Johnson homomorphisms up to degree 6

Takuya SAKASAI
(joint work with Shigeyuki MORITA and Masaaki SUZUKI)

June 3, 2013

Contents

Contents

(1) Mapping class groups
(2) Johnson homormorphisms
(3) Important tools
(9) Johnson homomorphisms up to degree 6
(5) Abelianization of $H_{1}\left(\mathfrak{h}_{g, 1}^{+}\right)$(in progress)

Mapping class groups

- Σ_{g} : a closed oriented connected surface of genus g
- $\mathcal{M}_{g}:=$ Diff $_{+} \Sigma_{g} /($ isotopy $)=\pi_{0}$ Diff $_{+} \Sigma_{g}$
: the mapping class group of Σ_{g}
- $H_{\mathbb{Z}}:=H_{1}\left(\Sigma_{g}, \mathbb{Z}\right) \cong \mathbb{Z}^{2 g}$
- Intersection form on $H_{\mathbb{Z}}$:

$$
\mu: H_{\mathbb{Z}} \otimes H_{\mathbb{Z}} \longrightarrow \mathbb{Z} \quad\binom{\text { non-degenerate }}{\text { skew-symmetric }}
$$

- Poincaré duality:

$$
H_{\mathbb{Z}}:=H_{1}\left(\Sigma_{g} ; \mathbb{Z}\right)=H_{1}\left(\Sigma_{g} ; \mathbb{Z}\right)^{*}=H^{1}\left(\Sigma_{g} ; \mathbb{Z}\right)=H_{\mathbb{Z}}^{*}
$$

- Fix a symplectic basis $\left\{a_{1}, \ldots, a_{g}, b_{1}, \ldots, b_{g}\right\}$ of $H_{\mathbb{Z}}$ w.r.t. μ :

- symplectic element (class):

$$
\begin{aligned}
\omega_{0} & =\sum_{i=1}^{g}\left(a_{i} \otimes b_{i}-b_{i} \otimes a_{i}\right) \in H_{\mathbb{Z}} \otimes H_{\mathbb{Z}} \\
& =\sum_{i=1}^{g} a_{i} \wedge b_{i} \in \wedge^{2} H_{\mathbb{Z}}
\end{aligned}
$$

- $\operatorname{Sp}\left(H_{\mathbb{Z}}\right) \cong \operatorname{Sp}(2 g, \mathbb{Z})$: symplectic group,
$\operatorname{Sp}\left(H_{\mathbb{Z}}\right) \curvearrowright H_{\mathbb{Z}} \quad \mu$-preserving (ω_{0}-preserving) action.
- \mathcal{M}_{g} acts on $H_{\mathbb{Z}}$ with preserving μ. This gives

$$
1 \longrightarrow \mathcal{I}_{g} \longrightarrow \mathcal{M}_{g} \longrightarrow \mathrm{Sp}(2 g, \mathbb{Z}) \longrightarrow 1 \quad \text { (exact) }
$$

where \mathcal{I}_{g} is called the Torelli group.

We also consider

- $\Sigma_{g, 1}$: a compact oriented connected surface of genus g $\mathrm{w} /$ one boundary component
- $\mathcal{M}_{g, 1}:=\operatorname{Diff}\left(\Sigma_{g, 1}\right.$ rel $\left.\partial \Sigma_{g, 1}\right) /($ isotopy $)$
: the mapping class group of $\Sigma_{g, 1}$
- $H_{1}\left(\Sigma_{g, 1}, \mathbb{Z}\right)=H_{\mathbb{Z}} \cong \mathbb{Z}^{2 g}$
- Corresponding Torelli group:

$$
1 \longrightarrow \mathcal{I}_{g, 1} \longrightarrow \mathcal{M}_{g, 1} \longrightarrow \operatorname{Sp}(2 g, \mathbb{Z}) \longrightarrow 1 \quad \text { (exact) }
$$

- $\pi_{1} \Sigma_{g, 1}=\left\langle\gamma_{1}, \gamma_{2}, \ldots, \gamma_{2 g}\right\rangle=F_{2 g}$, where

$\zeta:=\prod_{i=1}^{g}\left[\gamma_{i}, \gamma_{g+i}\right]$ is the boundary loop.
- $\pi_{1} \Sigma_{g, 1} \longrightarrow \pi_{1} \Sigma_{g}=\left\langle\gamma_{1}, \gamma_{2}, \ldots, \gamma_{2 g}\right\rangle /\langle\zeta\rangle$
- $\mathcal{M}_{g, 1}$ acts naturally on $\pi_{1} \Sigma_{g, 1}$:

$$
\begin{aligned}
& \sigma: \mathcal{M}_{g, 1} \longrightarrow \operatorname{Aut}\left(\pi_{1} \Sigma_{g, 1}\right) \\
& \bar{\sigma}: \mathcal{M}_{g} \longrightarrow \operatorname{Out}\left(\pi_{1} \Sigma_{g}\right):=\operatorname{Aut}\left(\pi_{1} \Sigma_{g}\right) / \operatorname{Inn}\left(\pi_{1} \Sigma_{g}\right)
\end{aligned}
$$

Theorem [Dehn, Nielsen, Baer, Epstein, Zieschang et al.]

The homomorphisms σ and $\bar{\sigma}$ are injective and

$$
\begin{aligned}
& \operatorname{Im} \sigma=\left\{\varphi \in \operatorname{Aut}\left(\pi_{1} \Sigma_{g, 1}\right) \mid \varphi(\zeta)=\zeta\right\} \\
& \operatorname{Im} \bar{\sigma}=\text { Out }_{+}\left(\pi_{1} \Sigma_{g}\right): \text { (orientation-preserving). }
\end{aligned}
$$

Johnson homomorphisms

In the following, we mainly focus on the $\mathcal{M}_{g, 1}$-case.

- $\mathcal{I}_{g, 1}$ measures the gap between $\mathcal{M}_{g, 1}$ and $\operatorname{Sp}(2 g, \mathbb{Z})$.
- It is known that

$$
H_{1}\left(\mathcal{M}_{g, 1}\right)=\mathcal{M}_{g, 1} /\left[\mathcal{M}_{g, 1}, \mathcal{M}_{g, 1}\right]=0 \quad \text { for } g \geq 3
$$

\rightsquigarrow It is not easy to make an "approximation" of $\mathcal{M}_{g, 1}$ without looking the structure of $\mathcal{I}_{g, 1}$.

- The structure of $\mathcal{I}_{g, 1}$ is more complicated than that of $\mathcal{M}_{g, 1}$.

In a series of papers, Dennis Johnson showed:

Theorem [Johnson]

(1) $\mathcal{I}_{g, 1}$ is finitely generated for $g \geq 3$.
(2) (The first Johnson homomorphism) There exists an $\mathcal{M}_{g, 1}$-equivariant homomorphism

$$
\tau_{g, 1}(1): \mathcal{I}_{g, 1} \longrightarrow \wedge^{3} H_{\mathbb{Z}} .
$$

Dehn twists along BSCC form a generating system of $\operatorname{Ker} \tau_{g, 1}(1)$.
(3) $\tau_{g, 1}(1)$ gives the abelianization $H_{1}\left(\mathcal{I}_{g, 1}\right)=\mathcal{I}_{g, 1} /\left[\mathcal{I}_{g, 1}, \mathcal{I}_{g, 1}\right]$ modulo 2-torsions.
(The torsion part is given by Birman-Craggs homormophisms.)

- Putman gave another proof for the above facts.
- $\pi:=\pi_{1}\left(\Sigma_{g, 1}\right)=\left\langle\gamma_{1}, \gamma_{2}, \ldots, \gamma_{2 g}\right\rangle$.
- $\pi=\Gamma_{1}(\pi) \supset \Gamma_{2}(\pi) \supset \Gamma_{3}(\pi) \supset \cdots$
: The lower central series of π defined by

$$
\Gamma_{i+1}(\pi)=\left[\Gamma, \Gamma_{i}(\pi)\right] \quad \text { for } i \geq 1
$$

- $\mathcal{L}\left(H_{\mathbb{Z}}\right)=\bigoplus_{i=1}^{\infty} \mathcal{L}_{i}\left(H_{\mathbb{Z}}\right)$: the free Lie algebra generated by $H_{\mathbb{Z}}$

$$
\begin{aligned}
& a \in \mathcal{L}_{1}\left(H_{\mathbb{Z}}\right)=H_{\mathbb{Z}}, \\
& {[a, b] \in \mathcal{L}_{2}\left(H_{\mathbb{Z}}\right) \cong \wedge^{2} H_{\mathbb{Z}},} \\
& {[a,[b, c]] \in \mathcal{L}_{3}\left(H_{\mathbb{Z}}\right) \cong\left(H_{\mathbb{Z}} \otimes\left(\wedge^{2} H_{\mathbb{Z}}\right)\right) / \wedge^{3} H_{\mathbb{Z}},}
\end{aligned}
$$

Fact

There exists an $\mathcal{M}_{g, 1}$-equivariant isomorphism

$$
\begin{array}{ccc}
\Gamma_{i}(\pi) / \Gamma_{i+1}(\pi) & \stackrel{\cong}{\longmapsto} & \mathcal{L}_{i}\left(H_{\mathbb{Z}}\right) \\
\psi & \uplus \\
\left.\left[\alpha_{1},\left[\alpha_{2}, \cdots, \alpha_{i}\right]\right] \cdots\right] & \longmapsto & \left.\left[\overline{\alpha_{1}},\left[\overline{\alpha_{2}}, \cdots, \overline{\alpha_{i}}\right]\right] \cdots\right] \\
\text { where } \pi \ni \alpha_{j} \longmapsto \overline{\alpha_{j}} \in H_{\mathbb{Z}} . & &
\end{array}
$$

- Iterating expansion

$$
[X, Y] \longmapsto X \otimes Y-Y \otimes X
$$

gives an (degree preserving) embedding $\mathcal{L}\left(H_{\mathbb{Z}}\right) \hookrightarrow \bigoplus_{i=1}^{\infty} H_{\mathbb{Z}}^{\otimes i}$.

- $\mathcal{M}_{g, 1} \subset \operatorname{Aut}(\pi) \curvearrowright \Gamma_{i}(\pi)$ for $i \geq 1$.

$$
\rightsquigarrow \mathcal{M}_{g, 1} \curvearrowright \pi / \Gamma_{i}(\pi) \quad\left(\pi / \Gamma_{2}(\pi)=H_{\mathbb{Z}}\right)
$$

Definition (Johnson filtration)

$$
\mathcal{M}_{g, 1}[0]=\mathcal{M}_{g, 1} \supset \mathcal{M}_{g, 1}[1]=\mathcal{I}_{g, 1} \supset \mathcal{M}_{g, 1}[2] \supset \mathcal{M}_{g, 1}[3] \supset \cdots
$$

where

$$
\mathcal{M}_{g, 1}[k]:=\operatorname{Ker}\left(\sigma_{k}: \mathcal{M}_{g, 1} \longrightarrow \operatorname{Aut}\left(\pi / \Gamma_{k+1}(\pi)\right)\right)
$$

Definition (The k-th Johnson homomorphism)

We have an $\mathcal{M}_{g, 1}$-equivariant homomorphism defined by

$$
\begin{array}{rlll}
\tau_{g, 1}(k): \mathcal{M}_{g, 1}[k] & \longrightarrow & \operatorname{Hom}\left(H_{\mathbb{Z}}, \mathcal{L}_{k+1}\left(H_{\mathbb{Z}}\right)\right) \\
\Psi & & \psi & \left(\bar{\gamma} \mapsto\left[f(\gamma) \gamma^{-1}\right]\right)
\end{array}
$$

where $\left[f(\gamma) \gamma^{-1}\right] \in \Gamma_{k+1}(\pi) / \Gamma_{k+2}(\pi)=\mathcal{L}_{k+1}\left(H_{\mathbb{Z}}\right)$.

- By definition,

$$
\begin{aligned}
& \operatorname{Ker} \tau_{g, 1}(k)=\mathcal{M}_{g, 1}[k+1], \\
& \operatorname{Im} \tau_{g, 1}(k)=\mathcal{M}_{g, 1}[k] / \mathcal{M}_{g, 1}[k+1] .
\end{aligned}
$$

- $\operatorname{Hom}\left(H_{\mathbb{Z}}, \mathcal{L}_{k+1}\left(H_{\mathbb{Z}}\right)\right)=H_{\mathbb{Z}}^{*} \otimes \mathcal{L}_{k+1}\left(H_{\mathbb{Z}}\right) \xlongequal{\mathrm{PD}} H_{\mathbb{Z}} \otimes \mathcal{L}_{k+1}\left(H_{\mathbb{Z}}\right)$.

Theorem [Morita]

(1) The image of $\tau_{k}: \mathcal{M}_{g, 1}[k] \rightarrow H_{\mathbb{Z}} \otimes \mathcal{L}_{k+1}\left(H_{\mathbb{Z}}\right)$ is included in

$$
\mathfrak{h}_{g, 1}(k):=\operatorname{Ker}\left(H_{\mathbb{Z}} \otimes \mathcal{L}_{k+1}\left(H_{\mathbb{Z}}\right) \xrightarrow{[\cdot, \cdot]} \mathcal{L}_{k+2}\left(H_{\mathbb{Z}}\right)\right) .
$$

(2) The direct sums

$$
\operatorname{Im} \tau_{g, 1}:=\bigoplus_{k=1}^{\infty} \operatorname{Im} \tau_{g, 1}(k) \quad \text { and } \quad \mathfrak{h}_{g, 1}^{+}:=\bigoplus_{k=1}^{\infty} \mathfrak{h}_{g, 1}(k)
$$

have natural positively graded Lie algebra structures and

$$
\tau_{g, 1}:=\bigoplus_{k=1}^{\infty} \tau_{g, 1}(k): \operatorname{Im} \tau_{g, 1} \longrightarrow \mathfrak{h}_{g, 1}^{+}
$$

is a Lie algebra embedding.

Problem

Determine:
(I) the Lie subalgebra $\operatorname{Im} \tau_{g, 1}=\bigoplus_{k=1}^{\infty} \operatorname{Im} \tau_{g, 1}(k)$ of $\mathfrak{h}_{g, 1}^{+}$.
(II) the abelianization

$$
H_{1}\left(\mathfrak{h}_{g, 1}^{+}\right)=\mathfrak{h}_{g, 1}^{+} /\left[\mathfrak{h}_{g, 1}^{+}, \mathfrak{h}_{g, 1}^{+}\right]=\bigoplus_{k=1}^{\infty} H_{1}\left(\mathfrak{h}_{g, 1}^{+}\right)_{k} .
$$

of $\mathfrak{h}_{g, 1}^{+}$, where

$$
\left\{\begin{array}{l}
H_{1}\left(\mathfrak{h}_{g, 1}^{+}\right)_{1}=\mathfrak{h}_{g, 1}(1) \\
H_{1}\left(\mathfrak{h}_{g, 1}^{+}\right)_{k}=\mathfrak{h}_{g, 1}(k) / \sum_{\substack{i+j=k \\
i, j \geq 1}}\left[\mathfrak{h}_{g, 1}(i), \mathfrak{h}_{g, 1}(j)\right] \quad(k \geq 2) .
\end{array}\right.
$$

Remarks

- In the following, we consider the rational $(\mathbb{Q}$-)version:

$$
\begin{aligned}
& H:=H_{1}\left(\Sigma_{g} ; \mathbb{Q}\right)=H_{\mathbb{Z}} \otimes \mathbb{Q} \\
& \tau_{g, 1} \otimes \mathbb{Q}: \operatorname{Im} \tau_{g, 1} \otimes \mathbb{Q} \longrightarrow \mathfrak{h}_{g, 1}^{+} \otimes \mathbb{Q}
\end{aligned}
$$

For simplicity, we omit " $\otimes \mathbb{Q}$ ".

- By using the Maguns expansion (and its generalization), Kitano, Kawazumi, Massuyeau
gave other ways to define $\tau_{g, 1}$.
- Kawazumi-Kuno gave a geometric description of $\tau_{g, 1}$ by using the completed Goldman Lie algebra.

Related theory

- Aut F_{n} : Nielsen, Magnus, Andreadakis, T.Satoh
- Link theory: Milnor, Habegger-Lin, Orr, Habegger-Masbaum, Meilhan-Yasuhara
- Number theory: Ihara, Oda, Nakamura, Hain, Matsumoto, Asada, Kaneko, Takao

In this workshop, we shall see the relationship among them!

Important tools

(I) Representation theory of $\operatorname{Sp}(2 g, \mathbb{Q})$

- The actions of $\mathcal{M}_{g, 1}$ on $\operatorname{Im} \tau_{g, 1}$ and $\mathfrak{h}_{g, 1}^{+}$descend to those of $\operatorname{Sp}(2 g, \mathbb{Z})=\mathcal{M}_{g, 1} / \mathcal{I}_{g, 1}=\mathcal{M}_{g, 1}[0] / \mathcal{M}_{g, 1}[1]$.
\rightsquigarrow We have an $\operatorname{Sp}(2 g, \mathbb{Z})$-equivariant embedding

$$
\tau_{g, 1}: \operatorname{Im} \tau_{g, 1} \longrightarrow \mathfrak{h}_{g, 1}^{+} .
$$

- $\operatorname{Im} \tau_{g, 1}(k)$ and $\mathfrak{h}_{g, 1}(k)$ are finite dimensional $\operatorname{Sp}(2 g, \mathbb{Q})$-module.
- As pointed out by Asada-Nakamura, $\tau_{g, 1}$ is in fact an $\operatorname{Sp}(2 g, \mathbb{Q})$-equivariant embedding.

Fact (Representations of $\operatorname{Sp}(2 g, \mathbb{Q})$)

$\left\{\begin{array}{l}\text { Finite dimensional irreducible } \\ \text { polynomial representations } \\ \text { of } \operatorname{Sp}(2 g, \mathbb{Q})\end{array}\right\} \stackrel{\longleftrightarrow}{\leftrightarrows}\left\{\begin{array}{l}\text { Young diagrams } \\ \mathrm{w} / \sharp(\text { rows }) \leq g\end{array}\right\}$

[431]

[1 ${ }^{3}$]

[32 $\left.{ }^{2} 1\right]$

Example

$$
\begin{aligned}
\mathbb{Q} & =[0] \quad \text { (trivial representation) } \\
H & =[1] \quad \text { (fundamental representation), } \\
S^{k} H & =[k], \\
\wedge^{2 k} H & =\left[1^{2 k}\right]+\left[1^{2 k-2}\right]+\cdots+[0] \\
\wedge^{2 k+1} H & =\left[1^{2 k+1}\right]+\left[1^{2 k-1}\right]+\cdots+[1]
\end{aligned}
$$

Irreducible representation V_{λ} for the Young diagram λ.

Example For $\lambda=[431]$,

(1) Take the transpose $\lambda^{\prime}=\left[32^{2} 1\right]$:

(2) V_{λ} is the minimum $\mathrm{Sp}(2 g, \mathbb{Q})$-module containing

$$
v_{\lambda}:=\left(a_{1} \wedge a_{2} \wedge a_{3}\right) \otimes\left(a_{1} \wedge a_{2}\right) \otimes\left(a_{1} \wedge a_{2}\right) \otimes a_{1}
$$

in

$$
\left(\wedge^{3} H\right) \otimes\left(\wedge^{2} H\right) \otimes\left(\wedge^{2} H\right) \otimes\left(\wedge^{1} H\right)
$$

v_{λ} is called the highest weight vector of V_{λ}.

Irreducible decomposition of $H^{\otimes k}$

Fact

Any irreducible subrepresentation V_{λ} in $H^{\otimes k}$ can be detected by a combination of
(1) contractions $\mu_{i, j}: H^{\otimes n} \longrightarrow H^{\otimes(n-2)}$,
(2) projections $\wedge^{n}: H^{\otimes n} \longrightarrow \wedge^{n} H$
as a quotient representation of $H^{\otimes k}$. (Just detect the highest weight vector v_{λ}.)

Example $\quad 2[21] \subset H^{\otimes 3}$ are detected by

$$
\begin{array}{ll}
\wedge_{1,2}: H^{\otimes 3} \rightarrow\left(\wedge^{2} H\right) \otimes H & \left(x_{1} \otimes x_{2} \otimes x_{3} \mapsto\left(x_{1} \wedge x_{2}\right) \otimes x_{3}\right) \\
\wedge_{1,3}: H^{\otimes 3} \rightarrow\left(\wedge^{2} H\right) \otimes H & \left(x_{1} \otimes x_{2} \otimes x_{3} \mapsto\left(x_{1} \wedge x_{3}\right) \otimes x_{2}\right)
\end{array}
$$

In fact, two linearly independent $v_{[21]}=\left(a_{1} \wedge a_{2}\right) \otimes a_{1}$ are captured by these maps:

$$
\begin{array}{ll}
\wedge_{1,2}\left(a_{1} \otimes a_{2} \otimes a_{1}\right)=v_{[21]}, & \wedge_{1,3}\left(a_{1} \otimes a_{2} \otimes a_{1}\right)=0 \\
\wedge_{1,2}\left(a_{1} \otimes a_{1} \otimes a_{2}\right)=0, & \wedge_{1,3}\left(a_{1} \otimes a_{1} \otimes a_{2}\right)=v_{[21]}
\end{array}
$$

Namely,

$$
\wedge_{1,2} \oplus \wedge_{1,3}: H^{\otimes 3} \longrightarrow 2[21] \subset\left(\left(\wedge^{2} H\right) \otimes H\right) \oplus\left(\left(\wedge^{2} H\right) \otimes H\right)
$$

In our setting $\mathfrak{h}_{g, 1}^{+}=\bigoplus_{k=1}^{\infty} \mathfrak{h}_{g, 1}(k)$,

- $\mathfrak{h}_{g, 1}(k)$ is a finite dimensional $\operatorname{Sp}(2 g, \mathbb{Q})$-module.
$\Longrightarrow \mathfrak{h}_{g, 1}(k)$ has the irreducible decomposition.
- $\mathfrak{h}_{g, 1}(k) \subset H \otimes \mathcal{L}_{k+1}(H) \subset H^{\otimes(k+2)}(\operatorname{Sp}(2 g, \mathbb{Q})$-submodule $)$. \Longrightarrow The irreducible decomposition of $\mathfrak{h}_{g, 1}(k)$ is obtained by combinations of contractions and projections in $H^{\otimes(k+2)}$.
- We may assume that g is sufficiently large $(g \geq 3 k)$.
\Longrightarrow The irreducible decomposition stabilizes.
(II) Graphical description of the Lie algebra $\mathfrak{h}_{g, 1}^{+}$

Fact

Let

$$
\mathcal{A}^{t}(H):=\mathbb{Q}\left\{\begin{array}{l}
H \text {-colord tree-shaped } \\
\text { Jacobi diagram }
\end{array}\right\} /\binom{\text { AS, IHX }}{\text { multi-linear }}
$$

$$
(a, b, c, d \in H)
$$

$\mathcal{A}_{k}^{t}(H)$: subspace generated by diagrams \mathbf{w} / k trivalent vertices.

$$
\mathcal{A}_{k}^{t}(H) \cong \mathfrak{h}_{g, 1}(k)
$$

Formula

Brackets in $\mathcal{A}^{t}(H)$:

where $S_{s} \cup T_{t}$ is obtained by welding S and T at the legs s and t.
Then we have

$$
\mathcal{A}_{0}^{t}(H) \cong \mathfrak{s p}(2 g, \mathbb{Q}), \quad \bigoplus_{k=1}^{\infty} \mathcal{A}_{k}^{t}(H) \cong \mathfrak{h}_{g, 1}^{+}
$$

as Lie algebras.

- $\mathcal{A}^{t}(H)$ appears in the theory of finite type invariants (clasper surgery) for 3-manifolds.
(III) Hain's theory

Hain determined the infinitesimal presentation of \mathcal{I}_{g} by using the Hodge theory (Mixed Hodge Structures). From this,

Theorem [Hain]

(1) The Lie subalgebra $\operatorname{Im} \tau_{g, 1}$ is generated by its degree 1 part $\operatorname{Im} \tau_{g, 1}(1)=\mathfrak{h}_{g, 1}(1)=\wedge^{3} H$.
(2) There exists an ideal $\mathfrak{j}_{g, 1}=\bigoplus_{k=1}^{\infty} \mathfrak{j}_{g, 1}(k)$ in $\mathfrak{h}_{g, 1}^{+}$such that

$$
\mathfrak{j}_{g, 1}(k) \cap \operatorname{Im} \tau_{g, 1}(k)=\{0\} \quad \text { for all } k \geq 3 .
$$

Precisely speaking,

$$
\begin{aligned}
& \mathfrak{j}_{g, 1}(k):=\operatorname{Ker}\left(\mathfrak{h}_{g, 1}(k) \rightarrow \mathfrak{h}_{g, *}(k)\right) \\
& =\operatorname{Ker}\left(H \otimes\left(\mathcal{L}_{k+1}(H) /\left\langle\omega_{0}\right\rangle_{k+1}\right) \xrightarrow{[\cdot, \cdot]}\left(\mathcal{L}_{k+2}(H) /\left\langle\omega_{0}\right\rangle_{k+2}\right)\right) .
\end{aligned}
$$

Remarks

- Our problem (I) is equivalent to:

Problem

(I^{\prime}) Determine the Lie subalgebra of $\mathfrak{h}_{g, 1}^{+}$generated by its degree 1 part $\mathfrak{h}_{g, 1}(1)=\operatorname{Im} \tau_{g, 1}(1)=\wedge^{3} H$.

- $\left.\operatorname{Im} \tau_{g, 1}(k) \subset \operatorname{Ker}\left(\mathfrak{h}_{g, 1}(k) \rightarrow H_{1}\left(\mathfrak{h}_{g, 1}^{+}\right)_{k}\right)\right)$ for $k \geq 2$.
(i.e. $H_{1}\left(\mathfrak{h}_{g, 1}^{+}\right)_{k} \subset \mathfrak{h}_{g, 1}(k) / \operatorname{Im} \tau_{g, 1}(k)$ as $\operatorname{Sp}(2 g, \mathbb{Q})$-module.)

(IV) Trace maps and Enomoto-Satoh's obstruction

Theorem [Morita] (trace map)

For $k \geq 2$, the composition
$\operatorname{Tr}_{2 k-1}: \mathfrak{h}_{g, 1}(2 k-1) \subset H \otimes \mathcal{L}_{2 k}(H) \hookrightarrow H^{\otimes(2 k+1)}$

$$
\xrightarrow{\mu_{1,2}} H^{\otimes(2 k-1)} \xrightarrow{\text { proj }} S^{2 k-1} H
$$

gives

$$
S^{2 k-1} H=[2 k-1] \subset H_{1}\left(\mathfrak{h}_{g, 1}^{+}\right)_{2 k-1} .
$$

(i.e. $\operatorname{Tr}_{2 k-1}$ is a non-trivial homomorphism vanishing on brackets.)

Enomoto-Satoh's obstruction

Theorem [Enomoto-Satoh]

For $k \geq 2$, consider the composition

$$
\begin{aligned}
\mathrm{ES}_{k}: \mathfrak{h}_{g, 1}(k) \subset H \otimes \mathcal{L}_{k+1}(H) & \hookrightarrow H^{\otimes(k+2)} \\
& \xrightarrow{\mu_{1,2}} H^{\otimes k} \xrightarrow{\text { proj }}\left(H^{\otimes k}\right)_{\mathbb{Z} / k \mathbb{Z}}
\end{aligned}
$$

where $\mathbb{Z} / k \mathbb{Z} \curvearrowright H^{\otimes k}$ is given by the cyclic permutation. Then

$$
\operatorname{Im} \tau_{g, 1}(k) \subset \operatorname{Ker} \mathrm{ES}_{k}
$$

$\rightsquigarrow \operatorname{Im~ES}_{k} \subset \mathfrak{h}_{g, 1}(k) / \operatorname{Im} \tau_{g, 1}(k)$.
We call the map ES_{k} the ES-obstruction.
(V) Relation with number theory

In 1980's, Oda predicted:

$$
\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \text { should "appear" in }\left(\operatorname{Coker} \tau_{g}\right)^{\mathrm{Sp}} \otimes \mathbb{Z}_{p}(p \text { :prime }) .
$$

Nakamura, Matsumoto: proof and related many works.
"Encounter with the Galois obstruction!" (The first one appears in $\tau_{g}(6)$.)

Problem

Describe the Galois image explicitly.

- Earlier foundational works for $g=0$: Ihara, Deligne.
- More recent works for $g=1$: Hain-Matsumoto, Nakamura.

Johnson homomorphims up to degree 6

(I) Previously known facts on $\operatorname{Im} \tau_{g, 1} \subset \mathfrak{h}_{g, 1}^{+}$(up to degree 4):

Fact

- $\operatorname{Im} \tau_{g, 1}(1)=\mathfrak{h}_{g, 1}(1)=\wedge^{3} H=\left[1^{3}\right]+[1] \quad$ (Johnson),
- $\operatorname{Im} \tau_{g, 1}(2)=\mathfrak{h}_{g, 1}(2)=\left[2^{2}\right]+\left[1^{2}\right]+[0] \quad$ (Hain, Morita),
- $\operatorname{Im} \tau_{g, 1}(3)=\left[31^{2}\right]+[21] \varsubsetneqq \mathfrak{h}_{g, 1}(3)=\left[31^{2}\right]+[21]+[3]$
(Hain, Asada-Nakamura),
- $\operatorname{Im} \tau_{g, 1}(4)=[42]+\left[31^{3}\right]+2[31]+\left[2^{3}\right]+\left[21^{2}\right]+2[2]$

$$
\varsubsetneqq \mathfrak{h}_{g, 1}(4)=[42]+\left[31^{3}\right]+2[31]+\left[2^{3}\right]+2\left[21^{2}\right]+3[2]
$$

(Morita).
(II) Previously known facts on $H_{1}\left(\mathfrak{h}_{g, 1}^{+}\right)_{k}$ (up to degree 4):

Fact

- By definition $H_{1}\left(\mathfrak{h}_{g, 1}^{+}\right)_{1}=\mathfrak{h}_{g, 1}(1)=\left[1^{3}\right]+[1]$.
- Arguments using Trace map gives

$$
H_{1}\left(\mathfrak{h}_{g, 1}^{+}\right)_{2}=0, \quad H_{1}\left(\mathfrak{h}_{g, 1}^{+}\right)_{3} \cong S^{3} H=[3], \quad H_{1}\left(\mathfrak{h}_{g, 1}^{+}\right)_{4}=0 .
$$

New Results: Degree 5

Theorem 1. [Morita-Suzuki-S.] w/ a correction by Enomoto

- $\operatorname{Im} \tau_{g, 1}(5)=\left(\left[51^{2}\right]+[421]+\left[3^{3} 1\right]+\left[321^{2}\right]+\left[2^{2} 1^{3}\right]\right)$

$$
\begin{aligned}
& +\left(2[41]+2[32]+2\left[31^{2}\right]+2\left[2^{2} 1\right]+2\left[21^{3}\right]\right) \\
& +\left([3]+3[21]+2\left[1^{3}\right]\right)+[1] .
\end{aligned}
$$

- $\mathfrak{h}_{g, 1}(5) / \operatorname{Im} \tau_{g, 1}(5)=\left([5]+[32]+\left[2^{2} 1\right]+\left[1^{5}\right]\right)$ $+\left(2[21]+2\left[1^{3}\right]\right)+2[1]$.
(completely detected by ES-obstruction)
- $H_{1}\left(\mathfrak{h}_{g, 1}^{+}\right)_{5} \cong S^{5} H=[5] . \quad$ (only the trace component)

Proof: Computer calculation + ES-obstruction + trace map.

New Results: Degree 6

Theorem 2. [Morita-Suzuki-S.]

$$
\begin{aligned}
\bullet \operatorname{Im} \tau_{g, 1}(6)= & \left([62]+[521]+\left[51^{3}\right]+\left[4^{2}\right]+[431]+2\left[42^{2}\right]+\left[421^{2}\right]\right. \\
& \left.+\left[41^{4}\right]+2\left[3^{2} 1^{2}\right]+\left[32^{2} 1\right]+\left[321^{3}\right]+\left[2^{4}\right]+\left[2^{2} 1^{4}\right]\right) \\
& +\left(3[51]+3[42]+4\left[41^{2}\right]+3\left[3^{2}\right]+7[321]+3\left[31^{3}\right]\right. \\
& \left.+\left[2^{3}\right]+5\left[2^{2} 1^{2}\right]+2\left[21^{4}\right]+\left[1^{6}\right]\right) \\
& +\left(4[4]+6[31]+9\left[2^{2}\right]+6\left[21^{2}\right]+4\left[1^{4}\right]\right) \\
& +\left(3[2]+6\left[1^{2}\right]\right)+2[0] .
\end{aligned}
$$

Theorem 2 (continue).

- $\mathfrak{h}_{g, 1}(6) / \operatorname{Im} \tau_{g, 1}(6)=\left(2\left[41^{2}\right]+\left[3^{2}\right]+[321]+\left[31^{3}\right]+\left[2^{2} 1^{2}\right]\right)$

$$
\begin{aligned}
& +\left(2[4]+3[31]+3\left[2^{2}\right]+3\left[21^{2}\right]+2\left[1^{4}\right]\right) \\
& +\left([2]+5\left[1^{2}\right]\right)+3[0],
\end{aligned}
$$

in which the ES-obstruction cannot detect $\left[1^{4}\right]+\left[1^{2}\right]+[0]$.

Proof: Theoretical consideration + computer calculations

- $\left[1^{4}\right]+\left[1^{2}\right]$: Two proofs by
(1) Checking all patterns of brackets.
(2) Finding a component in the ideal $\mathfrak{j}_{g, 1}(6)$ outside of $\operatorname{Im} \mathrm{ES}_{6}$.
- [0]: The Galois obstruction (w/ explicit description).

Abelianization of $H_{1}\left(\mathfrak{h}_{g, 1}^{+}\right)$(in progress)

Problem (bis)

(II) Determine the abelianization $H_{1}\left(\mathfrak{h}_{g, 1}^{+}\right)=\bigoplus_{k=1}^{\infty} H_{1}\left(\mathfrak{h}_{g, 1}^{+}\right)_{k}$ of $\mathfrak{h}_{g, 1}^{+}$.

Background of (II): Kontsevich's theorem says:

Theorem [Kontsevich]

There exists an isomorphism

$$
P H_{n}\left(\lim _{g \rightarrow \infty} \mathfrak{h}_{g, 1}^{+}\right)_{2 k}^{\mathrm{Sp}} \cong H^{2 k-n}\left(\operatorname{Out}\left(F_{k+1}\right) ; \mathbb{Q}\right) .
$$

\rightsquigarrow If $H_{1}\left(\lim _{g \rightarrow \infty} \mathfrak{h}_{g, 1}^{+}\right)^{\mathrm{Sp}}=0$, then $H^{2 k-3}\left(\operatorname{Out}\left(F_{k}\right) ; \mathbb{Q}\right)=0$ holds for any $k \geq 2$.

Morita once conjectured that

$$
\text { The trace components } \bigoplus_{k=1}^{\infty}[2 k+1] \text { gave } H_{1}\left(\mathfrak{h}_{g, 1}^{+}\right) \text {. }
$$

However, Conant-Kassabov-Vogtmann recently disproved it:

Theorem [Conant-Kassabov-Vogtmann]

There exist much more components other than the trace compo∞
nents $\bigoplus_{k=1}[2 k+1]$ in $H_{1}\left(\mathfrak{h}_{g, 1}^{+}\right)$.

They use the Eichler-Shimura isomorphism in the theory of modular forms.

Motivated by their results, we obtained explicit descriptions for (a part of) their new components of $H_{1}\left(\mathfrak{h}_{g, 1}^{+}\right)$:

Theorem 3. [Morita-Suzuki-S.]

(1) $H_{1}\left(\mathfrak{h}_{g, 1}^{+}\right)_{6}=[31] . \quad$ (New component in $H_{1}\left(\mathfrak{h}_{g, 1}^{+}\right)$)
(2) For $k \geq 3$, the composition

$$
\begin{aligned}
H \otimes \mathcal{L}_{2 k+1}(H) \hookrightarrow H^{\otimes(2 k+2)} & \xrightarrow{\mu_{1,3} \circ \mu_{4,2 k+1}} H^{\otimes(2 k-2)} \\
& \xrightarrow{\wedge_{1,(2 k-2)}} H^{\otimes(2 k-4)} \otimes \wedge^{2} H \\
& \xrightarrow{\text { proj } \otimes \mathrm{id}} S^{2 k-4} H \otimes \wedge^{2} H
\end{aligned}
$$

gives

$$
[(2 k-3) 1] \subset H_{1}\left(\mathfrak{h}_{g, 1}^{+}\right)_{2 k} .
$$

Proof: Combinatorial argument w/o using computer.

Corollary [Morita-Suzuki-S.]

Constructions of explicit Sp-invariant cocycles of $\mathfrak{h}_{g, 1}^{+}$corresponding to homology classes in

$$
\begin{aligned}
& H_{11}\left(\operatorname{Out}\left(F_{8}\right) ; \mathbb{Q}\right), \quad H_{15}\left(\operatorname{Out}\left(F_{10}\right) ; \mathbb{Q}\right), \quad H_{17}\left(\operatorname{Out}\left(F_{11}\right) ; \mathbb{Q}\right), \\
& H_{19}\left(\operatorname{Out}\left(F_{12}\right) ; \mathbb{Q}\right), \ldots .
\end{aligned}
$$

(Not yet known whether they are non-trivial.)

Example Since

$$
\begin{aligned}
& ([31] \otimes[3] \otimes[5])^{\mathrm{Sp}} \cong \mathbb{Q} \\
& ([31] \otimes[5] \otimes[7])^{\mathrm{Sp}} \cong \mathbb{Q},
\end{aligned}
$$

we obtain Sp-invariant cohomology classes in $H^{3}\left(H_{1}\left(\mathfrak{h}_{g, 1}^{+}\right)\right)_{14}^{\mathrm{Sp}}$ and $H^{3}\left(H_{1}\left(\mathfrak{h}_{g, 1}^{+}\right)\right)_{18}^{\mathrm{Sp}}$.

Fin.

