for any él(z)-f; and &(z2)£ € Wf In fact, for £(z)£ € Wf,

d2? d €(z) - E(t)
e fz 1 t(é(z) - €0~ (= = 0€'0) ~ 3 ~ V')
dz _(ﬁ'(t) + il-(z —t)¢"(t))
=2 dz"’t :2(5 (t) + (z —t)¢"(t)) mod Clt, z]dz?
dt_ldz

— Vi(é(= )—)

‘Hence V}d(ﬁp-) = (Vi) d ldz =0 mod C[t, z]dtdz>.
Therefore the j-th term of

~dOn; = Z]{n <(td_zi)2> LIJ (tciz':.-)2

is regular on ﬂ.';e,- U; for j > 2 and the first term vanishes. This means
dOn; € C*(Wy; B*7%(4;Qy)), e,

d(")nl B 0 € Cz(leHn 2(‘Ll Qn))a

as was to be shown.

We define a 1 cocycle 1, ® 8, € C(Lo;12 @ S~ 1(Q*/Q)) by
Bn 1= 362q0" " +2(n — 1)61g-190" 2,

where g, := (2*72d2? mod Q) € Q*/Q and éx(z'*t!' L) := bk, (Kro-
necker’s delta). The Schapiro isomorphism (3.3)

(5.6) H' (Wi H'(C" - 4;Qq)) = H'(Lo; 1. ®(Q*/Q)®" ™)

maps the class ©,,; to the class (n — 1)1, ® 6.
LEMMA 5.7. If n 2 2,

1,00, #0€ H' (Lg; 1. ® S*H(Q*/Q)).
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Especially we obtain ©,,; #0 € Hl(‘Wl;H""z(C" — A;Qn)).

PROOF: Assume 1z ® 8, = d(12 ® a) for some
lo®a=12Q Za,’_l;o...;.qli"qu‘_) .. 'Q—ai' € (12 ® Sn_l(Qx/Q))eov

(0ti_yigei, € C). If 8o := max{s;3ai_,ip-i, # 0 and is > 1} is greater
than 1, then (2°+2 L )a = 6,(2°*2 L) = 0, which contradicts the defi-

- . -3 —k—
nition of sg. Hence sg < 1,i.e., @ =3 pp arg1¥ g™k 20,2 (ar €

C). Then we have
d n—-3 -
(ZBE;)O‘ =3 Z(k +3)arg g™ g M,
k=0 :

which contradicts (z°L)a = 0,(z° %) = 3¢"*. Consequently 12 ®
6, #0€ H(Lo;12 ® S*~1(Q*/Q)), as was to be shown.

Consider the case n = 2. Then the Schapiro isomorphism (5.6) maps
the class

(21 — 22)~N(VEdzy? — Vitdz?) + (21 — 22) "H(VE — V§?)dar*dzy?
€ HY(W;; @5(C? — A))®:

to the class 1, ®6; € HY(Lo;12®(Q@*/Q)). Lemma 5.2 for n = 2 follows
from Lemma 5.7.

For the rest of this section we assume n > 3. Lemma 5.2 is reduced
to the following

ASSERTION 5.8.
Ony1 = (—1)""1Op € C'(Wy; H"*(C" - A;Q4)).

In fact, the cochain O, (resp. On;2) is invariant under any element
in G, fixing the letter 1 (resp. the letter 2), and so the assertion implies
the invariance of ©,,; under the whole &, i.e.,

On € HY(Wy; H3(C" — A;Q,))°".

But Lemma 5.7 asserts Op.; # 0 € HY(Wy; H*"2(C" — A; Qr)). Hence
Lemma 5.2 follows.

To prove the assertion, we construct a 1 cochain of W, with values in
Z"» (U U B; Q,) for the union U U V. Here we identify V; € U with
U, € 4.
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The (n — 2)-nerve of the covering 41U U is parametrized by the index
set

I=(I(1),I(2));
0<p=p(I)Sn—2
ID = {ig,i1,...,ip}, 2<ip<iz<--<ip<nm
I® = {ip01, 0 yinm2}, 3<ipp1 <+ <in2<n
The index I € T corresponds to the open set |
Up:=U,, N---nU;, NV, NNV .

We associate each index I € Z with the unoriented graph I'y with n
vertices corresponding the letters 1,2,- - - ,n and (n—1) unoriented edges

(1,30),- -+, (1,5p), (2yipa1)s- - 5 (2y5n2)-

For each I € I, a;y € CY(W;;Q,(U;)) and €y = %1 are defined as

follows: _
(1). If the graph I'; is not connected, then a; := 0 and ¢; := 1.
(2). If the graph T'; is connected and 2 € IV, then we define

ar = Qg4 “ip,ip+1 in 2

(2t + z; — 32 dz,-2
- P i I e

GI(I) ieI(2)

. : 1,70 yin=2
EI = €2iy.ipiippronin_z ‘= (—1)Psign ( 3.4, ) .

The sign is well defined because I(V) N I?) = §.
(3). If the graph T; is connected and 2 ¢ IV, then §(IV N I) = 1.
Suppose i,, =i,, =k and v; <p<ve. aris deﬁned by

aI = aio...i,;i,.,.:_ ...l'"_z

:=‘£ Vt d212 (2t+22—32k)d22 (H )

i (E—n)? (-2 et ( )2
(2t + z; — Z’)z'g)clz,-2
x ( )-
ieI(:!:):[{k} | (2 = 22)°
Since
2t + 29 — 3z 2t + 2z — 32 1

= ze)2(zk —22)°  (t—22)(zk —22)° (¢ —22)%(t — z)?’
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we have

-~ -— -~

QI = Qig.ipjipgronin-a = & = . o
2i0. 1p3ip41.00tn—2 2i0...pjip41.Stn—2

on the open set U, NUj. So, if I); and I, € T are defined by

IV =102} - (), L7 =17,

5.9
(9 IV = 1My {2}, I = 1™ — {k},

we have
(5.10) ar=ay, —ay, onU;NUJ.

Since p(I;) = p and p(I;) = p — 1, we have (—1)"¢;, = (—1)"*ey,.
Thus we define

(5.11) er = (—-1)"ep, = (1) ey,

Consider the (n—2) cochain f = {fr}1ez € C*(W;C* 2(UUD; Q,))
defined by
fri=cra; € C'(W1;Qa(Ur)), I€T.

Similarly the (n — 1) nerve of the covering U U U is also parametrized
by the index set
J =(JWO, J(2));

0<p=p(J)S<n-1

JO = {jojt,--dphr 2SJo <1 <o <jpSim

JP = {Gps1s-erdn-1ly 3 jpa1 <o <Juoy S

J =

The open set U; and the unoriented graph I'; are define in the same
way as I';. We shall prove the coboundary éf vanishes on U; for each
JeJ: (6f);=0.

(1). If the graph I'; is not connected, then no subgraph of I' ; obtained
by eliminating one edge is connected. Hence (6f)y = 0.

(2). If the graph T'; is connected and 2 € J(), then j(JV NJD) =1
and jo = 2. Suppose j,, = j,, =k and v; < p < v;. Wedefine I € T by

7O = g _ {2}, 1% = j@

and I; and I; € Z by (5.9). We notice p(I) =p—1landi,, 1 =i,,-1 = k.
It follows from (5.10) and (5.11)

fr=er(ar, —ap) = —(-1)" fr, — (-1)"* f1,.
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Therefore, by a consideration of the connectivity of subgraphs of I' 7, we
obtain
(6f)s = fr+(-1)"fr, +(-1)"f1, =0,
as was to be shown.
(3). If the graph I'; is connected and 2 ¢ JV), then §(JMINJ@) =2,
Suppose ju, = Ju, = Ky juy = jua =1L, v1 < p <wp, 1 Sp < pg and
3<k<l<n. Wedefine J, € J, (e =1,2,3,4), by

JD=gOuey -y, ISP =79,

(5.12) Y =JDu {2}, JP = 7@ -1y,
' IO =gy 2y -k}, I =D,
I = gy 23, JB = J® (1}

The graph I'j, is connected and 2 € Ja(,l) , and so we define I,, I,; and
I,; € T as in (2). Clearly we have

(5.13) Ly =13, Ls=1Iy, I=1I and Iz = Iy

As was proved in (2), we have

—fr. = (1) f1, + (-1 fr,,,

where v1(a) and v;(a) are given by the 2 X 4 matrix
_(rn+l v+l pp m+1
(w,(a)) B ( V2 vp+1 p2 M2 ) )
It follows from (5.12) and (5.13)
(6f)g = (1) fr, + (1) fr, + (1) fr, + (-1)**f1, = 0,
as was to be shown.
Consequently the 1 cochain f = {fr}rez of W; has its value in

Z"H(UUD; Q,), while

f‘u = €93...n;X23...n; = en;l

le] = £92:3...n2:3...0 = (—1)"&2;3....,,.

Now we have

dz,2dz,? - (2t + z; — 322)(12,-2
V1 (t—zl)z(t—zg)z(H (z; —22)3 )

tiza

_ dz2dz,? e 1 2 dz;®
= v1 (t—zl)z(t—Z2)2(1+2(t 22);zi_22 )(g (Zi—22)2)

;22

=3

=@n;2.
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Computing the residue at ¢t = oo, we find that

02;3...n + en;?.

dz,%dzy? B (2t + z; — 325)dz;?
f % 1°dz (H ( 2) )
t;22

Y AR ARAL Y ey OEPAL

; i=3

is regular on V3NV, N ---NV,. Therefore we obtain
O = flu= fls = (_1)n_len;2 € CI(WI;Hn—z(Cn - A;Qn)).
This completes the proof of Assertion 5.8 and Lemma 5.2.

6. Sheaves of cohomology groups.

Let 7 € (C,p,2) € My ,, p1 € C, and let w be a coordinate centered at
the point p;. We denote by X = thw the inverse of the isomorphism

(2.8). Namely ¥° is the composite map
=T n n ~ n d n
Xp;,w r H (Wl;/\ Q) *H (C{Z}(—i;,/\ C{z}dzz)
ur): n n (eV)™! 1rn "
& HYL(C ) (@u)Sn, ) 2 HYL(C): N Q(C)
= H"((0)z; /\ Tz My,p).

Similarly, for z = (C,p, z,p1) € Cy,, and a coordinate w centered at p;,
we define an isomorphism x* = xg,

X+ H™(Loy \" Q") = H™((3,)z; \ T2Cy,0)

as the inverse of the evaluation map in (2.10). Clearly the isomorphisms
Yi w and x§, preserve the multiplicative structures.

In this section we prove that the isomorphism xZ does not depend on
the coordinate w and that the isomorphism Yfl’w does not depend on
the coordinate w and the point p; € C,. These imply

PROPOSITION 6.1. The isomorphisms x* and X® induce the isomor-
phisms of complex analytic vector bundles

x:Copx H'(Lo; \" @) = [ E"((3p)ss \ T2Co00)

z€Cy

X: My, x H*Wi; A"@Q) = [ B (00 \ T5M,,0).
zeMy,,
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In the succeeding sections we regard the vector bundles at the RHS’s
as trivial constant sheaves via the isomorphisms x and ¥. Then we have
the following isomorphisms

x i H"(Los \" Q") = HO(Cyops H™((9,)23 \ T2 Cy,0))
X : H"(Wy; /\nQ) = H(My,p; H™((3,)=; /\nTE*Mg.p))-

We prove first that the map xZ does not depend on the coordinate w.
From Corollary 4.12 the algebra @ ., H™(Lo; A"Q!) is generated by
the classes € and k,’s. Hence it suffices to show that x%(e) and xZ,(kn)
are independent of the coordinate w.

To investigate xZ,(¢€), we recall the notion of the residues of meromor-
phic quadratic differentials. Let U be a Riemann surface, p; a point of
U, and A an integer. As in §1, Q*(U,p1) denotes the space of mero-
morphic quadratic differentials on U with a pole only at the point p; of
order < A.

With respect to a coordinate w centered at p; € U we expand a
meromorphic quadratic differential ¢ € Q*(U,p1) to obtain

(6.2)

g=(a_qwl+ajul+ regular terms)dw?.

The complex number a_; does not depend on the choice of coordinates

w. We call it the residue of ¢ € Q*(U,p;) at p; and denote

Resp, g := a—s.
Thus we have a natural extension of L(U, p;) modules

(6'3) 0 - Ql(val) — Qz(Uapl) F'l—e)s C — 0’

which we call the residual eztension.

With a point z = (C,p,2,p1) € Cy, we associate a meromorphic
quadratic differential go(z) € Q%(C,,p1) satisfying Res,, go(z) = 1. Its
coboundary d(go(z)) € CYHL(C*,p1); Q*(C,,p1)) has a value in the
space @Q*(C,,p1). The cohomology class defined by

[d(g0())} € HY(L(C*, p1); Q' (Cpy 1))

is independent of the choice of differentials go(z) € Q*(C,,p1) and is
mapped to € € H'(Lo; Q') under the isomorphism (2.10). Thus x{y(¢) =
[d(go(z))] is independent of the coordinate w.

Next we investigate the class xZ(k.). Recall H9(Lo;1; @ A’ Q) = 0
for ¢ < p and HI(Wi; A Q) = 0 for ¢ < p. Hence, in a similar way to
§2, we obtain
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PROPOSITION 6.4. For z = (C,p,2,p1) € Cy,,, we have

HY(L(C™,p); T5C* @ \ T2M, ,) =0,
if ¢ < n, where T = my,(z) = (C,p,z) € My,. If ¢ =n +1, the
evaluation map at the point p; induces an isomorphism

Hn+l(L(Cx,p1);T;ICx ®/\nT%Mg,P) = Hn+l(Lo;1] ®/\nQ)

For an open Riemann surface U we denote by F(U) the L(U) module
consisting of all complex analytic functions on U. From H®(L;1; ®
S™"F) = 0 together with a similar argument to §2 we have

PROPOSITION 6.5. For z € (C,p,z,p1) € Cy,,, we have

HY(L(C*,p1); Ty, C* @ S"F(C,)) =0 and
H'(L(C*,p1); T;,C* ® S"F(C))) = H'(Lo; 1, ® S"F).

The latter isomorphism is induced by the evaluation map at the point
pi1.

For z = (C,p,z,p1) € C,,, and a coordinate w centered at p;, we
define

X5 (Lo 11 ® \"Q) = H™ ' (L(C*, p): T, C* © \ " Ti M, )
x5+ H'(Lo; 1, ® S"F) — HY(L(C*,p1); T;,C* ® S*F(C,))

P
as the inverses of the evaluation maps in Propositions 6.4 and 6.5 respec-
tively. Here T = m, ,(z) = (C,p,z) € M, ,. These map also preserve
the multiplicative structures.
Now from Theorem 5.1(2) we have

Xw(€1€™) = XM )x0(Kn)-

What is proved above implies that xZ(e;€™) does not depend on the
coordinate w. Considering the residue of meromorphic 1 forms, we find
that xZ (7n) does not depend on the coordinate w. On the other hand the
cup product by the class x% (7, ) is injective from Lemma 4.10. Therefore
XZ(kn) is independent of the coordinate w, and so is the map xI :
H™(Lo; A" Q") = H™((0,):; \"T2Cy,). This completes the proof of
the first half of Proposition 6.1. It should be remarked that the map
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77,51 w = Y; does not depend on the coordinate w because the algebra
D >0 H"(Wi; A" Q) is generated by the classes «,’s.

In order to prove the second half, it suffices to show that the map
3(‘;’;; = thw does not depend on the point p; € C,. As was proved in
§2, the restriction of the sheaf F := H™(L(C*); @,)®" to the diagonal
A = A(C,) C (C,)" is a trivial constant sheaf. From the definition of
the evaluation map (2.8), the map :

{3, Ypec, : Cp x HWi; \"Q) = Fla

is locally constant, so that it is an isomorphism of sheaves over C, =
A(C,). Hence the map X5 does not depend on the point p; € C,. This
completes the proof of Proposition 6.1.

We are able to define an analogue of teh fiber integral in a similar way
to that in §4 and to reconstruct X(k.) by applying it to the class x(e1€").
In the present paper, however, we adopted the indirect construction
based on Theorem 5.1(2) for the economy of the number of pages.

Finally we remark |

(6.6) x(e1€") = X(7n)mg,p"X(Kn)
€ H(Cy,p; H““((O,,),;T;‘IC" ® ("rg.p*/\ T*Mj,0)z))s

which is a key to establishing that the class x, corresponds to the n-th
Morita Mumford class e, € H™™(M, ,).
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7. Construction of cohomology classes.

Let M be a complex analytic manifold acted on by a complex Lie algebra
g. In this section we construct cohomology classes of the manifold M
from the cohomology of the Lie algebra g under a certain assumption.
In the succeeding sections cohomology classes on the 3, manifolds M, ,
and C,,, are constructed in this way.

Let M be a (possibly infinite dimensional) complex analytic mani-
fold on which a Lie algebra g acts complex analytically. This means a
homomorphism of Lie algebras :

p: g — Vect(M),
called the action, is given, where Vect(M) denotes the complex Lie alge-
bra of complex analytic vector fields on M. The kernel of the composite
of the evaluation map ev, at the point z € M and the action u
eveopu:g— Vect(M) - T M
is denoted by g, and called the isotropy subalgebra of g at the point
T€EM.

Let E — M be a complex analytic vector bundle on which the algebra
g acts complex analytically and compatibly with the action p. This
means g acts on each Op(E)(O) (O " M) such that

(1) each restriction map is g-equivariant, and

(2) the formula

X(fo)=(Xf)o + f(Xo), Xe€g, feOu(0),0o€0Onu(E)0)

© holds for any open subset O C M.

In the sequal we call such a vector bundle a g vector bundle over M in
short. The fiber E; at z € M is a g, module in an obvious manner. Let
n € N>o be a fixed non-negative integer. We put an assumption:
(A(n)) VieM Vn'<n H"(g,;E.)=0.
Under the assumption (A(n)) we have an exact sequence of complex
analytic ‘vector bundles’ over M

0= B [] C(auiBe) — L] C*(auiB)— -

€M zeM
R ppe— ]_[ Cn_l(gz;Ez) s 4 I_[ Zn(gz;Ez) - U Hn(gz;EZ) - 07
zeM TEM z€EM

where Z™ means the n cocycles. This exzct sequence induces the n-fold
composite of the connecting homomorphisms

D: H(M; Om( || H™(8.:E))) — H™(M; On(E)).
zEM
The map D has a multiplicative property in the following sense:
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LEMMA 7.1. Let Ey, E; and E; be g vector bundles over M satisfying
the assumption A(ng), A(n;) and A(ng + n,) respectively. Suppose a
multiplication, ie., a § equivariant homomorphism of vector bundles

m : Eqg @ E; — E; is given. Then we have
(DUQ) U (Dul) = D(U.o U 'U.l) € I?l’no‘{-ﬂ1 (M; 0M(E2))

for any u; € HO(M; Ons(Il,eps H™ (82 Ei,2))) (i = 0,1). Here the cup
product U means the composite of the usual cup product and the given
multiplication m.

One deduces the lemma from the double complex of vector bundles
over M ‘

[] c™(8.:Eo:) ®C™ (8,3 Ers)  (0<pi Sniyi=0,1).
z€EM

Concerning the functorial property of D we need the following two
lemmata.

LEMMA 7.2. Let E, and E, be g vector bundles over M satisfying the
same assumption A(n), and @ : E; — E a g equivariant homomorphism
of vector bundles over M. Then we have the commutative diagram
D
HO(M, OM(H::GM Hn(gz, EO,:L'))) _— Hn(Ms OM(EO))
woon]] e | ¢|
D
HY(M; Om( em H™ (82 Er,2))) — H™(M;Om(En))-

LEMMA 7.3. Let My and M, be complex analytic manifolds acted on
by the same Lie algebra g, and f : My — M; a g equivariant com-
plex analytic map. Suppose both the p-cotangent bundles \? T*M;
(i = 0,1) satisfy the assumption A(n). As usual we abbreviate Q. =
Oum, (NP T*M;) (i = 0,1). Then we have the commutative diagram

D .
HO(My; Op, (1L, e, H™(82,3 NP T2, M1))) —— H™(Mi58,)

r| r|

D
HO(Mo; Ony(I1oemo H™(820i N T2, Mo))) —— H™(Moi Q).
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These two lemmata follow from the definition of D immediately.
Let L C M be a closed subset. Under the assumption (A(n)) we can
also define the map

D: B (M, L;Op( | | H™(8. E:))) —» H™(M, L; Ou(E)).
z€M

by the same method as the original D. Clearly the same results as
Lemmata 7.1, 7.2 and 7.3 hold for the new D.

Behind the definition of the map D there exists the notion of the g
equivariant cohomology, which is explained in §11.

Now we go back to the 9, manifolds My , and Cy,,. From Corollaries
2.9 and 2.11 the 9, vector bundle A" T*M satisfies the asssumption
(A(n)) for each n € N>g and M = M, , and Cy ,. Hence the map

D : H(M;Op( || H™(00)ei \ T2M)) — H™"(M)
€M

is defined, where H™"(M) = H™(M;},) as usual. Through the iso-
morphisms x and ¥ (6.2), we regard the vector bundle [] ¢ p H™((p)<;
A"T:M) as a trivial constant sheaf. thus we can define the composite
maps

Dox: @H"(Lo; /\an) - @ H™™(Cy,p)

n>0 n>0
Dox: @ H (Wi; \"Q) — P H™"(M,,),
n2>0 n>0

which are multiplicative by Lemma 7.1. In the next section we prove
that Dx(e) is equal to the Euler class e = ¢1(T¢, ,/mM,,) € HY(C,,p)
up to constant multiplier, and in §10 that DX(x») is equal to the n-th
Morita Mumford class e,, € H™"(M, ,) up to constant multiplier.
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8. The Euler class of the relative tangent bundle.

In the following 2 sections we reconstruct the Euler class of the universal

curve Cy,, — M,,,, i.e., the first Chern class of the relative tangent
bundle

€ .= CI(TC,,,/M,,,,) € H1’1(Cg’p)

and its power
et € M (CX,, Dy,), (n21),

in our framework. The power e™*! is essential to the original definition
[Mo] [Mu] of the n-th Morita-Mumford characterstic class e, (0.2). We
define a vector bundle I over C, , by

I:= , I_I Qz(cmpl)'

(C:P:zyl’l)ecg.p

The residual extension (6.3) induces an extension of vector bundles

(8.1) 0—T*C,, = I3 C,,xC—0.

The class Dx(e) € HV(C,,) is equal to the image of 1 € H%(C,,,;
Oc,,,) under the connecting homomorphism

6" : HO(Cg,p; Oc,,,) — H'(Cyp; Oc,,,(T"Cy.0))

induced by the extension (8.1). We asserts
THEOREM 8.2.

v-1
2 De=ec H"(Cy,)-
For the moment we recall a general theory on complex analytic line
bundles. See [At] for details.

Let E be a complex analytic line bundle over a complex analytic
manifold M. Consider a (canonical) extension of vector bundles over M

(8.3) 0-T"MQE X J(E)S E—0.

where J!(E) is the holomorghic 1-jet bundle of E and ev : J}(E) —» E
is the evaluation map. Let j! : C®°(M, E) — C'°°(M J(E)) denote the
jet extension map. If 8 : J l(E) - T*M Q®FE isa C™® homomorphlsm
satisfying 6 o 0 = 11« MgE, the composite

o jl: C®(M,E) - C®(M,J'(E)) —» C®(M,T*M Q@ E)

43



gives the (1,0) part of a C* connection of type (1, 0) in E. This process
gives a one-to-one correspondence between C* splittings of the exten-
sion (8.3) and C* connections of type (1,0) in E.

Tensoring the dual E* to the extension (8.3), we obtain an extension
of vector bundles over M

(8.4) 0-TM % NE)QE S MxC -0,

because E is a line bundle. The extension induces the connecting ho-
momorphism )

(8.5) §* : H'(M;Op) — H'(M; Om(T* M) = HV(M).
PROPOSITION 8.6. ([AT]). The image of 1 € H°(M;Op) under the
map §* (8.5) is equal to the first Chern class —2m/—1c1(E) € H'"'(M).
PROOF: Fix a C™ splitting of the extension (8.3). Let 6 : J'(E) —
T*M @ E and ¥ : E — J!(E) be the C* homomorphisms induced
by the fixed splitting. There exist (1,1) forms = and © with trivial
coefficients uniquely determined by the formulae
Oy (vos) = (T MeY)(Bps)=(T M®0c)E®s) and
7m0 (i) = (T M ®(605'))(0ps) = O ®s
for any s € C®(M,E). Here g, Or-meE and 511(3) denote the 0
operators of the holomorphic vector bundles E, T*M ® E and J'(E),

respectively. © is the curvature of the connection corresponding to 6
by definition. Hence the cohomology class of the (1,1) form -,”713-@ is

equal to the first Chern class ¢;(E). We remark
(1-ob)(j's)=vos
for any s € C*°(M, E). Hence
T"M®0o)E®Ss) |
=0 1(p)(1 —0b)oj's— (T°M Q@ (1—08)0;')Iks)
=(T"M ® 0)(—0r-mer(80j's)+(T M ®60;')(Oks))
=—(T"MQ0o)(O®s),

which implies [¥=1Z] = ¢;(E) € H“'(M). On the other hand, by
definition, the cohomology class of £ € H1(M) is equal to the desired
class 6*(1). This completes the proof.
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Now we assume a complex Lie algebra g acts on the manifold M
complex analytically and transitively and E is a g stable line subbundle
of the tangent bundle TM (see §7). The transitivity means that the
composite evg o u : g — Vect(M) — T; M is surjective for each z € M.
Then the isotropy algebra g, C g at z € M acts on the fiber E;(= C)
of E at z. There exists a (canonical) linear map yz : g, — C given by

(X, vz] = pz(X)vz
for any X € g, and v; € E,. Furthermore we assume the map p is

surjective for each z € M. Denote b, := ker(jiz : g, — C) and define a
vector bundle g/h over M by

8/b = [ /9.

€M

The natural projection g/, — 8/g, induces extensions of vector bun-
dles over M

(8.7) 0-T*M—(g/h)* HE M xC—-0 and
(8.8) 0> T*MQE — (g/h) @ E"3 E 0.

If X € gand s € Op(E),, the vector [X,s](z) € E, depends only on
(X and) the 1-jet of s. Hence the homomorphism

JYE)— (8/h)" ®FE
s (X — [X,s](z))

can be defined, which gives a (canonical) isomorphism of the extension
(8.3) onto the extension (8.8). Especially the extension (8.7) is isomor-
phic to the extension (8.4) and corresponds to the class —27v/=1¢,(E) €
HVY(M). .

We return now to the identification of the class De € H''(Cy ;). Then
M=C,,, E=Tc,,/m,,20d 8 =0, satisfy all the assumptions stated
above. In fact, g, is given by g, = L(C*,p;) for z = (C,p,z,p1) € Cy,p,
the linear map p; : g, — C is given by

iz :L(C*,p) = C
loc. d '
X% flw) = ~f(0),
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where w is a coordinate centered at p; € C*, and so b, is equal to
Li(C*,p) := {X € L(C*,p1); X has a zero at p;, of order > 2.}.

LEMMA 8.9. Under the above situation the extension (8.7) is isomorphic
to the extension (8,1) by the Kéthe duality (Theorem 1.4).

PROOF: It follows from the Kéthe duality (1.4)

(8/h,)" = (0,/L1(C*, p1))* = Q*(Cp, ;1)

and the natural map (g/g.)* — (g/h.)* coincides with the inclusion
QY (C,o, ;) — Q*C,h,p1) for z = (C,p,z,p1) € Cy,,. Hence it suffices
to show that 7 : (g/h,)* — C is equal to Res,, : Q*(C,,p1) — C.

Let go € Q*(C,, p1) be a meromorphic quadratic differential satisfying
Resp, go = 1. For an arbitrary X € g, = L(C*,p1), we have

G- X

QX =
27r\/ lw|=6<1 27“/ |2|= p+6

from Stokes’ Theorem. This implies y, € (8,/h;)* & Q*(C,,p1)/Q(
C,,p1) is equal to go mod Q'(C,,p1), as was to be shown.

l"z(X) =

The class Dx/(€) corresponds to the isomorphism class of the extension
(8.7) = (8.4) from Lemma 8.9. By Proposition 8.6 the extension (8.4)

is equal to —27v/=1¢;(E) = —27v/~1e1(T¢, /M, ,). Consequently we

obtain
v-1
2n

This completes the proof of Theorem 8.2.

Here it should be remarked there exists a one-to-one correspondence
between C' splittings of the extension (8.1) and C* connections of type
(1,0) in T¢, ,/M, ,- A C™ splitting of the extension (8.1) is equivalent
to a C'* assignment

De = cl(Tcp,p/Mg,p) =e€ Hl‘](Cg,p).

T € Cg,p — 90(37) € Q2(Cp,p1)

satisfying Res,, go(z) = 1 for all z € C, ,.

As an example, now we construct a canonical real analytic splitting of
the residual extension (6.3) under the uniformization through the upper
half plane H := {z € C; 3z > 0}. We consider the function




for a,z € H. It is easily proved that

q(va,vz)d(vz)* = q(a, z)dz*

for any v € PSL(2,R). If ' C PSL(2,R) is a Fuchsian group, the
Poincaré series

gr(a) =Y _ q(a,7z)d(v2)’

v€r

converges uniformly on any compact subset of H — I' - a. In fact, for
lz] > 1,

4(Sa)?
lg(a, z)| ~ —(I Z) ) // iz|—4dmdy =7 < 400,
z| |z]>1

and so// lg(a, z)dzdz| < +o0,
—-I'B;

where Bs denotes the hyperbolic disk whose center is a and radius 6 > 0.
For the rest, we may follow a usual argument of Poincaré series (see, e.g,.,
[Kr] ch.III §§1-4).

By the construction gr(vya) = gr(a) for any v € T', and g¢r(a) has
a pole of order 2 at a € H with Res, ¢gr(a) = 1. Thus gr(a) gives a
canonical splitting of the extension

0 — Q'(H/T,amodT) - Q*(H/T, amodT) Reec oo

47



9. The relative Euler class of the relative tangent bundle.
From now on we assume p > 0. In this section we study the pull back

X(€) := t9,0"x(€) € HO(C;,p;HI(L(Cx’pl);T(*Cm,z‘,m)cyfp))
of the class
x(€) €H(Cy,0; H'(L(C™,p1); Q*(Co, 1))
= HO(C i HY(L(C*,p1); T(G,p,2,9)Car0))
by the natural map '
tgp: Cpy = Cro=Cyo, (Cpyz,p1) — (C,p,2z,p1).
From Theorem 8.2 and the naturality of the map D (§7) we have

V=1 __
TDX(G) =a(Tex,m,,) € HY'(Cg,)-

w
The behavior of X(¢) on the “boundary” Dy, is as follows.

PROPOSITION 9.1. Ifz = (C,p, 2,p1) € Dj'p,
(1) the coordinate z induces a canonical decomposition of (9,):(=

L(C*,p1)) modules
(9.2) T:C;,p = T*g’P(x)Mg,p @ T;;ICX

T

(2) under the decomposition (9.2), the class X(€)s corresponds to the
class

(0,e1) € HN(L(C*,p1); Ty, (zyMo,0) ® H' (L(C™,p1); T3, C™),
where the 1 cocycle €, € CY(L(C*,p1); T;,C*) is defined by
e1(X) == —f"(2(p1))(d2)p, € T;,C*
for X '& f(2)L € L(C*, ;).

As a corollary of Proposition (9.1)(2), if n > 1 and z € Dyg',, we have

~ n n n+1 *
(®(€)2)" =0€ H™ M LC*, 2 N\ T(c,p.91)Coin)

Since the assumption (A(n + 1)) holds for the 9, bundle A" T*C;y,,
the relative cohomology class

-1 ~ n n+4l,n X
(CZL)D((R)™) € B (C,, D)
is defined and coincides with the (n+1)-th power e"*! € H""'l’"“(Cg"’p,
Dg,) of the relative class e = CI(TC;‘,,,/M,,,,’ﬁ) € HY(CX,,Dgp).
Thus we obtain :
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COROLLARY 9.3. If n > 1,

-1 n = n n n+l,n X
(LR = et e B (C,, D).

To prove Proposition 9.1 we recall the push-forward of extensions. For
simplicity, let R be a unitary commutative ring, 0 — A' =+ 4 5 A" — 0
an extension of left R modules, and f : A’ — B' a left R homomorphism.

Consider the fiber coproduct B’ x 4+ A defined by
B' x a1 A := coker((—f,i): A' = B' @ A).

Let (b',a) mod A denote the element of B' x4 A induced by (¥',a) €
B' @ A. Then, in an obvious way, we obtain a natural homomorphism
of extensions of left R modules

0 — A 4 A N A" o 0
v ! I
0 —- B 11_3) B'XAlA ”—% A" = 0.

Fix a point z = (C,p,2,p1) € C;,. Applying the above construction
to the extension of (9,).(= L(C*, p1)) modules

0— Q(C*) = QY(C*,p1) = T;,C* =0

and the L(C*,p;) homomorphism Q(C*) — Q(C,), we obtain an ex-
tension of L(C*, p;) modules

0= Q(Cp) = Q(Cp) Xq(cx) Q'(C™,p1) = T;,C* = 0.

The cotangent map ¢g,,* : TeMyo — TxM,,, induced by the natural
map (g,: My, = Myo, (C,p,z)— (C,p,z) is equal to the inclusion
Q(C*) — Q(C,) under the Kothe duality. Hence the map ¢4,,* induces
an isomorphism of extensions of L(C*, p;) modules

(9.4)

0= Tic,p, Moo — e

x
:pyzyPI)Cgﬂ’ P

0=  QCp)—  QC,) xqex) @ (C*p) — T;C* -0

Suppose z = (C,p, z,p1) € D}, Let ¢ = qi(z) € Q(C*,p1) be a
meromorphic quadratic differential which corresponds to —(dz),, under
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the restriction Q'(C*,p;) = T;Cy 0 — T, C*. In other words we may
expand the differential ¢; by the coordinate z to obtain

a1 = ( + regular terms)dz?.

z —2(p1)
The element
(—q1,q1) mod Q(C*) € Q(C,) xq(cx) @(C*,p1)

is independent of the choice of ¢; € Q(C*,p1). Furthermore, for X €
L(Cx » P1 )s

(—£(X)q1, £(X)q1) = 60,5 (X)(—q1,01)  (mod Q(C™)).
Hence we obtain a canonical decomposition of L(C*, p;) modules
(9.5) Q(C,) Xo(cx) @1(C*, ;) = Q(C,)® T, C™.

LEMMA 9.6. Under the isomorphism (9.4) the elelment (—g,,q;) mod
Q(C*) corresponds to —(dz),, € T;C )

zg,p
ProoF: Take an a.r‘bitrary v € T;C;,. We have

Tg.0,0 = X, mod L(C™) € TeM, ,
tp, v = Xo mod L(C*,p) € T(C,p.z.Pn)C;0

for some X, € 0, and X € 0o. Passing to T(c,p,z)My,0, we have X, —
Xo € L(C*) and X, € 0,. It follows from the fact ¢; € Q(C,) that

1
(X
o1 |z|=p+6‘11 (Xo

Thus, for 0 < p; < |2(p1)| < p,
<_7r9.P‘q1 + l'p*QIav) = —(q11Xp> (fh,Xo)

— X,) = 0.

1
= q-Xp+——= - X
27V =1 Jjz|=p+6 b 2”\/ |z1=p1 o
1 ,
=— a (X, - Xo
21V =1 Jiz=p+s5 ’ )

1
- =( —f )1 - Xo
20V =1 Jizj=p46  Jizi=ms
1
=~ @1 - Xo = —(dz),, (X
27|'\/:_1 aroundp, ! ° ( )Pl( 0)

=(=(dz)p,,v),
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which proves the lemma.
Thus the proof of Proposition 9.1(1) is completed.

PROOF OF PROPOSITION 9.1(2): Let go € Q*(C*,p1) be a meromor-
phic quadratic differential satisfying Res,, go = 1. We have

x(€) = (0,dgo) mod Q(C*)

under the isomorphism (9.4). From the fact g0 € Q(C,), the cocycle

loc.

X(€) is cohomologous to the cocycle (—dgg,dgo) mod Q(C>). For X =
f(2)4 € L(C*,p),

L(X)qo =£(f(z);;)((m + higher terms)dz?)
_( =) regular terms)dz?
=) + regular t )dz

=f"(2(p1))q1 (mod Q(C™)).

Hence {(~dgo,dgo) mod Q(C), X) = (~L(X)qo, L(X)go) mod Q(C*)

= f"(z(p1))(—q1,91) mod Q(C*) corresponds to (0,€e(X)) under the
isomorphism (9.5), which completes the proof of Proposition 9.1.

10. The Morita Mumford classes.

In §7 we constructed a cohomology class Dx(xn) € H™"(My,,) for n €
N>o. In this section we assume p > 0. We shall prove

THEOREM 10.1. Suppose g >0andp>0. Ifn > 1,

(Q)n DX(kn) = en € H™™(M, ),

where e, is the n-th Morita Mumford class (0.2).

As corollaries we obtain

COROLLARY 10.2. If p > 0, the composite map

Doy: @ H™(Wh; /\nQ) - @Hn'n(Mg.p)

n>0 n>0
(resp. Dox: EB H™(Lo; /\an) — @ H™™(Cy,p))
n>0 n>0
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is a stable isomorphism onto the subalgebra generated by the Morita
Mumford classes e,’s (resp. the Euler class e and the Morita Mumford

classes e, ’s).

COROLLARY 10.3. There exist no algebraic relations among the classes
kyn’s. Namely we have isomorphisms of C algebras

@H"(W;;/\nQ) = Clkn;n 2 1]

n>0

@ H"(Lo; /\an) = Cle, knyn 2 1.

n>0
To deduce the corrolaries from the theorem, we utilize the theorem of
Miller [Mi] and Morita [Mo] quoted in (0.1).

The formula (6.6), which is an immediate consequence of Theorem
5.1(2),

(10.4) x(e1€") = x(n)7g,p"X(Kn)

€ H%(Cy0; H™((00)2; Ty, C* ® (700" \ T"Myp)2)).
is a key to the proof of Theorem 10.1. We begin it by investigating the
class x(7n)-

The pull back ¢} ,Xx(7n) through the natural map ¢y, : Cg, — Cro=
Cy,0 defines the class

X(1) € H(Cy'py Dgps H'((9,)23 T, C* ® SF(C))))-
Consider the (usual) fiber integral of the class
DR(1n) € BY(C2,, Din; Ox (T°Cly/My.0 ® S"F(C))).
LEMMA 10.5.

L Dx(nn) =27 /vV/=1€ H*(M,,,;Om, ,(S"F(C)))).

PROOF: It suffices to prove it for the case n = 1. To represent the
class () explicitly, we introduce an “Elementarfunktion 1. Ordnung”

of Behnke and Stein [BeSt).
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LEMMA 10.6.[BEST]. Let C* be a once punctured compact Riemann
surface. Then there exists a meromorphic section A of the bundle

pr*T*C* over C* x C* such that
(1) A is complex analytic over C* x C* — A, where A = A(C*) C
C* x C* is the diagonal.
(2) Near each point in the diagonal, A is locally represented by

A= A(¢,2)d¢ = (Z:—Lz + hoIo.) dc.

The section A is called an Elementarfunktion 1. Ordnung in [BeSt].
Then we have in H'((30):;T,,C* ® F(C*))
x{CP#PD) (ny) = [d((dC)p, ® Alp1,2))]-

Let A be a C™ section of T*C* @ F(C,) over C* which is an extension
of A|7)-;x c.* By definition we have
3 3

Dx(m) = 3(A— A) = -84 € H'(C*,DX; T*C* ® F(C,)).
It follows from Stokes’ theorem

([ DR == [ FAe) == [ dip)=§ A

fiber
= f{cl— A(p;) = —2mv/—1Res,, A(-,p1) = 2n/vV-1.

This completes the proof of Lemma 10.5.
Taking the pullback of the formula (10.4) through the natural map

tg,p:Cy,— Cpio = Cyo, We obtain
(10.7)  X(e1€™) = X(71n)7q,p X (%)

€ HO(CJp D H™H (0,5 T5,C 8 (m0," \ T My )e),
where %(e1€™) is the projection image of the class X(€)*! defined in §9.

From Corollary 9.3, the definition of the Morita Mumford class (0.2)
and Lemma 10.5 we have

—7 n<1 R
(-———') Dx(e1€™) =/ e™*t! =e,, and
27 fiber fiber

[ D& X(sn)) = ([ DR(00)) DX(s) = 755 DX ().

It follows from (10.7) that e, = (v/—=1/27)"DX(xn), which completes
the proof of Theorem 10.1.
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11. Equivariant cohomology.

Finally we shall show how the results obtained in the preceding sections
can be interpreted by an equivariant cohomology theory for Lie algebras
[Kal] §1.

As in §7, let M be a (possibly infinite dimensional) complex analytic
manifold on which a complex Lie algebra g acts complex analytically
and let E be a g vector bundle over M. Here we assume that the action
of g on M is transitive, i.e., that the composite ev opu : g — Vect(M) —
T. M is surjective for each z € M.

Since Oy (E) is a sheaf of g modules, the cochain complex of sheaves

over M open
C*(g:0m(E)): M 5 0w C*(9;Om(E)0))
is defined, where C*(g;-) is the standard cochain complex of the Lie
algebra g with values in a g module - introduced in §2. We denote
by H;(M,Opm(E)) the hypercohomology group of the cochain complex
of sheaves over M with respect to the functor I'(M;-) (= the sections
of - over M) ([G,E] ch.0, §11.4, pp.32-) and call it the g equivariant
cohomology group of M with values in the g vector bundle E. Namely
we define
Hi(M;Opm(E)) := H*(Total(T(M;C*")))

for an injective right Cartan-Eilenberg resolution C*™* = (C*); j>o of
the complex C*(g; Om(E)) (cf. ibid. loc. cit.). Especially, if E is the
n-cotangent bundle A" T*M, we denote

HP* (M) = Hy(M; Ou(\ T*M))

and call it the g equivariant (n,*) cohomology of M.
There exist two spectral sequences converging to Hy(M; Opm(E))

(11.1) ‘E}? = HP(H(M;C*(g; Om(E))))
(11.2) “E}? = HY(M; H*(9; Om(E))),

where we denote H*(g; Op(E)) is the sheaf over M defined as the co-
homology of the cochain complex of sheaves C*(g; Oy (E)).
We look at the natural map

oP?: ‘EPY = HY(HY(M;C*(g; Om(E)))) — HP(g; HI(M; OM(E)))
Espec1ally we have the natural map
H2(M; Ou(E)) — H(g; H™(M; Opy(E))) = H™(M; O (E))P.

Although the 3, manifolds M, , and Cy , are infinite dimensional, we
have the following proposition proved in [Kal](1.5) for the case when
the g manifold M and the g vector bundle E are finite dimensional.
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PROPOSITION 11.3. Let g, M and E be as above. We assume that the
Lie algebra g is one of the following

(1) a finite dimensional Lie algebra,
(2) the Lie algebra consisting of all complex analytic vector fields on
a finite dimensional complex manifold,
(3) a closed Lie subalgebra of a Lie algebra given in (2),
(4) 0, introduced in §1.
Furthermore we assume that M, E and HY(M;Op(E)) for ¢ # 0 are
all finite dimensional. Then the natural map P9 is an isomorphism

pP9: ‘EP? & HP(g; HY(M; Opm(E))).

As an application, we have

EXAMPLE 11.4: Let U be an open Riemann surface and S a finite subset
of U. We denote by L(U, S) the Lie algebra of complex analytic vector
fields on U which have zeroes at all points in S. L(U, S) is one of Lie
algebras given in Proposition 11.3. Let E — M be an complex analytic
vector bundle over a finite dimensional Stein manifold M. Suppose the
Lie algebra L(U, S) acts on the sheaf of topological linear spaces Oy (E)
continuously. From Proposition 11.3 folllows

H} .5 (M;Om(E)) = H*(L(U, S); Om(E)M)).

Hence we obtain a spectral sequence “E}'? = HP(M;H?) converging to
HPH(L(U, S); Om(E)M)), where H? is a sheaf over M whose stalk at
z € M is given by

HIY = HI(L(U, S); Om(E)z).

We call this sequence the Resetnikov spectral sequence (see [Ka] §9).

Next we investigate the second spectral sequence “E5'? (11.2). The
map D defined in §7 is concerned with this sequence. If z € O C M, the
evaluation map. ev; : Oy(E)(O) — E; is a g, homomorphism, where
g, is the isotropy algebra of g at the point . This implies the evaluation
homomorphism

(11.5) (evz)e : H(8; Om(E)): — H"(9,; Ez)
is defined. Especially we have a natural map

HI(M;Ou(E)) —» “E3™ %5 H(M;Opm( [ | H"(8.: E2))).
zeEM
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Thus the two cohomology groups H*(g,; E,) and H*(M;0Opm(E)) are
connected by the g equivariant cohomology group Hy(M;Oum(E)).

Taking into consideration the finite dimensional case studied by Bott
[B] (although the d, manifolds M, , and C,,, are infinite dimensional in
our case), we may regard the g module (Op(E)); as the (co-)induced
module of the g, module E, (z € M). Hence we put a general hypothesis
that the evaluation homomorphism (11.5) is an isomorphism

(11.6) (ev2)u : H*(8; Onm(E))s 5 H* (8,3 Ex)

for all z € M. It could be regarded as a certain kind of the Frobenius
reciprocity laws, i.e., the Shapiro isomorphisms. Through the isomor-
phism (11.6) the vector bundle ] s H*(8,; E:) possesses the natural
structure of a sheaf over M and we have an isomorphism

“EPY = HP(M; H(9,; Ex)),

where the RHS means the cohomology of M with values in the sheaf
I1.es H*(8,; E:). Thus, under the hypothesis (11.6), the assumption
(A(n)) implies that the term ‘E}'? vanishes for ¢ < n, so that

0, if ¢ < n,
HI(M;Op(E)) =
s(M: Om(E)) {H"(M;H"(gx;Ez)), ifg=n.

The map D introduced in 87
D: H'(M;H"(g,; E;)) — H™(M;Opm(E))

is nothing but the composite of the above isomorphism and the natural
map H(M; Ou(E)) — H™(M; O (E)).

Consider the 9, manifolds M = M, , and C,, and the 3, vector
bundles A" T* M, where we assume p > 0. Then the hypothesis (11.6)

18

n n
(11.7)  H*(0,;0m(EXA\ T"M)). = H*((3,):; /\ T:M)
foralln >0and all z € M = M, , and Cy ,.
The hypothesis (11.7) seems to be true. But at present the author has
no proof for the assertion (11.7).

Under the hypothesis (11.7), the sheaf structure on the vector bun-
dle [1,epm H”((Dp)z;/\" T:M) induced by (11.7) coincides with that
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induced by the isomorphisms x and ¥ introduced in (6.2). Thus we
have

x: H*(Lo; \" @Y = H(Cyps H(%,)s \ TZCo.0))
X H Wis \"Q) = HO(M, 5 H((0p)5 \ TeM,.,)).
From Corollaries 2.9 and 2.11 the 3, vector bundles A" T*M, , and

A" T*C, , satisfy the assumption (A(n)). Consequently we conclude
from Corollaries 10.2 and 10.3

THEOREM 11.8. If the hypothesis (11.7) holds good, we have

(1) @ Hg,’,q(Mg,p) = Clen;n 2 1]
P24q

(2) &P HE4(C,,) = Cle,enin 2 1]
p2q

for all ¢ > 0 and p > 0, where e = 1(Tc, ,/m,,) € H"(Cy,,) and
en € H*"(M, ,) is the n-th Morita Mumford class (n € N> ).

This gives an affirmative evidence for the conjecture: the stable co-
homology algebra of the moduli of compact Riemann surfaces would be
generated by the Morita Mumford classes e, ’s.
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