10/07

F を代数閉体とし, $X \to Y$ を F 上の proper smooth 代数曲線の有限 平坦射で,関数体の拡大は分離なものとする.

Riemann-Hurwitz 公式.各点 $x \in X$ での分岐指数 e_x が F の標数でわりきれなければ ,

$$2g_X - 2 = [X:Y](2g_Y - 2) + \sum_{x \in X} (e_x - 1).$$

例 1. F の標数を p>0 とし, $n\geq 1$ を p と素な自然数とする. $Y=\mathbf{P}^1$ とし, $X\to Y$ を $x^n=y^p-y$ で定める. $g_Y=0$. $f:X\to Y$ は $\mathbf{P}^1(\mathbb{F}_p)$ の外で不分岐.各 $y\in \mathbf{P}^1(\mathbb{F}_p)$ では完全分岐で分岐指数は n.よって,

$$2g_X - 2 = n(-2) + (p+1)(n-1)$$

で, $g_X = \frac{1}{2}(p-1)(n-1)$.

暴分岐だと次のような修正が必要.

例 2 . $F,\,n,\,Y={\bf P}^1$ を例 1 と同様とする . $X\to Y$ を $x^p-x=y^n$ で定める . $g_Y=0$. $\pi:X\to Y$ は ∞ の外で不分岐 . ∞ では完全分岐で分岐指数は p .

$$2g_X - 2 = (p-1)(n-1) - 2 = p(-2) + (p-1) + (p-1)n$$

である.最後の (p-1)n が ∞ での暴分岐の寄与.