The mod 2 Johnson homomorphism and

 the abelianization of the level 2 mapping class group of a non-orientable surfaceSusumu Hirose ${ }^{1}$ Masatoshi Sato ${ }^{2}$
${ }^{1}$ Tokyo University of Science
${ }^{2}$ Gifu University
June 5, 2013

N_{g} : the non-orientable surface of genus g.

$$
\mathcal{M}\left(N_{g}\right)=\frac{\operatorname{Diff}\left(N_{g}\right)}{\text { isotopy }} \quad \text { the mapping class group of } N_{g}
$$

Generators for $\mathcal{M}\left(N_{g}\right)$

c : a simple closed curve on N_{g}.
c is an A-circle \Leftrightarrow the regular neighborhood of c is an annulus. c is an M-circle \Leftrightarrow the regular neighborhood of c is a Möbius band.

Generators for $\mathcal{M}\left(N_{g}\right)$

c : a simple closed curve on N_{g}.
c is an A-circle \Leftrightarrow the regular neighborhood of c is an annulus.
c is an M-circle \Leftrightarrow the regular neighborhood of c is a Möbius band.

c : an A-circle

t_{c} : the Dehn twist about c.

Generators for $\mathcal{M}\left(N_{g}\right)$

c : a simple closed curve on N_{g}.
c is an A-circle \Leftrightarrow the regular neighborhood of c is an annulus.
c is an M-circle \Leftrightarrow the regular neighborhood of c is a Möbius band.

c : an A-circle

t_{c} : the Dehn twist about c.
Lickorish (1963) : $\mathcal{M}\left(N_{g}\right)$ is not generated by Dehn twists.

Generators for $\mathcal{M}\left(N_{g}\right)$

c : a simple closed curve on N_{g}.
c is an A-circle \Leftrightarrow the regular neighborhood of c is an annulus.
c is an M-circle \Leftrightarrow the regular neighborhood of c is a Möbius band.

c : an A-circle

t_{c} : the Dehn twist about c.
Lickorish (1963) : $\mathcal{M}\left(N_{g}\right)$ is not generated by Dehn twists.
Y-homeomorphisms are needed.
$a:$ an A-circle, m : an M-circle such that a and m intersects transversely in one point.
$a:$ an A-circle, $m:$ an M-circle such that a and m intersects transversely in one point.

$a:$ an A-circle, $m:$ an M-circle such that a and m intersects transversely in one point.

$a:$ an A-circle, $m:$ an M-circle such that a and m intersects transversely in one point.

$a:$ an A-circle, $m:$ an M-circle such that a and m intersects transversely in one point.

$a:$ an A-circle, $m:$ an M-circle such that a and m intersects transversely in one point.

$a:$ an A-circle, $m:$ an M-circle such that a and m intersects transversely in one point.

$a:$ an A-circle, m : an M-circle such that a and m intersects transversely in one point.

$Y_{m, a}(x)= \begin{cases}\varphi^{-1} \circ Y \circ \varphi(x) & \text { if } x \text { is in the neighborhood of } a \cup m, \\ x & \text { otherwise. }\end{cases}$
$a:$ an A-circle, m : an M-circle such that a and m intersects transversely in one point.

$$
Y_{m, a}(x)= \begin{cases}\varphi^{-1} \circ Y \circ \varphi(x) & \text { if } x \text { is in the neighborhood of } a \cup m, \\ x & \text { otherwise. }\end{cases}
$$

Lickorish (1963) : $\mathcal{M}\left(N_{g}\right)$ is generated by Dehn-twists and Y-homeomorphisms.

Define $D: \mathcal{M}\left(N_{g}\right) \rightarrow \mathbb{Z}_{2}=\{+1,-1\}$ by

$$
D(f)=\operatorname{det}\left(f_{*}: H_{1}\left(N_{g} ; \mathbb{R}\right) \rightarrow H_{1}\left(N_{g} ; \mathbb{R}\right)\right),
$$

then $D(Y$-homeomorphism $)=-1, D($ Dehn twist $)=+1$.
Lickorish (1965) :
ker $D=$ the subgroup of $\mathcal{M}\left(N_{g}\right)$ generated by all Dehn twists.

Question: Is $\mathcal{M}\left(N_{g}\right)$ generated by Y -homeo's?

Question: Is $\mathcal{M}\left(N_{g}\right)$ generated by Y -homeo's ?
Answer: NO! (Since any Y-homeo. acts trivially on $H_{1}\left(N_{g} ; \mathbb{Z}_{2}\right)$.)

Question: Is $\mathcal{M}\left(N_{g}\right)$ generated by Y -homeo's ?
Answer: NO! (Since any Y-homeo. acts trivially on $H_{1}\left(N_{g} ; \mathbb{Z}_{2}\right)$.)
$\cdot: H_{1}\left(N_{g} ; \mathbb{Z}_{2}\right) \times H_{1}\left(N_{g} ; \mathbb{Z}_{2}\right) \rightarrow \mathbb{Z}_{2}: \bmod 2$ intersection form. $\operatorname{Aut}\left(H_{1}\left(N_{g} ; \mathbb{Z}_{2}\right), \cdot\right)$: the group of automorphisms over $H_{1}\left(N_{g} ; \mathbb{Z}_{2}\right)$ preserving .
Theorem (McCarthy and Pinkall (preprint, 1984))
The natural homomorphism $\rho_{2}: \mathcal{M}\left(N_{g}\right) \rightarrow \operatorname{Aut}\left(H_{1}\left(N_{g} ; \mathbb{Z}_{2}\right), \cdot\right)$ is surjective.

Question: Is $\mathcal{M}\left(N_{g}\right)$ generated by Y -homeo's ?
Answer: NO! (Since any Y-homeo. acts trivially on $H_{1}\left(N_{g} ; \mathbb{Z}_{2}\right)$.)
$\cdot: H_{1}\left(N_{g} ; \mathbb{Z}_{2}\right) \times H_{1}\left(N_{g} ; \mathbb{Z}_{2}\right) \rightarrow \mathbb{Z}_{2}: \bmod 2$ intersection form. Aut $\left(H_{1}\left(N_{g} ; \mathbb{Z}_{2}\right), \cdot\right)$: the group of automorphisms over $H_{1}\left(N_{g} ; \mathbb{Z}_{2}\right)$ preserving -
Theorem (McCarthy and Pinkall (preprint, 1984))
The natural homomorphism $\rho_{2}: \mathcal{M}\left(N_{g}\right) \rightarrow \operatorname{Aut}\left(H_{1}\left(N_{g} ; \mathbb{Z}_{2}\right), \cdot\right)$ is surjective.

Level 2 mapping class group: $\Gamma_{2}\left(N_{g}\right):=\operatorname{ker} \rho_{2}$

Theorem (Błażej Szepietowski (Geom.Dedicata(2011)))

$\Gamma_{2}\left(N_{g}\right)$ is generated by Y-homeomorphisms.

$$
\text { If } g=3, \Gamma_{2}\left(N_{g}\right) \cong\left\{A \in G L(2, \mathbb{Z}) \mid A \equiv E_{2} \bmod 2\right\} .
$$

(B. Szepietowski)

Finite system of generators for $\Gamma_{2}\left(N_{g}\right)$, when $g \geq 4$.
$\left\{i_{1}, \ldots, i_{k}\right\} \subset\{1, \ldots, g\}$
$\alpha_{\left\{i_{1}, \ldots, i_{k}\right\}}=$

$Y_{i_{1} ; i_{2}, \ldots, i_{k}}:=Y_{\alpha_{i_{1}}, \alpha_{\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}}}$
$T_{i_{1}, \ldots, i_{k}}:=t_{\alpha_{\left\{i_{1}, \ldots, i_{k}\right\}}}=$ the Dehn twist about $\alpha_{\left\{i_{1}, \ldots, i_{k}\right\}}$.
Theorem (Błażej Szepietowski (Kodai Math. J. (2013)))
When $g \geq 4, \Gamma_{2}\left(N_{g}\right)$ is generated by the following elements:
(1) $Y_{i ; j}$ for $i \in\{1, \cdots, g-1\}, j \in\{1, \cdots, g\}$ and $i \neq j$,
(2) $T_{i, j, k, l}^{2}$ for $i<j<k<l$.

$$
H_{1}\left(\Gamma_{2}\left(N_{g}\right) ; \mathbb{Z}\right)=\Gamma_{2}\left(N_{g}\right) /\left[\Gamma_{2}\left(N_{g}\right), \Gamma_{2}\left(N_{g}\right)\right]
$$

B. Szepietowski (Geom. Dedicata (2011)) : $\Gamma_{2}\left(N_{g}\right)$ is generated by involutions. $\Rightarrow H_{1}\left(\Gamma_{2}\left(N_{g}\right) ; \mathbb{Z}\right)$ is a $\mathbb{Z} / 2 \mathbb{Z}$-module.
B. Szepietowski (Kodai Math. J. (2013)) \Rightarrow

$$
\operatorname{dim}_{\mathbb{Z} / 2 \mathbb{Z}} H_{1}\left(\Gamma_{2}\left(N_{g}\right) ; \mathbb{Z}\right) \leq(g-1)^{2}+\binom{g}{4}
$$

$$
H_{1}\left(\Gamma_{2}\left(N_{g}\right) ; \mathbb{Z}\right)=\Gamma_{2}\left(N_{g}\right) /\left[\Gamma_{2}\left(N_{g}\right), \Gamma_{2}\left(N_{g}\right)\right]
$$

B. Szepietowski (Geom. Dedicata (2011)) : $\Gamma_{2}\left(N_{g}\right)$ is generated by involutions. $\Rightarrow H_{1}\left(\Gamma_{2}\left(N_{g}\right) ; \mathbb{Z}\right)$ is a $\mathbb{Z} / 2 \mathbb{Z}$-module.
B. Szepietowski (Kodai Math. J. (2013)) \Rightarrow

$$
\operatorname{dim}_{\mathbb{Z} / 2 \mathbb{Z}} H_{1}\left(\Gamma_{2}\left(N_{g}\right) ; \mathbb{Z}\right) \leq(g-1)^{2}+\binom{g}{4}
$$

By mod2 Johnson homomorphism (explained later),

$$
\operatorname{dim}_{\mathbb{Z} / 2 \mathbb{Z}} H_{1}\left(\Gamma_{2}\left(N_{g}\right) ; \mathbb{Z}\right) \geq\binom{ g}{2}+\binom{g}{3}
$$

$$
H_{1}\left(\Gamma_{2}\left(N_{g}\right) ; \mathbb{Z}\right)=\Gamma_{2}\left(N_{g}\right) /\left[\Gamma_{2}\left(N_{g}\right), \Gamma_{2}\left(N_{g}\right)\right]
$$

B. Szepietowski (Geom. Dedicata (2011)) : $\Gamma_{2}\left(N_{g}\right)$ is generated by involutions. $\Rightarrow H_{1}\left(\Gamma_{2}\left(N_{g}\right) ; \mathbb{Z}\right)$ is a $\mathbb{Z} / 2 \mathbb{Z}$-module.
B. Szepietowski (Kodai Math. J. (2013)) \Rightarrow

$$
\operatorname{dim}_{\mathbb{Z} / 2 \mathbb{Z}} H_{1}\left(\Gamma_{2}\left(N_{g}\right) ; \mathbb{Z}\right) \leq(g-1)^{2}+\binom{g}{4}
$$

By mod2 Johnson homomorphism (explained later),

$$
\operatorname{dim}_{\mathbb{Z} / 2 \mathbb{Z}} H_{1}\left(\Gamma_{2}\left(N_{g}\right) ; \mathbb{Z}\right) \geq\binom{ g}{2}+\binom{g}{3}
$$

We have better upper bound !!

Lemma 1

When $g \geq 4, \Gamma_{2}\left(N_{g}\right)$ is generated by the following elements:
(1) $Y_{i ; j}$ for $i \in\{1, \cdots, g-1\}, j \in\{1, \cdots, g\}$ and $i \neq j$,
(2) $T_{1, j, k, l}^{2}$ for $j<k<l$.

This Lemma \Rightarrow

$$
\operatorname{dim}_{\mathbb{Z} / 2 \mathbb{Z}} H_{1}\left(\Gamma_{2}\left(N_{g}\right) ; \mathbb{Z}\right) \leq\binom{ g}{2}+\binom{g}{3} .
$$

The lower bound \Rightarrow

$$
H_{1}\left(\Gamma_{2}\left(N_{g}\right) ; \mathbb{Z}\right) \cong(\mathbb{Z} / 2 \mathbb{Z})^{\binom{g}{2}+\binom{g}{3}} .
$$

Lemma 1

When $g \geq 4, \Gamma_{2}\left(N_{g}\right)$ is generated by the following elements:
(1) $Y_{i ; j}$ for $i \in\{1, \cdots, g-1\}, j \in\{1, \cdots, g\}$ and $i \neq j$,
(2) $T_{1, j, k, l}^{2}$ for $j<k<l$.

This Lemma \Rightarrow

$$
\operatorname{dim}_{\mathbb{Z} / 2 \mathbb{Z}} H_{1}\left(\Gamma_{2}\left(N_{g}\right) ; \mathbb{Z}\right) \leq\binom{ g}{2}+\binom{g}{3} .
$$

The lower bound \Rightarrow

$$
H_{1}\left(\Gamma_{2}\left(N_{g}\right) ; \mathbb{Z}\right) \cong(\mathbb{Z} / 2 \mathbb{Z})^{\left(\frac{g}{2}\right)+\binom{g}{3}} .
$$

Corollary

When $g \geq 4$, the set of elements given in the above Lemma is a minimal set of generators for $\Gamma_{2}\left(N_{g}\right)$.

Proof of Lemma 1

$G=$ the subgroup of $\mathcal{M}\left(N_{g}\right)$ generated by
(1) $Y_{i ; j}$ for $i \in\{1, \cdots, g-1\}, j \in\{1, \cdots, g\}$ and $i \neq j$,
(2) $T_{1, j, k, l}^{2}$ for $j<k<l$.

CONVENTION: $\phi_{1} \phi_{2} \in \mathcal{M}\left(N_{g}\right)$ means apply ϕ_{1} first, and then ϕ_{2}.

$N=$ the regular neighborhood of $\alpha_{1, j} \cup \alpha_{j, k} \cup \alpha_{k, l} \cup \alpha_{l, m} \cong \Sigma_{2,1}$, $B=\partial N$.

$N=$ the regular neighborhood of $\alpha_{1, j} \cup \alpha_{j, k} \cup \alpha_{k, l} \cup \alpha_{l, m} \cong \Sigma_{2,1}$, $B=\partial N$.
$N^{\prime}=$ the regular neighborhood of $\alpha_{1, j} \cup \alpha_{j, k} \cup \alpha_{k, l} \cup \alpha_{l, m} \cup \alpha_{1, j, k, l}$ in $N \cong \Sigma_{2,2}$,

$N=$ the regular neighborhood of $\alpha_{1, j} \cup \alpha_{j, k} \cup \alpha_{k, l} \cup \alpha_{l, m} \cong \Sigma_{2,1}$, $B=\partial N$.
$N^{\prime}=$ the regular neighborhood of $\alpha_{1, j} \cup \alpha_{j, k} \cup \alpha_{k, l} \cup \alpha_{l, m} \cup \alpha_{1, j, k, l}$ in $N \cong \Sigma_{2,2}$,
$\partial N^{\prime}=B \cup C, C$ bounds a disk in N_{g}.

For short, $a=T_{\alpha_{1, j}}, b=T_{\alpha_{j, k}}, c=T_{\alpha_{k, l}}, d=T_{\alpha_{l, m}}, e=T_{\alpha_{1, j, k, l}}$. By chain relation, $(a b c d e)^{6}=T_{B} \cdot T_{C}=T_{B}$.

For short, $a=T_{\alpha_{1, j}}, b=T_{\alpha_{j, k}}, c=T_{\alpha_{k, l}}, d=T_{\alpha_{l, m}}, e=T_{\alpha_{1, j, k, l}}$. By chain relation, $(a b c d e)^{6}=T_{B} \cdot T_{C}=T_{B}$.
By braid relations,

$$
\begin{aligned}
(a b c d e)^{6}= & a b c d e e d c b a \cdot b c d e e d c b \cdot c d e e d c \cdot d e e d \cdot e e \\
= & a b c d e e \bar{d} \bar{d} \bar{c} \bar{b} \cdot a b c d d \bar{c} \bar{b} \bar{a} \cdot a b c c \bar{b} \bar{a} \cdot a b b \bar{a} \cdot a a \\
& \cdot b c d e e \bar{d} \bar{c} \bar{b} \cdot b c d d \bar{c} \bar{b} \cdot b c c \bar{b} \cdot b b \\
& \cdot c d e e \bar{d} \bar{c} \cdot c d d \bar{c} \cdot c c \cdot d e e \bar{d} \cdot d d \cdot e e
\end{aligned}
$$

For short, $a=T_{\alpha_{1, j}}, b=T_{\alpha_{j, k}}, c=T_{\alpha_{k, l}}, d=T_{\alpha_{l, m}}, e=T_{\alpha_{1, j, k, l}}$. By chain relation, $(a b c d e)^{6}=T_{B} \cdot T_{C}=T_{B}$.
By braid relations,

$$
\begin{aligned}
(a b c d e)^{6}= & a b c d e e d c b a \cdot b c d e e d c b \cdot c d e e d c \cdot \text { deed } \cdot e e \\
= & T_{j, k, l, m}{ }^{2} \cdot(a b c d \bar{c} \bar{b} \bar{a})^{2} \cdot(a b c \bar{b} \bar{b})^{2} \cdot(a b \bar{a})^{2} \cdot a^{2} \\
& \cdot(b c d e \bar{d} \bar{c} \bar{b})^{2} \cdot(b c d \bar{c} \bar{b})^{2} \cdot(b c \bar{b})^{2} \cdot b^{2} \\
& \cdot(c d e \bar{d} \bar{c})^{2} \cdot(c d \bar{c})^{2} \cdot c^{2} \cdot(d e \bar{d})^{2} \cdot d^{2} \cdot e^{2} .
\end{aligned}
$$

$$
\begin{aligned}
T_{B}=(a b c d e)^{6}= & T_{j, k, l, m}{ }^{2} \cdot(a b c d \bar{c} \bar{b} \bar{b})^{2} \cdot(a b c \bar{b} \bar{a})^{2} \cdot(a b \bar{a})^{2} \cdot a^{2} \\
& \cdot(b c d e \bar{d} \bar{c} \bar{b})^{2} \cdot(b c d \bar{c} \bar{b})^{2} \cdot(b c \bar{b})^{2} \cdot b^{2} \\
& \cdot(c d e \bar{d} \bar{c})^{2} \cdot(c d \bar{c})^{2} \cdot c^{2} \cdot(d e \bar{d})^{2} \cdot d^{2} \cdot e^{2}
\end{aligned}
$$

$a b c d \bar{c} \bar{b} \bar{a}=$ Dehn twist about $\left(\alpha_{l, m}\right) \bar{c} \bar{b} \bar{a}=\left(\alpha_{1, m}\right) Y_{m ; j}^{-1} Y_{m ; k}^{-1} Y_{m ; l}^{-1}$
$\Rightarrow(a b c d \bar{c} \bar{b} \bar{a})^{2}=Y_{m ; l} Y_{m ; k} Y_{m ; j} T_{1, m}^{2} Y_{m ; j}^{-1} Y_{m ; k}^{-1} Y_{m ; l}^{-1}$

$$
\begin{aligned}
T_{B}=(a b c d e)^{6}= & T_{j, k, l, m}{ }^{2} \cdot(a b c d \bar{c} \bar{b} \bar{b})^{2} \cdot(a b c \bar{b} \bar{a})^{2} \cdot(a b \bar{a})^{2} \cdot a^{2} \\
& \cdot(b c d e \bar{d} \bar{c} \bar{b})^{2} \cdot(b c d \bar{c} \bar{b})^{2} \cdot(b c \bar{b})^{2} \cdot b^{2} \\
& \cdot(c d e \bar{d} \bar{c})^{2} \cdot(c d \bar{c})^{2} \cdot c^{2} \cdot(d e \bar{d})^{2} \cdot d^{2} \cdot e^{2}
\end{aligned}
$$

$a b c d \bar{c} \bar{b} \bar{a}=$ Dehn twist about $\left(\alpha_{l, m}\right) \bar{c} \bar{b} \bar{a}=\left(\alpha_{1, m}\right) Y_{m ; j}^{-1} Y_{m ; k}^{-1} Y_{m ; l}^{-1}$
$\Rightarrow(a b c d \bar{c} \bar{b} \bar{b})^{2}=Y_{m ; l} Y_{m ; k} Y_{m ; j} T_{1, m}^{2} Y_{m ; j}^{-1} Y_{m ; k}^{-1} Y_{m ; l}^{-1}$
$T_{1, m}^{2}=Y_{1 ; m}^{-1} Y_{m ; 1}$ (by B. Szepietowski)
$\Rightarrow(a b c d \bar{c} \bar{b} \bar{a})^{2}=Y_{m ; l} Y_{m ; k} Y_{m ; j} Y_{1 ; m}^{-1} Y_{m ; 1} Y_{m ; j}^{-1} Y_{m ; k}^{-1} Y_{m ; l}^{-1} \in G$

$$
\begin{aligned}
T_{B}=(a b c d e)^{6}= & T_{j, k, l, m}{ }^{2} \cdot(a b c d \bar{c} \bar{b} \bar{b})^{2} \cdot(a b c \bar{b} \bar{a})^{2} \cdot(a b \bar{a})^{2} \cdot a^{2} \\
& \cdot(b c d e \bar{d} \bar{c} \bar{b})^{2} \cdot(b c d \bar{c} \bar{b})^{2} \cdot(b c \bar{b})^{2} \cdot b^{2} \\
& \cdot(c d e \bar{d} \bar{c})^{2} \cdot(c d \bar{c})^{2} \cdot c^{2} \cdot(d e \bar{d})^{2} \cdot d^{2} \cdot e^{2}
\end{aligned}
$$

By the same method, $(a b c \bar{b} \bar{a})^{2},(a b \bar{a})^{2}, a^{2},(b c d e \bar{d} \bar{c} \bar{b})^{2},(b c d \bar{c} \bar{b})^{2}$, $(b c \bar{b})^{2}, b^{2},(c d e \bar{d} \bar{c})^{2},(c d \bar{c})^{2}, c^{2},(d e \bar{d})^{2}, d^{2}, e^{2}$ are in G.

$$
T_{B}=(a b c d e)^{6}=T_{j, k, l, m}{ }^{2} \cdot \text { an element of } G \text {. }
$$

\exists simple closed curves β_{n} in N_{g} such that

$$
T_{B}=\left(\prod_{n \neq i, j, k, l, m} Y_{\alpha_{n}, \beta_{n}}\right)^{2} .
$$

By using the non-orientable analogy of forgetful exact sequence (or Birman exact sequence), $Y_{\alpha_{n}, \beta_{n}} \in G$ (by B. Szepietowski). $\Rightarrow T_{j, k, l, m}^{2} \in G$.

In the rest of the talk,
I explain

- the mod d Johnson homomorphism,
- the mod d Johnson filtration,
- the abelianization of the level 2 mapping class group of a nonorientable surface.

Magnus expansion

$F_{n}=\left\langle x_{1}, x_{2}, \cdots, x_{n}\right\rangle$,
R : a commutative ring with a unit element 1 , $H:=H_{1}\left(F_{n} ; R\right)$,

Magnus expansion

$F_{n}=\left\langle x_{1}, x_{2}, \cdots, x_{n}\right\rangle$,
R : a commutative ring with a unit element 1 ,
$H:=H_{1}\left(F_{n} ; R\right)$,
$\hat{T}=\prod_{p=0}^{\infty} H^{\otimes p}:$ the completed tensor algebra generated by H,
$\hat{T}_{m}=\prod_{p \geq m}^{\infty} H^{\otimes p}:$ an ideal consisting of (degree $\geq m$)-part.
The subset $1+\hat{T}_{1}$ is a subgroup of \hat{T} with respect to the multiplication.

Magnus expansion

$F_{n}=\left\langle x_{1}, x_{2}, \cdots, x_{n}\right\rangle$,
R : a commutative ring with a unit element 1 ,
$H:=H_{1}\left(F_{n} ; R\right)$,
$\hat{T}=\prod_{p=0}^{\infty} H^{\otimes p}:$ the completed tensor algebra generated by H,
$\hat{T}_{m}=\prod_{p \geq m}^{\infty} H^{\otimes p}:$ an ideal consisting of (degree $\geq m$)-part.
The subset $1+\hat{T}_{1}$ is a subgroup of \hat{T} with respect to the multiplication. The homomorphism

$$
\begin{aligned}
\theta: F_{n} & \rightarrow 1+\hat{T}_{1} \\
\quad x_{i} & \mapsto 1+\left[x_{i}\right],
\end{aligned}
$$

is called the standard Magnus expansion.
$\theta_{p}: F_{n} \rightarrow H^{\otimes p}:$ the projection of θ to the degree p part.
Proposition (Magnus)
Let $\Gamma(0)=F_{n}, \Gamma(p+1)=\left[\Gamma(p), F_{n}\right]$.
When $R=\mathbb{Z}$,

$$
\Gamma(m)=\bigcap_{p=1}^{m} \operatorname{Ker} \theta_{p} .
$$

$\theta_{p}: F_{n} \rightarrow H^{\otimes p}:$ the projection of θ to the degree p part.
Proposition (Magnus)
Let $\Gamma(0)=F_{n}, \Gamma(p+1)=\left[\Gamma(p), F_{n}\right]$.
When $R=\mathbb{Z}$,

$$
\Gamma(m)=\bigcap_{p=1}^{m} \operatorname{Ker} \theta_{p} .
$$

The sequence of subgroups

$$
\operatorname{IA}_{n}(m)=\operatorname{Ker}\left(\operatorname{Aut} F_{n} \rightarrow \operatorname{Aut}\left(F_{n} / \Gamma(m)\right)\right)
$$

is called the Johnson filtration.

Johnson homomorphisms via Magnus expansion $H=H_{1}\left(F_{n} ; R\right)$.

Theorem (Kawazumi)
For any generalized Magnus expansion θ, the map

$$
\begin{aligned}
\tau_{1}: \text { Aut } F_{n} & \rightarrow \operatorname{Hom}\left(H, H^{\otimes 2}\right) \\
\varphi & \mapsto\left([\gamma] \mapsto \theta_{2}(\gamma)-\varphi_{*} \theta_{2}\left(\varphi^{-1}(\gamma)\right)\right.
\end{aligned}
$$

is a crossed homomorphism.

Johnson homomorphisms via Magnus expansion $H=H_{1}\left(F_{n} ; R\right)$.

Theorem (Kawazumi)
For any generalized Magnus expansion θ, the map

$$
\begin{aligned}
\tau_{1}: \text { Aut } F_{n} & \rightarrow \operatorname{Hom}\left(H, H^{\otimes 2}\right) \\
\varphi & \mapsto\left([\gamma] \mapsto \theta_{2}(\gamma)-\varphi_{*} \theta_{2}\left(\varphi^{-1}(\gamma)\right)\right.
\end{aligned}
$$

is a crossed homomorphism. When $R=\mathbb{Z}$, the homomorphism

$$
\begin{aligned}
& \tau_{m}: I A_{n}(m) \rightarrow \operatorname{Hom}\left(H, H^{\otimes m+1}\right) \\
& \quad \varphi \mapsto\left([\gamma] \mapsto \theta_{m+1}(\gamma)-\theta_{m+1}\left(\varphi^{-1}(\gamma)\right)\right.
\end{aligned}
$$

is equal to the m-th Johnson homomorphism,

Johnson homomorphisms via Magnus expansion $H=H_{1}\left(F_{n} ; R\right)$.

Theorem (Kawazumi)
For any generalized Magnus expansion θ, the map

$$
\begin{aligned}
\tau_{1}: \text { Aut } F_{n} & \rightarrow \operatorname{Hom}\left(H, H^{\otimes 2}\right) \\
\varphi & \mapsto\left([\gamma] \mapsto \theta_{2}(\gamma)-\varphi_{*} \theta_{2}\left(\varphi^{-1}(\gamma)\right)\right.
\end{aligned}
$$

is a crossed homomorphism. When $R=\mathbb{Z}$, the homomorphism

$$
\begin{gathered}
\tau_{m}: I A_{n}(m) \rightarrow \operatorname{Hom}\left(H, H^{\otimes m+1}\right) \\
\varphi \mapsto\left([\gamma] \mapsto \theta_{m+1}\left(\varphi(\gamma) \gamma^{-1}\right)\right)
\end{gathered}
$$

is equal to the m-th Johnson homomorphism,

$\bmod d$ Johnson filtration

Consider the case when $R=\mathbb{Z} / d \mathbb{Z}$, and $H=H_{1}\left(F_{n} ; \mathbb{Z} / d \mathbb{Z}\right)$.

$\bmod d$ Johnson filtration

Consider the case when $R=\mathbb{Z} / d \mathbb{Z}$, and $H=H_{1}\left(F_{n} ; \mathbb{Z} / d \mathbb{Z}\right)$.
Denote by $\Gamma[d](m)=\bigcap_{p=1}^{m} \operatorname{Ker} \theta_{p}$, and
$\operatorname{IA}[d](m)=\operatorname{Ker}\left(\operatorname{Aut} F_{n} \rightarrow \operatorname{Aut}\left(F_{n} / \Gamma[d](m)\right)\right.$.

$\bmod d$ Johnson filtration

Consider the case when $R=\mathbb{Z} / d \mathbb{Z}$, and $H=H_{1}\left(F_{n} ; \mathbb{Z} / d \mathbb{Z}\right)$.
Denote by $\Gamma[d](m)=\bigcap_{p=1}^{m} \operatorname{Ker} \theta_{p}$, and

$$
\operatorname{IA}[d](m)=\operatorname{Ker}\left(\operatorname{Aut} F_{n} \rightarrow \operatorname{Aut}\left(F_{n} / \Gamma[d](m)\right)\right.
$$

The first one

$$
\text { Aut } F_{n}[d]:=\operatorname{IA}[d](1)=\operatorname{Ker}\left(\operatorname{Aut} F_{n} \rightarrow \operatorname{Aut} H_{1}\left(F_{n} ; \mathbb{Z} / d \mathbb{Z}\right)\right)
$$

is called the level d subgroup of $\operatorname{Aut} F_{n}$.

$\bmod d$ Johnson filtration

Consider the case when $R=\mathbb{Z} / d \mathbb{Z}$, and $H=H_{1}\left(F_{n} ; \mathbb{Z} / d \mathbb{Z}\right)$.
Denote by $\Gamma[d](m)=\bigcap_{p=1}^{m} \operatorname{Ker} \theta_{p}$, and

$$
\operatorname{IA}[d](m)=\operatorname{Ker}\left(\operatorname{Aut} F_{n} \rightarrow \operatorname{Aut}\left(F_{n} / \Gamma[d](m)\right) .\right.
$$

The first one

$$
\text { Aut } F_{n}[d]:=\operatorname{IA}[d](1)=\operatorname{Ker}\left(\operatorname{Aut} F_{n} \rightarrow \text { Aut } H_{1}\left(F_{n} ; \mathbb{Z} / d \mathbb{Z}\right)\right)
$$

is called the level d subgroup of $\operatorname{Aut} F_{n}$. If we restrict the crossed homomorphism

$$
\begin{aligned}
\tau_{1}: \text { Aut } F_{n} & \rightarrow \operatorname{Hom}\left(H, H^{\otimes 2}\right), \\
\varphi & \mapsto\left([\gamma] \mapsto \theta_{2}(\gamma)-\varphi_{*} \theta_{2}\left(\varphi^{-1}(\gamma)\right)\right.
\end{aligned}
$$

to Aut $F_{n}[d]$, we have a homomorphism in the same way.
(We will not use it in this talk but) we also have the m-th mod d Johnson homomorphism

$$
\begin{aligned}
\tau_{m}: & \mathrm{IA}[d](m) \rightarrow \operatorname{Hom}\left(H, H^{\otimes m+1}\right) \\
& \varphi \mapsto\left([\gamma] \mapsto \theta_{m+1}(\gamma)-\theta_{m+1}\left(\varphi^{-1}(\gamma)\right)\right.
\end{aligned}
$$

(We will not use it in this talk but) we also have the m-th mod d Johnson homomorphism

$$
\begin{aligned}
\tau_{m}: & : \operatorname{IA}[d](m) \rightarrow \operatorname{Hom}\left(H, H^{\otimes m+1}\right) \\
& \varphi \mapsto\left([\gamma] \mapsto \theta_{m+1}(\gamma)-\theta_{m+1}\left(\varphi^{-1}(\gamma)\right)\right.
\end{aligned}
$$

Note that the mod d Johnson filtration

$$
\cdots \subset \operatorname{IA}[d](3) \subset \operatorname{IA}[d](2) \subset \operatorname{IA}[d](1)=\operatorname{Aut} F_{n}[d]
$$

are finite index normal subgroups of Aut F_{n}.

Mapping class groups for orientable surfaces

In the following, we assume $g \geq 4$.
Let

$$
\mathcal{M}\left(\Sigma_{g, 1}\right)=\frac{\operatorname{Diff}_{+}\left(\Sigma_{g, 1}, \partial \Sigma_{g, 1}\right)}{\text { isotopy rel } \partial \Sigma_{g, 1}}
$$

Mapping class groups for orientable surfaces

In the following, we assume $g \geq 4$.
Let

$$
\mathcal{M}\left(\Sigma_{g, 1}\right)=\frac{\operatorname{Diff}_{+}\left(\Sigma_{g, 1}, \partial \Sigma_{g, 1}\right)}{\text { isotopy rel } \partial \Sigma_{g, 1}}
$$

The action $\mathcal{M}\left(\Sigma_{g, 1}\right) \curvearrowright \pi_{1} \Sigma_{g, 1} \cong F_{2 g}$ induces an injection $\mathcal{M}\left(\Sigma_{g, 1}\right) \subset$ Aut $F_{2 g}$.

Mapping class groups for orientable surfaces

In the following, we assume $g \geq 4$.
Let

$$
\mathcal{M}\left(\Sigma_{g, 1}\right)=\frac{\operatorname{Diff}_{+}\left(\Sigma_{g, 1}, \partial \Sigma_{g, 1}\right)}{\text { isotopy rel } \partial \Sigma_{g, 1}}
$$

The action $\mathcal{M}\left(\Sigma_{g, 1}\right) \curvearrowright \pi_{1} \Sigma_{g, 1} \cong F_{2 g}$ induces an injection $\mathcal{M}\left(\Sigma_{g, 1}\right) \subset$ Aut $F_{2 g}$.

Let $\Gamma_{d}\left(\Sigma_{g, 1}\right)$ be the level d mapping class group of $\Sigma_{g, 1}$. Let $H=H_{1}\left(\Sigma_{g, 1} ; \mathbb{Z} / d \mathbb{Z}\right)$.

Mapping class groups for orientable surfaces

In the following, we assume $g \geq 4$.
Let

$$
\mathcal{M}\left(\Sigma_{g, 1}\right)=\frac{\operatorname{Diff}_{+}\left(\Sigma_{g, 1}, \partial \Sigma_{g, 1}\right)}{\text { isotopy rel } \partial \Sigma_{g, 1}}
$$

The action $\mathcal{M}\left(\Sigma_{g, 1}\right) \curvearrowright \pi_{1} \Sigma_{g, 1} \cong F_{2 g}$ induces an injection $\mathcal{M}\left(\Sigma_{g, 1}\right) \subset$ Aut $F_{2 g}$.

Let $\Gamma_{d}\left(\Sigma_{g, 1}\right)$ be the level d mapping class group of $\Sigma_{g, 1}$. Let $H=H_{1}\left(\Sigma_{g, 1} ; \mathbb{Z} / d \mathbb{Z}\right)$.
The restriction of the crossed homomorphism

$$
\tau_{1}: \mathcal{M}\left(\Sigma_{g, 1}\right) \rightarrow \operatorname{Hom}\left(H, H^{\otimes 2}\right)
$$

to the level d mapping class group $\Gamma_{d}\left(\Sigma_{g, 1}\right)$ is a homomorphism (the mod d Johnson homomorphism).

Remark

Broaddus-Farb-Putman and Perron also constructed the mod d Johnson homomorphism in the level d mapping class group in different ways.

Remark

Broaddus-Farb-Putman and Perron also constructed the mod d Johnson homomorphism in the level d mapping class group in different ways.

Proposition

The image of the mod d Johnson homomophism
$\tau_{1}: \Gamma_{d}\left(\Sigma_{g, 1}\right) \rightarrow \operatorname{Hom}\left(H, H^{\otimes 2}\right)$ is

$$
\operatorname{Im} \tau_{1}= \begin{cases}\Lambda^{3} H & \text { when } d \text { is odd } \\ \Lambda^{3} H+\left\langle\left.\frac{d}{2} X^{\otimes 3} \right\rvert\, X \in H\right\rangle & \text { when } d \text { is even } .\end{cases}
$$

Since the level d symplectic group generated by transvections, the level d mapping class group is generated by d-powers of Dehn twists and elements in the Torelli group. Proposition is proved using the following lemma.

Since the level d symplectic group generated by transvections, the level d mapping class group is generated by d-powers of Dehn twists and elements in the Torelli group. Proposition is proved using the following lemma.

Lemma

Let c be a non-separating simple closed curve in $\Sigma_{g, 1}$. Then, we have

$$
\tau_{1}\left(t_{c}^{d}\right)=\left\{\begin{array}{l}
\frac{d}{2}[c]^{\otimes 3} \text { when } d \text { is even }, \\
0 \text { when } d \text { is odd. }
\end{array}\right.
$$

proof of Lemma

Since τ_{1} is a crossed homomorphism, for $\varphi \in \mathcal{M}\left(\Sigma_{g, 1}\right)$ and $\psi \in \Gamma_{2}\left(\Sigma_{g, 1}\right)$, we have

$$
\tau_{1}\left(\varphi \psi \varphi^{-1}\right)=\varphi_{*} \tau_{1}(\psi) \in H^{\otimes 3} .
$$

Hence, it suffices to show that

$$
\tau_{1}\left(t_{c}^{d}\right)=\frac{d(d-1)}{2}[c]^{\otimes 3}
$$

for just one non-separating SCC c.

Choose basis $\left\{\alpha_{i}, \beta_{i}\right\}_{i=1}^{g}$ and a SCC c as in Figure.

Choose basis $\left\{\alpha_{i}, \beta_{i}\right\}_{i=1}^{g}$ and a SCC c as in Figure.

Since $t_{c}^{d}\left(\alpha_{1}\right)=\alpha_{1} \beta_{1}^{-d}$, we have

$$
\begin{aligned}
\tau_{1}\left(t_{c}^{d}\right)\left[\alpha_{1}\right] & =\theta_{2}\left(\alpha_{1}\right)-\theta_{2}\left(\alpha_{1} \beta_{1}^{-d}\right) \\
& =-\frac{d(d-1)}{2}\left[\beta_{1}\right]^{\otimes 2} .
\end{aligned}
$$

Choose basis $\left\{\alpha_{i}, \beta_{i}\right\}_{i=1}^{g}$ and a SCC c as in Figure.

Since $t_{c}^{d}\left(\alpha_{1}\right)=\alpha_{1} \beta_{1}^{-d}$, we have

$$
\begin{aligned}
\tau_{1}\left(t_{c}^{d}\right)\left[\alpha_{1}\right] & =\theta_{2}\left(\alpha_{1}\right)-\theta_{2}\left(\alpha_{1} \beta_{1}^{-d}\right) \\
& =-\frac{d(d-1)}{2}\left[\beta_{1}\right]^{\otimes 2} .
\end{aligned}
$$

For $x=\alpha_{2}, \cdots, \alpha_{g}, \beta_{1}, \cdots, \beta_{g}$, we have $t_{c}^{d}(x)=x$.
Hence, we have

$$
\tau_{1}\left(t_{c}^{d}\right)=\frac{d(d-1)}{2}\left[\beta_{1}\right]^{\otimes 3} .
$$

Theorem (S.)
When $d=2$, the sequence

$$
\begin{aligned}
0 \rightarrow H_{1}\left(\mathcal{I}_{g, 1} ; \mathbb{Z} / d \mathbb{Z}\right) /(\mathbb{Z} / 2 \mathbb{Z}) \rightarrow H_{1}(& \left.\Gamma_{d}\left(\Sigma_{g, 1}\right) ; \mathbb{Z}\right) \\
& \rightarrow H_{1}(\operatorname{Sp}(2 g ; \mathbb{Z})[d] ; \mathbb{Z}) \rightarrow 0
\end{aligned}
$$

is exact.
Putman generalized it for even integer d such that $4 \nmid d$.

Theorem (S.)

When $d=2$, the sequence

$$
\begin{aligned}
0 \rightarrow H_{1}\left(\mathcal{I}_{g, 1} ; \mathbb{Z} / d \mathbb{Z}\right) /(\mathbb{Z} / 2 \mathbb{Z}) \rightarrow H_{1} & \left(\Gamma_{d}\left(\Sigma_{g, 1}\right) ; \mathbb{Z}\right) \\
& \rightarrow H_{1}(\operatorname{Sp}(2 g ; \mathbb{Z})[d] ; \mathbb{Z}) \rightarrow 0
\end{aligned}
$$

is exact.
Putman generalized it for even integer d such that $4 \nmid d$.

corollary

$$
\begin{aligned}
H_{1}\left(\Gamma_{2}\left(\Sigma_{g, 1}\right) ; \mathbb{Z}\right) & \cong(\mathbb{Z} / 2 \mathbb{Z})^{\left(\frac{2 g}{3}\right)} \oplus(\mathbb{Z} / 4 \mathbb{Z})^{\left(\frac{2_{2} g}{2}\right)} \oplus(\mathbb{Z} / 8 \mathbb{Z})^{\left({ }^{2 g}\right)} 1 \\
H_{1}\left(\Gamma_{2}\left(\Sigma_{g, 1}\right) ; \mathbb{Z} / 2 \mathbb{Z}\right) & \cong \operatorname{Im} \tau_{1} .
\end{aligned}
$$

Theorem (Perron, Putman, S)

When d is odd,

$$
H_{1}\left(\Gamma_{d}\left(\Sigma_{g, 1}\right) ; \mathbb{Z}\right) \cong H_{1}\left(\mathcal{I}_{g, 1} ; \mathbb{Z} / d \mathbb{Z}\right) \otimes H_{1}(\operatorname{Sp}(2 g ; \mathbb{Z})[d] ; \mathbb{Z}) .
$$

Mapping class groups for nonorientable surfaces

Let $H:=H_{1}\left(N_{g, 1} ; R\right)$.
We denote by

$$
\mathcal{M}\left(N_{g}^{*}\right)=\frac{\operatorname{Diff}_{+}\left(N_{g}, *\right)}{\text { isotopy rel } *}
$$

the mapping class group of a pointed surface N_{g}^{*}.

Mapping class groups for nonorientable surfaces

Let $H:=H_{1}\left(N_{g, 1} ; R\right)$.
We denote by

$$
\mathcal{M}\left(N_{g}^{*}\right)=\frac{\operatorname{Diff}_{+}\left(N_{g}, *\right)}{\text { isotopy rel } *}
$$

the mapping class group of a pointed surface N_{g}^{*}.
Since $\pi_{1} N_{g, 1}$ is a free group of rank g,
we can also define a crossed homomorphism

$$
\tau_{1}: \mathcal{M}\left(N_{g, 1}\right) \rightarrow \operatorname{Hom}\left(H, H^{\otimes 2}\right)
$$

Mapping class groups for nonorientable surfaces

Let $H:=H_{1}\left(N_{g, 1} ; R\right)$.
We denote by

$$
\mathcal{M}\left(N_{g}^{*}\right)=\frac{\operatorname{Diff}_{+}\left(N_{g}, *\right)}{\text { isotopy rel } *}
$$

the mapping class group of a pointed surface N_{g}^{*}.
Since $\pi_{1} N_{g, 1}$ is a free group of rank g,
we can also define a crossed homomorphism

$$
\tau_{1}: \mathcal{M}\left(N_{g, 1}\right) \rightarrow \operatorname{Hom}\left(H, H^{\otimes 2}\right)
$$

However, $\mathcal{M}\left(N_{g, 1}\right) \rightarrow \mathcal{M}\left(N_{g}^{*}\right)$ is not surjective, and it does not induce $\mathcal{M}\left(N_{g}^{*}\right) \rightarrow \operatorname{Hom}\left(H, H^{\otimes 2}\right)$.
Actually, $\operatorname{Im}\left(\mathcal{M}\left(N_{g, 1}\right) \rightarrow \mathcal{M}\left(N_{g}^{*}\right)\right) \subset \mathcal{M}\left(N_{g}^{*}\right)$ is of index 2 .

Mapping class groups for nonorientable surfaces

Let $H:=H_{1}\left(N_{g, 1} ; R\right)$.
We denote by

$$
\mathcal{M}\left(N_{g}^{*}\right)=\frac{\operatorname{Diff}_{+}\left(N_{g}, *\right)}{\text { isotopy rel } *}
$$

the mapping class group of a pointed surface N_{g}^{*}.
Since $\pi_{1} N_{g, 1}$ is a free group of rank g,
we can also define a crossed homomorphism

$$
\tau_{1}: \mathcal{M}\left(N_{g, 1}\right) \rightarrow \operatorname{Hom}\left(H, H^{\otimes 2}\right)
$$

However, $\mathcal{M}\left(N_{g, 1}\right) \rightarrow \mathcal{M}\left(N_{g}^{*}\right)$ is not surjective, and it does not induce $\mathcal{M}\left(N_{g}^{*}\right) \rightarrow \operatorname{Hom}\left(H, H^{\otimes 2}\right)$.
Actually, $\operatorname{Im}\left(\mathcal{M}\left(N_{g, 1}\right) \rightarrow \mathcal{M}\left(N_{g}^{*}\right)\right) \subset \mathcal{M}\left(N_{g}^{*}\right)$ is of index 2 . Instead, we define the Johnson homomorphism directly on $\mathcal{M}\left(N_{g}^{*}\right)$.

Let $\zeta \in \pi_{1}\left(N_{g, 1}\right)$ denote the boundary curve.
The map $\theta_{2}: \pi_{1}\left(N_{g, 1}\right) \rightarrow H^{\otimes 2}$ induces a map

$$
\theta_{2}: \pi_{1}\left(N_{g}\right) \rightarrow H^{\otimes 2} / \theta_{2}(\zeta)
$$

Let $\zeta \in \pi_{1}\left(N_{g, 1}\right)$ denote the boundary curve.
The map $\theta_{2}: \pi_{1}\left(N_{g, 1}\right) \rightarrow H^{\otimes 2}$ induces a map

$$
\theta_{2}: \pi_{1}\left(N_{g}\right) \rightarrow H^{\otimes 2} / \theta_{2}(\zeta)
$$

Thus, we also have a crossed homomorphism

$$
\begin{aligned}
\tau_{1}: & \mathcal{M}\left(N_{g}^{*}\right) \rightarrow \operatorname{Hom}\left(H, H^{\otimes 2} / \theta_{2}(\zeta)\right) \\
& \varphi \mapsto\left([\gamma] \mapsto \theta_{2}(\gamma)-\varphi_{*} \theta_{2}\left(\varphi^{-1}(\gamma)\right)\right.
\end{aligned}
$$

Let $\zeta \in \pi_{1}\left(N_{g, 1}\right)$ denote the boundary curve.
The map $\theta_{2}: \pi_{1}\left(N_{g, 1}\right) \rightarrow H^{\otimes 2}$ induces a map

$$
\theta_{2}: \pi_{1}\left(N_{g}\right) \rightarrow H^{\otimes 2} / \theta_{2}(\zeta) .
$$

Thus, we also have a crossed homomorphism

$$
\begin{aligned}
& \tau_{1}: \mathcal{M}\left(N_{g}^{*}\right) \rightarrow \operatorname{Hom}\left(H, H^{\otimes 2} / \theta_{2}(\zeta)\right) \\
& \mapsto\left([\gamma] \mapsto \theta_{2}(\gamma)-\varphi_{*} \theta_{2}\left(\varphi^{-1}(\gamma)\right) .\right.
\end{aligned}
$$

Since we have a forgetful exact sequence
(Earle-Eell showed Diff N_{g} is contractible when $g \geq 3$)

$$
1 \rightarrow \pi_{1} N_{g} \rightarrow \mathcal{M}\left(N_{g}^{*}\right) \rightarrow \mathcal{M}\left(N_{g}\right) \rightarrow 1,
$$

τ_{1} induces a crossed homomorphism

$$
\bar{\tau}_{1}: \mathcal{M}\left(N_{g}\right) \rightarrow \operatorname{Hom}\left(H, H^{\otimes 2} / \theta_{2}(\zeta)\right) / \tau_{1}\left(\pi_{1} N_{g}\right) .
$$

Theorem

The image of the homomorphism

$$
\bar{\tau}_{1}: \Gamma_{2}\left(N_{g}\right) \rightarrow \operatorname{Hom}\left(H, H^{\otimes 2} / \theta_{2}(\zeta)\right) / \tau_{1}\left(\pi_{1} N_{g}\right)
$$

is of $(\mathbb{Z} / 2 \mathbb{Z})-\operatorname{rank}\binom{g}{3}+\binom{g}{2}$.

Theorem

The image of the homomorphism

$$
\bar{\tau}_{1}: \Gamma_{2}\left(N_{g}\right) \rightarrow \operatorname{Hom}\left(H, H^{\otimes 2} / \theta_{2}(\zeta)\right) / \tau_{1}\left(\pi_{1} N_{g}\right)
$$

is of $(\mathbb{Z} / 2 \mathbb{Z})-\operatorname{rank}\binom{g}{3}+\binom{g}{2}$.

Corollary

The homomorphism

$$
\left(\bar{\tau}_{1}\right)_{*}: H_{1}\left(\Gamma_{2}\left(N_{g}\right) ; \mathbb{Z}\right) \rightarrow \operatorname{Hom}\left(H, H^{\otimes 2} / \theta_{2}(\zeta)\right) / \tau_{1}\left(\pi_{1} N_{g}\right)
$$

is injective.
In particular, we have

$$
H_{1}\left(\Gamma_{2}\left(N_{g}\right) ; \mathbb{Z}\right) \cong H_{1}\left(\Gamma_{2}\left(N_{g}\right) ; \mathbb{Z} / 2 \mathbb{Z}\right) \cong \operatorname{Im} \tau_{1}
$$

Lemma

Let a be an A-circle and m an M-circle which intersect transversely in one point.
Then we have

$$
\bar{\tau}_{1}\left(Y_{m, a}\right)=[a] \otimes[m] \otimes[m]+[m] \otimes[a] \otimes[m]+[m] \otimes[m] \otimes[a] .
$$

Lemma

Let a be an A-circle and m an M-circle which intersect transversely in one point.
Then we have

$$
\bar{\tau}_{1}\left(Y_{m, a}\right)=[a] \otimes[m] \otimes[m]+[m] \otimes[a] \otimes[m]+[m] \otimes[m] \otimes[a] .
$$

Lemma

Let $\gamma \in \pi_{1}\left(N_{g}\right)$.
Then we have

$$
\bar{\tau}_{1}(\gamma)=\sum_{i=1}^{g}\left(\left[\alpha_{i}\right] \otimes[\gamma] \otimes\left[\alpha_{i}\right]+\left[\alpha_{i}\right] \otimes\left[\alpha_{i}\right] \otimes[\gamma]\right) .
$$

Problems

For mapping class groups of orientable surfaces,
(1) A minimal generating set for $\Gamma_{2}\left(\Sigma_{g}\right)$?
(2) $H_{1}\left(\mathrm{IA}_{n}(m)[d] ; \mathbb{Q}\right)$ is trivial or not?

There are also interesting subgroups of $\mathcal{M}\left(N_{g}\right)$.
(1) $H_{1}\left(\mathcal{I}\left(N_{g}\right)\right)$? for the Torelli group $\mathcal{I}\left(N_{g}\right)$.
(2) Other finite index subgroups of $\mathcal{M}\left(N_{g}\right)$? (twist subgroup, pin mapping class group, etc.)

