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Minimal reduction

Assumption (%)
Throughout this talk,
@ K is an algebraically closed field.
@ (A, m,K) is an exlellent normal local domain containing K = A/m or
® Ais agraded K-algebra A = @, An, m = P, An and
K = A,.
@ dimA = 2 and A is not regular.
@ |is an m-primary ideal.

Then there exists a parameter ideal Q C I s.t.
"1 = QI" (3An > 0).

Then Q@ is called a minimal reduction of I.
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Reduction number

\ Let Q be a minimal reduction of I. \

@ rq(l) is called the reduction number of I with respect to Q.

re() = min{r >0| It = Ql’}

= min{r>0|M" = aN (VN> ).
@ r(/) is called the reduction number of I.
r() = min {rQ(l) | Q is a minimal reduction of I}.

@ Iis said to be stable if P = Ql.
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Blow-up algebras

| Let t be an indeterminate over A. |

@ The Rees algebra of I'is
R(I) = A[it] = P I"t" c A[1].
n>0
@ The extended Rees algebra of I is
R (1) = Alit,t7'] = P 1I"t" c A[t, 7],
nez

where I" = A for every n < 0.
@ The associated graded ring of I is

G() = R(N/IR(N =R (N/tT'R(I) = QB "/,

n>0
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Ring-theoretic property of Rees algebras

Assume (k).

Theorem 1.1 (Goto-Shimoda, 80’s)
I is stable < R(I) is Cohen-Macaulay.

@ We call ﬁ(l) = Dpso Intn = R(I) the normal Rees algebra of I.

@ R(I) is called normal if R(I) = R(I).
Moreover, I is called normal.

@ We call E(l) = @nzo I_"/l"+1 the normal associated graded ring of I.

Ken-ichi YOSHIDA (5H 2—) (Nihon Univ.)

Two normal reduction numbers May 25, 2020 5/43



Normal Hilbert function

Assume (%). Let I c A be an m-primary ideal.

Definition 1.2 (Rees, 60’s)
@ The normal Hilbert fucntion is

Hi(n) := ta(A/IM).

@ The normal Hilbert polynomial is
— = n+1 = n -
P,(n) = eo(l)( 2 ) — eq (I)(1) + eg(’).

such that l_’,(n) = F,(n) for large enough n.
Then e;(/) is called the it" normal Hilbert coefficient of I.
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Normal Hilbert coefficients

Assume ().

Theorem 1.3 (Huneke, 1987)
Let I c A be an m-primary integrally closed ideal. Then

] Eo(l) = eo(/).
@ e(1) = eo(l) - ta(A/]) + Z ta(In/Qi).

n=1

@ ex()) = Y n-ta(int'/QI).

n=1

v

Corollary 1.4

Let I be as above.
@ ei(l) = eo(l) - ta(A/)).
@ ey(l) 0.

\
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Two normal reduction numbers

Assume (%) and I = Iand VI = m.
Lemma 1.5 (Huneke, 1987)

Let Q, Q’ be minimal reductions of I. Then for every n > 1,

I = QI" e« I+ = Q'In,

Definition 1.6
@ The (small) normal reduction number of I is

nr(l) := min{r > 1| I'+! = QI'}.

@ The (big) normal reduction number of I'is

F(1) := min{r > 1|IN+1 = QIN (VN > r)}.
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Definition of pg-ideals; Ring theoretic version

Assume (%) and I = land Vi = m.
Definition 1.7 (OWY)

def
lis a pg-ideal = R(1) is Cohen-Macaulay and normal.

lisapgideal < |[P=P=alPF=P=aP,...

= nr(l) =1

== I is stable
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Characterization of pg-ideals via normal reduction numbers

Assume (%) and I = land Vi = m.

Theorem 1.8 (OWY)
The following conditions are equivalent:
@ lis a pg-ideal.
@ r(I) =1 (thennr(l) = 1).
@ | is stable and normal.
@ e1(1) = eo(l) - a(A/1).
@ ex()=0.
® E(I) is Cohen-Macaulay with a(E) <0.
] ﬁ(l) is Cohen-Macaulay .

Ken-ichi YOSHIDA (EH f#—) (Nihon Univ.) Two normal reduction numbers May 25, 2020 10/43



In progress (j.w.with M.E.Rossi)

Assume (%) and I = I and VI = m.
Theorem 1.9 (OWY with Rossi)
The following conditions are equivalent:
@ 7(I) = 2 and £4(I2/Ql) = 1.
@ ei(l) = eo(l) = ta(A/D)+1 and nr(l) = r(l).
@ ex()=1.
@ G(I) is Cohen-Macaulay, a(G) = 0 and t’A([H;}(E)]o) =1.

When this is the case, R(1) is a Buchsbaum ring with t’A(H;t(E)) =1.

v

The final example in this talk gives an example of I such that
o e(I) = eg(l) — ta(A/I) + 1 and
e 1=nr(l) <r(l) = g+ 1, where g > 3.
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Find many pg-ideals.

U

Calculate normal reduction numbers for ideals
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Two normal reduction numbers of rings

In order to study the relationship between singularities and normal
reduction numbers of ideals, we define the normal reduction number of

rings.

Definition 2.1

@ The (small) normal reduction number of A is

nr(A) := max{nr(/) 11=1,VI=m}.

@ The (big) normal reduction number of A is

F(A) := max{F(l) |1 = I, VI = m}.

@ If r =t(A) < oo, then we have

Ir+1 C Q

for any ideal I and its minimal reduction Q.

May 25, 2020
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Main Problems

Problem 1

Assume (k).
@ Determine nr(A) and f(A).
@ What is the difference between nr(A) and r(A)?

@ Determine nr(I) and r(/) for any integrally closed m-primary ideal of
A.

@ Find an ideal I which satisfies nr(l) < r(/).

The main purpose of this talk is to give partial answers to these
problems using the theory of singularity.

Especially, we give concrete examples of ideals I in gt Veronese subring
A of a Brieskorn hypersurface Ba2g42,24+2 Which satisfies

1= nr(l) < f(l) =g+ 1.

Ken-ichi YOSHIDA (EH f£—) (Nihon Univ.) Two normal reduction numbers May 25, 2020 14/43



Brieskorn hypersurfaces

Let a, b, c be integers with2 < a < b < c. Let K be a field of
characteristic p which does not divide abec. Put L = LCM{a, b, c}.

Definition 2.2

@ Brieskorn hypersurfaces B p,c is

B = Bapc := K[X,Y,Z]/(X? + YP + Z°).

This is a graded K-algebra with deg(X) = L/a, deg(Y) = L/b
anddeg(Z) = L/c.

The a-invariant of B is defined by
a(B) = max{n € Z|[H3(B)], # 0}.
In fact,
a(B)

deg(X? + Y? + Z°) — (deg(X) + deg(Y) + deg(Z))
= L-L/a-L/b-LJc.
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Normal reduction number of the maximal ideal of B, p

Theorem 2.3

LetA = B:,b\, ¢ be a Brieskorn hypersurface, and put Q = (y, z)A,
ne =% fork =1,2,...,a—1. Thenm = Q = (x,y,2z)A and
o mh = Q"+ xQ"M + ... + x2-1Q""a-1 for every n > 1.
In particular,
@ nr(m) = r(m) = ny_4.
@ R(m) is normal if and only if f(m) = a — 1.
@ m is a pg-ideal ifand only ifa =2, b = 2,3.
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Veronese subring

Definition 2.4

@ The k" Veronese subring A of B is

A=B®M .— EB Bin.

n>0

This can be regarded as a graded K-algebra with A, = Bp.

o [H,(A)]n = [H, _(B)]kn.

For instance, A = K[x, y]® = K[x3, x2y, xy?, y®] is the 3" Veronese
subring and

A; = Kx® + Kx?y + Kxy? + Ky®
Ay = Kx® 4+ KxPy +---+ Ky®
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Cycle and ideal

Assume ().
Fact 2.5

Let I c A be an m-primary integrally closed ideal. Then there exists a
resolution of singularities f: X — Spec A with E = f~1(m) = U;L E;
and an anti-nef cycle Z = 27;1 a;E; on X such that

I0x = Ox(-2), | = H’(X,0x(-2)).

Then I is said to be represented on X and write | = Iz.
o lfl=1Iz I = Iz then Il = Iz, 7.

@ In particular, if I = Iz, then l_" = Inz.
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Geometric genus

Assume (k).
Definition 2.6

Let f: X — Spec A with E = f~'(m) = U’f';1 E; be a resolution of
singularities. Then

Pg(A) = £a(H'(X,0x))
is called the geometric genus of A,
where €4 (W) denotes the length of W as an A-module.

® pg(A) = dimk[H2 (A)]s0.
a(B)

@ pg(Bap,c) = Z dimg B; is given by
i=0

Pg(Bap.c) = ﬂ{(to, t, ) € Zi’g | abc—bc—ac—-ab > beto+ caty +abt2}.
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A sequence q(nl)

Assume (%) and let I = I7.
Put g(nl) = £a(H' (X, Ox(-nZ))) for every n > 0.
Theorem 2.7 (OWY (cf. Huneke))
o q(01) = py(A).
o q(kl) > q((k + 1)I) for every k > 0.
o Ifq(nl) = q((n + 1)I), then q((n + 1)I) = q((n + 2)I).
@ g(nl) = q(col) for every n > pg(A), where

g(eol) = lim q(ni)
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Normal reduction numbers and q(nl)

Assume () and I = I.

Proposition 2.8

For every integer n > 0, we have

2. q(nl) + £a(I"+1/QI") = q((n - 1)1) + q((n + 1)I).

@ nr(/) = min {n € Zxo | q((n-1)I) — q(nl) = q(nl) — q((n + 1)l)}.
@ F(l) = min {n € Zso | q((n-1)1) = q(nl)}.

Thus if I"+1 £ QI", then

Pg(A) = q(0-1) > q(1-1) > q(2-1) > -~ > q((n = 1)I) > q(nl) > 0
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pg-ideal and normal reduction numbers

Assume I = I5.

Theorem 2.10 (Riemann-Roch formula)

- 22 4+ KxZ
ta(Af) + a(l) = -2 4 pg(a),

Proposition 2.11 (OWY)
@ eo(l) = e(l) = -22.

72
@ &) = 2%  eo(1) ~ a(A1D) + (po(4) - q(1).

@ ex(l) = pg(A) - q(ol).
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q(nl) - g(eol)

Corollary 2.12
a(nl) - q(col) = Py(n) - Hy(n).

(Proof.) By Riemann-Roch formula, we have

£a(A/I") + q(nl) = —w + Pg(A).
Hence
am) = U X2 0+ pg(A) - Hi(n)
= % n? - (31 - %]n + & + g(col) = Hy(n)

Pi(n) = Hy(n) + q(col).//
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pg-ideal and normal reduction numbers (again)

Theorem 2.13 (OWY)
Assume I = Iz. Then TFAE
@ Iis apg-ideal.
@ q(I) = pq(A).
@ r() =1.
@ | is stable and normal.
@ ei(l) = eo(l) - ta(A/)).
@ ex(l) =0.
o E(I) is Cohen-Macaulay with a(E) <0.
@ ﬁ(l) is Cohen-Macaulay .
When this is the case, q(nl) = pg(A) for alln > 0.

e | is a pg-ideal = nr(I) = 1 = I is stable.
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In progress (again)

Theorem 2.14 (OWY with Rossi)
The following conditions are equivalent:
@ () = 2and £4(12/Ql) = 1.
@ q()) = q(col) = pg(A) - 1.
@ ei(I) = eo(l) — ta(A/1) + 1 and nr(l) = r(l).
(7'} Ez(l) =1.
@ G(l) is Cohen-Macaulay, a(G) = 0 and KA([H;(E)]O) =1.

When this is the case, 7_€(I) is a Buchsbaum ring with ZA(H;(E)) =1.

v
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Rational singularity

Assume (k).
Definition 2.15

A is a rational singulaity if pg(A) = 0.

Theorem 2.16 (OWY)
TFAE:
@ A is a rational singularity.

@ Any m-primary integrally closed ideal is a pg-ideal.
@ nr(A) =1.
@ rA)=1.

Namley, the theory of pg-ideals is a generalization of the ideal theory of
rational singularities (by Lipman).
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Examples of rational singulairties

Recall Bapc = K[X,Y,Z]/(X? + Y? 4+ Z°) foreach2 <a < b < c.
Ex 2.17 (Rational singularities of Brieskorn type)

1
b
(a,b,c) = (2,2,n), (2,3,3), (2,3,4), (2,3,5).

. . . . 1 1
A= B::b\,c is a rational singularity < 3 P = ar P > 1. Namely,

v

Fact 2.18

Any quotient singularity or a toric singularity is a rational singularity.
For instance, any Veronese subring of B, p ¢ is also a rational singularity.
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Elliptic singularity

Let X — Spec A be a resolution of singularities,

Definition 2.19

Let Zg be a fundamental cycle of X. Put ps(A) := pa(Zg), the
fundamental genus of A. The ring A is called elliptic if ps(A) = 1.

A = B, is elliptic <= (a, b, c) is one of the following:
e (a,b,c) =(2,3,c),c > 6.
® (a,b,c) =(2,4,c),c >4
@ (a,b,c) =(2,5,c),5<c<09.
@ (a,b,c) =(3,3,c),c <3.
e (a,b,c) =(3,4,c),4<c<5.
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Normal reduction numbers of Elliptic singularity

Theorem 2.21 (Okuma, OWY)
o Ifps(A) =1 (i.e. Ais elliptic), thennr(A) = F(A) = 2.

@ LetA = B, be a Brieskorn type.
If¥(A) = 2, then ps(A) = 1, except (a, b, c) = (3,4,6),(3,4,7).

The following question is open!

Question 2.22

If A = B3gg or B3gz, thenis F(A) = 2 or 3?
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Example with nr(l) < (/)

Let g > 2 be an integer, and let K be a field of p = charK with p f2g + 2.
Theorem 3.1 (OWY)

Let B = K[X, Y, Z]/(X? — Y?9+2 — Z29+2) pe a graded ring with
degX =9g+1,degY =degZ = 1.

Let A = B(9) pe the gth Veronese subring of A. Put
I = (yg’ yg_1z’ AZZ)A

-1 -2_g+2 2 -1 -2 -1
= (y9, y9 'z, y97229%2 ..., 2?9, xy97', xy9%z, ..., xz971)A.

and Q = (y9 — z%9, y9-'z)A. Then I? = QI and

NOTE: IB is integrally closed but (IB)? is not in general.
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(continue)
(1) I" = I" = QI"" foreveryn = 1,2,...,g. Hence nr(l) = 1.
(2) xy9-1 e 19+1\ QI9 and 19+1 = QI9 + (xy9*-1).
(8) I+ = Q" for everyn > g+ 1.
Hencet(l) = g+ 1andr(A) =g+ 1.

(4) q(01) = pg(A) = g.
q(nl) =g-nforalln=1,2,...,g, and
q(nl) =0 foreveryn > g.

(5) €a(A/l) = g and eg(l) = 4g - 2.
(6) e1(I) =3g—-1andesx(l) = g.
In particular, e1(I) = ey(I) — £a(A/I) + 1.
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Proof of sketch (1)

For simplicity, we assume g = 2.
o B = K[X, Y, Z]/(X? - Y6 — Z5),
o A = B® = K][y?,yz, 2, xy, xz], where
Ay = Ky?+ Kyz + KZ2°.
Ay = Ky*+ Ky3z + Ky?Z? + Kyz® + Kz* + Kxy + Kxz.
o I = (y? yz, 2%, xy, xz)
° Q= (y2 _249 yZ)
Then £a(A/l) = g = 2 and thus | = I.
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Proof of sketch (2)

I= (y2’ yz, 247 Xy, XZ) and Q = (y2 - 249 yZ)

o P=P=al
o xy3e P\ QR and P = QP + (xy?).
e It = QI foralln > 3.

o pg(A) = q(0l) = 2(= g).
@ g(1-1)=1andq(nl) =0 foralln> 2.
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Sketch of proof (3)

Claim 1: pg(A) = 2.

B = K[X, Y, Z]/(X? - Y5 — Z5) is a graded ring
with degx = 3 anddegy = degz = 1.
Thus
a(B) = deg(X%-Y® - 2% — (degx + degy + deg z)
= 6-(3+1+1)=1.

Since A = B® and H2(B)Y = Kg = B(a(B)) = B(1), we have
[H2(A)]z0 = [H2(A)]o = [HZ(B)]o = By = Ky + Kz.

Hence pg(A) = dimk[H2(A)]s0 = 2(= g).
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Sketch of proof (4)

I =(y? yz, 2% xy, xz) and Q = (y? - 2, yz)

Claim 2: I? = Ql.
Since I = Q + (2%, xy, xz), we must show that (z*, xy, xz)? c Ql.
For instace,

(2?2 = -(y*-2H +yz-yz-22 e ql

(xy)? x%y? = (y° + 2°)y?
y8 + y226

= (V-2 +yz(y’2® + y2°) € QI
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Sketch of proof (5)

Note that A, = K[y, z]2n ® XK[y, z]2n-3 as K[y, z]®-modules.

Claim 3: fy € K[y, z]2n N n = fo € I" foreach n > 1

Put Iy = (y?, yz,z*)K]y, z]. By assumption, we have
fF+efi '+ +f=0 (As=1,3ci € .
Since I'" N K[y, z] = I(")” (non-trivial!), we may assume ¢; € l(")" for Vi > 1.

Then fy € (y2, yz,z*)" = (y?,yz,2*)" c I" because (y?, yz, z*)K[y, 2]
is normal.
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Sketch of proof (6)

Claim 4: 0 # f; € K[y, z]2n-3, xfi € "= n >3
By assumption, we have (xf;)? € P,
The Claim 3 yields (y°® + 2°)f? = (xf)? € 20 n KIy, z]22n € PP".

The degree (in y and z) of any monomial in P" = (y2, yz, z*, xy, xz)?" is
—— N —— e’

deg2 deg4
at least 4n = deg(y® + 2°)f>.

Hence (y® + 2z°)f? € (y?, yz)*" and the the highest power of z appearing
in (y® + 2°)f? is at most 2n. Therefore n > 3.
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Sketch of proof (7)

Claim5:lfn< 2. then "N A, c I"N A,

Any f € "N A, can be written as

f=fy+xf; (I € K[y, 2]2n, f1 € K[y, Z]2n-3)

Let o € Autyq, 512 (A) such that o(x) = —x.
Then since o(I) = I, we obtain o (f) = fo — xf; € In

f4+o(f) — f-o(f) —
°.f0=T()eI" and xf1=%eln.

By Claim 3,4, we have fy € I" and f; = 0.

Therefore f = fy € I" N A, as required.
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Sketch of proof (8)

Claim 6: xy® € B\ Qr

B = (5 yzy'22 323, y22, ..., xy°, xyz,..., x2").
Since (xy3)2 — X2y6 — (yG + ZG)yG — (y6)2 + (y323)2 € (,3)2, we
have xy3 € B.

Assume xy3 € ar = (a,b)l_2, where a = y? — z* and b = yz.
Then xy® = au + bv for some u, v € I2.
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Sketch of proof (8)

On the other hand, xy® = (y? — z*)xy + yz-xz® = a-xy + b - x23.

nau+bv = a-xy+b-xz>.
~a(u-xy) = b(xz®-v).

As a, b are regular sequence, we have
u-xy=bh, xz2-v=ah (3heA).

So we may asssume u, v € A and thus u, v € I? by Claim 5.
Thus xy® = au+ bv € QF? = P.

This is a contradiction.
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Sketch of proof (9)

We will finish the proof.

Fact 3.2 (Proposition 2.8)

@ 2-q(1-1) + £a(2/Ql) = q(0- 1) + q(2- ).
@ 2-q(2-1) + a(P/QP) = q(1-1) + q(3- ).

@ 2-q(n-1) + £a(I™1/QI) = q((n-1)- 1) + q((n+1) - 1) (n 2 3)

It q(1-1) = q(2- 1), then q(2 - I) = q(3 - 1) and thus £4(F*/QI2) = 0.

This contradicts Claim 6. Hence
2=pg(A)=q(0:-1)>q(1-1)>q(2-1)>0.

Thus q(1-1) =1andq(2:1) = 0 (and thus g(n- 1) = 0 for all n > 3).

In particular, 2 =al ¢, (I3/0l2) =1and It = QI" for n > 3 by the
above formula.
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Sketch of proof (10)

If we obtain that eg(l) = 49 — 2, €a(A/l) = g, pg(A) = g9,q(l) =g -1
and g(eol) = 0, then

ei(l) = eo(l) - ta(A/l) + {pg(A) — q(I)}
(4g-2)-g+{g-(g-1)}
= 3g-1.

ex(l) = pg(A) - q(col)
pPg(A) —q(g-1)
= g - 0 = g,
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Thank you very much for your attention!
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