Two normal reduction numbers

Ken－ichi YOSHIDA（吉田 健一）（Nihon Univ．）

Joint work with Kei－ichi Watanabe and Tomohiro Okuma

東大可換環論セミナー

May 25， 2020

Minimal reduction

Assumption（ $\boldsymbol{\lambda}$ ）

Throughout this talk，
－K is an algebraically closed field．
－$(\boldsymbol{A}, \mathbf{m}, \boldsymbol{K})$ is an exlellent normal local domain containing $\boldsymbol{K} \cong \boldsymbol{A} / \mathbf{m}$ or
－A is a graded K－algebra $A=\bigoplus_{n \geq 0} A_{n}, \mathfrak{m}=\bigoplus_{n \geq 1} A_{n}$ and $K=\boldsymbol{A}_{\mathbf{0}}$ ．
－ $\operatorname{dim} \boldsymbol{A}=2$ and \boldsymbol{A} is not regular．
－I is an m－primary ideal．

Then there exists a parameter ideal $\mathbf{Q} \subset \mathbf{I}$ s．t．

$$
I^{n+1}=Q I^{n}(\exists n \geq 0)
$$

Then \boldsymbol{Q} is called a minimal reduction of \boldsymbol{I} ．

Reduction number

Let \boldsymbol{Q} be a minimal reduction of \boldsymbol{I} ．
－$r_{Q}(\boldsymbol{I})$ is called the reduction number of \boldsymbol{I} with respect to \boldsymbol{Q} ．

$$
\begin{aligned}
r_{Q}(I) & =\min \left\{r \geq 0 \mid I^{r+1}=Q I^{r}\right\} \\
& =\min \left\{r \geq 0 \mid I^{N+1}=Q I^{N}(\forall N \geq r)\right\} .
\end{aligned}
$$

－ $\boldsymbol{r}(\boldsymbol{I})$ is called the reduction number of \boldsymbol{I} ．

$$
r(I)=\min \left\{r_{Q}(I) \mid Q \text { is a minimal reduction of } I\right\} .
$$

－ \boldsymbol{I} is said to be stable if $\boldsymbol{I}^{2}=\boldsymbol{Q} \boldsymbol{I}$ ．

Blow－up algebras

Let \boldsymbol{t} be an indeterminate over \boldsymbol{A} ．
－The Rees algebra of I is

$$
\mathcal{R}(I)=A[I t]=\bigoplus_{n \geq 0} I^{n} t^{n} \subset A[t]
$$

－The extended Rees algebra of \boldsymbol{I} is

$$
\mathcal{R}^{\prime}(I)=A\left[I t, t^{-1}\right]=\bigoplus_{n \in \mathbb{Z}} I^{n} t^{n} \subset A\left[t, t^{-1}\right]
$$

where $\boldsymbol{I}^{\boldsymbol{n}}=\boldsymbol{A}$ for every $\boldsymbol{n} \leq \mathbf{0}$ ．
－The associated graded ring of \boldsymbol{I} is

$$
G(I)=\mathcal{R}(I) / I \mathcal{R}(I) \cong \mathcal{R}^{\prime}(I) / t^{-1} \mathcal{R}^{\prime}(I)=\bigoplus_{n \geq 0} I^{n} / I^{n+1}
$$

Ring－theoretic property of Rees algebras

Assume（ \star ）．

Theorem 1．1（Goto－Shimoda，80＇s）

I is stable $\Longleftrightarrow \mathcal{R}(\boldsymbol{I})$ is Cohen－Macaulay．
－We call $\overline{\mathcal{R}}(I):=\bigoplus_{n \geq 0} \bar{I}^{n} t^{n}=\overline{\mathcal{R}(I)}$ the normal Rees algebra of \boldsymbol{I} ．
－ $\mathcal{R}(I)$ is called normal if $\overline{\mathcal{R}(I)}=\mathcal{R}(I)$ ．
Moreover，I is called normal．
－We call $\overline{\mathbf{G}}(\boldsymbol{I})=\bigoplus_{n \geq 0} \overline{I^{\boldsymbol{n}}} / \overline{I^{n+1}}$ the normal associated graded ring of \boldsymbol{I} ．

Normal Hilbert function

Assume（ \star ）．Let $\boldsymbol{I} \subset \boldsymbol{A}$ be an m－primary ideal．

Definition 1.2 （Rees，60＇s）

－The normal Hilbert fucntion is

$$
\bar{H}_{l}(n):=\ell_{A}\left(A / \overline{I^{n}}\right)
$$

－The normal Hilbert polynomial is

$$
\bar{P}_{I}(n)=\bar{e}_{0}(I)\binom{n+1}{2}-\bar{e}_{1}(I)\binom{n}{1}+\bar{e}_{2}(I)
$$

such that $\overline{\boldsymbol{P}}_{\boldsymbol{I}}(\boldsymbol{n})=\overline{\boldsymbol{H}}_{\boldsymbol{l}}(\boldsymbol{n})$ for large enough \boldsymbol{n} ．
Then $\overline{\boldsymbol{e}}_{\boldsymbol{i}}(\boldsymbol{I})$ is called the $\boldsymbol{i}^{\text {th }}$ normal Hilbert coefficient of \boldsymbol{I} ．

Normal Hilbert coefficients

Assume（ \star ）．

Theorem 1.3 （Huneke，1987）

Let I $\subset \boldsymbol{A}$ be an m－primary integrally closed ideal．Then
（1） $\bar{e}_{0}(I)=e_{0}(I)$ ．
（2） $\bar{e}_{1}(I)=e_{0}(I)-\ell_{A}(A / I)+\sum_{n=1}^{\infty} \ell_{A}\left(\overline{I^{n+1}} / Q \overline{I^{n}}\right)$ ．
（3） $\bar{e}_{2}(I)=\sum_{n=1}^{\infty} n \cdot \ell_{A}\left(\overline{I^{n+1}} / Q \overline{I^{n}}\right)$ ．

Corollary 1.4

Let I be as above．
（1） $\bar{e}_{1}(I) \geq e_{0}(I)-\ell_{A}(A / I)$ ．
（2） $\bar{e}_{2}(I) \geq 0$ ．

Two normal reduction numbers

Assume (\star) and $\bar{I}=I$ and $\sqrt{I}=\mathbf{m}$ ．

Lemma 1.5 （Huneke，1987）

Let $\boldsymbol{Q}, \boldsymbol{Q}^{\prime}$ be minimal reductions of I．Then for every $\boldsymbol{n} \geq \mathbf{1}$ ，

$$
\overline{I^{n+1}}=\overline{Q^{n}} \Longleftrightarrow \overline{I^{n+1}}=Q^{\prime} \overline{I^{n}} .
$$

Definition 1.6

－The（small）normal reduction number of I is

$$
\operatorname{nr}(I):=\min \left\{r \geq 1 \mid \overline{I^{r+1}}=Q \overline{Q r}\right\} .
$$

－The（big）normal reduction number of I is

$$
\overline{\mathrm{r}}(I):=\min \left\{r \geq 1 \mid \overline{I^{N+1}}=Q \bar{N}^{N}(\forall N \geq r)\right\} .
$$

Definition of p_{g}－ideals；Ring theoretic version

Assume (\star) and $\bar{I}=I$ and $\sqrt{\boldsymbol{I}}=\mathbf{m}$ ．

Definition 1.7 （OWY）

\boldsymbol{I} is a p_{g}－ideal $\stackrel{\text { def }}{\Longleftrightarrow} \mathcal{R}(\boldsymbol{I})$ is Cohen－Macaulay and normal．
I is a p_{g}－ideal $\Longleftrightarrow \overline{I^{2}}=I^{2}=Q I, \overline{I^{3}}=I^{3}=Q I^{2}, \ldots$
$\Longrightarrow n r(I)=1$
$\Longrightarrow \quad I$ is stable

Characterization of p_{g}－ideals via normal reduction numbers

Assume（ \star ）and $\overline{\boldsymbol{I}}=\boldsymbol{I}$ and $\sqrt{\boldsymbol{I}}=\mathbf{m}$ ．

Theorem 1.8 （OWY）

The following conditions are equivalent：
（1）I is a p_{g}－ideal．
（2） $\bar{r}(I)=1($ then $\mathrm{nr}(I)=1)$ ．
（3）I is stable and normal．
（4） $\bar{e}_{1}(I)=e_{0}(I)-\ell_{A}(A / I)$ ．
（5） $\bar{e}_{2}(I)=0$ ．
（0 $\bar{G}(I)$ is Cohen－Macaulay with $\mathbf{a}(\bar{G})<0$ ．
（3）$\overline{\mathcal{R}}(I)$ is Cohen－Macaulay ．

In progress（j．w．with M．E．Rossi）

Assume（ \star ）and $\overline{\boldsymbol{I}}=\boldsymbol{I}$ and $\sqrt{\boldsymbol{I}}=\boldsymbol{m}$ ．

Theorem 1.9 （OWY with Rossi）

The following conditions are equivalent：
（1） $\bar{r}(I)=2$ and $\ell_{A}\left(\overline{I^{2}} / Q I\right)=1$ ．
（2） $\bar{e}_{1}(I)=e_{0}(I)-\ell_{A}(A / I)+1$ and $n r(I)=\bar{r}(I)$ ．
（3） $\bar{e}_{2}(I)=1$ ．
（4） $\bar{G}(I)$ is Cohen－Macaulay，$a(\bar{G})=0$ and $\ell_{A}\left(\left[H_{\mathfrak{M}}^{2}(\bar{G})\right]_{0}\right)=1$ ．
When this is the case，$\overline{\mathcal{R}}(\boldsymbol{I})$ is a Buchsbaum ring with $\boldsymbol{\ell}_{\mathrm{A}}\left(H_{\mathfrak{M}}^{2}(\overline{\mathbb{R}})\right)=\mathbf{1}$ ．
The final example in this talk gives an example of I such that
－ $\bar{e}_{1}(I)=e_{0}(I)-\ell_{A}(A / I)+1$ and
－ $1=\operatorname{nr}(I)<\bar{r}(I)=g+1$ ，where $g \geq 3$ ．

Find many $\boldsymbol{p}_{\mathbf{g}}$－ideals．

\Downarrow

Calculate normal reduction numbers for ideals

Two normal reduction numbers of rings

In order to study the relationship between singularities and normal reduction numbers of ideals，we define the normal reduction number of rings．

Definition 2.1

－The（small）normal reduction number of \boldsymbol{A} is

$$
\operatorname{nr}(A):=\max \{\operatorname{nr}(I) \mid \bar{I}=I, \sqrt{I}=m\} .
$$

－The（big）normal reduction number of \boldsymbol{A} is

$$
\overline{\mathrm{r}}(A):=\max \{\overline{\mathrm{r}}(I) \mid \bar{I}=I, \sqrt{I}=\mathfrak{m}\} .
$$

－If $r=\bar{r}(A)<\infty$ ，then we have

$$
\overline{I^{r+1}} \subset Q
$$

for any ideal \boldsymbol{I} and its minimal reduction \boldsymbol{Q} ．

Main Problems

Problem 1

Assume（ \star ）．
－Determine $\mathbf{n r}(\boldsymbol{A})$ and $\overline{\mathbf{r}}(\boldsymbol{A})$ ．
－What is the difference between $\operatorname{nr}(\boldsymbol{A})$ and $\overline{\mathbf{r}}(\boldsymbol{A})$ ？
－Determine $\mathbf{n r}(\boldsymbol{I})$ and $\overline{\mathbf{r}}(\boldsymbol{I})$ for any integrally closed \mathfrak{m}－primary ideal of A．
－Find an ideal I which satisfies $\operatorname{nr}(I)<\bar{r}(I)$ ．
The main purpose of this talk is to give partial answers to these problems using the theory of singularity．
Especially，we give concrete examples of ideals \boldsymbol{I} in $\boldsymbol{g}^{\text {th }}$ Veronese subring A of a Brieskorn hypersurface $\boldsymbol{B}_{2,2 g+\mathbf{2 , 2 g + 2}}$ which satisfies

$$
1=n r(I)<\bar{r}(I)=g+1
$$

Brieskorn hypersurfaces

Let $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ be integers with $\mathbf{2} \leq \boldsymbol{a} \leq \boldsymbol{b} \leq \boldsymbol{c}$ ．Let \boldsymbol{K} be a field of characteristic \boldsymbol{p} which does not divide abc．Put $\boldsymbol{L}=\mathbf{L C M}\{\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}\}$ ．

Definition 2.2

－Brieskorn hypersurfaces $B_{a, b, c}$ is

$$
B=B_{a, b, c}:=K[X, Y, Z] /\left(X^{a}+Y^{b}+Z^{c}\right)
$$

This is a graded K－algebra with $\operatorname{deg}(X)=L / a, \operatorname{deg}(Y)=L / \mathbf{b}$ and $\operatorname{deg}(Z)=L / c$ ．

The \boldsymbol{a}－invariant of \boldsymbol{B} is defined by

$$
a(B)=\max \left\{n \in \mathbb{Z} \mid\left[H_{m}^{2}(B)\right]_{n} \neq 0\right\}
$$

In fact，

$$
\begin{aligned}
a(B) & =\operatorname{deg}\left(X^{2}+Y^{b}+Z^{c}\right)-(\operatorname{deg}(X)+\operatorname{deg}(Y)+\operatorname{deg}(Z)) \\
& =L-L / a-L / b-L / c
\end{aligned}
$$

Normal reduction number of the maximal ideal of $B_{a, b, c}$

Theorem 2.3

Let $\boldsymbol{A}=\widehat{\mathbf{B a}_{\mathrm{a}, \boldsymbol{b}, \mathrm{c}}}$ be a Brieskorn hypersurface，and put $\boldsymbol{Q}=(\boldsymbol{y}, \boldsymbol{z}) \boldsymbol{A}$ ， $n_{k}=\left\lfloor\frac{k b}{a}\right\rfloor$ for $k=1,2, \ldots, a-1$ ．Then $m=\bar{Q}=(x, y, z) A$ and
－$\overline{\mathfrak{m}^{n}}=Q^{n}+x \boldsymbol{Q}^{n-n_{1}}+\cdots+x^{a-1} \boldsymbol{Q}^{n-n_{a-1}}$ for every $\boldsymbol{n} \geq \mathbf{1}$ ．
In particular，
－ $\operatorname{nr}(\mathfrak{m})=\bar{r}(\mathfrak{m})=n_{a-1}$ ．
－ $\mathcal{R}(\mathfrak{m})$ is normal if and only if $\overline{\mathrm{r}}(\mathrm{m})=\mathbf{a}-\mathbf{1}$ ．
－ \mathfrak{m} is a \boldsymbol{p}_{g}－ideal if and only if $\mathbf{a}=\mathbf{2}, \boldsymbol{b}=\mathbf{2 , 3}$ ．

Veronese subring

Definition 2.4

－The $\boldsymbol{k}^{\text {th }}$ Veronese subring \boldsymbol{A} of \boldsymbol{B} is

$$
A=B^{(k)}:=\bigoplus_{n \geq 0} B_{k n} .
$$

This can be regarded as a graded \boldsymbol{K}－algebra with $\boldsymbol{A}_{\boldsymbol{n}}=\boldsymbol{B}_{\boldsymbol{k n}}$ ．
－$\left[H_{m}^{i}(A)\right]_{n} \cong\left[H_{m B}^{i}(B)\right]_{k n}$ ．
For instance， $\boldsymbol{A}=\boldsymbol{K}[\boldsymbol{x}, \boldsymbol{y}]^{(3)}=\boldsymbol{K}\left[\boldsymbol{x}^{3}, \boldsymbol{x}^{2} \boldsymbol{y}, \boldsymbol{x} \boldsymbol{y}^{2}, \boldsymbol{y}^{\mathbf{3}}\right]$ is the $\mathbf{3}^{\text {rd }}$ Veronese subring and

$$
\begin{aligned}
& A_{1}=K x^{3}+K x^{2} y+K x y^{2}+K y^{3} \\
& A_{2}=K x^{6}+K x^{5} y+\cdots+K y^{6}
\end{aligned}
$$

Cycle and ideal

Assume（ \star ）．

Fact 2.5

Let $\boldsymbol{I} \subset \boldsymbol{A}$ be an m－primary integrally closed ideal．Then there exists a resolution of singularities $f: X \rightarrow \operatorname{Spec} A$ with $E=f^{-1}(m)=\bigcup_{i=1}^{m} E_{i}$ and an anti－nef cycle $\boldsymbol{Z}=\sum_{i=1}^{m} \boldsymbol{a}_{i} \boldsymbol{E}_{\boldsymbol{i}}$ on \boldsymbol{X} such that

$$
O_{X}=O_{X}(-Z), \quad I=H^{0}\left(X, O_{X}(-Z)\right)
$$

Then I is said to be represented on X and write $I=I_{Z}$ ．
－If $I=I_{Z}, I^{\prime}=I_{Z^{\prime}}$ ，then $\overline{I^{\prime}}=I_{Z+Z^{\prime}}$ ．
－In particular，if $\boldsymbol{I}=\boldsymbol{I}_{\boldsymbol{Z}}$ ，then $\overline{\boldsymbol{I}^{n}}=\boldsymbol{I}_{\mathbf{n} \boldsymbol{z}}$ ．

Geometric genus

Assume（ \star ）．

Definition 2.6

Let $f: X \rightarrow \operatorname{Spec} A$ with $E=f^{-1}(\mathfrak{m})=\bigcup_{i=1}^{m} E_{i}$ be a resolution of singularities．Then

$$
p_{g}(A)=\ell_{A}\left(H^{1}\left(X, O_{X}\right)\right)
$$

is called the geometric genus of \boldsymbol{A} ， where $\boldsymbol{\ell}_{\boldsymbol{A}}(\boldsymbol{W})$ denotes the length of \boldsymbol{W} as an \boldsymbol{A}－module．
－$p_{g}(A)=\operatorname{dim}_{K}\left[H_{m}^{2}(A)\right]_{\geq 0}$ ．
－$p_{g}\left(B_{a, b, c}\right)=\sum_{i=0}^{a(B)} \operatorname{dim}_{K} B_{i} \quad$ is given by
$p_{g}\left(B_{a, b, c}\right)=\sharp\left\{\left(t_{0}, t_{1}, t_{2}\right) \in \mathbb{Z}_{\geq 0}^{\oplus 3} \mid a b c-b c-a c-a b \geq b c t_{0}+c a t_{1}+a b t_{2}\right\}$.

A sequence $q(n l)$

Assume (\star) and let $I=I_{Z}$ ．
Put $\boldsymbol{q}(\boldsymbol{n l})=\boldsymbol{\ell}_{\boldsymbol{A}}\left(\boldsymbol{H}^{\mathbf{1}}\left(\boldsymbol{X}, O_{\boldsymbol{X}}(-\boldsymbol{n Z})\right)\right)$ for every $\boldsymbol{n} \geq \mathbf{0}$ ．
Theorem 2.7 （OWY（cf．Huneke））
－$q(0 I)=p_{g}(A)$ ．
－ $\boldsymbol{q}(k I) \geq \mathbf{q}((\boldsymbol{k}+1) I)$ for every $\mathbf{k} \geq 0$ ．
－If $q(n I)=q((n+1) I)$ ，then $q((n+1) I)=q((n+2) I)$ ．
－ $\boldsymbol{q}(\boldsymbol{n I})=\boldsymbol{q}(\infty)$ for every $n \geq p_{g}(A)$ ，where

$$
q(\infty I)=\lim _{n \rightarrow \infty} q(n l)
$$

Normal reduction numbers and $q(n l)$

Assume（ $\boldsymbol{\star}$ ）and $\boldsymbol{I}=\boldsymbol{I}_{\mathbf{Z}}$ ．

Proposition 2.8

For every integer $\boldsymbol{n} \geq \mathbf{0}$ ，we have

$$
2 \cdot q(n l)+\ell_{A}\left(\overline{l^{n+1}} / Q \overline{I^{n}}\right)=q((n-1) I)+q((n+1) I) .
$$

Proposition 2.9

$$
\begin{aligned}
& -\operatorname{nr}(I)=\min \left\{n \in \mathbb{Z}_{\geq 0} \mid q((n-1) I)-q(n l)=q(n l)-q((n+1) I)\right\} . \\
& -\bar{r}(I)=\min \left\{n \in \mathbb{Z}_{\geq 0} \mid q((n-1) I)=q(n l)\right\} .
\end{aligned}
$$

Thus if $\overline{I^{n+1}} \neq Q \overline{I^{n}}$ ，then

$$
p_{g}(A)=q(0 \cdot I)>q(1 \cdot I)>q(2 \cdot I)>\cdots>q((n-1) I)>q(n I) \geq 0
$$

\boldsymbol{p}_{g}－ideal and normal reduction numbers

Assume $\boldsymbol{I}=\boldsymbol{I}_{\mathbf{z}}$ ．
Theorem 2.10 （Riemann－Roch formula）
$\ell_{A}(A / \bar{I})+q(I)=-\frac{Z^{2}+K_{X} Z}{2}+p_{g}(A)$.
Proposition 2.11 （OWY）
（1） $\bar{e}_{0}(I)=e_{0}(I)=-Z^{2}$ ．
（2） $\bar{e}_{1}(I)=\frac{-Z^{2}+K_{X} Z}{2}=e_{0}(I)-\ell_{A}(A / I)+\left(p_{g}(A)-q(I)\right)$ ．
（3） $\bar{e}_{2}(I)=p_{g}(A)-q(\infty I)$ ．

$q(n l)-q(\infty l)$

Corollary 2.12
$\boldsymbol{q}(n l)-\boldsymbol{q}(\infty I)=\bar{P}_{l}(n)-\bar{H}_{l}(n)$.
（Proof．）By Riemann－Roch formula，we have

$$
\ell_{A}\left(A / \overline{I^{n}}\right)+q(n I)=-\frac{n^{2} Z^{2}+n K_{X} Z}{2}+p_{g}(A)
$$

Hence

$$
\begin{aligned}
q(n I) & =\frac{\left(-Z^{2}\right)}{2} n^{2}-\frac{K_{X} Z}{2} n+p_{g}(A)-\bar{H}_{l}(n) \\
& =\frac{\bar{e}_{0}}{2} n^{2}-\left(\bar{e}_{1}-\frac{\bar{e}_{0}}{2}\right) n+\bar{e}_{2}+q(\infty I)-\bar{H}_{l}(n) \\
& =\bar{P}_{I}(n)-\bar{H}_{l}(n)+q(\infty I) \cdot / /
\end{aligned}
$$

p_{g}－ideal and normal reduction numbers（again）

Theorem 2.13 （OWY）
Assume $\mathbf{I}=\mathbf{I} \mathbf{z}$ ．Then TFAE
（1）I is a p_{g}－ideal．
（2）$q(I)=p_{g}(A)$ ．
（3） $\bar{r}(I)=1$ ．
（4）I is stable and normal．
（3） $\bar{e}_{1}(I)=e_{0}(I)-\ell_{A}(A / I)$ ．
（c） $\bar{e}_{2}(I)=0$ ．
（7） $\bar{G}(I)$ is Cohen－Macaulay with $\mathbf{a}(\bar{G})<0$ ．
（3）$\overline{\mathcal{R}}(I)$ is Cohen－Macaulay ．
When this is the case， $\mathbf{q}(\boldsymbol{n l})=\boldsymbol{p}_{\boldsymbol{g}}(\mathbf{A})$ for all $\boldsymbol{n} \geq \mathbf{0}$ ．
$\bullet I$ is a p_{g}－ideal $\Longrightarrow n r(I)=1 \Longrightarrow I$ is stable．

In progress（again）

Theorem 2.14 （OWY with Rossi）

The following conditions are equivalent：
（1） $\bar{r}(I)=2$ and $\ell_{A}\left(\overline{I^{2}} / Q I\right)=1$ ．
（2）$q(I)=q(\infty I)=p_{g}(A)-1$ ．
（3） $\bar{e}_{1}(I)=e_{0}(I)-\ell_{A}(A / I)+1$ and $n r(I)=\bar{r}(I)$ ．
（4） $\bar{e}_{2}(I)=1$ ．
（5） $\bar{G}(I)$ is Cohen－Macaulay， $\mathbf{a}(\bar{G})=0$ and $\boldsymbol{\ell}_{\mathbf{A}}\left(\left[H_{\mathfrak{m}}^{2}(\bar{G})\right]_{0}\right)=1$ ．
When this is the case，$\overline{\mathcal{R}}(\boldsymbol{I})$ is a Buchsbaum ring with $\boldsymbol{\ell}_{A}\left(H_{\mathfrak{M}}^{2}(\bar{R})\right)=\mathbf{1}$ ．

Rational singularity

Assume（ \star ）．

Definition 2.15

A is a rational singulaity if $p_{g}(A)=0$ ．

Theorem 2.16 （OWY）

TFAE：

（1） \boldsymbol{A} is a rational singularity．
（2）Any \mathbf{m}－primary integrally closed ideal is a p_{g}－ideal．
（3） $\operatorname{nr}(A)=1$ ．
（4） $\bar{r}(A)=1$ ．
Namley，the theory of \boldsymbol{p}_{g}－ideals is a generalization of the ideal theory of rational singularities（by Lipman）．

Examples of rational singulairties

Recall $B_{a, b, c}=K[X, Y, Z] /\left(X^{a}+Y^{b}+Z^{c}\right)$ for each $\mathbf{2} \leq \mathbf{a} \leq \boldsymbol{b} \leq \boldsymbol{c}$ ．

Ex 2.17 （Rational singularities of Brieskorn type）

$A=\widehat{B_{a, b, c}}$ is a rational singularity $\Longleftrightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}>1$ ．Namely，

$$
(a, b, c)=(2,2, n),(2,3,3),(2,3,4),(2,3,5) .
$$

Fact 2.18

Any quotient singularity or a toric singularity is a rational singularity． For instance，any Veronese subring of $\boldsymbol{B}_{\mathbf{a}, \mathbf{b}, \mathbf{c}}$ is also a rational singularity．

Elliptic singularity

Let $X \rightarrow \operatorname{Spec} A$ be a resolution of singularities，

Definition 2.19

Let Z_{E} be a fundamental cycle of X ．Put $p_{f}(A):=p_{a}\left(Z_{E}\right)$ ，the fundamental genus of \boldsymbol{A} ．The ring \boldsymbol{A} is called elliptic if $\boldsymbol{p}_{f}(\boldsymbol{A})=\mathbf{1}$ ．

Theorem 2.20

$A=\widehat{B_{a, b, c}}$ is elliptic $\Longleftrightarrow(\mathbf{a}, \boldsymbol{b}, \boldsymbol{c})$ is one of the following：
－$(a, b, c)=(2,3, c), c \geq 6$ ．
－$(a, b, c)=(2,4, c), c \geq 4$ ．
－$(a, b, c)=(2,5, c), 5 \leq c \leq 9$ ．
－$(a, b, c)=(3,3, c), c \leq 3$ ．
－$(a, b, c)=(3,4, c), 4 \leq c \leq 5$ ．

Normal reduction numbers of Elliptic singularity

Theorem 2.21 （Okuma，OWY）

－If $\boldsymbol{p}_{f}(\boldsymbol{A})=\mathbf{1}$（i．e． \boldsymbol{A} is elliptic），then $\operatorname{nr}(\boldsymbol{A})=\overline{\mathbf{r}}(\boldsymbol{A})=\mathbf{2}$ ．
－Let $\boldsymbol{A}=\widehat{B_{a, b, c}}$ be a Brieskorn type．

$$
\text { If } \bar{r}(A)=2 \text {, then } p_{f}(A)=1 \text {, except }(a, b, c)=(3,4,6),(3,4,7)
$$

The following question is open！
Question 2.22
If $\boldsymbol{A}=\boldsymbol{B}_{3,4,6}$ or $\boldsymbol{B}_{3,4,7}$ ，then is $\overline{\mathbf{r}}(\boldsymbol{A})=\mathbf{2}$ or $\mathbf{3}$ ？

Example with $\operatorname{nr}(I)<\overline{\mathrm{r}}(I)$

Let $\boldsymbol{g} \geq \mathbf{2}$ be an integer，and let \boldsymbol{K} be a field of $\boldsymbol{p}=\mathbf{c h a r} \boldsymbol{K}$ with $\boldsymbol{p} \boldsymbol{R} \mathbf{g} \boldsymbol{g}+\mathbf{2}$ ．

Theorem 3.1 （OWY）

Let $B=K[X, Y, Z] /\left(X^{2}-Y^{2 g+2}-Z^{2 g+2}\right)$ be a graded ring with

$$
\operatorname{deg} X=g+1, \operatorname{deg} Y=\operatorname{deg} Z=1
$$

Let $\boldsymbol{A}=\boldsymbol{B}^{(g)}$ be the $\boldsymbol{g}^{\text {th }}$ Veronese subring of \boldsymbol{A} ．Put

$$
\begin{aligned}
I & =\left(y^{g}, y^{g-1} z, A_{\geq 2}\right) A \\
& =\left(y^{g}, y^{g-1} z, y^{g-2} z^{g+2}, \ldots, z^{2 g}, x y^{g-1}, x y^{g-2} z, \ldots, x z^{g-1}\right) A
\end{aligned}
$$

and $\mathbf{Q}=\left(\boldsymbol{y}^{g}-\boldsymbol{z}^{2 g}, \boldsymbol{y}^{\boldsymbol{g - 1}} \boldsymbol{z}\right) \mathbf{A}$ ．Then $\boldsymbol{I}^{\mathbf{2}}=\mathbf{Q I}$ and
NOTE：IB is integrally closed but（IB $)^{\mathbf{2}}$ is not in general．

Theorem

（continue）
（1）$\overline{\boldsymbol{I}^{n}}=I^{\boldsymbol{n}}=Q I^{\boldsymbol{n - 1}}$ for every $\boldsymbol{n}=\mathbf{1}, 2, \ldots, \boldsymbol{g}$ ．Hence $\operatorname{nr}(I)=1$ ．
（2） $\boldsymbol{x y}^{\boldsymbol{g}^{2}-1} \in \overline{\boldsymbol{I}^{g+1}} \backslash Q \overline{I^{g}}$ and $\overline{I^{g+1}}=Q \overline{I^{g}}+\left(\boldsymbol{x}^{\boldsymbol{g}^{2}-1}\right)$ ．
（3）$\overline{\boldsymbol{I}^{\boldsymbol{n + 1}}}=\boldsymbol{Q \boldsymbol { I } ^ { \boldsymbol { n } }}$ for every $\boldsymbol{n} \geq \boldsymbol{g}+\mathbf{1}$ ．
Hence $\overline{\mathrm{r}}(I)=g+1$ and $\overline{\mathrm{r}}(A)=g+1$ ．
（4） $\boldsymbol{q}(0 I)=p_{g}(A)=\boldsymbol{g}$ ．
$q(n I)=g-n$ for all $n=1,2, \ldots, g$ ，and
$\mathbf{q}(\boldsymbol{n l})=\mathbf{0}$ for every $\boldsymbol{n} \geq \boldsymbol{g}$ ．
（5）$\ell_{A}(A / I)=g$ and $e_{0}(I)=4 g-2$ ．
（6）$\overline{\boldsymbol{e}}_{1}(I)=\mathbf{3 g}-\mathbf{1}$ and $\overline{\mathbf{e}}_{2}(I)=\mathbf{g}$ ．
In particular， $\bar{e}_{1}(I)=e_{0}(I)-\ell_{A}(A / I)+1$ ．

Proof of sketch（1）

For simplicity，we assume $g=2$ ．
－$B=K[X, Y, Z] /\left(X^{2}-Y^{6}-Z^{6}\right)$ ．
－$A=B^{(2)}=K\left[y^{2}, y z, z^{2}, x y, x z\right]$ ，where

$$
\begin{aligned}
& A_{1}=K y^{2}+K y z+K z^{2} \\
& A_{2}=K y^{4}+K y^{3} z+K y^{2} z^{2}+K y z^{3}+K z^{4}+K x y+K x z
\end{aligned}
$$

－$I=\left(y^{2}, y z, z^{4}, x y, x z\right)$
－$Q=\left(y^{2}-z^{4}, y z\right)$ ．
Then $\boldsymbol{\ell}_{\boldsymbol{A}}(\boldsymbol{A} / \boldsymbol{I})=\boldsymbol{g}=\mathbf{2}$ and thus $\overline{\boldsymbol{I}}=\boldsymbol{I}$ ．

Proof of sketch（2）

$$
I=\left(y^{2}, y z, z^{4}, x y, x z\right) \text { and } Q=\left(y^{2}-z^{4}, y z\right)
$$

Assertion

－$\overline{l^{2}}=I^{2}=Q$ ．
－$x y^{3} \in \overline{I^{3}} \backslash Q \overline{I^{2}}$ and $\overline{\beta^{3}}=Q \overline{I^{2}}+\left(x y^{3}\right)$ ．
－$\overline{\boldsymbol{l}^{n+1}}=\overline{\bar{n}^{n}}$ for all $n \geq 3$ ．
－$p_{g}(A)=q(0 I)=2(=g)$ ．
－$q(\mathbf{1} \cdot I)=\mathbf{1}$ and $q(n I)=0$ for all $n \geq \mathbf{2}$ ．

Sketch of proof（3）

Claim 1： $\boldsymbol{p}_{g}(A)=2$.

$$
B=K[X, Y, Z] /\left(X^{2}-Y^{6}-Z^{6}\right) \text { is a graded ring }
$$

with $\operatorname{deg} x=3$ and $\operatorname{deg} y=\operatorname{deg} z=1$ ．
Thus

$$
\begin{aligned}
a(B) & =\operatorname{deg}\left(X^{2}-Y^{6}-Z^{6}\right)-(\operatorname{deg} x+\operatorname{deg} y+\operatorname{deg} z) \\
& =6-(3+1+1)=1
\end{aligned}
$$

Since $A=B^{(2)}$ and $\boldsymbol{H}_{\mathrm{m}}^{2}(B)^{\vee}=K_{B}=B(a(B))=B(1)$ ，we have

$$
\left[H_{m}^{2}(A)\right]_{\geq 0}=\left[H_{m}^{2}(A)\right]_{0}=\left[H_{m}^{2}(B)\right]_{0} \cong B_{1}=K y+K z
$$

Hence $p_{g}(A)=\operatorname{dim}_{K}\left[H_{m}^{2}(A)\right]_{\geq 0}=2(=g)$ ．

Sketch of proof（4）

$$
I=\left(y^{2}, y z, z^{4}, x y, x z\right) \text { and } Q=\left(y^{2}-z^{4}, y z\right)
$$

Claim 2：$I^{2}=\mathbf{Q}$ ．
Since $I=Q+\left(z^{4}, \boldsymbol{x y}, \boldsymbol{x z}\right)$ ，we must show that $\left(\boldsymbol{z}^{4}, \boldsymbol{x y}, \mathbf{x z}\right)^{2} \subset \boldsymbol{Q} I$ ．
For instace，

$$
\begin{aligned}
\left(z^{4}\right)^{2} & =-\left(y^{2}-z^{4}\right) z^{4}+y z \cdot y z \cdot z^{2} \in Q I \\
(x y)^{2} & =x^{2} y^{2}=\left(y^{6}+z^{6}\right) y^{2} \\
& =y^{8}+y^{2} z^{6} \\
& =\left(y^{2}-z^{4}\right) y^{6}+y z\left(y^{3} z^{3}+y z^{5}\right) \in Q I .
\end{aligned}
$$

Sketch of proof（5）

Note that $A_{n}=K[y, z]_{2 n} \oplus x K[y, z]_{2 n-3}$ as $K[y, z]^{(2)}$－modules．
Claim 3：$f_{0} \in K[y, z]_{2 n} \cap \overline{I^{n}} \Longrightarrow f_{0} \in I^{n}$ for each $n \geq 1$
Put $I_{0}=\left(\boldsymbol{y}^{2}, \boldsymbol{y z}, \boldsymbol{z}^{4}\right) K[\boldsymbol{y}, \boldsymbol{z}]$ ．By assumption，we have

$$
f_{0}^{s}+c_{1} f_{0}^{s-1}+\cdots+f_{s}=0 \quad\left(\exists s \geq 1, \exists c_{i} \in I^{i n}\right)
$$

Since $I^{i n} \cap K[y, z]=I_{0}^{i n}$（non－trivial！），we may assume $c_{i} \in I_{0}^{i n}$ for $\forall i \geq 1$ ．
Then $f_{0} \in \overline{\left(y^{2}, y z, z^{4}\right)^{n}}=\left(y^{2}, y z, z^{4}\right)^{n} \subset I^{n}$ because $\left(y^{2}, y z, z^{4}\right) K[y, z]$ is normal．

Sketch of proof（6）

Claim 4： $0 \neq f_{1} \in K[y, z]_{2 n-3}, x f_{1} \in \overline{I^{n}} \Longrightarrow n \geq 3$
By assumption，we have $\left(x f_{1}\right)^{2} \in \overline{I^{2 n}}$ ．
The Claim 3 yields $\left(y^{6}+z^{6}\right) f_{1}^{2}=\left(x f_{1}\right)^{2} \in \overline{I^{2 n}} \cap K[y, z]_{2 \cdot 2 n} \subset I^{2 n}$ ．
The degree（in y and z ）of any monomial in $I^{2 n}=(\underbrace{y^{2}, y z}_{\operatorname{deg} 2}, \underbrace{z^{4}, x y, x z}_{\operatorname{deg} 4})^{2 n}$ is at least $4 n=\operatorname{deg}\left(y^{6}+z^{6}\right) f_{1}^{2}$ ． Hence $\left(y^{6}+z^{6}\right) f_{1}^{2} \in\left(y^{2}, y z\right)^{2 n}$ and the the highest power of z appearing in $\left(y^{6}+z^{6}\right) f_{1}^{2}$ is at most $2 n$ ．Therefore $n \geq 3$ ．

Sketch of proof（7）

Claim 5：If $\boldsymbol{n} \leq \mathbf{2}$ ，then $\overline{\boldsymbol{I}}^{\boldsymbol{n}} \cap \boldsymbol{A}_{\boldsymbol{n}} \subset \boldsymbol{I}^{\boldsymbol{n}} \cap \boldsymbol{A}_{\boldsymbol{n}}$
Any $\boldsymbol{f} \in \overline{\boldsymbol{I}^{\boldsymbol{n}}} \cap \boldsymbol{A}_{\boldsymbol{n}}$ can be written as

$$
f=f_{0}+x f_{1} \quad\left(\exists f_{0} \in K[y, z]_{2 n}, f_{1} \in K[y, z]_{2 n-3}\right)
$$

Let $\sigma \in \operatorname{Aut}_{K[y, z]^{(2)}}(A)$ such that $\sigma(x)=-x$ ．
Then since $\sigma(I)=I$ ，we obtain $\sigma(f)=f_{0}-x f_{1} \in \overline{I^{n}}$ ．

$$
\therefore f_{0}=\frac{f+\sigma(f)}{2} \in \overline{I^{n}} \text { and } x f_{1}=\frac{f-\sigma(f)}{2} \in \overline{I^{n}} .
$$

By Claim 3，4，we have $\boldsymbol{f}_{0} \in \boldsymbol{I}^{\boldsymbol{n}}$ and $\boldsymbol{f}_{\mathbf{1}}=\mathbf{0}$ ．
Therefore $\boldsymbol{f}=\boldsymbol{f}_{0} \in \boldsymbol{I}^{\boldsymbol{n}} \cap \boldsymbol{A}_{\boldsymbol{n}}$ ，as required．

Sketch of proof（8）

Claim 6：$x y^{3} \in \overline{I^{3}} \backslash Q \overline{I^{2}}$

$$
I^{3}=\left(y^{6}, y^{5} z, y^{4} z^{2}, y^{3} z^{3}, y^{2} z^{7}, \ldots, x y^{5}, x y^{4} z, \ldots, x z^{7}\right)
$$

Since $\left(x y^{3}\right)^{2}=x^{2} y^{6}=\left(y^{6}+z^{6}\right) y^{6}=\left(y^{6}\right)^{2}+\left(y^{3} z^{3}\right)^{2} \in\left(I^{3}\right)^{2}$ ，we have $\boldsymbol{x} \boldsymbol{y}^{3} \in \overline{I^{3}}$ ．

Assume $x y^{3} \in Q I^{2}=(a, b) I^{2}$ ，where $a=y^{2}-z^{4}$ and $b=y z$ ． Then $\boldsymbol{x} \boldsymbol{y}^{\mathbf{3}}=\boldsymbol{a u}+\boldsymbol{b v}$ for some $\boldsymbol{u}, \boldsymbol{v} \in \overline{\boldsymbol{I}}^{\mathbf{2}}$ ．

Sketch of proof（8）

On the other hand，$x y^{3}=\left(y^{2}-z^{4}\right) x y+y z \cdot x z^{3}=a \cdot x y+b \cdot x z^{3}$.

$$
\begin{aligned}
\therefore a u+b v & =a \cdot x y+b \cdot x z^{3} \\
\therefore a(u-x y) & =b\left(x z^{3}-v\right)
\end{aligned}
$$

As $\boldsymbol{a}, \boldsymbol{b}$ are regular sequence，we have

$$
u-x y=b h, \quad x z^{3}-v=a h \quad\left(\exists h \in A_{1}\right)
$$

So we may asssume $\boldsymbol{u}, \boldsymbol{v} \in \boldsymbol{A}_{\mathbf{2}}$ and thus $\boldsymbol{u}, \boldsymbol{v} \in \boldsymbol{I}^{\mathbf{2}}$ by Claim 5 ． Thus $\boldsymbol{x} \boldsymbol{y}^{3}=a u+b v \in Q I^{2}=I^{3}$ ．

This is a contradiction．

Sketch of proof（9）

We will finish the proof．

Fact 3.2 （Proposition 2．8）

（1） $2 \cdot q(1 \cdot I)+\ell_{A}\left(\overline{I^{2}} / Q I\right)=q(0 \cdot I)+q(2 \cdot I)$ ．
（2） $2 \cdot q(2 \cdot I)+\ell_{A}\left(\overline{I^{3}} / Q I^{2}\right)=q(1 \cdot I)+q(3 \cdot I)$ ．
（3） $2 \cdot q(n \cdot I)+\ell_{A}\left(\overline{I n+1} / Q \overline{I^{n}}\right)=q((n-1) \cdot I)+q((n+1) \cdot I)(n \geq 3)$
If $q(\mathbf{1} \cdot I)=q(\mathbf{2} \cdot I)$ ，then $q(\mathbf{2} \cdot I)=q(3 \cdot I)$ and thus $\ell_{A}\left(\overline{I^{3}} / Q I^{2}\right)=\mathbf{0}$ ． This contradicts Claim 6．Hence

$$
2=p_{g}(A)=q(0 \cdot I)>q(1 \cdot I)>q(2 \cdot I) \geq 0 .
$$

Thus $q(1 \cdot I)=\mathbf{1}$ and $\boldsymbol{q (2 \cdot I)}=\mathbf{0}$（and thus $\boldsymbol{q}(\boldsymbol{n} \cdot I)=0$ for all $\boldsymbol{n} \geq 3$ ）．
In particular，$\overline{I^{2}}=Q I, \ell_{A}\left(\overline{I^{3}} / Q \bar{I}^{2}\right)=1$ and $\overline{I^{n+1}}=Q \overline{I^{n}}$ for $n \geq 3$ by the above formula．

Sketch of proof（10）

If we obtain that $e_{0}(I)=4 g-2, \ell_{A}(A / I)=g, p_{g}(A)=g, q(I)=g-1$ and $\mathbf{q}(\infty)=0$ ，then

$$
\begin{aligned}
\bar{e}_{1}(I) & =e_{0}(I)-\ell_{A}(A / I)+\left\{p_{g}(A)-q(I)\right\} \\
& =(4 g-2)-g+\{g-(g-1)\} \\
& =3 g-1 . \\
\bar{e}_{2}(I) & =p_{g}(A)-q(\infty I) \\
& =p_{g}(A)-q(g \cdot I) \\
& =g-0=g
\end{aligned}
$$

Thank you very much for your attention！

