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Introduction
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My study is the homotopy theory.

The results I will talk today were essentially obtained in 2006 (so this is not
new), and I gave a talk on it in 2007 at John Hopkins university.

First I expected to have applications on the stable homotopy theory, however,
I have not done it. That is the reason why this work has not been published
yet.
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In the homotopy theory, one of the most important purpose is to know about the
homotopy groups of spaces with finite structure (like CW-complex). In particular,
the computations of the stable homotopy groups of spheres is crucial.

To compute the homotopy groups of spaces, J.F.Adams introduced the spectral
sequence in 1958.

E∗,∗
2 = Ext∗,∗A (H∗(X),Z/p) =⇒ π∗(X)⊗ Zp.

This is based on the cohomology theory and the action of Steenrod algebra. In
1967 Novikov introduced another spectral sequence based on the cobordims theory

E∗,∗
2 = Ext∗,∗MU∗MU (MU∗(X),MU∗) =⇒ π∗(X).
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In general, when we have a cohomology theory and the ring of operations, we can
construct the similar spectral sequence.
Because of the technical reason, we usually consider the spectral sequences based
on the homology theories.

Let E be a ring spectrum (this is a “ring” in the stable homotopy category, each
of which has a product called “smash product” ∧). Then we have a homology
theory E∗(−) and the associated E-based spectral sequence

E∗,∗
2 = Ext∗,∗E∗(E)(E∗, E∗(X)) =⇒ π∗(LEX)

where

E∗ := π∗(E) and E∗(X) := π∗(E ∧X),

and LEX is an object which has E-theoretical information of X, called the
Bousfield localization of X with respect to E.

The key ingredient to compute the E2-terms of Adams-type spectral sequence is
the Hopf algebroid structure of the pair (E∗, E∗(E)) and the comodule structure
of E∗(X).
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Roughly speaking, Hopf algebroid is “Hopf algebra with two unit map”.

Definition

A Hopf algebroid is a pair (A,Γ) of algebras over a commutative ring which
has the structure maps

left and right unit ηL, ηR : A→ Γ

coproduct ∆ : Γ → Γ⊗A Γ

counit ε : Γ → A

conjugation c : Γ → Γ

which fit into some commutative diagrams (similar to those of Hopf algebra).

This is the central player in the today’s talk.
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Comments

I was studying the Hopf algebroid arised from the cobordism theory localized
at a prime p (this is called the Brown-Peterson theory). It requires a huge
amount of calculations.

E∗,∗
2 = Ext∗,∗BP∗BP

(BP∗, BP∗(X)) =⇒ π∗(X).

The E2-terms are computed by the chromatic method, conceptually based on
the theory of the formal group. The 1st line was computed by Novikov and it
is related to the image of J-homomorphism.

The 2nd line was computed by Miller-Ravenel-Wilson in early 70’s.

We have a little knowledge of the 3rd line (I made some calculations 20 years
ago), and the higher lines have not been computed yet.

On the other hand, the Hopf algebroid we will consider today is relatively
treatable.
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Groupoid and Hopf algebroid
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Recall that a groupoid is the category in which all morphisms are invertible. A
Hopf algebroid is a co-groupoid object, which means that for each ring R the pair
of ring homomorphisms (Hom(A,R),Hom(Γ, R)) forms objects and morphisms of
a groupoid respectively.

Toy example. Let C be a category defined by

Ob(C) = (monic quadratic functions)

Mor(C) = (parallel translations)

-

C is in fact a groupoid, since all morphisms are obviously invertible.
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Then we can have an associated Hopf algebroid. Assume that we have appropriate
coordinate and consider the monic function f(x) = x2 + ax+ b and the change of
variables

f(x+ r) = x2 + (a+ 2r)x+ (b+ ar + r2)

If we regard this coordinate change as x 7→ x⊗ 1 + 1⊗ r then doing it twice gives

x 7−→ x⊗ 1 + 1⊗ r 7−→ (x⊗ 1 + 1⊗ r)⊗ 1 + 1⊗ 1⊗ r

= x⊗ 1⊗ 1 + 1⊗ (r ⊗ 1 + 1⊗ r)

Then we have

Proposition

Set A = Z[a, b] and Γ = A[r]. Then the pair (A,Γ) is a Hopf algebroid with the
structure maps (ηL and ε is given in the obvious way).

ηR(a) = a+ 2r, ηR(b) = b+ ar + r2, ∆(r) = r ⊗ 1 + 1⊗ r, c(r) = −r

Remark. This example is known to give a stack related to bo, the (−1)-connected
cover of KO.
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Next we need the following definition.

Definition

Given a Hopf algebroid (A,Γ), a Γ-comodule M is an A-module M together
with A-linear map ψM :M →M ⊗A Γ which is counitary and coassociative.

M
ψM // Γ⊗AM

ε

��
M

M
ε //

ε

��

Γ⊗AM

∆⊗idM
��

Γ⊗AM
idΓ⊗ψM // Γ⊗A Γ⊗AM

For a Γ-comodule M and N , HomΓ(M,N) is the set of comodule maps from M
to N . Then, ExtnΓ(A,M) is defined as the n-th right derived functor of
HomΓ(M,N).
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The motivating example is the followings.

Example

The homology group M = E∗(X) is a comodule over the Hopf algebroid
(A,Γ) = (E∗, E∗(E)), and

Ext∗Γ(A,M) = Ext∗E∗(E)(E∗, E∗(X))

is the E2-terms of E-based Adams spectral sequence, as we see before.

Q. How can we compute Ext∗Γ(A,M) ?

A. ExtnΓ(A,M) is isomorphic to the cohomology of the cobar complex

Cn(M) :=M ⊗A Γ⊗A · · · ⊗A Γ︸ ︷︷ ︸
n-factors

.

The differentials are given by

d(m⊗ γ1 ⊗ · · · γn) = ψM (m)⊗ γ1 ⊗ · · · γn + (−1)n+1m⊗ γ1 ⊗ γn ⊗ 1

+

n∑
k=1

(−1)km⊗ γ1 ⊗ · · · ⊗∆(γk)⊗ · · · γn
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The theory of topological modular form

(by Hopkins et al)

Hirofumi Nakai (Tokyo City University) 2017/05/25 13 / 41



I want to recall the theory of topological modular form, which was established by
Mike Hopkins and his coworkers.

Recall that the (original) Weierstrass equation was

y2 + (a1x+ a3)y = x3 + a2x
2 + a4x+ a6.

Define elements b2i (i = 1, 2, 3), c2j (j = 2, 3) and the discriminant ∆ by

b2 = a21 + 4a2, b4 = 2a4 + a1a3, b6 = a23 + 4a6,

c4 = b22 − 24b4, c6 = −b32 + 36b2b4 − 216b6,

∆ =
c34 − c26
1728

In particular, we can know the type of singularity of curves by ∆ and c4.
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It is known that the curve defined by the above equation is

a smooth elliptic curve when ∆ ̸= 0

a curve with nodal singularity when ∆ = 0 and c4 ̸= 0

a curve with cuspidal singularity when ∆ = 0 = c4

x x x

y y y

(elliptic)

y2 = x3 − x y2 = x3 + x2

(nodal)

y2 = x3

(cuspidal)
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When we consider the coordinate change{
x 7→ x+ r

y 7→ y + sx+ t

Then we have the Hopf algebroid (A,Γ) defined by

A = Z[a1, a2, a3, a4, a6] and Γ = A[r, s, t].

Then, Ext∗Γ(A,A) is computed by Hopkins et al. In particular, they showed that
there is a spectral sequence

E∗,∗
2 = Ext∗Γ(A,A) =⇒ π∗(tmf)

where tmf is the spectrum representing (the connective version of) the
cohomology theory, so-called the topological modular forms. The name came from
the fact that the 0-th line

Ext0,∗Γ (A,A) ∼= Z[c4, c6,∆]/(c34 − c26 − 1728∆)

is isomorphic to the ring of integral modular form.
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Comments

There is a periodic version of tmf, denoted by TMF. This is considered as
“the universal elliptic cohomology theory”. The E2-terms of the spectral
sequence converging to the coefficient group π∗(TMF ) can be computed by
the Hopf algebroid

(A[∆−1],Γ[∆−1]).

Then the associated stack Mell represents smooth elliptic curves.

There is also another version. If we invert c4, then we have a Hopf algebroid

(A[c−1
4 ],Γ[c−1

4 ]).

The associated stack Mell is the Deligne-Mumford compactification of Mell,
and it represent curves which may have the nodal singularity. The
corresponding cohomology theory is denoted by Tmf .
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Hyperelliptic Hopf algebroid
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P.Lockhart considered a model for hyperelliptic curves in his paper :

“On the discriminant of a hyperelliptic curve.”
Trans. Amer. Math. Soc. 342 (1994), no. 2, 729–752.

Let C be a hyperelliptic curve over a field k with genus g with a chosen
Weierstrass point. Then he showed

Proposition (P.Lockhart, 1994)

We can choose coordinates x and y such that these satisfy

y2 + q(x)y = p(x), generalized Weierstrass equation (GWE)

where p is monic polynomials of degree 2g + 1 and q is satisfying deg(q) ≤ g.
Moreover, such an equation is unique up to a change of coordinates of the form

x 7→ λ2x+ r, y 7→ λ2g+1y + t(x)

where λ ∈ k×, r ∈ k and t is a polynomial over k of degree ≤ g.
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He also showed

Theorem (P.Lockhart,1994)

The hyperelliptic discriminant for genus g

∆g = 24gDisc

(
p(x) +

q(x)

4

)
is an irreducible polynomial with coefficients in Z, and the hyperelliptic curve
defined by GWE is singular if and only if ∆g = 0 for any field k.

Remark. Lockhart also mentioned that this discriminant (over C) is expressed in
terms of Siegel modular forms, and he examined a hyperelliptic generalization of a
Szpiro conjecture. Today, we will not comment on these.
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Express p(x) and q(x) in the equation, and t(x) in the coordinate change:

p(x) = x2g+1 +

2g+1∑
k=1

a2k x
2g+1−k, q(x) =

g+1∑
ℓ=1

a2ℓ−1 x
g+1−ℓ

t(x) =

g+1∑
n=1

t2n−1 x
g+1−n

Then we define the hyperelliptic Hopf algeboid (Ag,Γg) by

Ag := Z[a2k, a2ℓ−1 : 1 ≤ k ≤ 2g + 1, 1 ≤ ℓ ≤ g + 1],

Γg := Ag[λ, r, t2n−1 : 1 ≤ n ≤ g + 1]

with structure maps obtained by the structure of the corresponding groupoid.
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For simplicity we set λ = 1 hereafter.

The GWE for g = 2 is given by

y2 + (a1x
2 + a3x+ a5)y = x5 + a2x

4 + a4x
3 + a6x

2 + a8x+ a10

and the coordinate change {
x 7→ x+ r

y 7→ y + sx2 + tx+ u

Then we have the hyperelliptic Hopf algebroid (A2,Γ2) defined by

A2 = Z[a1, a2, a3, a4, a5, a6, a8, a10] and Γ2 = A2[r, s, t, u].

The structure maps are very complicated even for this case.
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Proposition (N.)

The right unit of the hyperelliptic Hopf algebroid for g = 2 is given by

ηR(a1) = a1 + 2s, ηR(a2) = a2 − a1s− s2 + 5r, ηR(a3) = a3 + 2a1r + 2t

ηR(a4) = a4 − a3s+ 4a2r − a1t− 2a1rs− 2st+ 10r2

ηR(a5) = a5 + a3r + a1r
2 + 2u

ηR(a6) = a6 − a5s+ 3a4r − a3t− a3rs+ 6a2r
2 − a1u− 2a1rt− a1r

2s

− 2su− t2 + 10r3

ηR(a8) = a8 + 2a6r − a5t+ 3a4r
2 − a3u− a3rt+ 4a2r

3 − 2a1ru− a1r
2t

− 2tu+ 5r4

ηR(a10) = a10 + a8r + a6r
2 − a5u+ a4r

3 − a3ru+ a2r
4 − a1r

2u− u2 + r5

Good news. You don’t need to write these down. If you need this formula, then
don’t hesitate to email me (hnakai@tcu.ac.jp). I will send you this beamer file.
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Proposition (N.)

The comultiplication ∆ of the hyperelliptic Hopf algebroid for g = 2 is given by

∆(r) = 1⊗ r + r ⊗ 1, ∆(s) = 1⊗ s+ s⊗ 1

∆(t) = 1⊗ t+ t⊗ 1 + s⊗ 2r

∆(u) = 1⊗ u+ u⊗ 1 + s⊗ r2 + t⊗ r

and the conjugation is given by

∆(r) = 1⊗ r + r ⊗ 1, ∆(s) = 1⊗ s+ s⊗ 1

∆(t) = 1⊗ t+ t⊗ 1 + s⊗ 2r

∆(u) = 1⊗ u+ u⊗ 1 + s⊗ r2 + t⊗ r

The conjugation and counit is also easily determined.

By these formulas we can compute Ext∗Γg
(Ag, Ag) using the similar method to

tmf (the best reference is T.Bauer’s paper in 2008).
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In particular, if we tensor the Hopf algebroid with Q, then the situation becomes
drastically easy. If we set

Ãg = Ag ⊗Q and Γ̃g = Γg ⊗Q

then we have

Theorem (N.)

The group Ext∗
Γ̃g
(Ãg, Ãg) is concentrated to the dimension 0, and we have

Ext0
Γ̃g
(Ãg, Ãg) = Q[c2i : 2 ≤ i ≤ 2g + 1].

Remark. In fact, it is enough to invert 2 and 2g + 1. This result corresponds to
the fact that if we can invert these then we can reduced the GWE to

y2 = x2g+1 + c4x
2g−1 + · · ·+ c4gx+ c4g+2

and that there is no nontrivial coordinate change on it.
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If we don’t invert 2 and 2g + 1, then the computation is not easy.

Theorem (N.)

The hyperelliptic discriminant ∆g defined by Lockhart is an invariant in the
hyperelliptic Hopf algebroid, i.e.,

∆g ∈ Ext0,∗Γg
(Ag, Ag).

It can be shown that there is a positive integer Ng for each ∆g such that

∆g =
(A polynomial in Z[c4, . . . , c4g+2] )

Ng
.
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For g = 1, we know that

N1 = 1728 = 2633 and ∆1 =
c34 − c26
1728

.

For g = 2, we have

N2 = 512000000000000000 = 224515,

∆2 =
1

512000000000000000
(c410 − c58 − 10c4c

2
8c

2
10 − 10c24c

4
8 + 20c6c

3
8c10

− 25c44c
3
8 + 50c34c

2
6c

2
8 + 60c4c6c

3
10 − 90c26c8c

2
10 − 90c34c8c

2
10

+ 90c4c
2
6c

3
8 − 135c46c

2
8 + 140c24c6c

2
8c10 − 216c54c

2
10 + 360c44c6c8c10

− 640c34c
3
6c10 + 660c24c

2
6c

2
10 − 1260c4c

3
6c8c10 + 1728c56c10).

We have an algorithm to express ∆g by some reduced coefficients c2i, BUT it
appears to be really hard.
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If we don’t invert 2 and p, then we have

Ext0Γg
(Ag, Ag) = Z[c2i,∆g, . . . : 2 ≤ i ≤ 2g + 1]/(relations)

where the part of . . . are the “baby discriminants” defined by

∆8 =
3c24 + c8
24 · 52

, ∆10 =
c4c6 + c10
23 · 52

, ∆12 =
−c4c8 + c34 + 4c26

26 · 53
,

∆14 =
−c6∆8 + c4∆10

22 · 5
, ∆16 =

−24c4c
2
6 + 9c24c8 − c28 + 12c6c10

26 · 55
,

∆18 =
−36c36 + 16c4c6c8 − 9c24c10 + c8c10

26 · 55
,

∆20 =
−c4∆2

8 −∆2
10 + 60∆8∆12

23 · 52
, ∆22 =

3∆10∆12 + 2∆8∆14

5
,

∆24 =
72c46 − 59c4c

2
6c8 + 17c24c

2
8 + 3c38 − 48c24c6c10 − 38c6c8c10 + 33c4c

2
10

211 · 58
,
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∆26 =
−∆10∆16 +∆8∆18

22 · 3 · 5
,

∆28 =
−c8∆20 + 3c6∆22 + 60c4∆24 + 270∆12∆16 + 190∆8∆20

23 · 3 · 52 · 7
,

∆30 =
5∆14∆16 + 2∆12∆18 + 4∆10∆20 + 11c4∆26

23 · 52
,

∆′
30 =

−∆10∆20 +∆8∆22

22 · 5
,

∆32 =
3(∆10∆22 + c4∆8∆20) + 20(c4∆28 +∆12∆20)

23 · 52
,

∆34 =
−5c4∆

′
30 + 5∆10∆24 + 3∆12∆22 + 12∆14∆20

2 · 52
,

∆36 =
−∆8∆12∆16 − 2∆10∆26 + 3∆2

8∆20

22 · 5
,
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∆′
36 =

∆2
18 + c4∆

2
16 + 20∆16∆20

24 · 3 · 52

∆38 =
−∆16∆22 +∆18∆20

22 · 5
,

∆40 = (Hyperelliptic discriminant by P.Lockhart),

∆42 =
−9c6∆

′
36 − 14c4∆38 − 5∆18∆24 + 20∆20∆22

23 · 3 · 52
,

∆44 =
3∆8∆

′
36 −∆16∆28 −∆20∆24 +∆8∆16∆20 −∆2

22

5
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Comments

Essentially, I obtained these results in 2006 and I gave a talk about the
computational part in the conference held at Johns Hopkins University.

After my talk, Mike Hill came to my place and he taught to me that he made
similar calculations in his thesis. His calculations are related to the Hopf
algebroid arising from the Artin-Schreier curves, and these gave information
on the theory so-called “higher real K-theory”.
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The language of stack
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The following observations are due to Mike Hopkins. The best reference is

“Complex oriented cohomology theories and the language of stacks.”
course notes, available on the web.

For a topological space X, we can define a sheaf on X

F : (CX)op −→ Sets

In particular, a sheaf of groupoid

F = (X0, X1) : (CX)op −→ Groupoids

with some extra condition (i.e., descent condition) is called a stack on X.

Recall that a stack is in fact defined over any site C (i.e., a category with
Grothendieck topology) in the similar fashion.
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Example. Let C = Ringsop be a category of affine schemes, with covering maps
are the collections {Spec(Ri) → Spec(R)} which satisfies

Each R→ Ri is flat map.

For each R-module M , if M ⊗R Ri = 0 for all i then M = 0.

This is a Grothendieck topology on Ringsop, called the flat topology.

Remark. There are other popular Grothendieck topologies, for example, étale
topology.

For each Hopf algebroid (A,Γ), we can define a “prestack”

(X0, X1) = (Spec(A),Spec(Γ)) : Ringsop → Groupoids

and we can “stackify” this into a stack M = M(A,Γ). This is called an associated
stack to the Hopf algebroid (A,Γ). The structure sheaf on M is given by

OM (x : Spec(A) → M) = A.
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If we have a flat cover Spec(A) → M then the associated Čech nerve is

· · · Spec(A)×M Spec(A)×M Spec(A)
//
//// Spec(A)×M Spec(A) //// Spec(A)

· · · Spec(Γ⊗A Γ)
//
//// Spec(Γ)

//// Spec(A)

where the simplicial object on the bottom is Spec(−) applied to the cobar
construction.

Theorem (M.Hovey, 2002)

Suppose that (A,Γ) is a Hopf algebroid. Then there is an equivalence of
categories between (A,Γ)-comodules and quqsi-coherent sheaves over
(Spec(A),Spec(Γ)).

For (A,Γ)-comodule M , define a quasi-coherent sheaf FM on M by

FM (x : Spec(R) → M) = R⊗AM.

Note that FA is identified with the structure sheaf OM.
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The sheaf cohomology of M with coefficient in FM is then defined by applying
FM to the previous diagram.

· · · FM (Spec(Γ⊗A Γ))
oo
oooo FM (Spec(Γ)) oooo FM (Spec(A))

· · ·Γ⊗A Γ⊗A M
oo
oooo Γ⊗A M oooo M

The upper sequence gives the sheaf cohomology and the bottom sequence is the
cobar complex for the comodule M , and the associated cohomology is
Ext∗Γ(A,M).

We can consider the spectral sequence associated to this Čech nerve

Hs(Spec(A)×M · · · ×M Spec(A)︸ ︷︷ ︸
t-factors

;FM ) =⇒ Hs+t(M;FM )

Since FM is quasi-coherent and it has no higher cohomology on affines, this
spectral sequence collapses. As we observed in the above, E1-terms coincides to
Ext(A,Γ)(A,M).
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Thus we have

Proposition

Let (A,Γ) be a Hopf algebroid, and M be the associated stack (with flat
topology) with the quasi-coherent sheaf FM . Then we have an isomorphism
between flat cohomology of M and cohomology of Hopf algebroid (A,Γ)

H∗(M;FM ) ∼= Ext∗Γ(A,M).

Thus, we can use our hyperelliptic Hopf algebroid (Ag,Γg) to compute the flat
cohomology of the stack MGW

g = M(Ag,Γg).

Corollary (N.)

The flat cohomology of the moduli stack M = MGW
g with coefficient OM is

isomorphic to the Ext groups associated to the hyperelliptic Hopf algebroid for
genus g.

H∗(M;OM) ∼= Ext∗Γg
(Ag, Ag).
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Comments

The stack MGW
g is including information of “arbitrary singularities” of curves

defined by general Weierstrass equation. The flat cohomology of MGW
g can

be computed by the Hopf algebroid (Ag,Γg).

On the other hand, if we replace Ag and Γg with

A′
g := Ag[∆

−1] and Γ′
g := Γg[∆

−1]

then the associated stack Mhyp
g := M(A′

g,Γ
′
g)

is the stack representing
smooth hyperelliptic curves. Its flat cohomology can also be computed by the
Hopf algebroid (A′

g,Γ
′
g).

We may add some information of treatable singularities to the stack Mhyp
g

(like nodal singularity) so that we obtain the compactification of it. The
geometry of such object may be interesting.
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Final observations
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In topology it is well-known that

BDiff0
+Mg = K(Mg, 1).

The following is an arithmetic analogue.

Theorem (P.Frediani and F.Neumann, 2003)

Let Hg be a moduli stack of hyperelliptic curves of genus g. There is a weak
homotopy equivalence of pro-simplicial sets

(Hg ⊗Q)∧et ≃ K(Γh∧g , 1).

where Γhg is the hyperelliptic mapping class group.

Note that the left hand side has the information of étale cohomology of Hg.
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Comments

As we mentioned in the above, our Hopf algebroid (A′
g,Γ

′
g) is useful to

compute the flat cohomology of Mhyp
g , which has the information of all

smooth hyperelliptic curves (with fixed Weierstrass point).

Assuming that we find a relation between Mhyp
g and the algebraic stack Hg

and that the change-of-topology spectral sequence (from étale topology to
flat topology) collapses, we hope that the flat cohomology of Mhyp

g has

information on the cohomology of Γhg .
(This observation came from the discussion with Andrew Salch.)

Thank you so much.
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