,固定部分 $\mathcal{F}_{\bar{\eta}}^{G_K^{r+,\log}}$ が $\bigoplus_{s\leq r}\mathcal{F}_{\bar{\eta}}^{(s)}$ となるものが定まる.さらに,r>0ならば,各直和成分 $\mathcal{F}_{\bar{\eta}}^{(r)}$ は, $G_K^{r,\log}/G_K^{r+,\log}$ の指標による直和分解

$$\mathcal{F}_{\bar{\eta}}^{(r)} = \bigoplus_{\chi \in (G_K^{r,\log}/G_K^{r+,\log})^*} \mathcal{F}_{\bar{\eta}}^{(r,\chi)}$$

をもつ.

以下,簡単のため, $\mathcal{F}_{\bar{\eta}}=\mathcal{F}_{\bar{\eta}}^{(r)}$ とする.たとえば, \mathcal{F} が既約なら,これはなりたつ.条件 r=0 は, $\mathcal{F}_{\bar{\eta}}$ の分岐が穏なことと同値なので,以下 r>0 の場合を考える. \log smooth 局所的には,r は整数としてよい.以下 r>0 を正の整数と仮定する.

 $X \times_k S$ の閉部分スキーム $D \times_k \xi$ でのブローアップから, $D \times S$ と $X \times \xi$ の固有変換を除いたものを \log 積とよび, $(X \times_k S)^\sim$ で表わす. $S \to (X \times_k S)^\sim$ を \log 対角射とする.第 2 射影 $(X \times_k S)^\sim \to S$ に関する閉ファイバーは,対数接束 $TX^{\log} = \mathbf{V}(\Omega^1_{X/k}(\log D)) = \operatorname{Spec} S^\bullet(\Omega^1_{X/k}(\log D)) \to X$ の ξ 上のファイバーである.

 $D_{w,S}$ をSの因子 $r\xi$ とする.これを \log 対角射により, $(X \times_k S)^\sim$ の閉部分スキームとみて, $(X \times_k S)^\sim$ を $D_{w,S}$ でブローアップする.このブローアップから,閉ファイバーの

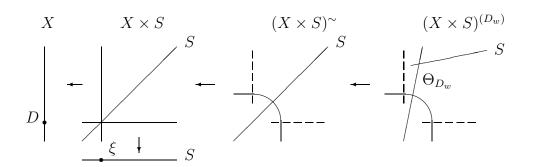


図 2: 暴ブローアップ

固有変換を除いたものを , $(X\times_k S)^{(D_w)}$ で表わす . 第 2 射影 $(X\times_k S)^{(D_w)}\to S$ に関する閉ファイバー Θ_{D_w} は , ひねった対数接束 $TX^{\log}(-rD)=\mathbf{V}(\Omega^1_{X/k}(\log D)(rD))\to X$ の ε 上のファイバーである .

定理 5 r > 0を正の整数とする.

- 1. χ を部分商 $G_K^{r,\log}/G_K^{r+,\log}$ の指標とする.
- (1)指標 χ は, Θ_{D_w} 上の階数1の非自明なスムーズ層 \mathcal{L}_{χ} を定める.
- (2) \mathcal{L}_χ の Fourier-Deligne 変換は,双対空間 $\Theta_{D_w}^*$ の $\kappa(\xi)$ 上純非分離な 0 でない閉点に台をもつ.
- $2.\mathcal{F}$ を $\mathcal{F}_{ar{\eta}}=\mathcal{F}_{ar{\eta}}^{(r)}$ をみたす $U=X\setminus D$ 上のスムーズ ℓ 進層とする.第2射影 $(X imes_kS)^{(D_w)} o S$ に関する Θ_{D_w} 上の隣接輪体層 $\psi(pr_1^*\mathcal{F})$ は,標準同形

$$\psi(pr_1^*\mathcal{F}) \to \bigoplus_{\chi} \mathcal{L}_{\chi} \otimes pr_2^*\psi(\mathcal{F}^{(\chi)})$$

をもつ.

1(1)と2は [1] II で示されている.2の同形は次のように,分岐がブローアップで消せることを表わしている.定数変形 $X \times S$ への $\mathcal F$ のひきもどし $pr_1^*\mathcal F$ を考え,さらにその暴ブローアップ $(X \times_k S)^{(D_w)}$ へのひきもどしを考える.これの Θ_{D_w} に沿った分岐は隣接輪体層 $\psi(pr_1^*\mathcal F)$ で測れる.2の同形によれば,これは, $\mathcal F$ の階数と等しい階数をもつ.さらにこれの分岐は,K の分離閉包までいけば自明になる.つまり,分岐は,S の定数拡大によって消すことができる.

1(2)は新しい結果であり, Θ_{D_w} 上の階数1の層 \mathcal{L}_χ が, Θ_{D_w} 上の加法的多項式が定める Artin-Schreier 層であるということである.このことから,部分商 $G_K^{r,\log}/G_K^{r+,\log}$ がp倍で消える Abel 群であり,指標群からの単射

(1)
$$\operatorname{Hom}(G_K^{r,\log}/G_K^{r+,\log}, \mathbb{F}_p) \to \operatorname{Hom}_{\kappa(\xi)}(m_K^r/m_K^{r+1}, \Omega^1_{X/k}(\log D) \otimes \overline{\kappa(\xi)})$$

が定まることが従う.1(2)の証明は,2の同形を使ってなされる.詳しくは論文を準備中である.

単射 (1) を用いて, Hasse-Arf の定理を, 弱めた形で一般化することができる.

系 6
$$\operatorname{Sw}_\eta(\mathcal{F}) = \sum_r r \dim \mathcal{F}_{\bar{\eta}}^{(r)}$$
 と定義すると, $\operatorname{Sw}_\eta(\mathcal{F}) \in \mathbb{Z}[\frac{1}{p}]$ である.

定理の証明と同じ考えに基づいて,正標数の局所体の絶対 Galois 群の Abel 商について,加藤氏が定義した分岐群のフィルトレイション [6] と,Abbes-斎藤が定義した log 分岐群のフィルトレイションが一致することが示される [2] .

4 特性サイクル、超局所解析との類似

この節では,適当な仮定のもとに ℓ 進層の特性サイクルが対数余接層上のサイクルとして定義でき,それを使って特性類を表わせることをみる.さらに, $\mathbb C$ 上の多様体上の $\mathcal D$ 加群の特異台との類似について考える.

X が k 上スムーズとし, $D=\sum_i D_i$ を X の単純正規因子, $U=X\setminus D$ とする. $\mathcal F$ を U 上のスムーズ ℓ 進層とする.次の仮定をおく.

各既約成分 D_i に対し, $\mathcal{F}_{\bar{\eta}_i}=\mathcal{F}_{\bar{\eta}_i}^{(r_i)}, r_i\in\mathbb{N}$ である. $r_i>0$ ならば, $G_{\eta_i}^{r_i,\log}/G_{\eta_i}^{r_i+,\log}$ の指標 χ_i で, $\mathcal{F}_{\bar{\eta}_i}=\mathcal{F}_{\bar{\eta}_i}^{(\chi_i)}$ をみたすものがある. $D_w=\sum_i r_i D_i,\ D_w^0=\sum_{i,r_i>0} D_i$ とおく.さらに, $O_{D_w^0}$ 加群の,いたるところ0 でない射

(2)
$$O_{D_w^0}(-D_w) \to \Omega_{X/k}(\log D) \otimes_{O_X} O_{D_w^0}$$

で , 各生成点 $\xi_i \in D_i$ での stalk が , \mathcal{L}_{χ_i} の Fourier-Deligne 変換の台を与えるもの がある .

このとき,次がなりたつ。

定理 7 $d = \dim X$ とすると

$$C(j_!\mathcal{F}) = \operatorname{rank}\mathcal{F} \cdot (-1)^d c_d(\Omega^1_{X/k}(\log D)(D_w)).$$

これは,階数1の場合の加藤氏による結果の一般化である.

証明の概略は次のとおりである. $(X\times X)'$ を \log ブローアップとし, $X\subset (X\times X)'$ を \log 対角とする. $(X\times X)^{(D_w)}\to (X\times X)'$ を、 \log 対角の中の Swan 因子 D_w でのブローアップとする.ブローアップ $(X\times X)^{(D_w)}\to (X\times X)'$ の例外因子 E は,ひねった対数接束 $T_X^{\log}(-D_w)=\mathbf{V}(\Omega_{X/k}(\log D)(D_w))$ の D_w^0 への制限である. $U\times U$ 上の層 \mathcal{H} を $\mathcal{H}=\mathcal{H}om(p_2^*\mathcal{F},p_1^*\mathcal{F})$ で定め, $j:U\times U\to (X\times X)^{(D_w)}$ を開埋め込みとする. $j_*\mathcal{H}$ の Eへの制限は, \mathcal{L}_X の直和と同形である.このことを使って, $1\in H_X^0((X\times X)^{(D_w)},j_*\mathcal{H}(d)[2d])$ が定義される.さらに,

$$C(j_!\mathcal{F}) = \text{Tr } \langle 1, 1 \rangle = \text{rank } \mathcal{F} \cdot (X, X)_{(X \times X)^{(D_w)}}$$

が示せる.真ん中の式はカップ積であり,右の式は交点積である. $(X,X)_{(X\times X)^{(D_w)}}=(-1)^dc_d(\Omega^1_{X/k}(\log D)(D_w))$ より,定理の式がしたがう.これも,詳しくは論文を準備中である.

定理7の仮定のもとで, $\mathcal F$ の特性サイクルを,対数余接束 $T^*X^{\log}=\mathbf V_X(\Omega_{X/k}(\log D)^*)$ のd次元サイクルとして,次のように定義することができる. $O_{D_w^0}$ 加群の射 (2) は, D_w^0 上の直線束の対数余接束への閉埋め込み

$$\mathbf{V}_{D_w^0}(O_{D_w^0}(D_w)) \to T^*X^{\log}$$

を定める T^*X^{\log} の d 次元サイクルを

$$Ch(\mathcal{F}) = \operatorname{rank} \mathcal{F} \cdot [\mathbf{V}_{D_w^0}(O_{D_w^0}(D_w))]$$

で定めると,定理の式は,

$$C(j_!\mathcal{F}) - \operatorname{rank} \mathcal{F} \cdot C(j_!\mathbb{Q}_\ell) = -([Ch(\mathcal{F})], 0)_{T^*X^{\log}}$$

と書き直すことができる.左辺は,ベクトル束 T^*X^{\log} 内での0 切断との交点積である.特性サイクル $Ch(\mathcal{F})$ は, $\mathcal{H}=\mathcal{H}om(p_2^*\mathcal{F},p_1^*\mathcal{F})$ の,隣接輪体層をとり,さらにこれに Fourier-Deligne 変換を適用することによって定義されていることに注意しておく.

 \mathbb{C} 上の多様体上の倒錯層あるいは \mathcal{D}_X 加群の特性サイクルあるいは特異台との間には,次のような類似がある. \mathbb{C} 上の多様体については, $\mathrm{Riemann}$ -Hilbert 対応とよばれる圏の同値

(確定特異点型ホロノミー
$$\mathcal{D}_X$$
 加群) \to (\mathbb{C}_X 加群の倒錯層)

がある. \mathcal{D}_X 加群 \mathcal{M} の特性サイクル $Ch(\mathcal{M})$ は, $\mathcal{O}_{T^*X}=gr^{\bullet}(\mathcal{D}_X)$ 加群 $gr^{\bullet}(\mathcal{M})$ の類として定義される.これは,余接束 T^*X 上のサイクルである.

柏原-Schapira は,[5] で,特性サイクル $CC(\mathcal{F})$ を,余接束 T^*X 上のサイクルとして,Riemann-Hilbert 対応を使わずに,次のように直接定義した.X を d 次元複素多様体とする.まず $X \times X$ 上の層の複体 $\mathcal{H} = R\mathcal{H}om(\mathrm{pr}_2^*\mathcal{F},\mathrm{pr}_1^!\mathcal{F})$ を考える. $X \to X \times X$ の,接束 $X \to TX$ への変形を考え,隣接輪体関手を \mathcal{H} に適用することにより, $\nu hom(\mathcal{F},\mathcal{F})$ が接束 TX 上に定義される.さらに,Fourier-佐藤変換を適用して, $\mu hom(\mathcal{F},\mathcal{F})$ が T^*X 上に定義される. $\mu hom(\mathcal{F},\mathcal{F})$ の台として,特異台 $SS(\mathcal{F})$ が T^*X の閉集合として定義される.さらに, $SS(\mathcal{F})$ に台をもつ $\mu hom(\mathcal{F},\mathcal{F})$ の標準切断の像として,特性サイクル $CC(\mathcal{F})$ が $H^{2d}_{SS(\mathcal{F})}(T^*X,\mathbb{C}_{T^*X})$ の元として定義される(loc. cit. Definition 9.4.1). $\dim_{\mathbb{C}}SS(\mathcal{F})=d$ だから,特性サイクル $CC(\mathcal{F})$ は T^*X の d 次元サイクルと考えることができる. $CC(\mathcal{F})$ の $H^{2d}(T^*X,\mathbb{C}_{T^*X})=H^{2d}(X,\mathbb{C}_X)$ での像は,特性類 $C(\mathcal{F})$ と一致する(loc. cit. Proposition 9.5.1).

Verdier は ℓ 進層について、柏原-Schapira と同様の構成を考えた [8] が,その方法では,暴分岐をとらえることができない.この節の構成は,隣接輪体関手を $\mathcal H$ に適用し,さらに,Fourier-Deligne 変換を適用するという点で,柏原-Schapira の構成と著しい類似がみられる.ただし, ℓ 進層の暴分岐に対応する現象は, $\mathcal D_X$ 加群の不確定特異点と考えられており,より正確な類似が何であるかは,まだよくわかっていない.

参考文献

[1] A. Abbes, T. Saito, Ramification of local fields with imperfect residue fields, Amer. J. of Math. **124** (2002), 879-920; *ibid. II*, Documenta Math., Extra Volume K. Kato (2003), 3-70.

- [2] —, Analyse micro-locale ℓ -adique en caractéristique p > 0: Le cas d'un trait, (preprint) math.AG/0602285
- [3] —, The characteristic class and ramification of an ℓ-adic étale sheaf, (preprint) math.AG/0604121
- [4] A. Grothendieck, rédigé par L. Illusie, *Formule de Lefschetz*, exposé III, SGA 5, Springer LNM **589** (1977) 73-137.
- [5] M. Kashiwara, P. Schapira, Sheaves on manifolds, Springer-Verlag (1990).
- [6] K. Kato, Swan conductors for characters of degree one in the imperfect residue field case, Algebraic K-theory and algebraic number theory (Honolulu, HI, 1987), 101–131, Contemp. Math., 83, Amer. Math. Soc., Providence, RI, 1989.
- [7] K. Kato, T. Saito, Ramification theory for varieties over a perfect field, (preprint) math.AG/0402010 to appear in Annales of Math.
- [8] J.-L. Verdier, Spécialisation de faisceaux et monodromie modérée, dans Analyse et topologie sur les espaces singuliers, Astérisque 101-102 (1981), 333-364.