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Mapping class groups

Σg: a closed oriented connected surface of genus g

Mg := Diff+Σg/(isotopy) = π0Diff+Σg

: the mapping class group of Σg

HZ := H1(Σg, Z) ∼= Z2g

Intersection form on HZ:

µ : HZ ⊗HZ −→ Z
(

non-degenerate
skew-symmetric

)
Poincaré duality:

HZ := H1(Σg; Z) = H1(Σg; Z)∗ = H1(Σg; Z) = H∗
Z.
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Fix a symplectic basis {a1, . . . , ag, b1, . . . , bg} of HZ w.r.t. µ:

bgb2b1

aga2a1

g21

symplectic element (class):

ω0 =
g∑

i=1

(ai ⊗ bi − bi ⊗ ai) ∈ HZ ⊗HZ

=
g∑

i=1

ai ∧ bi ∈ ∧2HZ.
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Sp(HZ) ∼= Sp(2g, Z): symplectic group,

Sp(HZ) y HZ µ-preserving (ω0-preserving) action.

Mg acts on HZ with preserving µ. This gives

1 −→ Ig −→Mg −→ Sp(2g, Z) −→ 1 (exact)

where Ig is called the Torelli group.
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We also consider

Σg,1: a compact oriented connected surface of genus g
w/ one boundary component

Mg,1 := Diff(Σg,1 rel ∂Σg,1)/(isotopy)
: the mapping class group of Σg,1

H1(Σg,1, Z) = HZ ∼= Z2g

Corresponding Torelli group:

1 −→ Ig,1 −→Mg,1 −→ Sp(2g, Z) −→ 1 (exact)
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π1Σg,1 = 〈γ1, γ2, . . . , γ2g〉 = F2g, where

i1

γi

γg+i

ζ :=
g∏

i=1

[γi, γg+i] is the boundary loop.

π1Σg,1 −−� π1Σg = 〈γ1, γ2, . . . , γ2g〉/〈ζ〉
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Mg,1 acts naturally on π1Σg,1:

σ :Mg,1 −→ Aut (π1Σg,1),
σ :Mg −→ Out (π1Σg) := Aut (π1Σg)/Inn (π1Σg)

.

Theorem [Dehn, Nielsen, Baer, Epstein, Zieschang et al.]

.

.

.

. ..

.

.

The homomorphisms σ and σ are injective and

Im σ = {ϕ ∈ Aut (π1Σg,1) | ϕ(ζ) = ζ},
Im σ = Out+(π1Σg) : (orientation-preserving).
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Johnson homomorphisms

In the following, we mainly focus on the Mg,1-case.

Ig,1 measures the gap betweenMg,1 and Sp(2g, Z).

It is known that

H1(Mg,1) =Mg,1/[Mg,1,Mg,1] = 0 for g ≥ 3.

 It is not easy to make an “approximation” of Mg,1

without looking the structure of Ig,1.

The structure of Ig,1 is more complicated than that of Mg,1.
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In a series of papers, Dennis Johnson showed:

.

Theorem [Johnson]

.

.

.

. ..

.

.

.

.
.

1 Ig,1 is finitely generated for g ≥ 3.

.

. .
2 (The first Johnson homomorphism)

There exists an Mg,1-equivariant homomorphism

τg,1(1) : Ig,1 −−� ∧3HZ.

Dehn twists along BSCC form a generating system of
Ker τg,1(1).

.

.

.

3 τg,1(1) gives the abelianization H1(Ig,1) = Ig,1/[Ig,1, Ig,1]
modulo 2-torsions.

(The torsion part is given by Birman-Craggs homormophisms.)

Putman gave another proof for the above facts.
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Morita’s generalization

π := π1(Σg,1) = 〈γ1, γ2, . . . , γ2g〉.

π = Γ1(π) ⊃ Γ2(π) ⊃ Γ3(π) ⊃ · · ·
: The lower central series of π defined by

Γi+1(π) = [Γ, Γi(π)] for i ≥ 1.

L(HZ) =
∞⊕
i=1

Li(HZ): the free Lie algebra generated by HZ

a ∈ L1(HZ) = HZ,

[a, b] ∈ L2(HZ) ∼= ∧2HZ,

[a, [b, c]] ∈ L3(HZ) ∼= (HZ ⊗ (∧2HZ))/ ∧3 HZ,

...
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.

Fact

.

.

.

. ..

.

.

There exists an Mg,1-equivariant isomorphism

Γi(π)/Γi+1(π)
∼=−→ Li(HZ)

∈ ∈

[α1, [α2, · · · , αi]] · · · ] 7−→ [α1, [α2, · · · , αi]] · · · ]

where π 3 αj 7−→ αj ∈ HZ.

Iterating expansion

[X, Y ] 7−→ X ⊗ Y − Y ⊗X

gives an (degree preserving) embedding L(HZ) ↪→
∞⊕
i=1

H⊗i
Z .
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Mg,1 ⊂ Aut(π) y Γi(π) for i ≥ 1.

 Mg,1 y π/Γi(π) (π/Γ2(π) = HZ)

.

Definition (Johnson filtration)

.

.

.

. ..

.

.

Mg,1[0] =Mg,1 ⊃Mg,1[1] = Ig,1 ⊃Mg,1[2] ⊃Mg,1[3] ⊃ · · · ,

where

Mg,1[k] := Ker
(
σk :Mg,1 −→ Aut(π/Γk+1(π))

)
.
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.

Definition (The k-th Johnson homomorphism)

.

.

.

. ..

.

.

We have an Mg,1-equivariant homomorphism defined by

τg,1(k) : Mg,1[k] −→ Hom(HZ,Lk+1(HZ))

∈ ∈

f 7−→
(
γ 7→ [f(γ)γ−1]

)
where [f(γ)γ−1] ∈ Γk+1(π)/Γk+2(π) = Lk+1(HZ).

By definition,

Ker τg,1(k) =Mg,1[k + 1],
Im τg,1(k) =Mg,1[k]/Mg,1[k + 1].

Hom(HZ,Lk+1(HZ)) = H∗
Z⊗Lk+1(HZ) PD==== HZ⊗Lk+1(HZ).
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.

Theorem [Morita]

.

.

.

. ..

.

.

.

.
.

1 The image of τk :Mg,1[k]→ HZ ⊗ Lk+1(HZ) is included in

hg,1(k) := Ker
(

HZ ⊗ Lk+1(HZ)
[ · , · ]−−−→ Lk+2(HZ)

)
.

.

.

.

2 The direct sums

Im τg,1 :=
∞⊕

k=1

Im τg,1(k) and h+
g,1 :=

∞⊕
k=1

hg,1(k)

have natural positively graded Lie algebra structures and

τg,1 :=
∞⊕

k=1

τg,1(k) : Im τg,1 −→ h+
g,1

is a Lie algebra embedding.
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.

Problem

.

.

.

. ..

.

.

Determine:

(I) the Lie subalgebra Im τg,1 =
∞⊕

k=1

Im τg,1(k) of h+
g,1.

(II) the abelianization

H1(h+
g,1) = h+

g,1/[h+
g,1, h

+
g,1] =

∞⊕
k=1

H1(h+
g,1)k.

of h+
g,1, where
H1(h+

g,1)1 = hg,1(1)

H1(h+
g,1)k = hg,1(k)

/ ∑
i+j=k
i,j≥1

[hg,1(i), hg,1(j)] (k ≥ 2).
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Remarks

In the following, we consider the rational (Q-)version:

H := H1(Σg; Q) = HZ ⊗Q
τg,1 ⊗Q : Im τg,1 ⊗Q −→ h+

g,1 ⊗Q

For simplicity, we omit “⊗Q”.

By using the Maguns expansion (and its generalization),

Kitano, Kawazumi, Massuyeau

gave other ways to define τg,1.

Kawazumi-Kuno gave a geometric description of τg,1 by using
the completed Goldman Lie algebra.
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Related theory

Aut Fn: Nielsen, Magnus, Andreadakis, T.Satoh

Link theory: Milnor, Habegger-Lin, Orr, Habegger-Masbaum,
Meilhan-Yasuhara

Number theory: Ihara, Oda, Nakamura, Hain, Matsumoto,
Asada, Kaneko, Takao

In this workshop, we shall see the relationship among them!
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Important tools

(I) Representation theory of Sp(2g, Q)

The actions of Mg,1 on Im τg,1 and h+
g,1 descend to those of

Sp(2g, Z) =Mg,1/Ig,1 =Mg,1[0]/Mg,1[1].

 We have an Sp(2g, Z)-equivariant embedding

τg,1 : Im τg,1 −→ h+
g,1.

Im τg,1(k) and hg,1(k) are finite dimensional
Sp(2g, Q)-module.

As pointed out by Asada-Nakamura, τg,1 is in fact an
Sp(2g, Q)-equivariant embedding.
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.

Fact (Representations of Sp(2g, Q))

.

.

.

. ..

.

.


Finite dimensional irreducible

polynomial representations

of Sp(2g, Q)

 ∼=←→
{

Young diagrams
w/ ](rows) ≤ g

}

[431] [13]
[3221]

Example Q = [0] (trivial representation),

H = [1] (fundamental representation),

SkH = [k],

∧2kH = [12k] + [12k−2] + · · ·+ [0],

∧2k+1H = [12k+1] + [12k−1] + · · ·+ [1].
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Irreducible representation Vλ for the Young diagram λ.� �
Example For λ = [431],

.

.
.

1 Take the transpose λ′ = [3221]:

[431]
[3221]

−→

.

.

.

2 Vλ is the minimum Sp(2g, Q)-module containing

vλ := (a1 ∧ a2 ∧ a3)⊗ (a1 ∧ a2)⊗ (a1 ∧ a2)⊗ a1

in
(∧3H)⊗ (∧2H)⊗ (∧2H)⊗ (∧1H).

vλ is called the highest weight vector of Vλ.� �
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Irreducible decomposition of H⊗k

.

Fact

.

.

.

. ..

.

.

Any irreducible subrepresentation Vλ in H⊗k can be detected by a
combination of

.

.

.

1 contractions µi,j : H⊗n −→ H⊗(n−2),

.

.

.

2 projections ∧n : H⊗n −→ ∧nH

as a quotient representation of H⊗k.

(Just detect the highest weight vector vλ.)
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Example 2[21] ⊂ H⊗3 are detected by

∧1,2 : H⊗3 → (∧2H)⊗H (x1 ⊗ x2 ⊗ x3 7→ (x1 ∧ x2)⊗ x3),

∧1,3 : H⊗3 → (∧2H)⊗H (x1 ⊗ x2 ⊗ x3 7→ (x1 ∧ x3)⊗ x2).

In fact, two linearly independent v[21] = (a1 ∧ a2)⊗ a1 are
captured by these maps:

∧1,2(a1 ⊗ a2 ⊗ a1) = v[21], ∧1,3(a1 ⊗ a2 ⊗ a1) = 0,

∧1,2(a1 ⊗ a1 ⊗ a2) = 0, ∧1,3(a1 ⊗ a1 ⊗ a2) = v[21].

Namely,

∧1,2 ⊕ ∧1,3 : H⊗3 −−� 2[21] ⊂ ((∧2H)⊗H)⊕ ((∧2H)⊗H).
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In our setting h+
g,1 =

∞⊕
k=1

hg,1(k),

hg,1(k) is a finite dimensional Sp(2g, Q)-module.

=⇒ hg,1(k) has the irreducible decomposition.

hg,1(k) ⊂ H ⊗ Lk+1(H) ⊂ H⊗(k+2) (Sp(2g, Q)-submodule).

=⇒ The irreducible decomposition of hg,1(k) is obtained by
combinations of contractions and projections in H⊗(k+2).

We may assume that g is sufficiently large (g ≥ 3k).

=⇒ The irreducible decomposition stabilizes.
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(II) Graphical description of the Lie algebra h+
g,1

.

Fact

.

.

.

. ..

.

.

Let

At(H) := Q
{

H-colord tree-shaped
Jacobi diagram

} / (
AS, IHX,
multi-linear

)
.

a b

a

b c

a d

b c

(a, b, c, d ∈ H)

At
k(H): subspace generated by diagrams w/ k trivalent vertices.

At
k(H) ∼= hg,1(k).
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.

Formula

.

.

.

. ..

.

.

Brackets in At(H):












=

∑

1≤s≤p+2

1≤t≤q+2

µ( is , jt )

i1 j1
ip+2 is+1 jt−1

i2 ip+2
j1

j2 jq+2

i1

i3 ip+1
jq+2i4 j3 jq+1 i2 is−1 jt+1

,

S Ss ∪ TtT

where Ss ∪ Tt is obtained by welding S and T at the legs s and t.

Then we have

At
0(H) ∼= sp(2g, Q),

∞⊕
k=1

At
k(H) ∼= h+

g,1

as Lie algebras.

At(H) appears in the theory of finite type invariants (clasper
surgery) for 3-manifolds.
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(III) Hain’s theory

Hain determined the infinitesimal presentation of Ig by using the
Hodge theory (Mixed Hodge Structures). From this,

.

Theorem [Hain]

.

.

.

. ..

.

.

.

.
.

1 The Lie subalgebra Im τg,1 is generated by its degree 1 part
Im τg,1(1) = hg,1(1) = ∧3H.

.

.

.

2 There exists an ideal jg,1 =
∞⊕

k=1

jg,1(k) in h+
g,1 such that

jg,1(k) ∩ Im τg,1(k) = {0} for all k ≥ 3.

Precisely speaking,

jg,1(k) := Ker(hg,1(k)� hg,∗(k))

= Ker
(

H ⊗ (Lk+1(H)/〈ω0〉k+1)
[ · , · ]−−−→ (Lk+2(H)/〈ω0〉k+2)

)
.
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Remarks

Our problem (I) is equivalent to:

.

Problem

.

.

.

. ..

.

.

(I’) Determine the Lie subalgebra of h+
g,1 generated by its degree 1 part

hg,1(1) = Im τg,1(1) = ∧3H.

Im τg,1(k) ⊂ Ker
(
hg,1(k)→ H1(h+

g,1)k)
)

for k ≥ 2.

(i.e. H1(h+
g,1)k ⊂ hg,1(k)/ Im τg,1(k) as Sp(2g, Q)-module.)
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(IV) Trace maps and Enomoto-Satoh’s obstruction

.

Theorem [Morita] (trace map)

.

.

.

. ..

.

.

For k ≥ 2, the composition

Tr2k−1 : hg,1(2k − 1) ⊂ H ⊗ L2k(H) ↪→ H⊗(2k+1)

µ1,2−−→ H⊗(2k−1) proj−−→ S2k−1H

gives
S2k−1H = [2k − 1] ⊂ H1(h+

g,1)2k−1.

(i.e. Tr2k−1 is a non-trivial homomorphism vanishing on brackets.)
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Enomoto-Satoh’s obstruction

.

Theorem [Enomoto-Satoh]

.

.

.

. ..

.

.

For k ≥ 2, consider the composition

ESk : hg,1(k) ⊂ H ⊗ Lk+1(H) ↪→ H⊗(k+2)

µ1,2−−→ H⊗k proj−−→
(
H⊗k

)
Z/kZ,

where Z/kZ y H⊗k is given by the cyclic permutation. Then

Im τg,1(k) ⊂ KerESk.

 ImESk ⊂ hg,1(k)/ Im τg,1(k).

We call the map ESk the ES-obstruction.
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(V) Relation with number theory

In 1980’s, Oda predicted:

Gal(Q/Q) should “appear” in (Coker τg)Sp ⊗ Zp (p:prime).

Nakamura, Matsumoto: proof and related many works.

“Encounter with the Galois obstruction!”
(The first one appears in τg(6).)

.

Problem

.

.

.

. ..

.

.

Describe the Galois image explicitly.

Earlier foundational works for g = 0: Ihara, Deligne.

More recent works for g = 1: Hain-Matsumoto, Nakamura.
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Johnson homomorphims up to degree 6

(I) Previously known facts on Im τg,1 ⊂ h+
g,1 (up to degree 4):

.

Fact

.

.

.

. ..

.

.

Im τg,1(1) = hg,1(1) = ∧3H = [13] + [1] (Johnson),

Im τg,1(2) = hg,1(2) = [22] + [12] + [0] (Hain, Morita),

Im τg,1(3) = [312] + [21] $ hg,1(3) = [312] + [21] + [3]
(Hain, Asada-Nakamura),

Im τg,1(4) = [42] + [313] + 2[31] + [23] + [212] + 2[2]

$ hg,1(4) = [42] + [313] + 2[31] + [23] + 2[212] + 3[2]
(Morita).

Shigeyuki MORITA, Takuya SAKASAI and Masaaki SUZUKI Johnson homomorphisms up to degree 6



(II) Previously known facts on H1(h+
g,1)k (up to degree 4):

.

Fact

.

.

.

. ..

.

.

By definition H1(h+
g,1)1 = hg,1(1) = [13] + [1].

Arguments using Trace map gives

H1(h+
g,1)2 = 0, H1(h+

g,1)3 ∼= S3H = [3], H1(h+
g,1)4 = 0.
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New Results: Degree 5

.

Theorem 1. [Morita-Suzuki-S.] w/ a correction by Enomoto

.

.

.

. ..

.

.

Im τg,1(5) = ([512] + [421] + [331] + [3212] + [2213])

+(2[41] + 2[32] + 2[312] + 2[221] + 2[213])

+([3] + 3[21] + 2[13]) + [1].

hg,1(5)/ Im τg,1(5) = ([5] + [32] + [221] + [15])

+(2[21] + 2[13]) + 2[1].
(completely detected by ES-obstruction)

H1(h+
g,1)5 ∼= S5H = [5]. (only the trace component)

Proof: Computer calculation + ES-obstruction + trace map.
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New Results: Degree 6

.

Theorem 2. [Morita-Suzuki-S.]

.

.

.

. ..

.

.

Im τg,1(6) = ([62]+[521]+[513]+[42]+[431]+2[422]+[4212]

+[414] + 2[3212] + [3221] + [3213] + [24] + [2214])

+(3[51] + 3[42] + 4[412] + 3[32] + 7[321] + 3[313]

+[23] + 5[2212] + 2[214] + [16])

+(4[4] + 6[31] + 9[22] + 6[212] + 4[14])

+(3[2] + 6[12]) + 2[0].
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.

Theorem 2 (continue).

.

.

.

. ..

.

.

hg,1(6)/ Im τg,1(6) = (2[412] + [32] + [321] + [313] + [2212])

+(2[4] + 3[31] + 3[22] + 3[212] + 2[14])

+([2] + 5[12]) + 3[0],

in which the ES-obstruction cannot detect [14] + [12] + [0].

Proof: Theoretical consideration + computer calculations

[14] + [12]: Two proofs by

(1) Checking all patterns of brackets.

(2) Finding a component in the ideal jg,1(6) outside of Im ES6.

[0]: The Galois obstruction (w/ explicit description).

Shigeyuki MORITA, Takuya SAKASAI and Masaaki SUZUKI Johnson homomorphisms up to degree 6



Abelianization of H1(h
+
g,1) (in progress)

.

Problem (bis)

.

.

.

. ..

.

.

(II) Determine the abelianization H1(h+
g,1) =

∞⊕
k=1

H1(h+
g,1)k of h+

g,1.

Background of (II): Kontsevich’s theorem says:

.

Theorem [Kontsevich]

.

.

.

. ..

.

.

There exists an isomorphism

PHn

(
lim

g→∞
h+

g,1

)Sp

2k
∼= H2k−n(Out(Fk+1); Q).

 If H1

(
lim

g→∞
h+

g,1

)Sp = 0, then H2k−3(Out(Fk); Q) = 0 holds

for any k ≥ 2.
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Morita once conjectured that

The trace components
∞⊕

k=1

[2k + 1] gave H1(h+
g,1).

However, Conant-Kassabov-Vogtmann recently disproved it:

.

Theorem [Conant-Kassabov-Vogtmann]

.

.

.

. ..

.

.

There exist much more components other than the trace compo-

nents
∞⊕

k=1

[2k + 1] in H1(h+
g,1).

They use the Eichler-Shimura isomorphism in the theory of
modular forms.
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Motivated by their results, we obtained explicit descriptions for (a
part of) their new components of H1(h+

g,1):

.

Theorem 3. [Morita-Suzuki-S.]

.

.

.

. ..

.

.

.

. . 1 H1(h+
g,1)6 = [31]. (New component in H1(h+

g,1))

.

.

.

2 For k ≥ 3, the composition

H ⊗ L2k+1(H) ↪→ H⊗(2k+2) µ1,3 ◦µ4,2k+1−−−−−−−−→ H⊗(2k−2)

∧1,(2k−2)−−−−−−→ H⊗(2k−4) ⊗ ∧2H

proj⊗ id−−−−−→ S2k−4H ⊗ ∧2H

gives
[(2k − 3) 1] ⊂ H1(h+

g,1)2k.

Proof: Combinatorial argument w/o using computer.
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.

Corollary [Morita-Suzuki-S.]

.

.

.

. ..

.

.

Constructions of explicit Sp-invariant cocycles of h+
g,1 corresponding

to homology classes in

H11(Out(F8); Q), H15(Out(F10); Q), H17(Out(F11); Q),
H19(Out(F12); Q), . . . .

(Not yet known whether they are non-trivial.)

Example Since

([31]⊗ [3]⊗ [5])Sp ∼= Q,

([31]⊗ [5]⊗ [7])Sp ∼= Q,

we obtain Sp-invariant cohomology classes in H3(H1(h+
g,1))

Sp
14 and

H3(H1(h+
g,1))

Sp
18 . Fin.
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