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Mapping class groups

Σg: a closed oriented connected surface of genus g

Mg := Diff+Σg/(isotopy) = π0(Diff+Σg)
: the mapping class group of Σg

HZ := H1(Σg,Z) ∼= Z2g

Intersection form on HZ:

µ : HZ ⊗HZ −→ Z
(

non-degenerate
skew-symmetric

)
Poincaré duality:

HZ := H1(Σg;Z) = H1(Σg;Z)∗ = H1(Σg;Z) = H∗
Z.
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Fix a symplectic basis {a1, . . . , ag, b1, . . . , bg} of HZ w.r.t. µ:

bgb2b1

aga2a1

g21

symplectic element (class):

ω0 =

g∑
i=1

(ai ⊗ bi − bi ⊗ ai) ∈ HZ ⊗HZ

=

g∑
i=1

ai ∧ bi ∈ ∧2HZ.

Takuya SAKASAI Johnson homomorphisms and Sp-representation theory



Sp(HZ) ∼= Sp(2g,Z): symplectic group,

Sp(HZ) ↷ HZ µ-preserving (ω0-preserving) action.

Mg acts on HZ with preserving µ. This gives

1 −→ Ig −→Mg −→ Sp(2g,Z) −→ 1 (exact)

where Ig is called the Torelli group.
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We also consider

Σg,1: a compact oriented connected surface of genus g
w/ one boundary component

Mg,1 := Diff(Σg,1 rel ∂Σg,1)/(isotopy)
: the mapping class group of Σg,1

H1(Σg,1,Z) = HZ ∼= Z2g

Corresponding Torelli group:

1 −→ Ig,1 −→Mg,1 −→ Sp(2g,Z) −→ 1 (exact)
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π1(Σg,1) = ⟨γ1, γ2, . . . , γ2g⟩ = F2g, where

i1

γi

γg+i

ζ :=

g∏
i=1

[γi, γg+i] is the boundary loop.

π1(Σg,1) −−↠ π1(Σg) = ⟨γ1, γ2, . . . , γ2g⟩/⟨ζ⟩
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Mg,1 acts naturally on π1(Σg,1):

σ :Mg,1 −→ Aut (π1(Σg,1)),

σ :Mg −→ Out (π1(Σg)) := Aut (π1(Σg))/Inn (π1(Σg))

Theorem [Dehn, Nielsen, Baer, Epstein, Zieschang et al.]

The homomorphisms σ and σ are injective and

Imσ = {φ ∈ Aut (π1(Σg,1)) | φ(ζ) = ζ},
Imσ = Out+(π1(Σg)) : (orientation-preserving).
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Johnson homomorphisms

In the following, we mainly focus on theMg,1-case.

Ig,1 measures the gap betweenMg,1 and Sp(2g,Z).

It is known that

H1(Mg,1) =Mg,1/[Mg,1,Mg,1] = 0 for g ≥ 3.

⇝ It is not easy to make an “approximation” ofMg,1

without looking the structure of Ig,1.

The structure of Ig,1 is more complicated than that ofMg,1.
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In a series of papers, Dennis Johnson showed:

Theorem [Johnson]

1 Ig,1 is finitely generated for g ≥ 3.

2 (The first Johnson homomorphism)
There exists anMg,1-equivariant homomorphism

τg,1(1) : Ig,1 −−↠ ∧3HZ.

Dehn twists along BSCC form a generating system of
Ker τg,1(1).

3 τg,1(1) gives the abelianization H1(Ig,1) = Ig,1/[Ig,1, Ig,1]
modulo 2-torsions.

(The torsion part is given by Birman-Craggs homormophisms.)
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Morita’s generalization

π := π1(Σg,1) = ⟨γ1, γ2, . . . , γ2g⟩.

π = Γ1(π) ⊃ Γ2(π) ⊃ Γ3(π) ⊃ · · ·
: The lower central series of π defined by

Γi+1(π) = [Γ,Γi(π)] for i ≥ 1.

L(HZ) =

∞⊕
i=1

Li(HZ): the free Lie algebra generated by HZ

a ∈ L1(HZ) = HZ,

[a, b] ∈ L2(HZ) ∼= ∧2HZ,

[a, [b, c]] ∈ L3(HZ) ∼= (HZ ⊗ (∧2HZ))/ ∧3 HZ,

...
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Fact

There exists anMg,1-equivariant isomorphism

Γi(π)/Γi+1(π)
∼=−→ Li(HZ)

∈ ∈

[α1, [α2, · · · , αi]] · · · ] 7−→ [α1, [α2, · · · , αi]] · · · ]

where π ∋ αj 7−→ αj ∈ HZ.

Iterating expansion

[X,Y ] 7−→ X ⊗ Y − Y ⊗X

gives an (degree preserving) embedding L(HZ) ↪→
∞⊕
i=1

H⊗i
Z .
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Mg,1 ⊂ Aut(π) ↷ Γi(π) for i ≥ 1.

⇝ Mg,1 ↷ π/Γi(π) (π/Γ2(π) = HZ)

Definition (Johnson filtration)

Mg,1[0] =Mg,1 ⊃Mg,1[1] = Ig,1 ⊃Mg,1[2] ⊃Mg,1[3] ⊃ · · · ,

where

Mg,1[k] := Ker
(
σk :Mg,1 −→ Aut(π/Γk+1(π))

)
.
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Definition (The k-th Johnson homomorphism)

We have anMg,1-equivariant homomorphism defined by

τg,1(k) : Mg,1[k] −→ Hom(HZ,Lk+1(HZ))

∈ ∈

f 7−→
(
γ 7→ [f(γ)γ−1]

)
where [f(γ)γ−1] ∈ Γk+1(π)/Γk+2(π) = Lk+1(HZ).

By definition,

Ker τg,1(k) =Mg,1[k + 1],

Im τg,1(k) =Mg,1[k]/Mg,1[k + 1].

Hom(HZ,Lk+1(HZ)) = H∗
Z⊗Lk+1(HZ)

PD
==== HZ⊗Lk+1(HZ).
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Theorem [Morita]

1 The image of τk :Mg,1[k]→ HZ ⊗ Lk+1(HZ) is included in

hg,1(k) := Ker

(
HZ ⊗ Lk+1(HZ)

[ · , · ]−−−→ Lk+2(HZ)

)
.

2 The direct sums

Im τg,1 :=

∞⊕
k=1

Im τg,1(k) and h+g,1 :=

∞⊕
k=1

hg,1(k)

have natural positively graded Lie algebra structures and

τg,1 :=

∞⊕
k=1

τg,1(k) : Im τg,1 −→ h+g,1

is a Lie algebra embedding.
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Problem

Determine:

(I) the Lie subalgebra Im τg,1 =

∞⊕
k=1

Im τg,1(k) of h
+
g,1.

(II) the abelianization

H1(h
+
g,1) = h+g,1/[h

+
g,1, h

+
g,1] =

∞⊕
k=1

H1(h
+
g,1)k.

of h+g,1, where
H1(h

+
g,1)1 = hg,1(1)

H1(h
+
g,1)k = hg,1(k)

/ ∑
i+j=k
i,j≥1

[hg,1(i), hg,1(j)] (k ≥ 2).
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Remarks

In the following, we consider the rational (Q-)version:

H := H1(Σg;Q) = HZ ⊗Q
τg,1 ⊗Q : Im τg,1 ⊗Q −→ h+g,1 ⊗Q

For simplicity, we omit “⊗Q”.

h+g,1 = Der+(L(H), ω0), the positive symplectic derivations.

There are related theories in

AutFn, Link theory, Number theory.

In this workshop, we shall see the relationship among them!
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Johnson homomorphims up to degree 6

Tools I: Representation theory of Sp(2g,Q)

The actions ofMg,1 on Im τg,1 and h+g,1 descend to those of
Sp(2g,Z) =Mg,1/Ig,1 =Mg,1[0]/Mg,1[1].

⇝ We have an Sp(2g,Z)-equivariant embedding

τg,1 : Im τg,1 −→ h+g,1.

Im τg,1(k) and hg,1(k) are finite dimensional
Sp(2g,Q)-module.

As pointed out by Asada-Nakamura, τg,1 is in fact an
Sp(2g,Q)-equivariant embedding.

Takuya SAKASAI Johnson homomorphisms and Sp-representation theory



Fact (Representations of Sp(2g,Q))


Finite dimensional irreducible

polynomial representations

of Sp(2g,Q)

 ∼=←→
{

Young diagrams
w/ ♯(rows) ≤ g

}

[431] [13]
[3221]

Example Q = [0] (trivial representation),

H = [1] (fundamental representation),

SkH = [k],

∧2kH = [12k] + [12k−2] + · · ·+ [0],

∧2k+1H = [12k+1] + [12k−1] + · · ·+ [1].

Takuya SAKASAI Johnson homomorphisms and Sp-representation theory



Irreducible representation Vλ for the Young diagram λ.� �
Example For λ = [431],

1 Take the transpose λ′ = [3221]:

[431]
[3221]

−→

2 Vλ is the minimum Sp(2g,Q)-module containing

vλ := (a1 ∧ a2 ∧ a3)⊗ (a1 ∧ a2)⊗ (a1 ∧ a2)⊗ a1

in
(∧3H)⊗ (∧2H)⊗ (∧2H)⊗ (∧1H).

vλ is called the highest weight vector of Vλ.� �
Takuya SAKASAI Johnson homomorphisms and Sp-representation theory



Irreducible decomposition of H⊗k

Fact

Any irreducible subrepresentation Vλ in H⊗k can be detected by a
combination of

1 contractions µi,j : H
⊗n −→ H⊗(n−2),

2 projections ∧n : H⊗n −→ ∧nH

as a quotient representation of H⊗k.

(Just detect the highest weight vector vλ.)
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In our setting h+g,1 =
∞⊕
k=1

hg,1(k),

hg,1(k) is a finite dimensional Sp(2g,Q)-module.

=⇒ hg,1(k) has the irreducible decomposition.

hg,1(k) ⊂ H ⊗ Lk+1(H) ⊂ H⊗(k+2): Sp(2g,Q)-submodules.

=⇒ The irreducible decomposition of hg,1(k) is obtained by
combinations of contractions and projections in H⊗(k+2).

We may assume that g is sufficiently large (g ≥ 3k).

=⇒ The irreducible decomposition stabilizes.
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Tools II: Hain’s theory

Hain gave an infinitesimal presentation of Ig by using the Hodge
theory (Mixed Hodge Structures). From this,

Theorem [Hain]

1 The Lie subalgebra Im τg,1 is generated by its degree 1 part
Im τg,1(1) = hg,1(1) = ∧3H.

2 There exists an ideal jg,1 =
∞⊕
k=1

jg,1(k) in h+g,1 such that

jg,1(k) ∩ Im τg,1(k) = {0} for all k ≥ 3.

Precisely speaking,

jg,1(k) := Ker(hg,1(k)↠ hg,∗(k))

= Ker

(
H ⊗ (Lk+1(H)/⟨ω0⟩k+1)

[ · , · ]−−−→ (Lk+2(H)/⟨ω0⟩k+2)

)
.
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Remarks

Our problem (I) is equivalent to:

Problem

(I’) Determine the Lie subalgebra of h+g,1 generated by its degree 1 part

hg,1(1) = Im τg,1(1) = ∧3H.

Im τg,1(k) ⊂ Ker
(
hg,1(k)→ H1(h

+
g,1)k)

)
for k ≥ 2.

(i.e. H1(h
+
g,1)k ⊂ hg,1(k)/ Im τg,1(k) as Sp(2g,Q)-module.)
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Tools III: Trace maps and Enomoto-Satoh’s obstruction

Theorem [Morita] (trace map)

For k ≥ 2, the composition

Tr2k−1 : hg,1(2k − 1) ⊂ H ⊗ L2k(H) ↪→ H⊗(2k+1)

µ1,2−−→ H⊗(2k−1) proj−−→ S2k−1H

gives
S2k−1H = [2k − 1] ⊂ H1(h

+
g,1)2k−1.

(i.e. Tr2k−1 is a non-trivial homomorphism vanishing on brackets.)

In particular, Im τg,1(2k − 1) ⊂ KerTr2k−1.
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Enomoto-Satoh’s obstruction

Theorem [Enomoto-Satoh]

For k ≥ 2, consider the composition

ESk : hg,1(k) ⊂ H ⊗ Lk+1(H) ↪→ H⊗(k+2)

µ1,2−−→ H⊗k proj−−→
(
H⊗k

)
Z/kZ,

where Z/kZ ↷ H⊗k is given by the cyclic permutation. Then

Im τg,1(k) ⊂ KerESk.

⇝ ImESk ⊂ hg,1(k)/ Im τg,1(k).

We call the map ESk the ES-obstruction.

It is essentially the same as the divergence cocycle by
Alekseev-Torossian.
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Tools IV: Relation with number theory

In 1980’s, Oda predicted:

Gal(Q/Q) should “appear” in (Coker τg)
Sp ⊗ Zp (p:prime).

Nakamura, Matsumoto: proof and related many works.

“Encounter with the Galois obstruction!”
(The first one appears in τg(6).)

Problem

Describe the Galois image explicitly.

Earlier foundational works for g = 0: Ihara, Deligne.

More recent works for g = 1: Hain-Matsumoto, Nakamura.
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Johnson homomorphims up to degree 6

(I) Previously known facts on Im τg,1 ⊂ h+g,1 (up to degree 4):

Fact

Im τg,1(1) = hg,1(1) = ∧3H = [13] + [1] (Johnson),

Im τg,1(2) = hg,1(2) = [22] + [12] + [0] (Hain, Morita),

Im τg,1(3) = [312] + [21] ⫋ hg,1(3) = [312] + [21] + [3]
(Hain, Asada-Nakamura),

Im τg,1(4) = [42] + [313] + 2[31] + [23] + [212] + 2[2]

⫋ hg,1(4) = [42] + [313] + 2[31] + [23] + 2[212] + 3[2]
(Morita).
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(II) Previously known facts on H1(h
+
g,1)k (up to degree 4):

Fact

By definition H1(h
+
g,1)1 = hg,1(1) = [13] + [1].

Arguments using Trace map give

H1(h
+
g,1)2 = 0, H1(h

+
g,1)3

∼= S3H = [3], H1(h
+
g,1)4 = 0.
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Degree 5

Theorem 1. [Morita-Suzuki-S. 2011] w/ a correction by Enomoto

Im τg,1(5) = ([512] + [421] + [321] + [3212] + [2213])

+(2[41] + 2[32] + 2[312] + 2[221] + 2[213])

+([3] + 3[21] + 2[13]) + [1].

hg,1(5)/ Im τg,1(5) = ([5] + [32] + [221] + [15])

+(2[21] + 2[13]) + 2[1].

(completely detected by ES-obstruction)

H1(h
+
g,1)5

∼= S5H = [5]. (only the trace component)

Proof: Computer calculation + ES-obstruction + trace map.
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Degree 6

Theorem 2. [MSS. 2011]

Im τg,1(6) = ([62]+[521]+[513]+[42]+[431]+2[422]+[4212]

+[414] + 2[3212] + [3221]+ [3213] + [24] + [2214])

+(3[51] + 3[42] + 4[412] + 3[32] + 7[321] + 3[313]

+[23] + 5[2212] + 2[214] + [16])

+(4[4] + 6[31] + 9[22] + 6[212] + 4[14])

+(3[2] + 6[12]) + 2[0].
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Theorem 2 (continue).

hg,1(6)/ Im τg,1(6) = (2[412] + [32] + [321] + [313] + [2212])

+(2[4] + 3[31] + 3[22] + 3[212] + 2[14])

+([2] + 5[12]) + 3[0],

in which the ES-obstruction cannot detect [14] + [12] + [0].

Proof: Theoretical consideration + computer calculations

[14] + [12]: Two proofs by

(1) Checking all patterns of brackets.

(2) Finding a component in the ideal jg,1(6) outside of KerES6.

[0]: The Galois obstruction w/ explicit description.
(Find a normalizer of Im τg,1 outside of KerES6.)
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Abelianization of H1(h
+
g,1) (in progress)

Problem (bis)

(II) Determine the abelianization H1(h
+
g,1) =

∞⊕
k=1

H1(h
+
g,1)k of h+g,1.

Background of (II): Kontsevich’s theorem says:

Theorem [Kontsevich]

For any n ≥ 1 and k ≥ 1, there exists an isomorphism

PHn

(
h+∞,1

)Sp
2k
∼= H2k−n(Out(Fk+1);Q),

where h+∞,1 := lim
g→∞

h+g,1.

⇝ H1

(
h+∞,1

)Sp
2k
∼= H2k−1(Out(Fk+1);Q) for any k ≥ 1.
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Morita once conjectured that

The trace components
∞⊕
k=1

[2k + 1] gave H1(h
+
g,1).

However, in 2011, Conant-Kassabov-Vogtmann disproved it:

Theorem [Conant-Kassabov-Vogtmann]

There exist much more components other than the trace compo-

nents
∞⊕
k=1

[2k + 1] in H1(h
+
g,1):

1-loop part (=trace components), 2-loops part, 3-loops part, . . .

They described the 2-loops part in terms of the Eichler-Shimura
isomorphism in the theory of modular forms.

Conant showed that the 3-loops part is non-trivial.
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Motivated by their results, we obtained explicit descriptions for (a
part of) their new components of H1(h

+
g,1):

Theorem 3. [MSS. 2011]

1 H1(h
+
g,1)6 = [31]. (⊃ was first proved by CKV)

2 For k ≥ 3, the composition

H ⊗ L2k+1(H) ↪→ H⊗(2k+2) µ1,3 ◦µ4,2k+1−−−−−−−−→ H⊗(2k−2)

∧1,(2k−2)−−−−−−→ H⊗(2k−4) ⊗ ∧2H
proj⊗ id−−−−−→ S2k−4H ⊗ ∧2H

gives
[(2k − 3) 1] ⊂ H1(h

+
g,1)2k.

Proof: Combinatorial argument w/o using computer.
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Out(F7) and H1(h
+
g,1)

Sp
12

Bartholdi (2015) showed

Hp(Out(F7);Q) ∼=

{
Q (p = 0, 8, 11)

0 (otherwise)

with the aid of computers.
(Need to compute the rank of a 2038511× 536647 matrix)

H11(Out(F7);Q) ∼= Q is remarkable because it is the first
non-trivial odd and (virtually) top rational cohomology group
which is explicitly described.

By theorems of Kontsevich and Bartholdi, we have

H1

(
h+∞,1

)Sp
12
∼= H11(Out(F7);Q) ∼= Q.
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Theorem 4. [MSS. 2016] Direct computation of H1(h
+
∞,1)

Sp
12

There exists an Sp(2g,Q)-invariant linear map

C : hg,1(12) −→ Q

satisfying that

C is non-trivial for any g ≥ 2,

the restriction of C to
11∑
i=1

[hg,1(i), hg,1(12− i)] is trivial.

That is, the cocycle C gives a surjection

C̃ : H1(h
+
g,1)

Sp
12 −−↠ Q

for every g ≥ 2. Moreover C̃ is an isomorphism for g ≥ 8.

Since H1(h
+
1,1)

Sp
12 = 0, our bound of genus for the

non-triviality of H1(h
+
g,1)

Sp
12 is best possible.
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Method for computation of H1

(
h+g,1)

Sp
12

Our computation also uses computers.

1 Find a coordinate system of hg,1(12)
Sp ∼= Q650.

2 Compute the bracket map

[ · , · ] :

(
6⊕

i=1

(
hg,1(i)⊗ hg,1(12− i)

))Sp

−→ hg,1(12)
Sp.

We see that the image includes a subspace W ∼= Q649.

3 Find a linear map C : hg,1(12)
Sp ↠ Q which annihilates W .

4 Check that C is trivial on the image of the bracket map.
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Relationship with the Enomoto-Satoh map

Proposition 5. [MSS. 2016]

For g ≥ 6, the Sp(2g,Q)-invariant cocycle C : hg,1(12)→ Q factors
through the Enomoto-Satoh map

ES12 : hg,1(12) ↪→ H ⊗ L13(H) ↪→ H⊗14

µ⊗(id⊗12)−−−−−−→ H⊗12 −→
(
H⊗12

)
Z/12Z.

This theorem provides another description of the map C in
the form

C = C ′ ◦ ES12

with C ′ described by chord diagrams with 6 chords, which

serve as coordinate functions of
(
H⊗12

)Sp
Z/12Z

∼= Q897.
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Johnson homomorphisms and MMM classes

Topological setting

Σg: a connected oriented closed surface of genus g ≥ 3

Mg: the mapping class group of Σg

H2i(Mg;Q) ∋ ei : the i-th MMM tautological class

R∗(Mg) = subalgebra of H∗(Mg;Q) generated by ei’s

: the tautological algebra in cohomology ofMg

Stably, H∗(M∞;Q) ∼= R∗(M∞) ∼= Q[e1, e2, . . .]

(by Madsen-Weiss)

When g is in the unstable range, there are many relations
among ei’s.
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From Algebraic geometry

Mg: the moduli space of Riemann surfaces of genus g

H∗(Mg;Q) ∼= H∗(Mg;Q)

A∗(Mg): the Chow algebra of Mg

Ai(Mg) ∋ κi : the i-th Mumford kappa class

R∗(Mg) = subalgebra of A∗(Mg) generated by κi’s

: the tautological algebra of Mg

We have a canonical surjection

R∗(Mg) −−↠ R2∗(Mg) (κi 7−→ (−1)i+1ei)

as the restriction of A∗(Mg)→ H2∗(Mg;Q) ∼= H2∗(Mg;Q).
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Faber’s conjecture

In 1993, Faber gave a series of conjectures concerning the
structure of R∗(Mg).

After that, many results have been given by many people.

• Rg−2(Mg) ∼= Q (Looijenga + Faber)

• Q[κ1, . . . , κ⌊g/3⌋]↠ R∗(Mg) (Morita for R∗(Mg), Ionel) and

no relations in R≤⌊g/3⌋(Mg) (Harer, Ivanov, et.al).

• An explicit formula for the intersection numbers
(Givental, Liu-Xu, Buryak-Shadrin)

The following remains open:

Conjecture (Faber’s Gorenstein conjecture)

R∗(Mg) ∼= H∗(smooth projective variety of dim = g − 2 ;Q),

in particular, Poincaré duality holds? (verified for g ≤ 23 by Faber)
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Johnson homomorphisms and tautological algebra

Sp := Sp(2g,Q) ↷ H = H1(Σg;Q) preserving µ

U := ∧3H/H = irrep. [13]Sp ∼= H1(Ig;Q)

The extended Johnson homomorphism (by Morita)

ρ1 :Mg −→ U ⋊ Sp(2g,Q)

induces Φ := ρ∗1 :
(
∧∗U/([22]Sp)

)Sp → H∗(Mg;Q).

Sp-invariant tensors in (∧∗U)Sp can be described by trivalent
graphs and [22]Sp corresponds to Whitehead moves.

Theorem [Kawazumi-M. 1996]

ImΦ = R∗(Mg) = Q[MMM-classes]/relations
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A similar result holds for ρ1 :Mg,1 → ∧3H ⋊ Sp(2g,Q),

where ∧3H = U ⊕H = [13]Sp + [1]Sp = [13]GL.

(GL := GL(2g,Q))

We have

Φ :
(
∧∗U/([22]Sp)

)Sp −−↠ R∗(Mg),

Φ :
(
∧∗(∧3H)

)Sp −−↠ R∗(Mg,1).

In the unstable range (i.e. g is small), we have many relations

in
(
∧∗U/([22]Sp)

)Sp
and

(
∧∗(∧3H)

)Sp
as degenerations of

Sp-invariant tensors.

Using the first degenerations, Morita proved that

Q[e1, . . . , e⌊g/3⌋] −−↠ R∗(Mg).
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We want to understand the structures of

∧∗U = ∧∗[13]Sp, ∧∗[13]Sp/([22]Sp), ∧∗(∧3H) = ∧∗[13]GL, · · ·

Plethysm: composition of two Schur functors

Littlewood determined, by explicit formulas, the plethysms

S∗(S2H), ∧∗(S2H), S∗(∧2H), ∧∗(∧2H).

Determination of plethysm is very difficult in general.

Theorem [Manivel, –1994]

Plethysm Sk(SlH) “stabilizes” (M-stabilizes) as k →∞, in partic-
ular the M-stable decomposition of S∞(S3H) is given by

S∗(S2H ⊕ S3H).
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We apply involution on symmetric polynomials: HkH3
dual⇐⇒ EkE3

Proposition 6. [MSS, 2014]

Let
∧k(∧3H) = ∧k[13]GL =

⊕
λ,|λ|=3k

mλλGL

be the stable irreducible GL-decomposition. Then, for any k, the
mapping

∧k(∧3H)irrep. −→ ∧k+1(∧3H)irrep.

induced by the operation λ 7→ λ+ = [λ13] is injective and bijective
for the part λ+

GL with 2k ≤ h(λ) ≤ 3k, namely

mλ

{
≤ mλ+

= mλ+ (2k ≤ h(λ) ≤ 3k)
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Theorem 7. [MSS, 2014]

We have determined the M-stable irreducible decomposition of

∧∞[13]GL and its Sp-invariant part
(
∧∞[13]GL

)Sp
up to codimen-

sion 30.

Table : M -stable irreducible decomposition of ∧∞[13]GL

cod. irreducible decomposition

0 [1∗]

1 [21∗]

2 [221∗]

3 [231∗]

4 [241∗][321∗]

5 [251∗][3231∗][3221∗]

6 2[261∗]2[32221∗][421∗]

7 [271∗][3251∗]2[32231∗][3321∗][43221∗][4221∗]
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Number of relations in R∗(Mg)

R∗(Mg)→ R2∗(Mg)→ G∗(Mg) (Gorenstein quotient)

Expectation [Faber-Zagier, based on Faber-Zagier relations]

The number

p(k)− dim Gk(Mg) = number of relations of codimension k

depends only on ℓ = 3k − 1− g in the range 2k ≤ g − 2
(i.e. k ≥ ℓ+ 3), and is given by

a(ℓ) := ♯


Partitions of ℓ with parts:
1, 2, 3, 4, 6, 7, 9, 10, 12, 13, 15, 16, . . .
(n ̸= 2 is excluded if n ≡ 2 mod 3)

 .

Bergvall, Faber, Yin gave similar expectations for Mg,∗.
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We have the following theorem which might serve as a supporting
evidence for the above expectation.

Theorem 8. [MSS, 2014]

The number

ã(ℓ) := p(k)− dim
(
∧2kU/([22]Sp)

)Sp
depends only on ℓ = 3k − 1− g in the same range

2k ≤ g − 2 (i.e. k ≥ ℓ+ 3).

We have a similar result for Mg,∗.

More precise results by using a canonical metric on
(
∧2kU

)Sp
are given.
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