
1 Singular support

1.1 Closed conical subsets and the transversality

Definition 1.1.1. Let C be a closed conical subset of the cotangent bundle T ∗X and let
h : W → X be a morphism of smooth schemes over k.

We say that h is C-transversal if the intersection of the subsets h∗C = W ×X C and
Ker(W ×X T ∗X → T ∗W ) of W ×X T ∗X is a subset of the 0-section.

The intersection C ∩ T ∗
XX with the 0-section X = T ∗

XX is called the base of C.

If h is smooth, then h is C-transversal for any C.
If C is a subset of the 0-section, any h is C-transversal.
If C ⊂ C ′, the C ′-transversality implies the C-transversality.
The transversality is an open condition.

Lemma 1.1.2. Assume that h : W → X is C-transversal. Then, W ×X T ∗X → T ∗W is
finite on h∗C.

Lemma 1.1.3. dimh∗C ≧ dimC + dimW − dimX.

Lemma 1.1.4. Assume that h : W → X is C-transversal. For a morphism g : V → W of
smooth schemes over k, the following conditions are equivalent:

(1) g is h◦C-transversal.
(2) h ◦ g is C-transversal.

Definition 1.1.5. Let C be a closed conical subset of the cotangent bundle T ∗X and C ′

be a closed conical subset of the cotangent bundle T ∗Y . Let h : W → X and f : W → Y
be morphisms of smooth schemes over k.

1. We say that (h, f) is (C,C ′)-transversal if (h, f) : W → X×Y is C×C ′-transversal.
2. If h = 1X and C ′ = T ∗Y , we say that f is C-transversal if (1X , f) is (C, T ∗Y )-

transversal.

Lemma 1.1.6. 1. The following conditions are equivalent:
(1) h : W → X is C-transversal.
(2) (h, 1W ) is (C, T ∗

WW )-transversal.
1. The following conditions are equivalent:
(1) f : X → Y is C-transversal.
(2) The inverse image of C by X ×Y T ∗Y → T ∗X is a subset of the 0-section.
2. The following conditions are equivalent:
(1) (h, f) is (C, T ∗Y )-transversal.
(2) h : W → X is C-transversal and f : W → X is h◦C-transversal.

f : X → Y is T ∗
XX-transversal if and only if f is smooth.

If f : X → Y is C-transversal, then f is smooth on a neighborhood of the base of C.

Definition 1.1.7. Let C ⊂ T ∗X be a closed conical subset and f : X → Y be a morphism
of smooth schemes over k. Assume that f is proper on the base of C. Then, we define a
closed conical subset f◦C ⊂ T ∗Y by the algebraic correspondence T ∗X ← X ×Y T ∗Y →
T ∗Y .
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Proposition 1.1.8. Let g : X ′ → X be a morphism of smooth schemes over k and let
C ⊂ T ∗X ′ be a closed conical subset. Assume that g is proper on the basis B′ of C ′ and
define C = g◦C

′ ⊂ T ∗X.
1. Let h : W → X be a morphism of smooth schemes over k and

X ′ h′
←−−− W ′

g

y yg′

X
h←−−− W

be a cartesian diagram. Assume that h is C-transversal. Then, there exists an open
neighborhood U ′ of the inverse image B′

W ′ = h′−1(B′) ⊂ W ′ smooth over W .
2. For a morphism f : W → Y of smooth schemes over k, the following conditions are

equivalent:
(1) (h, f) is C-transversal.
(2) (h′|U ′ , f ◦ g′|U ′) is C ′-transversal.

1.2 Legendre transform

Let P be a projective space, P∨ be the dual projective space and Q ⊂ P × P∨ be the
universal hyperplane. The kernel Ker((T ∗P×T ∗P∨)×P×P∨Q→ T ∗Q equals the conormal
bundle T ∗

Q(P×P∨).
We identify Q as the projective space bundle P(T ∗P) associated to the vector bundle

T ∗P. Symmetrically, Q is identified with P(T ∗P∨).

Definition 1.2.1. Let C be a closed conical subset C ⊂ T ∗P. We consider the pro-
jectivization E = P(C) ⊂ P(T ∗P) = Q as a closed subset of Q. Define the Legendre
transform C∨ = LC by C∨ = p∨◦ p

◦C.

Lemma 1.2.2. The intersection of C×T ∗P∨ with Ker((T ∗P×T ∗P∨)×P×P∨ Q→ T ∗Q =
T ∗
Q(P×P∨) equals the union of T ∗

Q(P×P∨)×Q E with the 0-section on p−1B.

Proof. Since the image of the conormal bundle T ∗
Q(P×P∨) ⊂ (T ∗P× T ∗P∨)×P×P∨ Q in

T ∗P×P Q by the first projection is the tautological line bundle, the assertion follows.

Proposition 1.2.3. 1. The complement Q E is the largest open subset where (p, p∨) is
C-transversal.

2. C is equal to the image of the intersection of (C × T ∗P∨) ∩ T ∗
Q(P × P∨) by the

composition (T ∗P× T ∗P∨)×P×P∨ Q→ T ∗P×P Q→ T ∗P.

Proof. 1. Clear from Lemma.
2.

Corollary 1.2.4. P(C) = P(C∨).

Proof. Since C∨ is equal to the image of the intersection of (C × T ∗P∨)∩ T ∗
Q(P×P∨) by

the composition (T ∗P×T ∗P∨)×P×P∨ Q→ T ∗P∨×P∨ Q→ T ∗P∨, it follows from Lemma
and Proposition.

Proposition 1.2.5. Let C+ = C ⊂ T ∗
PP be the union with the 0-section. Then, we have

C+ = p◦(p
∨◦T ∗P∨ ×Q E) ∪ T ∗

PP.
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Proof. By Lemma and Proposition, we have C ⊂ p◦(p
∨◦T ∗P∨ ×Q E) ∪ T ∗

PP ⊂ C+.

Corollary 1.2.6. We consider a cartesian diagram

P∨ p∨←−−− Q
hQ←−−− QW

p

y □
ypW

P
h←−−− W

f−−−→ Y

of smooth schemes over k. For a closed conical subset C ⊂ T ∗P and its Legendre transform
C∨ ⊂ T ∗P∨ and the union C+ = C ∪ T ∗

PP with the 0-section, the following conditions are
equivalent:

(1) (h, f) is C+-transversal.
(2) f : W → Y is smooth and QW → P∨ × Y is smooth of the inverse image EW =

E ×Q QW .

Proof. Since C+ = p◦(p
∨◦T ∗P∨ ×Q E) ∪ T ∗

PP by Lemma, the condition (1) is equivalent
to the combination of the following conditions.

(1′) (h, f) is T ∗
PP-transversal.

(1′′) (h, f) is p◦(p
∨◦T ∗P∨ ×Q E)-transversal.

The condition (1′) is equivalent to that f : W → Y is smooth. Since p is proper
and smooth, by Lemma, the condition (1′′) is equivalent to (hQ, f ◦ pW ) is p∨◦T ∗P∨ ×Q

E-transversal. Since the transversality is an open condition, this is equivalent to that
(hQ, f ◦ pW ) is p∨◦T ∗P∨-transversal on a neighborhood of EW . By Lemma, this is further
equivalent to that (p ∨ ◦hQ, f ◦ pW ) is T ∗P∨-transversal on a neighborhood of EW . This
means that QW → P∨ × Y is smooth of the inverse image EW = E ×Q QW .

Let h : W → P be an immersion and f : W → Y be a smooth morphism. Define sub
vector bundles CW ⊂ Cf ⊂ T ∗P ×P W by CW = T ∗

WP and Cf as the inverse image of
W ×Y T ∗Y ⊂ T ∗W by the surjection T ∗P×P W → T ∗W .

Lemma 1.2.7. Let C∨ ⊂ T ∗P∨ be a closed conical subset and let C = L∨C∨ ⊂ T ∗P be
the inverse Legendre transform.

1. The following conditions are equivalent:
(1) h is C-transversal.
(2) The intersection of P(C) ⊂ P(T ∗P) = Q and P(CW ) ⊂ P(T ∗P×PW ) = Q×PW ⊂

Q is empty.
2. Assume that h : W → P is C-transversal. Then Q×P W → P∨ is C∨-transversal.

The complement Q×P W P(C ∩Cf ) equals the largest open subset U ⊂ Q×P W where
(p∨ : Q ×P W → P∨, fp : Q ×P W → W → Y ) is C∨-transversal. Further P(C ∩ Cf )
is a subset of the inverse image of the complement of the largest open subset where f is
h◦C-transversal.

3. Further if dimY = 1, the closed subset P(C ∩ Cf ) ⊂ Q×P W is finite over W .

Proof. 1. (1) means C ∩CW is a closed subset of the zero-section and is equivalent to (2).
2. By Proposition 1.1.8, the C-transversality of h : W → P implies the C∨-transversality

of Q×P W → Q. Since p∨ : Q→ P∨ is smooth, the first assertion follows.
The largest open subset U ⊂ Q ×P W is the same as that where (p∨, p) is C∨ × Cf -

transversal. Hence, it equals the complement of P(C∨) ∩ P(Cf ) = P(C) ∩ P(Cf ) =
P(C ∩ Cf ).
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If f is h◦C-transversal, then (p∨, fp) is C∨-transversal and the last assertion follows.
3. Since dimY = 1, the subvector bundle CW ⊂ Cf is of codimension 1 and the

complement P(Cf ) P(CW ) is a vector bundle over W . Since P(C ∩ CW ) is empty by
1, the intersection P(C ∩ Cf ) is a closed subset of P(Cf CW ). Hence its closed subset
P(C ∩ Cf ) proper over W is finite over W .

1.3 Local acyclicity

Let f : X → S be a morphism of schemes. Let x→ X and t→ S be geometric points and
let S(s) be the strict localization at the image s = f(x) → S of x. Then a specialization
x← t is a lifting of t→ S to t→ S(s).

Definition 1.3.1. Let f : X → S be a morphism of schemes and F be a complex of
torsion sheaves on X. We say that f is locally acyclic relatively to F if for each geometric
points x → X and t → S and each specialization x ← t, the canonical morphism Fx →
R(X(x) ×S(s)

t,F) is an isomorphism.
We say that f is universally locally acyclic relatively to F , if for every morphism

S ′ → S, the base change of f is locally acyclic relatively to the pull-back of F .

For geometric points s, t of S and a specialization t→ S(s), let i : Xs → X ×S S(s) and
j : Xt → X ×S S(s) denote the canonical morphisms. Then, the local acyclity is equivalent
to that the canonical morphism i∗F → i∗Rj∗F is an isomorphism for each s, t and s← t.

If F is a constructible sheaf on X, F is locally constant if and only if 1X is locally
acyclic relatively to F .

The local acyclicity is preserved by quasi-finite base change S ′ → S. Hence for con-
structible F , the universal local acyclicity is reduced to smooth base change.

Theorem 1.3.2. 1. (local acyclicity of smooth morphism) Assume that f : X → S is
smooth and that F is locally constant killed by an integer invertible on S. Then f is ula
relatively to F .

2. (generic local acyclicity) Assume that f : X → S is of finite type and that F is
constructible. Then, there exists a dense open subscheme U ⊂ S such that the base change
of f to U is ula relatively to the restriction of F .

Corollary 1.3.3. Assume that g : Y → S is smooth, that f : X → Y is la relatively to F
and F is killed by an integer invertible on S. Then, gf is locally acyclic relatively to F .

Lemma 1.3.4. Let f : X → Y be a proper morphism of schemes over S and assume that
X → S is locally acyclic relatively to F . Then Y → S is locally acyclic relatively to Rf∗F .

Proof. Proper base change theorem.

1.4 Micro support

Definition 1.4.1. Let F be a constructible complex on X and C ⊂ T ∗X be a closed
conical subset. We say that F is micro supported on C, if for every C-transversal pair
(h, f) of h : W → X and f : W → Y , f is (universally) locally acyclic relatively to h∗F .

If F is micro supported on C ⊂ C ′, then F is micro supported on C ′.

Lemma 1.4.2. If F is micro supported on C, then the support of F is a subset of the
base B of C.
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Proof. Let U = X B. It suffices to show that F|U = 0. The pair U → X,U → 0 ⊂ A1

is C-transversal. Hence U → A1 is locally acyclic relatively to F|U and F|U = 0.

Lemma 1.4.3. Let U ⊂ X be an open subscheme and A be the complement. Assume that
F is micro supported on C and assume that F|U is micro supported on C ′

U . Then F is
micro supported on the union of C|A and the closure C ′ of C ′

U .

Lemma 1.4.4. Let → F ′ → F → F ′′ → be a distinguished triangle and suppose that F ′

and F ′′ are micro supported on C ′ and on C ′′ respectively. Then F is micro supported on
C = C ′ ∪ C ′′.

Lemma 1.4.5. The following conditions are equivalent:
(1) F is locally constant.
(2) F is micro supported on the 0-section T ∗

XX.

Proof. (h, f) is T ∗
XX-transversal if and only if f is smooth.

(1)⇒(2): f is universally locally acyclic relatively to locally constant h∗F .
(2)⇒(1): (1X , 1X) is T

∗
XX-transversal. Hence, 1X is locally acyclic relatively to F and

F is locally constant.

Lemma 1.4.6. Any constructible F is micro supported on T ∗X.

Proof. Suppose (h, f) is T ∗X-transversal. ThenW → X×Y is smooth. Locally,W → Y is
the composition of an étale morphismW → X×An×Y with the projection X×An×Y →
Y . Hence the local acyclicity follows from the generic local acyclicity and Corollary 1.3.3.

Lemma 1.4.7. Assume that F is micro supported on C.
1. If h : W → X is C-transversal, then h∗F is micro supported on h◦C.
2. If f : X → Y is proper on the base of C, then Rf∗F is micro supported on f◦C.

Proof. 1. Suppose g : V → W, f : V → Y is h◦C-transversal. Then, (hg, f) is C-
transversal and f is locally acyclic relatively to (hg)∗F .

2. Suppose h : W → Y, g : W → Z is f◦C-transversal. Then, hX : W ×Y X → X, g ◦
fW : W ×Y X → W → Z is C-transversal and h∗

XF is locally acyclic relatively to g ◦ fW .
Hence h∗Rf∗F = RfW∗h

∗
XF is locally acyclic relatively to g.

1.5 Singular support

Definition 1.5.1. We say that C ⊂ T ∗X is the singular support of F if for C ′ ⊂ T ∗X,
the inclusion C ⊂ C ′ is equivalent to the condition that F is micro supported on C.

Lemma 1.5.2. Let F be a constructible sheaf on X.
1. Let U ⊂ X be an open subscheme. Assume that C ⊂ T ∗X is the singular support

of F . Then, C|U is the singular support of F|U .
2. Let (Ui) be an open covering of X and Ci be the singular support of F|Ui

. Then,
C =

∪
iCi is the singular support of F .

Lemma 1.5.3. Let i : X → P be a closed immersion. Assume that CP ⊂ T ∗P is the
singular support of i∗F .

1. CP is a subset of T ∗P |X and its image C ⊂ T ∗X is the singular support of F .
2. We have CP = i◦C.
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Proof. 1. By Lemma 1.4.3, CP is a subset of T ∗P |X .
To show C = SSF , it suffices to show the following:
(1) If F is micro supported on C ′, we have C ⊂ C ′.
(2) C is closed and F is micro supported on C.
We show (1). Suppose F is micro supported on C ′. Then by Lemma ??, i∗F is micro

supported on i◦C
′. Since CP is the smallest, we have CP ⊂ i◦C

′ and hence C ⊂ C ′.
We show (2). Since the assertion is local, we may assume that there exists a cartesian

diagram

P
i←−−− Xy y

An
k ←−−− Am

k

such that the vertical arrows are isomorphism. Then, by choosing a projection An
k → Am

k

inducing the identity on Am
k , we obtain a cartesian diagram

P ←−−− Qy yr

Am
k ←−−− X

where the horizontal arrows are étale. The immersionX → P induces a section i′ : X → Q.
Since h : Q → P is étale, i′∗F is micro supported on h◦CP . By Lemma ??, F = r∗j∗F is
micro supported on Cr = r◦h

◦CP . Hence by (1), we have C ⊂ Cr. Since Cr ⊂ C, we have
Cr = C and C is closed and F is micro supported on C = Cr.

2. By the proof of (2), we have C = Cr′ for any projection r′. If k is infinite, this
implies CP = i◦C.

Theorem 1.5.4. (Beilinson) SSF exists.

Proof will be given at the end of next section.

Theorem 1.5.5. (Beilinson) 1. dimE ≦ dimP− 1.
2. Every irreducible component of E has dimP− 1.

1.6 Radon transform

We define the naive Radon transform RF to be Rp∨∗ p
∗F and the naive inverse Radon

transform R∨G to be Rp∗p
∨∗G.

Proposition 1.6.1. There exists a distinguished triangle

→
n−2⊕
q=0

RΓ(Pk̄,F)(q)[2q]→ R∨RF → F(n− 1)[2(n− 1)]→ .
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Proof. By the cartesian diagram

P
p←−−− Q

pr1←−−− Q×P∨ Q

p∨

y ypr2

P∨ p∨←−−− Qyp

P

and the proper base change theorem, we have a canonical isomorphism

R∨RF → Rpr2∗
(
pr∗1F ⊗R(p× p)∗ΛQ×P∨Q

)
for p× p : Q×P∨ Q→ P×P.

We compute R(p × p)∗ΛQ×P∨Q. The closed scheme Q ×P∨ Q ⊂ P × P × P∨ is the
Pn−1-bundle Q on the diagonal P ⊂ P × P. On the complement P × P P, it is a sub
Pn−2-bundle. Hence, we have a distinguished triangle

→ τ≦2(n−2)RΓ(P∨
k̄ ,Λ)⊗ ΛP×P → R(p× p)∗ΛQ×P∨Q → ΛP(n− 1)[2(n− 1)]→ .

Proposition 1.6.2. For G on P∨ and C∨ ⊂ T ∗P∨, we have implications (1)⇒(2)⇒(3).
(1) G is micro supported on C∨.
(2) p is universally locally acyclic relatively to p∨∗G outside E = P(C∨).
(3) R∨G is micro supported on C+.

Proof. (1)⇒(2): Since p∨ : Q→ P∨, p : Q→ P is C∨-transversal outside E = P(C∨), p is
universally locally acyclic relatively to p∨∗G outside E.

(2)⇒(3): Assume h : W → P, f : W → Y is C+-transversal. We consider the cartesian
diagram

P∨ p∨←−−− Q
h′
←−−− QW

p

y □
yp′

P
h←−−− Wyf

Y.

We first show that fp′ : QW → Y is locally acyclic relatively to GQW
= h′∗p∨∗G. By (2),

p′ : QW → W is locally acyclic relatively to GQW
outside the inverse image EW ⊂ QW of

E. By Corollary 1.2.6, f : W → Y is smooth and QW → P∨× Y is smooth on the inverse
image EW .

Hence by Corollary 1.3.3, fp′ : QW → Y is locally acyclic relatively to GQW
outside

EW . Further by the generic local acyclicity and Corollary 1.3.3, fp′ : QW → Y is locally
acyclic relatively to GQW

on a neighborhood of EW . Thus, fp′ : QW → Y is locally
acyclic relatively to GQW

. Hence by Lemma, f : W → Y is locally acyclic relatively to
Rp′∗GQW

= h∗R∨G.
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Proof of Theorem 1.5.4. It is reduced to the case X is affine, an affine space and then a
projective space.

Let E ⊂ Q be the smallest closed subset such that p : Q → P is universally locally
acyclic relatively to p∨∗RF on the complement Q E. Let C ⊂ T ∗P be the closed conical
subset defined by E. Then, by ??, R∨RF is micro supported on C+. Hence by ??, F is
also micro supported on C+.

Let U = P B be the complement of the base of C. Then, since C+ ∩ T ∗U = T ∗
UU ,

the restriction F|U is locally constant. If F|U = 0, F is micro supported on C. We show
that C is the singular support of F if F|U = 0 and that C+ is the singular support of F
if otherwise.

Suppose F is micro supported on C ′. Then by (1)⇒(3), G = RF is micro supported
on C ′∨+. Hence by (1)⇒(2), p : Q → P is universally locally acyclic relatively to p∨∗G
outside E ′ = P(C ′∨) = P(C ′). Since E is the smallest, we have E ⊂ E ′ and hence C ⊂ C ′.
If F|U ̸= 0, we have suppF = P and hence T ∗

PP ⊂ C ′ and C+ ⊂ C ′.
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