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abstract

The purpose of this survey lecture is to introduce a number-theoretic approach to study

obstructions to the surjectivity of the Johnson homomorphism. In particular, the

obstruction arising from the outer Galois action on the pro-` fundamental group of the

projective line minus three points over the rationals will be focused on. This obstruction

has been studied by Mamoru Asada, Makoto Matsumoto, Hiroaki Nakamura, Takayuki

Oda,and the lecturer. A recent celebrated theorem on the action of the Tannakian

fundamental group of the category of mixed Tate motives over the rational integers on the

motivic fundamental group of projective line minus three points by Francis Brown made it

possible to determine the “size” of this obstruction.
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Notations

(g, n) : a pair of non-negative integer such that 2g − 2 + n > 0

Πg,n := the fundamental group of a (hyperbolic) Riemann surface of type (g, n)

Mg,n : the mapping class group of type (g, n)

Πg,n[m] : the weight filtration of Πg,n defined by

Πg,n[1] = Πg,n,

Πg,n[2] = [Πg,n, Πg,n] · 〈 all inertia subgroups 〉
Πg,n[k] = 〈[Πg,n[k′], Πg,n[k′′]] k′ + k′′ = k〉 (k ≥ 3)

Depending on the situation, g, n is often omitted .

Lk := grk Π = Π[k]/Π[k + 1] (Π = Πg,n)

L := GrΠ = ⊕k≥1Lk
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hk := {D ∈ Der(L)|D(Ld) ⊂ Ld+k for any d ≥ 1,

D preserves each inertia Lie ideals}/InnLk
(L)

h = Derc(L)/Inn(L) := ⊕k≥1hk

ϕ : M → Out+(Π) : the Dehn-Nielsen map (isomorphism)

M[k] := Ker(M → Out+(Π/Π[m + 1]))

grk M := M[k]/M[k + 1]

τk : grk M → hk : the k-th integral Johnson homomorphism in this lecture

τk ⊗Z Q : grk M⊗Z Q → hk ⊗Z Q : the k-th Johnson homomorphism in this lecture

Coker(τk ⊗Z Q) : the Johnson cokernel in this lecture
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Mg,n : the moduli stack over Q of proper smooth geometrically connected curves of genus

g with disjoint ordered n sections (often refered as (g, n)-curve in this lecture)

GQ = Gal(Q/Q) : the absolute Galois group of rationals

π1(X) : the étale fundamental group of a connected scheme/stack X

` : a prime

Πpro−` :

the pro-` completion of Π = lim←−
ΠBN,

(Π:N)=`-th power

Π/N

This is often called the pro-` (geometric) fundamental group,

which is isomorphic to the maximal pro-` quotient of the étale fundamental group of a

curve X over an algebraically closed field of characteristic 0, whose kernel is a

characteristic subgroup of π1(X).

Πpro−`[k] : the topological closure of Π[k]

Note that grk(Πpro−`) ' Lk ⊗Z Z`.

In what follows, depending on the situation, ` is omitted.
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1 Background

1.1 Quick review of some results on the Johnson cokernel

A list of several (NOT ALL!) results on Coker(τk ⊗Z Q) and Coker(τk ⊗Z Q`).

0.[Nakamura-Tsunogai] The Sp(2g, Q`) × Sn-module structure of hk ⊗Z Q` is

“computable”.

1.[Johnson, Morita] 1 ≤ k ≤ 2 ⇒ τk ⊗Z Q is isomorphism.

2.For 1 ≤ k ≤ 6, the Sp2g × Sn-module structure of grkMg,n ⊗Z Q is as follows:

[Johnson, Asada-Nakamura] gr1 Mg,n ⊗Z Q ' [1, 1, 1]Sp ⊗ 1 + [1]Sp ⊗
[
n
1

]
[Morita, Asada-Nakamura] gr2 Mg,n ⊗Z Q ' [2, 2]Sp ⊗ 1 + [1, 1]Sp ⊗

[
n
1

]
+ [0]Sp ⊗

[
n
2

]
[Asada-Nakamura] gr3 Mg,n ⊗Z Q ' [3, 1, 1]Sp ⊗ 1 + [2, 1]Sp ⊗

[
n
1

]
+ [1]Sp ⊗ ∧2

[
n
1

]
[Morita]

gr4 Mg,1 ⊗Z Q ' [4, 2]Sp + [3, 1, 1, 1]Sp + [2, 2, 2]Sp + 2[3, 1]Sp + 2[2, 1, 1]Sp + 2[2]Sp

[Morita-Sakasai-Suzuki] gr5 Mg,1 ⊗Z Q ' · · · (sorry for not making on time) (g >> k)

[Morita-Sakasai-Suzuki] gr6 Mg,1 ⊗Z Q ' · · · (sorry for not making on time) (g >> k)
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In particular, together with Nakamura-Tsunogai’s results, when k = 3, 4, 5, 6, τk is not

surjective.

3.[Morita] For g ≥ 2, k ≡ 1 (mod 2),
in Coker(τ(g,1)k ⊗Z Q), [k]Sp appears with multiplicity 1.

4.[Enomoto-Sato] For g >> k, k ≡ 1 (mod 4),
in Coker(τ(g,1)k ⊗Z Q), [1k]Sp appears with multiplicity 1.

5.[Conant-Kassabov-Voghtmann]

A generalization of the Morita’s trace-

infinite obstructions in the h ⊗Z Q/[h ⊗Z Q, h ⊗Z Q]

6.[Oda, Ihara, Matsumoto, Nakamura, Ueno, T + Hain-Matsumoto, Brown] For

2g − 2 + n > 0, k ≡ 0 (mod 2), k 6= 2, 4, 8, 12, in Coker(τ(g,n)k ⊗Z Q`), [0]Sp appears

with multiplicity ≥ mk + 1.3
k
2 (k >> 1).
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Conclusively, (roughly speaking,) when k is odd and n ≥ 1, then many kinds of

obstructions to surjectivity of τ(g,n)k exist.

but when

k is even or n = 0,

the lecturer knows little results. So I think that the results 6. is remarkable in this sense.

From now on, I introduce this result in this lecture.
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1.2 pro-` universal monodromy representation

Roughly speaking, what is it?

The pro-` universal monodromy representation ϕarith : π1(M) → Outc(Πpro−`) can be

regarded as an arithmetic version of the Dehn-Nilsen map:

ϕ : M ' Out+(Π),

ϕarith : π1(M) → Outc(Πpro−`).

Outc(Πpro−`) := {f ∈ Aut(Πpro−`)|f preserves each inertia subgroup }/Inn(Πpro−`)

The Johnson homomorphism τk : grk M → hk is a Lie algebra version of Dehn-Nielsen

map ϕ : M → Out+(Π).

τk ⊗Z Z` : grk M⊗Z Z` ↪→ hk ⊗Z Z`

↓ ª ↓
τarith
k : grk π1(M) ↪→ hk ⊗Z Z`

(the left vertical arrow is injective and the right vertical arrow is the identity)
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Formulation of ϕarith

Mg,n+1 → Mg,n: the universal family of (g, n)-curve

x̄ → Mg,n : a geometric point, X̄ := Mg,n+1 ×Mg,n x̄

Ã
1 → π1(X̄) → π1(Mg,n+1) → π1(Mg,n) → 1,

Ã
1 → π1(X̄) → π1(Mg,n+1) → π1(Mg,n) → 1

↓ ª ↓ ª ↓
1 → Inn(π1(X̄)) → Aut(π1(X̄)) → Out(π1(X̄)) → 1

↓ ª ↓ ª ↓
1 → Inn(Πpro−`) → Aut(Πpro−`) → Out(Πpro−`) → 1

in which all rows are exact. And we have another exact sequence

1 → π1(Mg,n ⊗ Q) → π1(Mg,n)
pg,n→ GQ → 1,

so we have
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1
↓

Mg,n → M̂g,n ' π1(Mg,n ⊗ Q)
↓

ϕarith
g,n : π1(Mg,n) → Outc(Πpro−`

g,n )
↓

GQ

↓
1.

(ϕarith
g,n is called the pro-` universal monodromy representation.)

π1(Mg,n)[k] := Ker(π1(Mg,n) → OutC(Πpro−`
g,n /Πpro−`

g,n [k + 1])

Q(`)
g,n(k) := Q̄pg,n(π1(Mg,n)[k])

G(`)
g,n(k) := Gal(Q(`)

g,n(k + 1)/Q(`)
g,n(k))

G(`)
g,n := ⊕k≥1G(`)

g,n(k)

;

so we have
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1
↓

τk ⊗Z Z` : grk Mg,n ⊗Z Z` ↪→ grk π1(Mg,n ⊗Q Q)
↓

τarith
k : grk π1(Mg,n) ↪→ hk ⊗Z Z`

↓
G(`)

g,n(k)
↓
1

Definition 1.1 (Galois obstruction) For each k ≥ 1, then we have

Coker(τ(g,n)k ⊗Z Q`) ←↩ G(`)
g,n(k) ⊗Z`

Q`.

Each element of G(`)
g,n(k) can be regarded as a obstruction to the surjectivity of the

Johnson homomorphism, which is called a Galois obstruction in this lecture.

11



This obstruction appears as

[0]Sp when k ∈ 2Z \ {2, 4, 8, 12} even if n = 0,

which is a central object in this lecture.
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2 Main results
2.1 Oda conjecture

Theorem 2.1 (Ihara, Matsumoto, Nakamura, Takao)

(1) {Q(`)
g,n(k)}k≥1 is independent of n

and almost independent of g and n in the following sense :

Q(`)
1,1(k) ⊃ Q(`)

g,n(k) ⊃ Q(`)
0,3(k),

[Q(`)
1,1(k) : Q(`)

0,3(k)] < ∞.

(2) Q(`)
g,n is independent of g and n, where Q(`)

g,n = ∪k≥1Q(`)
g,n(k).

In particular,

G(`)
g,n ⊗Z`

Q` ' G(`)
0,3 ⊗Z`

Q`.
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Corollary 2.2 (Galois obstruction) (If 2g − 2 + n > 0, then for k ≥ 1)

Coker(τ(g,n)k ⊗Z Q`) ←↩ G(`)
0,3(k) ⊗Z`

Q`.

In particular, writing rk := dimQ`
G(`)

0,3(k) ⊗Z`
Q`,

dimQ`
Coker(τ(g,n)k ⊗Z Q`) ≥ rk.
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2.2 Deligne-Ihara Conjecture

Remark 2.3 (As M0,3 = {0},) G(`)
0,3(k) is a free Z`-module of finite rank rk, so

h0,3 ⊗Z Z` ←↩ G(`)
0,3.

And G(`)
0,3(k) ' Z`(k

2 )⊕rk as a Gal(Q(µ`∞)/Q) ' Z×
` -module when k is even.

On the contrary G(`)
0,3(k) = {0}, as h

(`)
0,3 ⊗Z Z` = {0} when k is odd.

Theorem 2.4 (Soulé-Ihara) k ≡ 2 (mod 4) and k ≥ 6

⇒

∃ natural nontrivial character

κk : G(`)
0,3(k) → Z`(

k

2
)
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Take a σk ∈ G(`)
0,3(k) such that G(`)

0,3(k) = Ker(κk) + Z`σk (k ≡ 2 (mod 4) and k ≥ 6)

Theorem 2.5 (Hain-Matsumoto, Brown)

G(`)
0,3 ⊗Z`

Q` is freely generated by σk (k ≡ 2 (mod 4) and k ≥ 6) as a graded Lie

algebra/Q`.

Especially,

Corollary 2.6

r2k′ =
1
k′

∑
d|k′

µ

(
k′

d

)
(

3∑
i=1

(αd
i − 1 − (−1)d)),

where αi (1 ≤ i ≤ 3) are the roots of x3 − x − 1.

In particular, if k 6= 2, 4, 8, 12 and k is even,

then τ(g,n)k ⊗Z Q` is not surjective.
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the calculated value of rk for small k;

k 1 2 3 4 5 6 7 8 9 10

rk 0 0 0 0 0 1 0 0 0 1

k 11 12 13 14 15 16 17 18 19 20

rk 0 0 0 1 0 1 0 1 0 1

k 21 22 23 24 25 26 27 28 29 30

rk 0 2 0 2 0 3 0 3 0 4

k 31 32 33 34 35 36 37 38 39 40

rk 0 5 0 7 0 7 0 10 0 12

· · · · · · · · · · · · · · ·
we have r2k + 1.3k for k is enough large
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2.3 A sketch of the proof

Oda conjecture

The proof consists of four parts:

Step1 [Nakamura-Takao-Ueno] Qg,n(k) is independent of n (n > 0).

Srep2 [Nakamura] Q1,1(k) ⊃ Qg,n(k) ⊃ Q0,3(k) (n > 0).

Step3 [Ihara-Nakamura] Qg,n = Q0,3 (n > 0), [Q1,1(k) : Q0,3(k)] < ∞.

Step4 [Takao] Qg,1(k) = Qg,0(k).
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Step1 [Nakamura-Ueno-Takao] Qg,n(k) is independent of n (n > 0).

A key idea is to consider “a braid version” of pro-` universal monodromy representation,

that is, the pro-` monodromy representation associated to the universal family of the pure

configuration space of curves.

We write h(r), Qg,n,r(k), · · · for the corresponding objects.

Then the proof can be reduced to the following three lemmas.

Lemma 2.7 Qg,n,r(k) ⊂ Qg,n+1,r(k).

Lemma 2.8 Qg,n,r(k) ⊂ Qg,n−1,r+1(k).

Lemma 2.9 Qg,n,r(k) ⊂ Qg,n,r−1(k).

The third lemma is shown by (tough) combinatorial Lie algebraic calculations in “braid Lie

algebra”. A key theorem to show the last lemma is

Theorem 2.10 The Z`-Lie algebra homomorphism

h(r+1) ⊗Z Z` −→ h(r) ⊗Z Z`

is injective.
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Key principle of the proof is as follows:

Let D is the (canonical) lift of any element of the kernel of the above map.

Find A,B ∈ Lk+1 ⊗Z Z` such that [A,B] = 0 and D(B) = 0.

⇒ D(A) = 0.

; (omitted tough calculation) ;

we can show that D = 0.
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Step2 [Nakamura] Q1,1(k) ⊃ Qg,n(k) ⊃ Q0,3(k) (n > 0)

Key ingredients in this step are

(1)Knudsen’s Clutching morphisms to relate (compactified) moduli stacks of different type

(2)Grothendieck-Murre theory to describe the fundamental group of the formal tubular

neighborhood of the locus of a type of stable curves arising from the clutching, and to

combine the fundamental groups of moduli stacks of different type

(3)Nakamura’s invention to couple universal monodromy representations of different types,

using Grothendieck-Murre sequences

Rough (and incorrect) sketch is as follows: Let M∗
g,n be the Deligne-Mumford

compactification of Mg,n. Taking, a boundary irreducible divisor D ' M∗
g1,n1

× M∗
g2,n2

in

M∗
g,n (g1 + g2 = g, n1 + n2 = n + 2), which is, roughly speaking, the image of the

clutching morphism. Then , by the theory of Grothendieck-Murre, we have

1 → Ẑ(1) → π1(]D[\D) → π1(D) → 1
↓ ↓

π1(Mg,n) π1(Mg1,n1 × Mg2,n2).
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A Key theorem is

Theorem 2.11 (Coupling Theorem). There exists a closed subgroup N of π1(]D[\D)
which is (almost) surjectively mapped onto π1(D), making the following diagram

commutes:

π1(Mg1,n1 × Mg2,n2) → Outc(Πpro−`
g1,n1

) × Outc(Πpro−`
g2,n2

)
↗

N ↓
↘

π1(Mg,n) → Outc(Πpro−`
g,n ).

A key idea of the proof is Nakamura’s invention to couple the universal monodromy

representation over Mg,n with the universal monodromy representation over

Mg1,n1 × Mg2,n2 . More precisely, we consider two another clutching morphisms:

c1 : M∗
g1,n1+1 × M∗

g2,n2
→ M∗

g,n+1,

c2 : M∗
g1,n1

× M∗
g2,n2+1 → M∗

g,n+1.

Denoting the boundary component corresponding to c1 (resp.c2) by D1 (resp. D2), we

have
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1 → Ẑ(1) → π1(]D1[\D1) → π1(D1) → 1
↓ ↓

π1(Mg,n+1) π1(Mg1,n1+1 × Mg2,n2),

and

1 → Ẑ(1) → π1(]D2[\D2) → π1(D2) → 1
↓ ↓

π1(Mg,n+1) π1(Mg1,n1 × Mg2,n2+1),

by Grothendieck-Murre theory.

By considering the formal tubular neighborhood ]D1 ∪ D2[\D1 ∪ D2 , we get conclusion

after some group theoretical treatments.

Corollary 2.12 Qg1,n1(k)Qg2,n2(k) ⊃ Qg,n(k)

Corollary 2.13 Q1,1(k) ⊃ Qg,n(k) ⊃ Q0,3(k) (n > 0)

Remark 2.14 Matsumoto also related g = 0 and g > 0 by another method.
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Step3 [Ihara-Nakamura] - very rough sketch

Qg,n = Q0,3 (n > 0)

[Q1,1(k) : Q0,3(k)] < ∞ (n > 0)

Key ingredients in this step are

(1)Tangential structure to construct a canonical universal deformation family of maximally

degenerate stable marked curves

(2)Formal patching (Artin, Deligne, Harbarter) and Grothendieck-Murre theory to describe

the Galois action on the fundamental group of the formal tubular neighborhood of

maximally degenerate stable marked curves in the canonical deformation space

(3)A certain weight argument to prove the latter statement
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A key theorem is

Theorem 2.15 If σ ∈ GQ acts trivially on the pro-` geometric fundamental groupoid of

P1 \ {0, 1,∞} with respect to the set of Deligne’s tangential base points, then σ has an

extension σ̃ ∈ GQ((q)) that acts trivially on the pro-` fundamental groupoid of the generic

geometric fiber of the family constructed in (1) with respect to the set of “tangential base

points” which are associated with (ordinary double) singular points in the maximal

degenerated stable marked curve. In particular, the outer action of σ̃ on the pro-`

fundamental group of the generic geometric fiber of the family constructed in (1) is trivial.

Very roughly speaking, the proof is done by “gluing Grothendieck-Murre sequence” using

formal patching. It can be shown that the pro-` fundamental group of the generic

geometric fiber of the family constructed in (1) is “almost” isomorphic to the free product

of all the pro-` geometric fundamental groups of P1 \ {0, 1,∞}.

A key idea of the proof of finite index part is to consider the nilpotency class. Then we

have Q1,1(k) ⊂ Q0,3(2k + 4). Using a certain weight argument, we get the conclusion.
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Step4 [Takao] Qg,1(k) = Qg,0(k) (g ≥ 2) - very rough sketch

Enough to prove

Lemma 2.16 Qg,0,2(k) ⊂ Qg,0,1(k)

A presentation of Lg,0,2 is as folllows:

generators X
(j)
i , Z (1 ≤ i ≤ 2g, 1 ≤ j ≤ 2),

relations

g∑
i=1

[X(j)
i , X

(j)
i+g] + Z = 0 (1 ≤ j ≤ 2),

[X(j)
i , X

(j′)
i′ ] =

{
0 (j 6= j′, i ≤ i′ and i′ 6= i + g),

Z (j 6= j′, i ≤ i′ and i′ = i + g).

In particular, we have

[X(1)
i + X

(2)
i , Z] = 0 (1 ≤ i ≤ 2g).

Now the outline is the same as in Step1.

But there is NOT! any generator A such that [A, Z] = 0.

We use X
(1)
i + X

(2)
i instead.

C(X(1)
i + X

(2)
i ) is not clear, but we can see
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Lemma 2.17 For 1 ≤ i ≤ 2g,

C(X(1)
i + X

(2)
i ) ∩ GrN (2) = 〈X(2)

i , Z〉Lie.

Here, N (2) is the fiber subgroup obtained by forgetting the second component (i.e. the

kernel of the natural projection of braid groups).

Key ingredients of the proof are

· Elimination theorem for free Lie algebras

· Degree discussion on free Lie algebras

; (omitted tough calculation) ;

we can show that D = 0.

Remark 2.18 Hoshi and Mochizuki proved the non-filtered part of this step and step1 in

a quite different way from a quite different motivation.
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Deligne-Ihara conjecture - very very rough sketch

· The Lie algebra of the pro-unipotent part of the motivic Galois group (=the Tannakian

fundamental group of the category of mixed Tate motives over Spec(Z)) is freely

generated by Soulè cyclotomic elements of the K-theory.

· The motivic Galois group acts on the motivic fundamental group of P1 \ {0, 1,∞}

· Brown proved that this action is faithful.

· G(`)
0,3 is the the `-adic realization of the image of this action.

;

Theorem 2.5(Deligne-Ihara conjecture)
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By what kind of method did Brown prove the faithfulness?

In fact, Brown also proved that Hoffman conjecture on multiple zeta values

ζ(m1,m2, · · · , mr) = Σ0<n1···<nr

1
nm1

1 · · ·nmr
r

(1 ≤ m1, · · · ,mr, 2 ≤ mr).

Theorem 2.19 (Hoffman conjecture) The k-th graded piece of Q-graded algebra of

multiple zeta values is generated by {ζ(m1,m2, · · · , mr)|mi = 2, 3, m1 + · · · + mr = k}

The proof was done by proving the motivic version of Hoffman conjecture.

The motivic version of Hoffman conjecture states that

{ζM (m1,m2, · · · ,mr)|mi = 2, 3, m1 + · · · + mr = k} is a basis of the k-th graded piece

of the algebra of motivic multiple zeta values, which leads to faithfulness of the action.
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3 Further interest

3.1 On the image of pro-` universal monodromy representaion

Im(τk ⊗Z Q`) ∩ Gk ⊗Z`
Q` = {0}.

But ϕarith(M) ⊂ φX(Gk) if X/k is `-monodromically full defined by Hoshi. Here

φX : Gk → Out(Πpro−`) is the pro-` outer Galois representation associated to X/k.

Matsumoto and Tamagawa proved that many such curves exist.

So the image of any mapping classes can be described as the image of some element of

Galois group. For example, How can Dehn twist be described ?

To the contrary, it seems interesting to characterize the image of mapping class group in

the image of Galois group. For example, Can some Forbenius element be described by

Mapping class?
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3.2 Towards to the integral Oda conjecture

Finally speaking, the lecturer is now interested in the “integral Oda problem” and “integral

Deigne-Ihara problem”, which is, roughly speaking, the problem to investigate the

structure of the associated graded Lie algebra G(`)
g,n over Z`. That is because this structure

may has some arithmetic information. In fact, for example, this structure depends on `.

Conclusively, to solve the integral Oda problem, we must analyse “the integral Johnson

homomorphism”. For example, if Coker(τ(g,n)k) ⊗Z Z` is torsion-free, then G(`)
g,n(k) is

torsion-free. So the lecturer is also interested in Integral Johnson homomorphism.

The lecture is end. Thank you for listening.
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