6/25 講義予定

定積分([1] p.82, [2] p.101-104, 127-133, [3] p.153-158)

f(x) を閉区間 [a,b] で定義された連続関数とする.定積分 $\int_a^b f(x) dx$ を次のように定義する.

 $\Delta: a=a_0\leq a_1\leq\cdots\leq a_{i-1}\leq a_i\leq\cdots\leq a_{n-1}\leq a_n=b$ を閉区間 [a,b] の分割とする.各 $i=1,\ldots,n$ に対し, x_i を $a_{i-1}\leq x_i\leq a_i$ をみたすようにとり,和 $S=\sum_{i=1}^n f(x_i)(a_i-a_{i-1})$ を考える.分割の直径 $|\Delta|=\max_i(a_i-a_{i-1})$ を 0 に近づけたときの S の極限が存在する.この極限を $\int_a^b f(x)dx$ と定義する.

各 $i=1,\ldots,n$ に対し, m_i を $a_{i-1}\leq x\leq a_i$ での f(x) の最小値とし, M_i を最大値とする. $s_{\Delta}=\sum_{i=1}^n m_i(a_i-a_{i-1}),\ S_{\Delta}=\sum_{i=1}^n M_i(a_i-a_{i-1})$ とおくと, $s_{\Delta}\leq S\leq S_{\Delta}$ である. $S_{\Delta}-s_{\Delta}=\sum_{i=1}^n (M_i-m_i)(a_i-a_{i-1})\leq \max_i(M_i-m_i)(b-a)$ である.

 Δ' を別の分割とする. Δ'' を Δ と Δ' の共通の細分とすると, $s_{\Delta} \leq s_{\Delta''} \leq S_{\Delta''}$ である.したがって、極限の存在を示すには, $|\Delta| \to 0$ のとき $\max_i (M_i - m_i) \to 0$ を示せばよい.

ここでは、簡単のため f(x) が連続微分可能な場合に示す.M' を $a \le x \le b$ での |f'(x)| の最大値とする.このとき, $M_i-m_i \le M'(a_i-a_{i-1})$ である.よって, $\max_i(M_i-m_i) \le M'|\Delta| \to 0$ $(|\Delta| \to 0$ のとき)である.例

$$\lim_{n \to \infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} \right) = \log 2$$

 $f(x)=rac{1}{x}$ とし,区間 [1,2] の分割を $1=rac{n}{n}\leqrac{n+1}{n}\leq\cdotsrac{n+i-1}{n}\leqrac{n+i}{n}\leq\cdots\leqrac{2n}{n}=2$ と定め, $x_i=rac{n+i}{n}$ とおく.このとき,和 $S=\sum_{i=1}^nf(x_i)(a_i-a_{i-1})$ は $\sum_{i=1}^n(rac{n+i}{n})^{-1}rac{1}{n}=\sum_{i=1}^nrac{1}{n+i}$ となる.したがって極限 $\lim_{n o\infty}\sum_{i=1}^nrac{1}{n+i}=\int_1^2rac{1}{x}dx=[\log x]_1^2=\log 2$.

 $\overset{x}{\text{微積分の基本定理}}$ $\overset{\cap}{([1]}$ p.85 定理 $extbf{9}$, [2] p.101 , [3] p.165 定理 4.4.)

$$\frac{d}{dx} \int_{a}^{x} f(x)dx = f(x)$$

左辺は $\lim_{h\to +0}\frac{1}{h}\int_x^{x+h}f(x)dx$ と $\lim_{h\to +0}\frac{1}{h}\int_{x-h}^xf(x)dx$ の共通の値. $x-h\le y\le x+h$ での f(y) の最大値を M_h ,最小値を m_h とすると,

$$m_h h \le \int_x^{x+h} f(x)dx, \int_{x-h}^h f(x)dx \le M_h h.$$

両辺をhで割り $h \to 0$ とすると $m_h \to f(x), M_h \to f(x).$